WorldWideScience

Sample records for cell secretes microparticles

  1. IL-36γ is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components.

    Science.gov (United States)

    Kovach, Melissa A; Singer, Benjamin H; Newstead, Michael W; Zeng, Xianying; Moore, Thomas A; White, Eric S; Kunkel, Steven L; Peters-Golden, Marc; Standiford, Theodore J

    2016-08-01

    Interleukin-36 is a family of novel interleukin-1-like proinflammatory cytokines that are highly expressed in epithelial tissues and several myeloid-derived cell types. Like those of classic interleukin-1 cytokines, the secretion mechanisms of interleukin-36 are not well understood. Interleukin-36γ secretion in dermal epithelial cells requires adenosine 5'-triphosphate, which suggests a nonclassical mechanism of secretion. In this study, murine pulmonary macrophages and human alveolar macrophages were treated with recombinant pathogen-associated molecular patterns (intact bacteria: Klebsiella pneumoniae or Streptococcus pneumoniae). Cell lysates were analyzed for messenger ribonucleic acid by quantitative real-time polymerase chain reaction, and conditioned medium was analyzed for interleukin-36γ by enzyme-linked immunosorbent assay, with or without sonication. In addition, conditioned medium was ultracentrifuged at 25,000 g and 100,000 g, to isolate microparticles and exosomes, respectively, and interleukin-36γ protein was assessed in each fraction by Western blot analysis. Interleukin-36γ mRNA was induced in both murine and human lung macrophages by a variety of pathogen-associated molecular patterns, as well as heat-killed and live Klebsiella pneumoniae and Streptococcus pneumoniae, and induction occurred in a myeloid differentiation response gene 88-dependent manner. Secretion of interleukin-36γ protein was enhanced by adenosine 5'-triphosphate. Furthermore, extracellular interleukin-36γ protein detection was markedly enhanced by sonication to disrupt membrane-bound structures. Interleukin-36γ protein was detected by Western blot in microparticles and exosome fractions isolated by ultracentrifugation. Interleukin-36γ was induced and secreted from lung macrophages in response to Gram-negative and -positive bacterial stimulation. The results suggest that interleukin-36γ is secreted in a non-Golgi-dependent manner by lung macrophages in response to Gram

  2. Microparticles as biomarkers of osteonecrosis of the hip in sickle cell disease

    NARCIS (Netherlands)

    Marsh, Anne; Schiffelers, Raymond; Kuypers, Frans; Larkin, Sandra; Gildengorin, Ginny; van Solinge, Wouter; Hoppe, Carolyn

    2015-01-01

    Osteonecrosis of the femoral head (ONFH) is a common complication of sickle cell disease (SCD). To examine the association between microparticles and ONFH in SCD, we compared plasma microparticle levels in 20 patients with and without ONFH. Microparticles were quantified using nanoparticle tracking

  3. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  4. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles

    OpenAIRE

    Pitsillides, Costas M; Joe, Edwin K.; Wei, Xunbin; Anderson, R. Rox; Lin, Charles P.

    2003-01-01

    We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond ...

  5. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates

    OpenAIRE

    Cho, Chi Hyun; Yun, Seung Gyu; Koh, Young Eun; Lim, Chae Seung

    2016-01-01

    Changes in microparticles (MP) from red blood cell (RBC) concentrates in the context of irradiation have not been investigated. The aim of this study was to evaluate how irradiation affects the number of MPs within transfusion components. Twenty RBC concentrates, within 14 days after donation, were exposed to gamma rays (dose rate: 25 cGy) from a cesium-137 irradiator. Flow cytometry was used to determine the numbers of MPs derived from RBC concentrates before and 24 hr after irradiation. The...

  6. The preservation of living cells with biocompatible microparticles

    Science.gov (United States)

    Yang, Jing; Zhu, Yingnan; Xu, Tong; Pan, Chao; Cai, Nana; Huang, He; Zhang, Lei

    2016-07-01

    Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.

  7. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tania Fleitas

    Full Text Available BACKGROUND: Circulating endothelial cells and microparticles have prognostic value in cancer, and might be predictors of response to chemotherapy and antiangiogenic treatments. We have investigated the prognostic value of circulating endothelial cells and microparticles in patients treated for advanced non-small cell lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood samples were obtained from 60 patients before first line, platinum-based chemotherapy +/- bevacizumab, and after the third cycle of treatment. Blood samples from 60 healthy volunteers were also obtained as controls. Circulating endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Phosphatidylserine-positive microparticles were evaluated by flow cytometry. Microparticle-mediated procoagulant activity was measured by the endogen thrombin generation assay. RESULTS: pre- and posttreatment levels of markers were higher in patients than in controls (p<0.0001. Elevated levels of microparticles were associated with longer survival. Elevated pretreatment levels of circulating endothelial cells were associated with shorter survival. CONCLUSIONS/SIGNIFICANCE: Circulating levels of microparticles and circulating endothelial cells correlate with prognosis, and could be useful as prognostic markers in patients with advanced non-small cell lung cancer.

  8. Manipulation of microparticles and red blood cells using optoelectronic tweezers

    Indian Academy of Sciences (India)

    R S Verma; R Dasgupta; N Kumar; S Ahlawat; A Uppal; P K Gupta

    2014-02-01

    We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photoconductive layer on ITO-coated glass slide. Compare to the conventional optical tweezers, the technique requires optical power in W range and provides a manipulation area of a few mm2. The set-up was used to manipulate the polystyrene microspheres and red blood cells (RBCs). The RBCs could be attracted or repelled by varying the frequency of the applied AC bias.

  9. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    Science.gov (United States)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  10. Stimulation of incretin secreting cells

    OpenAIRE

    Pais, Ramona; Gribble, Fiona M.; Reimann, Frank

    2016-01-01

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system t...

  11. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  12. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    Science.gov (United States)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  13. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  14. Stimulation of incretin secreting cells.

    Science.gov (United States)

    Pais, Ramona; Gribble, Fiona M; Reimann, Frank

    2016-02-01

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation. PMID:26885360

  15. Stimulation of incretin secreting cells

    Science.gov (United States)

    Pais, Ramona; Gribble, Fiona M.; Reimann, Frank

    2016-01-01

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation. PMID:26885360

  16. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  17. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  18. Analysis of Cell-Derived Microparticles with Highly Precise Nanotechnological Methods

    DEFF Research Database (Denmark)

    Cherré, Solène; Østergaard, Ole; Heegaard, Niels H.H.;

    2014-01-01

    Cell-derived microparticles have gained a broad interest in the past years. Being released by blood cells upon activation or induction of apoptosis, they have a great potential as novel diagnostic markers and their investigation can bring new knowledge into the pathogenesis of various diseases. H...

  19. Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Nicoleta Alexandru

    Full Text Available AIM: The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs and platelet microparticles (PMPs on blood platelet function in experimental hypertension associated with hypercholesterolemia. METHODS: Golden Syrian hamsters were divided in six groups: (i control, C; (ii hypertensive-hypercholesterolemic, HH; (iii 'prevention', HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv 'regression', HHfin-EPCs, HH treated with EPCs after HH feeding; (v HH treated with PMPs, HH-PMPs, and (vi HH treated with EPCs and PMPs, HH-EPCs-PMPs. RESULTS: Compared to HH group, the platelets from HHin-EPCs and HHfin-EPCs groups showed a reduction of: (i activation, reflected by decreased integrin 3β, FAK, PI3K, src protein expression; (ii secreted molecules as: SDF-1, MCP-1, RANTES, VEGF, PF4, PDGF and (iii expression of pro-inflammatory molecules as: SDF-1, MCP-1, RANTES, IL-6, IL-1β; TFPI secretion was increased. Compared to HH group, platelets of HH-PMPs group showed increased activation, molecules release and proteins expression. Compared to HH-PMPs group the combination EPCs with PMPs treatment induced a decrease of all investigated platelet molecules, however not comparable with that recorded when EPC individual treatment was applied. CONCLUSION: EPCs have the ability to reduce platelet activation and to modulate their pro-inflammatory and anti-thrombogenic properties in hypertension associated with hypercholesterolemia. Although, PMPs have several beneficial effects in combination with EPCs, these did not improve the EPC effects. These findings reveal a new biological role of circulating EPCs in platelet function regulation, and may contribute to understand their cross talk, and the mechanisms of atherosclerosis.

  20. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles.

    Science.gov (United States)

    Lee, Joo Hyuk; Lee, Chang-Soo; Cho, Kuk Young

    2014-10-01

    Engineering surface morphology as in honeycomb-structured planar films is of great importance for providing new potential application and improved performance in biomedical fields. We demonstrate potential new applications for the uniform biocompatible golf-ball-shaped microparticles that resembles 3D feature of honeycomb-structured film. Dimple size controllable golf-ball-shaped microparticles were fabricated by microfluidic device. Surface dimples not only can act as picoliter beaker but also enhance cell adhesion without any chemical modification of the surface. PMID:25265359

  1. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  2. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles

    OpenAIRE

    Baraniak, Priya R.; Cooke, Marissa T; Saeed, Rabbia; Kinney, Melissa A.; Krista M Fridley; McDevitt, Todd C.

    2012-01-01

    Culturing multipotent adult mesenchymal stem cells as 3D aggregates augments their differentiation potential and paracrine activity. One caveat of stem cell spheroids, though, can be the limited diffusional transport barriers posed by the inherent 3D structure of the multicellular aggregates. In order to circumvent such limitations, polymeric microparticles have been incorporated into stem cell aggregates as a means to locally control the biochemical and physical properties of the 3D microenv...

  3. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles

    Science.gov (United States)

    Baraniak, Priya R.; Cooke, Marissa T.; Saeed, Rabbia; Kinney, Melissa A.; Fridley, Krista M.; McDevitt, Todd C.

    2012-01-01

    Culturing multipotent adult mesenchymal stem cells as 3D aggregates augments their differentiation potential and paracrine activity. One caveat of stem cell spheroids, though, can be the limited diffusional transport barriers posed by the inherent 3D structure of the multicellular aggregates. In order to circumvent such limitations, polymeric microparticles have been incorporated into stem cell aggregates as a means to locally control the biochemical and physical properties of the 3D microenvironment. However, the introduction of biomaterials to the 3D stem cell microenvironment could alter the mechanical forces sensed by cells within aggregates, which in turn could impact various cell behaviors and overall spheroid mechanics. Therefore, the objective of this study was to determine the acute effects of biomaterial incorporation within mesenchymal stem cell spheroids on aggregate structure and mechanical properties. The results of this study demonstrate that although gelatin microparticle incorporation results in similar multi-cellular organization within human mesenchymal stem cell spheroids, the introduction of gelatin materials significantly impacts spheroid mechanical properties. The marked differences in spheroid mechanics induced by microparticle incorporation may hold major implications for in vitro directed differentiation strategies and offer a novel route to engineer the mechanical properties of tissue constructs ex vivo. PMID:22658155

  4. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    Science.gov (United States)

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. PMID:24753015

  5. Circulating Endothelial Progenitor Cell and Platelet Microparticle Impact on Platelet Activation in Hypertension Associated with Hypercholesterolemia

    OpenAIRE

    Nicoleta Alexandru; Doina Popov; Emanuel Dragan; Eugen Andrei; Adriana Georgescu

    2013-01-01

    AIM: The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs) and platelet microparticles (PMPs) on blood platelet function in experimental hypertension associated with hypercholesterolemia. METHODS: Golden Syrian hamsters were divided in six groups: (i) control, C; (ii) hypertensive-hypercholesterolemic, HH; (iii) 'prevention', HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv) 'regression', HHfin-EPCs, HH treated with EPCs aft...

  6. Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method.

    Science.gov (United States)

    Oliveira, Mariana B; Kossover, Olga; Mano, João F; Seliktar, Dror

    2015-02-01

    A new methodology is reported for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photoreactive poly(ethylene glycol) (PEG)-fibrinogen (PF) polymer was transported through a transparent injector exposed to light irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data revealed the crosslinking kinetics of the PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture just prior to atomization. The partially polymerized drops of PF/cells fell into a gelation bath for further crosslinking until fully polymerized hydrogel microparticles were formed. As the drops of solution exited the air-in-jet nozzle, their viscosity was designed to be sufficiently high so as to prevent rapid mixing and/or dilution in the gelation bath, but without undergoing complete gelation in the nozzle. Several parameters of this system were varied to control the size and polydispersity of the microparticles, including the cell density, the flow rate and the air pressure in the nozzle. The system was capable of producing cell-laden microparticles with an average diameter of between 88.1 to 347.1 μm, and a dispersity of between 1.1 and 2.4, depending on the parameters chosen. Varying the precursor flow rate and/or cell density was beneficial in controlling the size and polydispersity of the microparticles; all microparticles exhibited very high cell viability, which was not affected by these parameters. In conclusion, this dropwise photopolymerization methodology for preparing cell-laden microparticles is an attractive alternative to existing techniques that use harsh solvents/oils and offer limited control over particle size and polydispersity. PMID:25462849

  7. Invert sugar formation with Saccharomyces cerevisiae cells encapsulated in magnetically responsive alginate microparticles

    Science.gov (United States)

    Safarik, Ivo; Sabatkova, Zdenka; Safarikova, Mirka

    2009-05-01

    Invert sugar (an equimolar mixture of glucose and fructose prepared by sucrose hydrolysis) is a very important food component. We have prepared magnetically responsive alginate microbeads containing entrapped Saccharomyces cerevisiae cells and magnetite microparticles which can be easily separated in an appropriate magnetic separator. The microbeads (typical diameter between 50 and 100 μm) were prepared using the water-in-oil emulsification process. The prepared microbeads containing yeast cells with invertase activity enabled efficient sucrose conversion. The biocatalyst was quite stable; the same catalytic activity was observed after one month storage at 4 °C and the microbeads could be used at least six times.

  8. Invert sugar formation with Saccharomyces cerevisiae cells encapsulated in magnetically responsive alginate microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Safarik, Ivo [Department of Biomagnetic Techniques, Institute of Systems Biology and Ecology, Academy of Sciences, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Medical Biology, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic)], E-mail: ivosaf@yahoo.com; Sabatkova, Zdenka; Safarikova, Mirka [Department of Biomagnetic Techniques, Institute of Systems Biology and Ecology, Academy of Sciences, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2009-05-15

    Invert sugar (an equimolar mixture of glucose and fructose prepared by sucrose hydrolysis) is a very important food component. We have prepared magnetically responsive alginate microbeads containing entrapped Saccharomyces cerevisiae cells and magnetite microparticles which can be easily separated in an appropriate magnetic separator. The microbeads (typical diameter between 50 and 100 {mu}m) were prepared using the water-in-oil emulsification process. The prepared microbeads containing yeast cells with invertase activity enabled efficient sucrose conversion. The biocatalyst was quite stable; the same catalytic activity was observed after one month storage at 4 deg. C and the microbeads could be used at least six times.

  9. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells.

    Science.gov (United States)

    Faille, Dorothée; El-Assaad, Fatima; Mitchell, Andrew J; Alessi, Marie-Christine; Chimini, Giovanna; Fusai, Thierry; Grau, Georges E; Combes, Valéry

    2012-08-01

    Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.

  10. Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Lauryl E. Campbell

    2014-01-01

    Full Text Available This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32–42°C. A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  11. The SNARE machinery in mast cell secretion

    Directory of Open Access Journals (Sweden)

    Axel eLorentz

    2012-06-01

    Full Text Available Mast cells are known as inflammatory cells which exert their functions in allergic and anaphylactic reactions by secretion of numerous inflammatory mediators. During an allergic response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE and antigen resulting in immediate release of pre-synthesized mediators – stored in granules – as well as in de novo synthesis of various mediators like cytokines and chemokines. Soluble N-ethylmaleimide-Sensitive Factor (NSF Attachment Protein (SNAP Receptors (SNARE proteins were found to play a central role in regulating membrane fusion events during exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases, SCAMPs, complexins or synaptotagmins were found to be involved in membrane fusion. In this review we summarize our current knowledge about the SNARE machinery and its mechanism of action in mast cell secretion.

  12. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov;

    2013-01-01

    Appropriate scaffolds capable of providing suitable biological and structural guidance are of great importance to generate cell-scaffold constructs for cell-based tissue engineering. The aim of the present study was to develop composite microparticles with a structure to provide functionality as ...

  13. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Science.gov (United States)

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  14. Myeloma cells suppress osteoblasts through sclerostin secretion

    International Nuclear Information System (INIS)

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM

  15. IA-2 modulates dopamine secretion in PC12 cells

    OpenAIRE

    Nishimura, Takuya; Harashima, Shin-ichi; Yafang, Hu; Notkins, Abner Louis

    2009-01-01

    The secretion of the hormone insulin from beta cells is modulated by the expression of the dense core vesicle transmembrane protein IA-2. Since IA-2 is found in neuroendocrine cells throughout the body, the present experiments were initiated to determine whether the expression of IA-2 also modulates the secretion of neurotransmitters. Using the dopamine-secreting pheochromocytoma cell line PC12, we found that the overexpressions of IA-2 increased the cellular content and secretion of dopamine...

  16. Unconventional Protein Secretion in Animal Cells.

    Science.gov (United States)

    Ng, Fanny; Tang, Bor Luen

    2016-01-01

    All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells. PMID:27665549

  17. Differentiation of human embryonic stem cells into insulin- secreting cells

    OpenAIRE

    S Mollamohammadi; Massumi, M.; H Jafary; Baharvand, H.

    2006-01-01

    Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated selection of nestin positive cells. In final stage, these cells were expanded in the presence of bFGF, ...

  18. Phospholipid Binding Protein C Inhibitor (PCI Is Present on Microparticles Generated In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Einfinger

    Full Text Available Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.

  19. The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells.

    Science.gov (United States)

    Ullal, Anirudh J; Marion, Tony N; Pisetsky, David S

    2014-10-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and markers of underlying immune system disturbances. These antibodies bind to both single-stranded and double-stranded DNA, mediating pathogenesis by forming immune complexes. As shown recently, DNA in blood exists in both free and particulate forms, with DNA representing an important component of microparticles. Microparticles are membrane-bound vesicles containing nuclear molecules, released by membrane blebbing during cell death and activation. A panel of monoclonal NZB/NZW F1 anti-DNA antibodies was tested for binding to microparticles generated from apoptotic THP-1 and Jurkat cells. These studies showed that only certain anti-DNA antibodies in the panel, specific for double-stranded DNA, bound to microparticles. Binding to particles was reduced by soluble DNA or DNase treatment. Together, these results indicate that particle binding is a feature of only certain anti-DNA antibodies, reflecting immunochemical properties of the antibodies and the nature of the exposed DNA antigens.

  20. VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells.

    Science.gov (United States)

    Al Thawadi, Hamda; Abu-Kaoud, Nadine; Al Farsi, Haleema; Hoarau-Véchot, Jessica; Rafii, Shahin; Rafii, Arash; Pasquier, Jennifer

    2016-02-01

    Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells. PMID:26700621

  1. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    Science.gov (United States)

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-03-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.

  2. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  3. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  4. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Stener, Line;

    2012-01-01

    To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters.......To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters....

  5. γ-aminobutyric acid secreted from islet β-cells modulates exocrine secretion in rat pancreas

    Institute of Scientific and Technical Information of China (English)

    Yong-Deuk Park; Zheng-Yun Cui; Guang Wu; Hyung-Seo Park; Hyoung-Jin Park

    2006-01-01

    AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion.METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones.Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the pancreas.RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas.Bicuculline (10 μmol/L), a GABAA receptor antagonist,blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocintreated pancreas.CONCLUSION: GABA could be secreted from β-cells into the islet-acinar portal system after administration of glutainine, and could enhance the CCK-stimulated exocrine secretion through GABAA receptors. Thus,GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.

  6. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  7. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    Science.gov (United States)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  8. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    Science.gov (United States)

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  9. Somatomammotrophic cells in GH-secreting and PRL-secreting human pituitary adenomas.

    Science.gov (United States)

    Bassetti, M; Brina, M; Spada, A; Giannattasio, G

    1989-11-01

    A morphological study has been carried out on 20 GH-secreting adenomas removed from acromegalic normoprolactinemic patients, on 29 PRL-secreting adenomas removed from hyperprolactinemic patients without signs of acromegaly and on one normal human anterior pituitary gland collected at autopsy. The protein A-gold immunoelectron microscopic technique has been utilized in order to verify the presence of mixed cells producing both GH and PRL (somatomammotrophs) in these pituitary tissues. In the normal pituitary a considerable number of somatomammotrophs (15-20%) was found, thus supporting the idea that these cells are normal components of the human anterior pituitary gland. In 10 GH-secreting adenomas and in 10 PRL-secreting adenomas somatomammotrophs were present in a variable number (from 4 to 20% of the whole cell population in GH adenomas and from 1 to 47% in PRL tumors). It can be concluded therefore that these cells, largely present in all GH/PRL-secreting adenomas, can also be found in GH-secreting and PRL-secreting tumors without clinical evidence of a mixed secretion. Adenomatous somatomammotrophs displayed ultrastructural features of adenomatous somatotrophs and mammotrophs (prominent Golgi complexes, abundant rough endoplasmic reticulum, irregular nuclei). The size and the number of granules were variable. In some cells GH and PRL were stored in distinct secretory granules, in others in mixed granules or both in mixed and distinct granules, thus suggesting that in adenomatous somatomammotrophs the efficiency of the mechanisms of sorting of the two hormones varies from one cell to another.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Argonaute 2 in cell-secreted microvesicles guides the function of secreted miRNAs in recipient cells.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Lv

    Full Text Available MicroRNAs (miRNAs secreted by cells into microvesicles (MVs form a novel class of signal molecules that mediate intercellular communication. However, several fundamental aspects of secreted miRNAs remain unknown, particularly the mechanism that governs the function or fate of exogenous miRNAs in recipient cells. In the present study, we provide evidence indicating that Argonaute 2 (Ago2 plays a role in stabilizing miRNAs and facilitating the packaging of secreted miRNAs into MVs. More importantly, Ago2 in origin cell-secreted MVs (but not in recipient cells directs the function of secreted miRNAs. First, Ago2 overexpression clearly increased the level of miR-16 in cells transfected with a miR-16 mimic by protecting the miRNAs from degradation in lysosomes. Second, Ago2 overexpression increased the level of miR-16 in cell-secreted MVs, suggesting that Ago2 may facilitate the packaging of secreted miRNAs into MVs. Third, exogenous miR-16 delivered by MVs within the origin cells significantly reduced the Bcl2 protein level in recipient cells, and miR-16 and Bcl2 mRNA were physically associated with exogenous HA-tagged Ago2 (HA-Ago2. Finally, the effect of MV-delivered miR-16 on the production of the Bcl2 protein in recipient cells was not abolished by knocking down Ago2 in the recipient cells.

  11. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria

    Science.gov (United States)

    Mitchell, Adam J.; Gray, Warren D.; Schroeder, Max; Yi, Hong; Taylor, Jeannette V.; Dillard, Rebecca S.; Ke, Zunlong; Wright, Elizabeth R.; Stephens, David; Roback, John D.; Searles, Charles D.

    2016-01-01

    Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators. PMID:27760197

  12. "Kill" the messenger: Targeting of cell-derived microparticles in lupus nephritis.

    Science.gov (United States)

    Nielsen, Christoffer T; Rasmussen, Niclas S; Heegaard, Niels H H; Jacobsen, Søren

    2016-07-01

    Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response.

  13. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway.

    Science.gov (United States)

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-11-28

    The antiphospholipid syndrome is characterized by thrombosis and recurrent fetal loss in patients with antiphospholipid antibodies (APLAs). Most pathogenic APLAs are directed against β2-glycoprotein I (β2GPI), a plasma phospholipid binding protein. One mechanism by which circulating antiphospholipid/anti-β2GPI antibodies may promote thrombosis is by inducing the release of procoagulant microparticles from endothelial cells. However, there is no information available concerning the mechanisms by which anti-β2GPI antibodies induce microparticle release. In seeking to identify proteins phosphorylated during anti-β2GPI antibody-induced endothelial activation, we observed phosphorylation of nonmuscle myosin II regulatory light chain (RLC), which regulates cytoskeletal assembly. In parallel, we observed a dramatic increase in the formation of filamentous actin, a two- to fivefold increase in the release of endothelial cell microparticles, and a 10- to 15-fold increase in the expression of E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and tissue factor messenger RNA. Microparticle release, but not endothelial cell surface E-selectin expression, was blocked by inhibiting RLC phosphorylation or nonmuscle myosin II motor activity. These results suggest that distinct pathways, some of which mediate cytoskeletal assembly, regulate the endothelial cell response to anti-β2GPI antibodies. Inhibition of nonmuscle myosin II activation may provide a novel approach for inhibiting microparticle release by endothelial cells in response to anti-β2GPI antibodies. PMID:23954892

  14. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Directory of Open Access Journals (Sweden)

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  15. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin.

    Science.gov (United States)

    Dinkla, Sip; van Cranenbroek, Bram; van der Heijden, Wouter A; He, Xuehui; Wallbrecher, Rike; Dumitriu, Ingrid E; van der Ven, André J; Bosman, Giel J C G M; Koenen, Hans J P M; Joosten, Irma

    2016-04-21

    Self-tolerance and immune homeostasis are orchestrated by FOXP3(+)regulatory T cells (Tregs). Recent data have revealed that upon stimulation, Tregs may exhibit plasticity toward a proinflammatory phenotype, producing interleukin 17 (IL-17) and/or interferon γ (IFN-γ). Such deregulation of Tregs may contribute to the perpetuation of inflammatory processes, including graft-versus-host disease. Thus, it is important to identify immunomodulatory factors influencing Treg stability. Platelet-derived microparticles (PMPs) are involved in hemostasis and vascular health and have recently been shown to be intimately involved in (pathogenic) immune responses. Therefore, we investigated whether PMPs have the ability to affect Treg plasticity. PMPs were cocultured with healthy donor peripheral blood-derived Tregs that were stimulated with anti-CD3/CD28 monoclonal antibodies in the presence of IL-2, IL-15, and IL-1β. PMPs prevented the differentiation of peripheral blood-derived Tregs into IL-17- and IFN-γ-producing cells, even in the presence of the IL-17-driving proinflammatory cytokine IL-1β. The mechanism of action by which PMPs prevent Treg plasticity consisted of rapid and selective P-selectin-dependent binding of PMPs to a CCR6(+)HLA-DR(+)memory-like Treg subset and their ability to inhibit Treg proliferation, in part through CXCR3 engagement. The findings that ~8% of Tregs in the circulation of healthy individuals are CD41(+)P-selectin(+)and that distinct binding of patient plasma PMPs to Tregs was observed support in vivo relevance. These findings open the exciting possibility that PMPs actively regulate the immune response at sites of (vascular) inflammation, where they are known to accumulate and interact with leukocytes, consolidating the (vascular) healing process.

  16. Multiple Sites of Purinergic Control of Insulin Secretion in Mouse Pancreatic β-Cells

    DEFF Research Database (Denmark)

    Poulsen, Claus R.; Bokvist, Krister; Olsen, Hervør L.;

    1999-01-01

    Insulin secretion, pancreatic islets, purinoceptors, calcium currents, potassium conductance, cell mebrane capacitance......Insulin secretion, pancreatic islets, purinoceptors, calcium currents, potassium conductance, cell mebrane capacitance...

  17. Secret Chambers: The Insider Story of Cells and Complex Life

    OpenAIRE

    Farid Pazhoohi

    2014-01-01

    Review of Secret Chambers: The Insider Story of Cells and Complex Life. Martin Brasier. 2012. Oxford University Press, UK. Pp. 320 with 15 black and white illustrations and 8 pages of color plates. £16.99 (hardcover). ISBN 9780199644001.

  18. Peroxicretion: a novel secretion pathway in the eukaryotic cell

    NARCIS (Netherlands)

    Sagt, C.M.J.; Ten Haaft, P.J.T; Minneboo, I.M.; Hartog, M.P.; Damveld, R.A.; Van der Laan, J.M.; Akeroyd, M; Wenzel, T.J.; Luesken, F.A.; Veenhuis, M.; Van der Klei, I.; De Winde, J.H.

    2009-01-01

    Background: Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzyme

  19. Peroxicretion : a novel secretion pathway in the eukaryotic cell

    NARCIS (Netherlands)

    Sagt, Cees M.J.; Haaft, Peter J. ten; Minneboo, Ingeborg M.; Hartog, Miranda P.; Damveld, Robbert A.; Laan, Jan Metske van der; Akeroyd, Michiel; Wenzel, Thibaut J.; Luesken, Francisca A.; Veenhuis, Marten; Klei, Ida van der; Winde, Johannes H. de

    2009-01-01

    Background: Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzyme

  20. EFFECTS OF SECRETABLE PLACENTAL FACTORS UPON SECRETION OF CYTOKINES BY THP-1 MONOCYTE-LIKE CELLS

    Directory of Open Access Journals (Sweden)

    Ya. S. Onokhina

    2013-01-01

    Full Text Available Abstract. Мonocytes in feto-placental circulation are exposed to factors secreted by placental tissue. These factors influence monocyte functions in pregnancy. In present study, an in vitro model (monocyte-like THP-1 cells was used for assessing effects of soluble placental factors obtained from women with physiological pregnancies, or preeclampsia cases. The following effects of placental factors were revealed: increased secretion of VEGF by THP-1 cells along with decreased secretion of IL-6, IL-8 and MCP-1 under the influence of placental factors from the I. trimester of pregnancy in comparison with III. trimester. Secretion of IL-6 and MCP-1 by THP-1 cells was increased, and secretion of soluble TNFRII was decreased upon co-cultivation with soluble placental factors from the women with preeclampsia, as compared with placental products from physiological pregnancies.The work is supported by grants ГК № 02.740.11.0711 from Ministry of Education and Science, and НШ-3594.2010.7 grant from the President of Russian Federation.

  1. Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells

    OpenAIRE

    1988-01-01

    We have studied proteoglycan secretion using a recently developed system for the preparing of polarized primary cultures of rat uterine epithelial cells. To mimic their native environment better and provide a system for discriminating apical from basolateral compartments, we cultured cells on semipermeable supports impregnated with biomatrix. Keratan sulfate proteoglycans (KSPG) as well as heparan sulfate- containing molecules (HS[PG]) were the major sulfated products synthesized and secreted...

  2. TNFα-DAMAGED-HUVECs MICROPARTICLES MODIFY ENDOTHELIAL PROGENITOR CELL FUNCTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Carlos eLuna Ruiz

    2015-12-01

    Full Text Available Endothelial progenitor cells (EPCs have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs. EMPs are membranous structures with a size between 100-1000nm that act as molecular information transporter in biological systems and are known as an important elements in develop of different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNF-alpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs, contribution to repair a physically damaged endothelium (wound healing, binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis. All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs, the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies.

  3. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  4. Cellular origin of platelet-derived microparticles in vivo

    NARCIS (Netherlands)

    A. Rank; R. Nieuwland; R. Delker; A. Köhler; B. Toth; V. Pihusch; R. Wilkowski; R. Pihusch

    2010-01-01

    Introduction: Microparticles (MP), presumably of platelet origin, are the most abundant microparticles in blood. To which extent such MP may also directly originate from megakaryocytes, however, is unknown. During hematopoietic stem cell transplantation, patients undergo total body irradiation which

  5. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.

    Science.gov (United States)

    Mezouar, Soraya; Darbousset, Roxane; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2015-01-15

    Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvβ1 and αvβ3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice.

  6. Model for glucagon secretion by pancreatic α-cells.

    Directory of Open Access Journals (Sweden)

    Virginia González-Vélez

    Full Text Available Glucagon hormone is synthesized and released by pancreatic α-cells, one of the islet-cell types. This hormone, along with insulin, maintains blood glucose levels within the physiological range. Glucose stimulates glucagon release at low concentrations (hypoglycemia. However, the mechanisms involved in this secretion are still not completely clear. Here, using experimental calcium time series obtained in mouse pancreatic islets at low and high glucose conditions, we propose a glucagon secretion model for α-cells. Our model takes into account that the resupply of releasable granules is not only controlled by cytoplasmic Ca2+, as in other neuroendocrine and endocrine cells, but also by the level of extracellular glucose. We found that, although calcium oscillations are highly variable, the average secretion rates predicted by the model fall into the range of values reported in the literature, for both stimulated and non-stimulated conditions. For low glucose levels, the model predicts that there would be a well-controlled number of releasable granules refilled slowly from a large reserve pool, probably to ensure a secretion rate that could last for several minutes. Studying the α-cell response to the addition of insulin at low glucose, we observe that the presence of insulin reduces glucagon release by decreasing the islet Ca2+ level. This observation is in line with previous work reporting that Ca2+ dynamics, mainly frequency, is altered by insulin. Thus, the present results emphasize the main role played by Ca2+ and glucose in the control of glucagon secretion by α-cells. Our modeling approach also shows that calcium oscillations potentiate glucagon secretion as compared to constant levels of this cellular messenger. Altogether, the model sheds new light on the subcellular mechanisms involved in α-cell exocytosis, and provides a quantitative predictive tool for studying glucagon secretion modulators in physiological and pathological

  7. Naringenin stimulates cholecystokinin secretion in STC-1 cells

    OpenAIRE

    Park, Min; Kim, Kyong; Lee, Yu Mi; Rhyu, Mee Ra; Kim, Hye Young

    2014-01-01

    BACKGROUND/OBJECTIVES Cholecystokinin (CCK), a hormone or neuropeptide, is secreted in response to intraluminal nutrients by enteroendocrine I-cells of the intestine and has important physiological actions related to appetite regulation and satiety. The stimulation on CCK secretion from the intestine is of potential relevance for body weight management. Naringenin (4',5,7-trihydroxyflavanone) and its glycoside naringin (naringenin 7-rhamnoglucoside) have been reported to have many biological ...

  8. Acetylation modification regulates GRP78 secretion in colon cancer cells.

    Science.gov (United States)

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  9. Acetylation modification regulates GRP78 secretion in colon cancer cells

    Science.gov (United States)

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  10. Renin secretion from permeabilized juxtaglomerular cells requires a permeant cation

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1999-01-01

    The cytosolic concentration of chloride correlates directly with renin secretion from renal juxtaglomerular granular (JG) cells. In the present study, the mechanism by which chloride stimulates renin release was investigated in a preparation of permeabilized rat glomeruli with attached JG cells. ...

  11. Characterisation of BHK-21 cells engineered to secrete human insulin

    OpenAIRE

    Gammell, Patrick; O'Driscoll, Lorraine; Clynes, Martin

    2003-01-01

    Autoimmune destruction of β cells in the pancreas leads to type I, or insulin dependent diabetes mellitus (IDDM), through the loss of endogenous insulin production capacity. This paper describes an attempt to generate ‘artificial’β cells using the fibroblast cell line BHK21. Stable transfectants expressing the human preproinsulin (PPI) gene were isolated and characterised. The resulting clone selected for further analysis (BHK-PPI-C16) was capable of secreting 0.12 pmol proinsulin/hr/105 cell...

  12. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway

    OpenAIRE

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-01-01

    Activation of endothelial cells by anti-β2GPI antibodies causes myosin RLC phosphorylation, leading to actin-myosin association.In response to anti-β2GPI antibodies, release of endothelial microparticles, but not E-selectin expression, requires actomyosin assembly.

  13. Secretion of immunoregulatory cytokines by mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Dobroslav; Kyurkchiev; Ivan; Bochev; Ekaterina; Ivanova-Todorova; Milena; Mourdjeva; Tsvetelina; Oreshkova; Kalina; Belemezova; Stanimir; Kyurkchiev

    2014-01-01

    According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells(MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.

  14. Regulation of renin secretion by renal juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, Ulla G; Madsen, Kirsten; Stubbe, Jane;

    2013-01-01

    calcium paradoxically inhibits renin secretion likely through attenuated formation and enhanced degradation of cAMP; by activation of chloride currents and interaction with calcineurin. Connexin 40 is necessary for localization of JG cells in the vascular wall and for pressure- and macula densa...

  15. Proteomic analysis of exosomes secreted by human mesothelioma cells

    NARCIS (Netherlands)

    J.P.J.J. Hegmans (Joost); A. Hemmes (Annabrita); T.M. Luider (Theo); M.J. Kleijmeer (Monique); J-B. Prins (Jan-Bas); L. Zitvogel; S.A. Burgers (Sjaak); H.C. Hoogsteden (Henk); B.N.M. Lambrecht (Bart); M.P.L. Bard (Martin)

    2004-01-01

    textabstractExosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. Tumor exosomes may be involved in the sampling of antigens to antigen presenting cells or as decoys allowing the tumor to escape immune-directed destruction. The proteins pre

  16. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles.

    Science.gov (United States)

    Rogers, Catherine M; Deehan, David J; Knuth, Callie A; Rose, Felicity R A J; Shakesheff, Kevin M; Oldershaw, Rachel A

    2014-11-01

    Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.

  17. CX3CL1(+ Microparticles Mediate the Chemoattraction of Alveolar Macrophages toward Apoptotic Acute Promyelocytic Leukemic Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hui Tsai

    2014-02-01

    Full Text Available Background/Aims: During the resolution phase of inflammation, release of “find-me” signals by apoptotic cells is crucial in the chemoattraction of macrophages toward apoptotic cells for subsequent phagocytosis, in which microparticles derived from apoptotic cells (apo-MPs are involved. A recent study reports that CX3CL1 is released from apoptotic cells to stimulate macrophages chemotaxis. In this study, we investigated the role of CX3CL1 in the apo-MPs in the cell-cell interaction between alveolar macrophage NR8383 cells and apoptotic all-trans retinoic acid-treated NB4 (ATRA-NB4 cells. Methods/Results: Apoptotic ATRA-NB4 cells and their conditioning medium (CM enhanced the chemoattraction of NR8383 cells as well as their phagocytosis activity in engulfing apoptotic ATRA-NB4 cells. The levels of CX3CL1(+ apo-MPs and CX3CL1 were rapidly elevated in the CM of ATRA-NB4 cell culture after induction of apoptosis. Both exogenous CX3CL1 and apo-MPs enhanced the transmigration of NR8383 cells toward apoptotic ATRA-NB4 cells. This pro-transmigratory activity was able to be partially inhibited either by blocking the CX3CR1 (CX3CL1 receptor of NR8383 cells with its specific antibody or by blocking the surface CX3CL1 of apo-MPs with its specific antibody before incubating these apo-MPs with NR8383 cells. Conclusion: CX3CL1(+ apo-MPs released by apoptotic cells mediate the chemotactic transmigration of alveolar macrophages.

  18. New developments in goblet cell mucus secretion and function.

    Science.gov (United States)

    Birchenough, G M H; Johansson, M E V; Gustafsson, J K; Bergström, J H; Hansson, G C

    2015-07-01

    Goblet cells and their main secretory product, mucus, have long been poorly appreciated; however, recent discoveries have changed this and placed these cells at the center stage of our understanding of mucosal biology and the immunology of the intestinal tract. The mucus system differs substantially between the small and large intestine, although it is built around MUC2 mucin polymers in both cases. Furthermore, that goblet cells and the regulation of their secretion also differ between these two parts of the intestine is of fundamental importance for a better understanding of mucosal immunology. There are several types of goblet cell that can be delineated based on their location and function. The surface colonic goblet cells secrete continuously to maintain the inner mucus layer, whereas goblet cells of the colonic and small intestinal crypts secrete upon stimulation, for example, after endocytosis or in response to acetyl choline. However, despite much progress in recent years, our understanding of goblet cell function and regulation is still in its infancy.

  19. Detecting Secreted Analytes from Immune Cells: An Overview of Technologies.

    Science.gov (United States)

    Pike, Kelly A; Hui, Caitlyn; Krawczyk, Connie M

    2016-01-01

    The tumor microenvironment is largely shaped by secreted factors and infiltrating immune cells and the nature of this environment can profoundly influence tumor growth and progression. As such, there is an increasing need to identify and quantify secreted factors by tumor cells, tumor-associated cells, and infiltrating immune cells. To meet this need, the dynamic range of immunoassays such as ELISAs and ELISpots have been improved and the scope of reagents commercially available has been expanded. In addition, new bead-based and membrane-based screening arrays have been developed to allow for the simultaneous detection of multiple analytes in one sample. Similarly, the optimization of intracellular staining for flow cytometry now allows for the quantitation of multiple cytokines from either a purified cell population or a complex mixed cell suspension. Herein, we review the rapidly evolving technologies that are currently available to detect secreted analytes. Emphasis is placed on discussing the advantages and disadvantages of these assays and their applications. PMID:27581018

  20. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles

    Science.gov (United States)

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara

    2016-01-01

    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410

  1. Hsp60 is actively secreted by human tumor cells.

    Directory of Open Access Journals (Sweden)

    Anna M Merendino

    Full Text Available BACKGROUND: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. METHODOLOGY/PRINCIPAL FINDINGS: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likely reflect a general physiological phenomenon, occurring in many tumors.

  2. Microparticles reveal cell activation during IVF - a possible early marker of a prothrombotic state during the first trimester.

    Science.gov (United States)

    Olausson, Nina; Mobarrez, Fariborz; Wallen, Håkan; Westerlund, Eli; Hovatta, Outi; Henriksson, Peter

    2016-08-30

    Cell-derived microparticles (MPs) are known to be elevated in a number of diseases related to arterial and venous thromboembolism (VTE), such as acute myocardial infarction, VTE (deep-vein thrombosis and pulmonary embolism) and peripheral arterial disease. IVF-associated pregnancies have previously been shown to be associated with an increased incidence of VTE, mechanisms behind being unknown and sparsely studied. Our objective was to assess cell activation during IVF through analysis of MP levels and phenotype following ovarian stimulation. Thirty-one women undergoing IVF were included and blood samples were collected at down regulation of oestrogen and at high level stimulation with 10- to 100-fold increased endogenous oestrogen levels. MPs were analysed by flow cytometry and phenotyped according to size and protein expression. We found that overall phosphatidylserine positive platelet-, endothelial- and monocyte-derived MPs significantly increased following ovarian stimulation with increased levels of platelet activation markers CD40 ligand and P-selectin. Furthermore, there was an increase in endothelial-derived MPs exposing activation marker E-selectin and monocyte-derived MPs, while neutrophil-derived MPs decreased slightly. In conclusion we found a major increase in MPs and markers indicating cell activation in parallel with the profound oestrogen boost during IVF. To assess whether these changes in MPs are associated with thromboembolic events requires extended longitudinal studies.

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  4. Putative interaction of brush cells with bicarbonate secreting cells in the proximal corpus mucosa

    Directory of Open Access Journals (Sweden)

    Julia Anna-Maria Eberle

    2013-07-01

    Full Text Available The gastric epithelium is protected from the highly acidic luminal content by alkaline mucus which is secreted from specialized epithelial cells. In the stomach of mice strong secretion of alkaline fluid was observed at the gastric groove, the border between corpus and fundus mucosa. Since this region is characterized by numerous brush cells it was proposed that these cells might secrete alkaline solution as suggested for brush cells in the bile duct. In fact, it was found that in this region multiple cells express elements which are relevant for the secretion of bicarbonate, including carbonic anhydrase (CAII, the cystic fibrosis transmembrane conductance regulator (CFTR and the Na+/H+ exchanger (NHE1. However, this cell population was distinct from brush cells which express the TRP-channel TRPM5 and are considered as putative sensory cells. The location of both cell populations in close proximity implies the possibility for a paracrine interaction. This view was substantiated by the finding that brush cells express prostaglandin synthase-1 (COX-1 and the neighbouring cells a specific receptor type for prostaglandins. The notion that brush cells may be able to sense a local acidification was supported by the observation that they express the channel PKD1L3 which contributes to the acid responsiveness of gustatory sensory cells. The results support the concept that brush cells may sense the luminal content and influence via prostaglandins the secretion of alkaline solution.

  5. Effects of simvastatin/ezetimibe on microparticles, endothelial progenitor cells and platelet aggregation in subjects with coronary heart disease under antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, L.M.; França, C.N.; Izar, M.C.; Bianco, H.T.; Lins, L.S.; Barbosa, S.P.; Pinheiro, L.F.; Fonseca, F.A.H. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, São Paulo, SP, Brasil, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-04-15

    It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1microparticles, or endothelial progenitor cells. Cardiovascular protection following therapy with simvastatin/ezetimibe seems restricted to lipid changes and improvement of endothelial function not affecting the release of microparticles, mobilization of endothelial progenitor cells or decreased platelet aggregation.

  6. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Fariborz Mobarrez

    Full Text Available BACKGROUND: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs and circulating microparticles (MPs following the smoking of one cigarette by young, healthy intermittent smokers. MATERIALS AND METHODS: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. RESULTS: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin. CD144 (VE-cadherin or HMGB1 release did not significantly change during active smoking. CONCLUSION: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall.

  7. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer.

    Science.gov (United States)

    Martínez-Zamora, M Angeles; Tàssies, Dolors; Reverter, Juan Carlos; Creus, Montserrat; Casals, Gemma; Cívico, Salvadora; Carmona, Francisco; Balasch, Juan

    2016-08-01

    Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer.

  8. PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability.

    Science.gov (United States)

    Obayemi, J D; Danyuo, Y; Dozie-Nwachukwu, S; Odusanya, O S; Anuku, N; Malatesta, K; Yu, W; Uhrich, K E; Soboyejo, W O

    2016-09-01

    This paper presents the synthesis and physicochemical characterization of biodegradable poly (d,l-lactide-co-glycolide) (PLGA)-based microparticles that are loaded with bacterial-synthesized prodigiosin drug obtained from Serratia marcescens subsp. Marcescens bacteria for controlled anticancer drug delivery. The micron-sized particles were loaded with anticancer drugs [prodigiosin (PG) and paclitaxel (PTX) control] using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). The effects of processing conditions (on the particle size and morphology) are investigated along with the drug release kinetics and drug-loaded microparticle degradation kinetics. The localization and apoptosis induction by prodigiosin in breast cancer cells is also elucidated along with the reduction in cell viability due to prodigiosin release. The implication of this study is for the potential application of prodigiosin PLGA-loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple negative breast tumor. PMID:27207038

  9. Uteroglobin, an apically secreted protein of the uterine epithelium, is secreted non-polarized form MDCK cells and mainly basolaterally from Caco-2 cells

    DEFF Research Database (Denmark)

    Vogel, L K; Suske, G; Beato, M;

    1993-01-01

    A complete cDNA encoding rabbit uteroglobin was constructed and expressed in MDCK and Caco-2 cells. The MDCK cells secrete uteroglobin in approximately equal amounts to the apical and the basolateral side, whereas the Caco-2 cells secrete uteroglobin mainly to the basolateral side. Both MDCK and ...... the endometrial epithelium has an apical default pathway or recognises a sorting signal not recognised by MDCK cells and Caco-2 cells. Our data thus show that a soluble molecule can be secreted at the apical, the basolateral or both membranes depending on the cell type....

  10. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Haiwei Zhang; Kaiming Zhang; Xinyu Wang; Shipu Li; Yixia Yin

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more signiifcantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not signiifcantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.

  11. Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

    Science.gov (United States)

    Redzic, Jasmina S; Kendrick, Agnieszka A; Bahmed, Karim; Dahl, Kristin D; Pearson, Chad G; Robinson, William A; Robinson, Steven E; Graner, Michael W; Eisenmesser, Elan Z

    2013-01-01

    Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.

  12. Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

    Directory of Open Access Journals (Sweden)

    Jasmina S Redzic

    Full Text Available Extracellular vesicles (EVs are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.

  13. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  14. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ângela Moreira

    Full Text Available Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1 and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01. Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01. Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05. Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

  15. Effect of herpesvirus infection on pancreatic duct cell secretion

    Institute of Scientific and Technical Information of China (English)

    Péter Hegyi; András Varró; Mária K Kovács; Mike A Gray; Barry E Argent; Zsolt Boldogk(o)i; Balázs (O)rd(o)g; Zoltán Rakonczai Jr; Tamás Takács; János Lonovics; Annamária Szabolcs; Réka Sári; András Tóth; Julius G Papp

    2005-01-01

    AIM: To examine the effect of acute infection caused by herpesvirus (pseudorabies virus, PRV) on pancreatic ductal secretion.METHODS: The virulent Ba-DupGreen (BDG) and nonvirulent Ka-RREpOlacgfp (KEG) genetically modified strains of PRV were used in this study and both of them contain the gene for green fluorescent protein (GFP). Small intra/interlobular ducts were infected with BDG virus (107 PFU/mL for 6 h) or with KEG virus (1010 PFU/mL for 6 h), while non-infected ducts were incubated only with the culture media. The ducts were then cultured for a further 18 h.The rate of HCO3- secretion [base efflux -J(B-)] was determined from the buffering capacity of the cells and the initial rate of intracellular acidification (1) after sudden blockage of basolateral base loaders with dihydro-4,4,-diisothiocyanatostilbene-2,2,-disulfonic acid (500 μmol/L)and amiloride (200 μmol/L), and (2) after alkali loading the ducts by exposure to NH4Cl. All the experiments were performed in HCO3--buffered Ringer solution at 37 ℃ (n = 5ducts for each experimental condition). Viral structural proteins were visualized by immunohistochemistry. Virallyencoded GFP and immunofluorescence signals were recorded by a confocal laser scanning microscope.RESULTS: The BDG virus infected the majority of accessible cells of the duct as judged by the appearance of GFP and viral antigens in the ductal cells. KEG virus caused a similarly high efficiency of infection. After blockage of basolateral base loaders, BDG infection significantly elevated -J(B-) 24 h after the infection, compared to the non-infected group. However, KEG infection did not modify -J(B-). After alkali loading the ducts, -J(B-) was significantly elevated in the BDG group compared to the control group 24 h after the infection. As we found with the inhibitor stop method, no change was observed in the group KEG compared to the non-infected group.CONCLUSION: Incubation with the BDG or KEG strains of PRV results in an effective

  16. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  17. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding.

    Science.gov (United States)

    Torres, Alexis J; Hill, Abby S; Love, J Christopher

    2014-12-01

    Arrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered. Using numerical simulations, we analyzed the operational envelope for both open and closed formats, as a function of the spatial distribution of capture ligands, their affinities for the protein, and the rates of single-cell secretion. Based on these analyses, we present a modified approach to capture secreted proteins in-well for highly active secreting cells. This simple method for in-well detection should facilitate rapid identification of cell lines with high specific productivities.

  18. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  19. Role of microparticles in endothelial dysfunction and arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl

    2014-01-01

    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  20. Steroid hormone secretion in inflammatory breast cancer cell lines.

    Science.gov (United States)

    Illera, Juan Carlos; Caceres, Sara; Peña, Laura; de Andres, Paloma J; Monsalve, Beatriz; Illera, Maria J; Woodward, Wendy A; Reuben, James M; Silvan, Gema

    2015-12-01

    Inflammatory breast carcinoma (IBC) is a special type of breast cancer with a poor survival rate. Though several IBC cell lines have been established, recently a first IMC cell line was established. The aims of this study were: (1) to validate a highly sensitive, reliable, accurate and direct amplified enzyme immunoassay (EIA) to measure several cell-secreted steroid hormones: progesterone (P4), androstenedione (A4), testosterone (T), 17β-estradiol (E2) and estrone sulfate (SO4E1) in the culture medium. (2) To assess whether hormone production profile by IPC-366 cells validates the IMC model for human IBC. We validated a non-competitive amplified EIA for inflammatory breast cancer cell lines based on the results of accuracy, precision, sensitivity and parallelism. The low detection limits of the technique were: P4=13.2 pg/well, A4=2.3 pg/well, T=11.4 pg/well, E2=1.9 pg/well and SO4E1=4.5 pg/well. Intra- and inter-assay coefficient of variation percentages were 90%. In all hormones studied SUM149 have higher levels (1.4 times, but not significant) than IPC-366, and the correlation index between SUM149 and IPC-366 concentrations were >97%. We can coclude that cells of both cell lines, IPC-366 and SUM149, are capable to produce steroid hormone in culture media. The presented EIA methodology is very valuable for the detection of steroid production in culture media and could be used in hormone regulation studies and therapeutic agents in cell lines of inflammatory and non-inflammatory mammary carcinoma or other cancer cell lines in preclinical studies. PMID:26495931

  1. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells

    OpenAIRE

    1992-01-01

    Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine ...

  2. Origin of the angiotensin II secreted by cells.

    Science.gov (United States)

    Ganong, W F

    1994-03-01

    Circulating angiotensin II is unique in that it is formed in the blood by the interaction of circulating proteins. There are in addition many local renin-angiotensin systems in tissues in which angiotensin II is apparently secreted by various types of cells. This brief review considers the possible pathways for synthesis of locally produced angiotensin II in the brain, the anterior pituitary, the testes, the ovaries, the adrenal cortex, the kidneys, the heart, blood vessel walls, and brown and white fat. Synthesis by cells in culture is also reviewed. The possibility that certain cells contain a complete intracellular renin-angiotensin system is not ruled out, but there are problems with this hypothesis. Proteases other than renin may be involved, and there may be different pathways in different tissues. However, it appears that at least in some tissues, angiotensinogen is produced in one population of cells and transported in a paracrine fashion to other renin-containing cells, where it serves as the substrate for production of angiotensin II.

  3. Physics of microparticle acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune

    2012-01-01

    of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...

  4. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.

    2009-01-01

    Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functi

  5. Effect of Cytokines Secreted by Human Adipose Stromal Cells on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Bingong; ZENG Qiutang; WANG Hongxiang; MAO Xiaobo

    2006-01-01

    To isolate and culture adipose stromal cells (ASCs), and study the effect of cytokines secreted by ASCs on endothelial cells, human adipose tissue was digested with collagenase type Ⅰ solution and ASCs were derived by culture. The cells surface phenotype was examined by flow cytometry. ELISA was used to detect the secretion of VEGF, HGF, SDF-1 α and RT-PCR was employed to detect the expression of their mRNA. Then the ASC medium was utilized to culture human umbilical vein endothelial cells ECV304. Cells were counted by hemacytometer to determine the proliferation and Annexin V/PI was employed for the examination of the apoptosis rate of ECV304. ASCs were derived by culture and expressed CD34, CD105 while they did not express CD31 or CD45. ASCs secreted cytokines such as VEGF, HGF and SDF-1 α so the ASC medium could stimulate proliferation and counteract apoptosis of endothelial cells (P<0.05). Bcl-2 mRNA was also found to be up-regulated in the endothelial cells. It is concluded that ASCs can secrete cytokines and has significant effect on the proliferation of endothelial cells and apoptosis.

  6. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG

    2004-01-01

    AIM: To investigate the effect ofchymase on the mucin secretion from human bronchial epithelial cells. METHODS:Primarily-cultured human bronchial epithelial (PCHBE) cells and normal human bronchial epithelial (NHBE) cells were cultured with chymase or other stimulus in a mixture of bronchial epithelial growth medium (BEGM) and Dulbecco's modified Eagle's medium (DMEM), and the quantities of stimulatory mucin release were recorded.MUC5AC mucin was measured with an ELISA and dolichos biflorus agglutinin (DBA) mucin was determined with an enzyme linked DBA assay. RESULTS: A dose-dependent secretion of DBA mucin from PCHBE cells was observed with chymase with a maximum secretion of 98 % above baseline being achieved following 3 h incubation.The action of chymase started from 1 h, peaked at 3 h and dramatically decreased at 20 h following incubation.Chymase was able to also stimulate approximately 38 % increase in MUC5AC mucin release from PCHBE cells, and about 121% increase in DBA mucin release from NHBE cells. A chymase inhibitor soybean trypsin inhibitor (SBTI)was able to inhibit up to 85 % chymase induced mucin release, indicating that the enzymatic activity was essential for the actions of chymase on bronchial epithelial cells. CONCLUSION: Chymase is a potent stimulus of mucin secretion from human bronchial epithelial cells. It can contribute to mucus hypersecretion process in the patients with chronic obstructive pulmonary disease or asthma.

  7. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.

    Science.gov (United States)

    Xia, Bingzhao; Krutkramelis, Kaspars; Oakey, John

    2016-07-11

    Encapsulating cells within biocompatible materials is a widely used strategy for cell delivery and tissue engineering. While cells are commonly suspended within bulk hydrogel-forming solutions during gelation, substantial interest in the microfluidic fabrication of miniaturized cell encapsulation vehicles has more recently emerged. Here, we utilize multiphase microfluidics to encapsulate cells within photopolymerized picoliter-volume water-in-oil droplets at high production rates. The photoinitiated polymerization of polyethylene glycol diacrylate (PEGDA) is used to continuously produce solid particles from aqueous liquid drops containing cells and hydrogel forming solution. It is well understood that this photoinitiated addition reaction is inhibited by oxygen. In contrast to bulk polymerization in which ambient oxygen is rapidly and harmlessly consumed, allowing the polymerization reaction to proceed, photopolymerization within air permeable polydimethylsiloxane (PDMS) microfluidic devices allows oxygen to be replenished by diffusion as it is depleted. This sustained presence of oxygen and the consequential accumulation of peroxy radicals produce a dramatic effect upon both droplet polymerization and post-encapsulation cell viability. In this work we employ a nitrogen microjacketed microfluidic device to purge oxygen from flowing fluids during photopolymerization. By increasing the purging nitrogen pressure, oxygen concentration was attenuated, and increased post-encapsulation cell viability was achieved. A reaction-diffusion model was used to predict the cumulative intradroplet concentration of peroxy radicals, which corresponded directly to post-encapsulation cell viability. The nitrogen-jacketed microfluidic device presented here allows the droplet oxygen concentration to be finely tuned during cell encapsulation, leading to high post-encapsulation cell viability. PMID:27285343

  8. Activated Human T Cells Secrete Exosomes That Participate in IL-2 Mediated Immune Response Signaling

    OpenAIRE

    Wahlgren, Jessica; Tanya De L Karlson; Glader, Pernilla; Telemo, Esbjörn; Valadi, Hadi

    2012-01-01

    It has previously been shown that nano-meter sized vesicles (30–100 nm), exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3+ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3+ T cells have on resting CD3+ T cells by studying T cell proliferation, c...

  9. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  10. Synthesis and functionalization of nano- and micro-particles for sensing and therapy in living cells

    OpenAIRE

    Penon Esteva, Oriol

    2013-01-01

    In the present thesis Supramolecular chemistry is exploited to approach applications in the area of Nanomedicine, and it is, focused on the design and preparation of different micro and nanotools for sensing and therapy, in living cells. Initially, the combination of silicon surface chemistry with the incorporation of bioactive molecules has been investigated in order to obtain a potentially microtool suitable for cell tagging. Furthermore, the design and synthesis of organic compounds as int...

  11. The study of exosomes and microvesicles secreted from breast cancer cell lines

    OpenAIRE

    Zheng, Ying

    2012-01-01

    Exosomes are small secreted vesicles of endocytic origin with a size range of 50-150 nm. They are secreted by many cell types and display multiple biological functions including immune-activation, immune-suppression, antigen presentation, and the shuttling of mRNA and miRNA, as well as other cargo. We have characterised the exosomes secreted from two breast cancer cell lines, MDA-MB-231 and MCF7. Exosomes secreted from both cell lines display typical markers including ALIX, Tsg101, CD9 and CD...

  12. Tumor cell secretion of soluble factor(s) for specific immunosuppression

    OpenAIRE

    Kano, Arihiro

    2015-01-01

    Studies of tumor models using syngeneic transplantation have advanced our understanding of tumor immunity, including both immune surveillance and evasion. Murine mammary carcinoma 4T1 cells secrete immunosuppressive soluble factors as demonstrated in splenocyte culture. Cultured primary splenocytes secrete IFN-γ, which was strikingly elevated when the cells were isolated from 4T1 tumor-bearing mice. The secretion of IFN-γ peaked a week after 4T1 inoculation and then declined. This reduction m...

  13. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    Science.gov (United States)

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  14. Effect of Ureaplasma Urealyticum Infection on the Interleukin-1 Secretion in Rat Sertoli Cells

    Institute of Scientific and Technical Information of China (English)

    李伟毅; 周葵; 陈广洁; 席晔斌; 王保国

    2001-01-01

    Objective To investigate the effect of Ureaplasma Urealyticum (UU) on the expression of IL-1 secretion in rat Sertoli cells Material & Methods Isolated rat Sertoli cells were infected by living UU , UU super natants, inactivated UU of different dosage respectively. IL- 1 secretion by rat Sertoli cells is determined by using group t-test and F-test.Results UU infection, both living UU and supernatant without UU, could inhibit the IL-1 secretion in rats Sertoli cells (P< 0. 01).Conclusion The infection of Sertoli cells by UU inhibit the biological function of the Sertoli cells in rat.

  15. Regulation of IGFBP secretion and modulation of cell growth in MDBK cells.

    Science.gov (United States)

    Cohick, W S; Clemmons, D R

    1993-03-01

    The ability of IGF binding proteins (IGFBP) to modulate cell growth and IGF-I responsiveness of epithelial cells was examined using the Madin-Darby bovine kidney (MDBK) cell line. The predominant IGFBP present in conditioned media (CM) of untreated cells was found to be IGFBP-2. Following exposure to forskolin, the abundance of IGFBP-2 in CM was decreased, while IGFBP-3 and -4 were induced. These changes corresponded with alterations in mRNA abundance. Growth of MDBK cells in serum-free media was stimulated by addition of 2.5 to 50 ng/ml of IGF-I in a dose responsive manner. Coincubation with equimolar amounts of IGF-I and exogenous bovine IGFBP-3 potentiated the growth response observed with IGF-I alone. In order to alter endogenous IGFBP-3 secretion, cells were exposed to transfection with an expression vector containing sense IGFBP-3 cDNA. Following selection and amplification with methotrexate, cells underwent a permanent alteration in cell morphology, exhibiting characteristics of transporting epithelia. This was associated with secretion of IGFBP-3 under basal conditions. Secretion of IGFBP-3 was due to expression of endogenous IGFBP-3 and not to expression of the transgene. Cells expressing IGFBP-3 under basal conditions grew slower in serum, but were more responsive to 100 ng/ml of IGF-1 in serum-free media compared to wild-type MDBK cells. The role of IGFBP-3 in mediating these responses requires further study.

  16. A Rare Corticotroph-Secreting Tumor with Coexisting Prolactin and Growth Hormone Staining Cells

    OpenAIRE

    Subramanian Kannan; Staugaitis, Susan M.; Weil, Robert J.; Betul Hatipoglu

    2012-01-01

    Pituitary adenomas can express and secrete different hormones. Expression of pituitary hormones in nonneoplastic pituitary cells is regulated by different transcription factors. Some pituitary adenomas show plurihormonal expression. The most commonly reported plurihormonal adenomas are composed of somatotrophs, lactotrophs, thyrotrophs and gonadotrophs. Pituitary adenomas composed of both corticotroph and somatolactotroph secreting cells are not common because transcription factors regulating...

  17. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 1000C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  18. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling.

    Science.gov (United States)

    Pajaniappan, Mohanasundari; Glober, Nancy K; Kennard, Simone; Liu, Hua; Zhao, Ning; Lilly, Brenda

    2011-09-01

    Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion.

  19. Characterization of secreted proteins in HepG2 and LO2 cells by Raman spectroscopy

    Science.gov (United States)

    Lin, Juqiang; Ruan, Qiuyong; Liao, Fadian; Lin, Jinyong; Huang, Zufang; Liu, Nenrong; Chen, Rong

    2014-11-01

    Secreted proteins, the promising source of biomarkers for early detection and diagnosis of cancer, have received considerable attention. Raman spectroscopy and principal component analysis (PCA) were used to characterize the secreted proteins collected from the cell cultures of human hepatoma cell line HepG2 and normal human liver cell line LO2 in this paper. We found the major difference of secreted proteins Raman spectra between HepG2 and LO2 cells were in the range of 1200cm-1-1800cm-1. Compared with LO2 cells, some significant changes based on secondary structure of secreted proteins in HepG2 cells were observed, including the increase in the relative intensity of the band at 1004cm-1, 1445cm-1, 1674cm-1 and the decrease at 1074cm-1. These variations of Raman bands indicated that the species and conformation of secreted proteins in HepG2 cells changed. The measured Raman spectra of the two groups were separated into two distinct clusters with no overlap and high specificity and sensitivity by PCA. These results show that the combination of Raman spectroscopy and PCA analysis may be a powerful tool for distinguishing the secreted proteins between human hepatoma cells and normal human liver cells, provide a new thought to analyze the secreted proteins from cancer cells and find a novel cancer biomarker.

  20. Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing.

    Science.gov (United States)

    Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P

    2016-07-01

    Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. PMID:26946064

  1. Differentiation of mouse embryonic stem cells into insulin-secreting cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Sui Jing; Jiang Fangxu; Shi Bingyin

    2011-01-01

    Regenerative medicine,including cell-replacement strategies,may have an important role in the treatment of type 1 diabetes which is associated with decreased islet cell mass. To date,significant progress has been made in generating insulin-secreting β cells from pluripotent mouse embryonic stem cells (ESCs).The aim of this study is to explore the potential of regulating the differentiation of ESCs into pancreatic endocrine cells capable of synthesizing the pancreatic hormones including insulin, glucagon, somatostatin and pancreatic polypeptide under proper conditions.Undifferentiated ES cell line was stably transfected with mouse RIP-YFP plasmid construction in serum-free medium using LipofectamineTM 2000 Reagents. We tested pancreatic specific gene expression and characterized these ESC-derived pancreatic endocrine cells. Most of these insulin-secreting cells co-expressed many of the phenotypic markers characteristic of β cells such as insulinl,insulin2,Islet1,MafA,insulinoma-associated antigen 1 (IA1) and so on,indicating a similar gene expression pattern to adult islet β cells in vivo. Characterization of this population revealed that it consisted predominantly of pancreatic endocrine cells that were able to undergo pancreatic specification under the appropriate conditions. We also demonstrated that zinc supplementation mediated up-regulation of insulin-secreting cells as an effective inducer promoted the development of ESC-derived diabetes therapy. In conclusion,this work not only established an efficient pancreatic differentiation strategy from ESCs to pancreatic endocrine lineage in vitro,but also leaded to the development of new strategies to derive transplantable islet-replacement β cells from embryonic stem cells for the future applications of a stem cell based therapy of diabetes.

  2. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin;

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  3. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro

    OpenAIRE

    Witkowski, Sarah; Guhanarayan, Gayatri; Burgess, Rachel

    2016-01-01

    Abstract Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony‐forming unit CAC (CFU‐CAC) were c...

  4. Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells

    OpenAIRE

    Cakmak, Hakan; Franciosi, Federica; Zamah, A. Musa; Cedars, Marcelle I; Conti, Marco

    2016-01-01

    Oocyte fitness to support embryo development and pregnancy is dependent on an elaborate cross-talk with the surrounding environment of the ovarian follicle. Here, we show that this cross-talk continues during the periovulatory period when a new set of bioactive molecules is secreted by the oocyte in mice and humans. This shift in pattern of secretion is dependent on oocyte maturation and on paracrine factors secreted by somatic cells at the time of ovulation. These changes in pattern of secre...

  5. Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells

    DEFF Research Database (Denmark)

    Kappe, Camilla; Holst, Jens Juul; Zhang, Qimin;

    2012-01-01

    Evidence is emerging that elevated serum free fatty acids (hyperlipidemia) contribute to the pathogenesis of type-2-diabetes, and lipotoxicity is observed in many cell types. We recently published data indicating lipotoxic effects of simulated hyperlipidemia also in GLP-1-secreting cells, where...... the antidiabetic drug metformin conferred protection from lipoapoptosis. The aim of the present study was to identify mechanisms involved in mediating lipotoxicity and metformin lipoprotection in GLP-1 secreting cells. These signaling events triggered by simulated hyperlipidemia may underlie reduced GLP-1......-1 secreting cells in diabetic hyperlipidemia and obesity....

  6. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells.

    OpenAIRE

    Shapiro, M.; Matthews, J.; Hecht, G; Delp, C; Madara, J. L.

    1991-01-01

    T84 cells, a human intestinal epithelial cell line, serve as a model of electrogenic Cl- secretion. We find that cAMP-elicited Cl- secretion in T84 cells is accompanied by a marked redistribution of F-actin in the basolateral portion of the cell. To prevent this F-actin redistribution and thereby assess its importance to Cl- secretion, we have defined simple conditions under which this model epithelium can be loaded with nitrobenzoxadiazole (NBD)-phallicidin. This reagent binds F-actin with h...

  7. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells.

    Directory of Open Access Journals (Sweden)

    Sylvain J Le Marchand

    Full Text Available The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca(2+](i and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca(2+](i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on K(ATP channel activity but not on tetrodotoxin-sensitive Na(+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca(2+](i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by K(ATP channel activity or reduction in α-cell [Ca(2+](i. Our results demonstrate that glucose uncouples the positive relationship between [Ca(2+](i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.

  8. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications.

    Science.gov (United States)

    Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Habeeb, Nevin Mamdouh; Farouk, Amal

    2013-01-01

    Sickle cell disease (SCD) is characterized by a complex vasculopathy, consisting of endothelial dysfunction and increased arterial stiffness, with a global effect on cardiovascular function. The hypercoagulable state may result from chronic hemolysis and circulating cell-derived microparticles (MPs) originating mainly from activated platelets and erythrocytes. We measured the levels of platelet and erythrocyte-derived MPs (PMPs and ErMPs) in 50 young SCD patients compared with 40 age- and sex-matched healthy controls and assessed their relation to clinicopathological characteristics and aortic elastic properties. Patients were studied stressing on the occurrence of sickling crisis, transfusion history, hydroxyurea therapy, hematological, and coagulation profile as well as flow cytometric expression of PMPs (CD41b(+)) and ErMPs (glycophorin A(+)). Echocardiography was performed to assess aortic stiffness and distensibility, left ventricular function and pulmonary artery pressure. Both PMPs and ErMPs were significantly elevated in SCD patients compared with control group (p < 0.001). SCD patients had significantly elevated d-dimer and von Willebrand factor antigen (vWF Ag) levels with lower antithrombin III compared with controls (p < 0.001). Aortic stiffness index and pulmonary artery pressure were significantly higher in SCD (p < 0.001), whereas aortic strain and aortic distensibility were significantly lower (p < 0.001) compared with controls. MPs levels were significantly increased in SCD patients with pulmonary hypertension, acute chest syndrome, and stroke as well as those who had history of thrombosis or splenectomy (p < 0.001). Also, patients in sickling crisis during the study had higher PMPs and ErMPs levels than those in steady state (p < 0.001). Patients on hydroxyurea therapy had lower MPs levels than untreated patients (p < 0.001). PMPs and ErMPs were positively correlated with disease duration, transfusion index, white blood

  9. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  10. Secretion of goblet cell serine proteinase, ingobsin, is stimulated by vasoactive intestinal polypeptide and acetylcholine

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1987-01-01

    Ingobsin is localized to the intestinal goblet cells in the rat and in man. In the present study, we investigated the effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on the secretion of ingobsin from the proximal duodenum. Intravenous infusion of VIP or acetylcholine increased...... the concentration of ingobsin in duodenal secretion, while the concentration in the duodenum was unchanged. Simultaneous infusion of VIP and acetylcholine increased the concentration of ingobsin in duodenal secretion and decreased the concentration of ingobsin in the duodenum. This study demonstrates that secretion...... of ingobsin from the proximal duodenum is exocrine and can be stimulated by VIP and acetylcholine....

  11. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix

    OpenAIRE

    Luecke, N; Templin, C; Muetzelburg, M V; Neumann, D.; Just, I; Pich, A.(IFIC, Universitat de València, CSIC, Apt. Correus 22085, 46071 , València, Spain)

    2010-01-01

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. ...

  12. Secretion of Interleukin-17 by CD8+ T Cells Expressing CD146 (MCAM)

    OpenAIRE

    Dagur, Pradeep K; Biancotto, Angélique; Stansky, Elena; Sen, H. Nida; Nussenblatt, Robert B.; McCoy, J. Philip

    2014-01-01

    Interleukin-17 (IL-17) has been associated with the pathogenesis of numerous autoimmune diseases. CD4+ T cells secreting IL-17 are termed Th17 cells. CD8+ T cells, designated Tc17 cells, are also capable of secreting IL-17. Here we describe a population of Tc17 cells characterized by the expression of surface CD146, an endothelial adhesion molecule. These cells display signatures of a human Tc17 genotype and phenotype. Circulating CD8+CD146+ T cells are present in low levels in healthy adults...

  13. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  14. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  15. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  16. T-24.B-cell differentiation factor induces immunoglobulin secretion in human B cells without prior cell replication.

    Science.gov (United States)

    Gallagher, G; Christie, J F; Stimson, W H; Guy, K; Dewar, A E

    1987-04-01

    Stimulation of B lymphocytes from B-cell chronic lymphocytic leukaemia (B-CLL) with 12-0-tetradecanoylphorbol-13-acetate (TPA) has shown that these cells are capable of differentiation (Totterman, Nilsson & Sundstrom, 1980). Increases in the expression of different class II MHC antigens (Guy et al., 1983, 1986) and responsiveness to growth factors (Kabelitz et al., 1985; Suzuki, Butler & Cooper, 1985) have been studied. Supernatant from the human bladder carcinoma line T-24 contains a B-cell differentiation factor (BCDF) able to induce immunoglobulin secretion from CESS cells. We investigated the induction of proliferation and immunoglobulin secretion in human B cells by studying the effects of this factor on B-CLL cells, in both the presence and absence of TPA. We report here that this material (termed T-24.BCDF) causes immunoglobulin secretion to be initiated in these cells, and that this is not accompanied by detectable DNA synthesis. These observations were extended to normal human B cells and demonstrate that human B cells can secrete immunoglobulin in the absence of clonal expansion. PMID:3495482

  17. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  18. Pavlovian Conditioning of Rat Mucosal Mast Cells to Secrete Rat Mast Cell Protease II

    Science.gov (United States)

    MacQueen, Glenda; Marshall, Jean; Perdue, Mary; Siegel, Shepard; Bienenstock, John

    1989-01-01

    Antigen (egg albumin) injections, which stimulate mucosal mast cells to secrete mediators, were paired with an audiovisual cue. After reexposure to the audiovisual cue, a mediator (rat mast cell protease II) was measured with a sensitive and specific assay. Animals reexposed to only the audiovisual cue released a quantity of protease not significantly different from animals reexposed to both the cue and the antigen; these groups released significantly more protease than animals that had received the cue and antigen in a noncontingent manner. The results support a role for the central nervous system as a functional effector of mast cell function in the allergic state.

  19. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl2-induced VEGF secretion in mast cells occurs by a Ca2+-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl2) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl2-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl2-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  20. Microparticles and Exosomes in Gynecologic Neoplasias

    NARCIS (Netherlands)

    R. Nieuwland; J.A.M. van der Post; C.A.R. Lok Gemma; G. Kenter; A. Sturk

    2010-01-01

    This review presents an overview of the functions of microparticles and exosomes in gynecologic neoplasias. Growing evidence suggests that vesicles released from cancer cells in gynecologic malignancies contribute to the hypercoagulable state of these patients and contribute to tumor progression by

  1. High speed versus pulsed images for micro-particle image velocimetry: a direct comparison of red blood cells versus fluorescing tracers as tracking particles.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-10-01

    High speed photography in micro-particle image velocimetry (μPIV) using red blood cells as tracer particles and the use of fluorescing tracer particles (in conjunction with pulsed images) are directly compared by using both methods simultaneously. Measurements are taken on the same blood sample in the same microchip using both methods. This work directly and statistically compares the two methods of μPIV measurement in a controlled in vitro environment for the first time in literature. The pulsed method using fluorescing tracer particles is found to decrease the depth of correlation as expected, and to better represent the shape of the velocity profile. Two methods of velocity characterization are used (single and double parameter) and the pulsed images provide better shape representation in both cases.

  2. High speed versus pulsed images for micro-particle image velocimetry: a direct comparison of red blood cells versus fluorescing tracers as tracking particles

    International Nuclear Information System (INIS)

    High speed photography in micro-particle image velocimetry (μPIV) using red blood cells as tracer particles and the use of fluorescing tracer particles (in conjunction with pulsed images) are directly compared by using both methods simultaneously. Measurements are taken on the same blood sample in the same microchip using both methods. This work directly and statistically compares the two methods of μPIV measurement in a controlled in vitro environment for the first time in literature. The pulsed method using fluorescing tracer particles is found to decrease the depth of correlation as expected, and to better represent the shape of the velocity profile. Two methods of velocity characterization are used (single and double parameter) and the pulsed images provide better shape representation in both cases. (paper)

  3. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    OpenAIRE

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns w...

  4. In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells.

    Science.gov (United States)

    Cuny, Thomas; Zeiller, Caroline; Bidlingmaier, Martin; Défilles, Céline; Roche, Catherine; Blanchard, Marie-Pierre; Theodoropoulou, Marily; Graillon, Thomas; Pertuit, Morgane; Figarella-Branger, Dominique; Enjalbert, Alain; Brue, Thierry; Barlier, Anne

    2016-07-01

    Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (Phuman primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation. PMID:27267119

  5. Ionizing radiation induces tumor cell lysyl oxidase secretion

    DEFF Research Database (Denmark)

    Shen, Colette J; Sharma, Ashish; Vuong, Dinh-Van;

    2014-01-01

    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor beta and matrix...

  6. CELL-WALL GROWTH AND PROTEIN SECRETION IN FUNGI

    NARCIS (Netherlands)

    SIETSMA, JH; WOSTEN, HAB; WESSELS, JGH

    1995-01-01

    Secretion of proteins is a vital process in fungi. Because hyphal walls form a diffusion barrier for proteins, a mechanism different from diffusion probably exist to transport proteins across the wall. In Schizophyllum commune, evidence has been obtained for synthesis at the hyphal apex of wall comp

  7. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  8. Caveolin-1-Mediated Expression and Secretion of Kallikrein 6 in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rebecca S. Henkhaus

    2008-02-01

    Full Text Available Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6 has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1, the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion.

  9. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones.

    Science.gov (United States)

    Kokrashvili, Zaza; Mosinger, Bedrich; Margolskee, Robert F

    2009-09-01

    Many of the receptors and downstream signaling elements involved in taste detection and transduction are also expressed in enteroendocrine cells where they underlie the chemosensory functions of the gut. In one well-known example of gastrointestinal chemosensation (the "incretin effect"), it is known that glucose that is given orally, but not systemically, induces secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide (the incretin hormones), which in turn regulate appetite, insulin secretion, and gut motility. Duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Knockout mice that lack gustducin or the sweet taste receptor subunit T1r3 have deficiencies in secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide and in the regulation of plasma concentrations of insulin and glucose in response to orally ingested carbohydrate-ie, their incretin effect is dysfunctional. Isolated small intestine and intestinal villi from gustducin null mice displayed markedly defective glucagon-like peptide 1 secretion in response to glucose, indicating that this is a local circuit of sugar detection by intestinal cells followed by hormone secretion from these same cells. Modulating hormone secretion from gut "taste cells" may provide novel treatments for obesity, diabetes, and malabsorption syndromes. PMID:19571229

  10. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed;

    2013-01-01

    exposed to tumor CM, which was found to be positively regulated by FAK and MAPK signaling and negatively regulated by TGFβ signaling. Thus, our data support a model where MSCs could promote cancer progression through becoming pro-inflammatory cells within the cancer stroma.......INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...... cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy...

  11. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    Science.gov (United States)

    Lee, Do-Hyun; Park, Je-Kyun

    2013-12-01

    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.

  12. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia

    Directory of Open Access Journals (Sweden)

    Andrea Piccin

    2015-11-01

    Full Text Available Introduction: Circulating microparticles (MP have been described in sickle cell anaemia (SCA; however, their interaction with endothelial markers remains unclear. We investigated the relationship between MP, protein C (PC, free protein S (PS, nitric oxide (NO, endothelin-1 (ET-1 and adrenomedullin (ADM in a large cohort of paediatric patients. Method: A total of 111 children of African ethnicity with SCA: 51 in steady state; 15 in crises; 30 on hydroxyurea (HU therapy; 15 on transfusion; 17 controls (HbAA of similar age/ethnicity. MP were analysed by flow cytometry using: Annexin V (AV, CD61, CD42a, CD62P, CD235a, CD14, CD142 (tissue factor, CD201 (endothelial PC receptor, CD62E, CD36 (TSP-1, CD47 (TSP-1 receptor, CD31 (PECAM, CD144 (VE-cadherin. Protein C, free PS, NO, pro-ADM and C-terminal ET-1 were also measured. Results: Total MP AV was lower in crisis (1.26×106 ml−1; 0.56–2.44×106 and steady state (1.35×106 ml−1; 0.71–3.0×106 compared to transfusion (4.33×106 ml−1; 1.6–9.2×106, p0.9, p<0.05 between total numbers of AV-positive MP (MP AV and platelet MP expressing non-activation platelet markers. There was a lower correlation between MP AV and MP CD62P (R=0.73, p<0.05 (platelet activation marker, and also a lower correlation between percentage of MP expressing CD201 (%MP CD201 and %MP CD14 (R=0.627, p<0.001. %MP CD201 was higher in crisis (11.6% compared with HbAA (3.2%, p<0.05; %MP CD144 was higher in crisis (7.6% compared with transfusion (2.1%, p<0.05; %CD14 (0.77% was higher in crisis compared with transfusion (0.0%, p<0.05 and steady state (0.0%, p<0.01; MP CD14 was detectable in a higher number of samples (92% in crisis compared with the rest (40%; %MP CD235a was higher in crisis (17.9% compared with transfusion (8.9%, HU (8.7% and steady state (9.9%, p<0.05; %CD62E did not differ significantly across the groups and CD142 was undetectable. Pro-ADM levels were raised in chest crisis: 0.38 nmol L−1 (0.31–0

  13. Nanosized blood microparticles

    NARCIS (Netherlands)

    Yuana, Yuana

    2011-01-01

    Microparticles (MPs) have important physiological and pathological roles in blood coagulation, inflammation and tumor progression. In recent years MPs also have been recognized to participate in important biological processes, such as in signaling and in the horizontal transfer of their specific pro

  14. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.

    Science.gov (United States)

    Enriquez, Vanessa A; Cleys, Ellane R; Da Silveira, Juliano C; Spillman, Monique A; Winger, Quinton A; Bouma, Gerrit J

    2015-01-01

    Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  15. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Science.gov (United States)

    Menkhorst, Ellen Melaleuca; Lane, Natalie; Winship, Amy Louise; Li, Priscilla; Yap, Joanne; Meehan, Katie; Rainczuk, Adam; Stephens, Andrew; Dimitriadis, Evdokia

    2012-01-01

    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8) M), medroxyprogesterone acetate (10(-7) M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel

  16. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  17. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  18. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  19. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  20. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    Science.gov (United States)

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-01

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems. PMID:26241832

  1. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  2. Syntaxin-4 is essential for IgE secretion by plasma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben [Immunomodulation Group, School of Biotechnology, Dublin City University (Ireland); Loughran, Sinéad T.; Walls, Dermot [School of Biotechnology and National Centre for Sensor Research, Dublin City University (Ireland); Loscher, Christine E., E-mail: christine.loscher@dcu.ie [Immunomodulation Group, School of Biotechnology, Dublin City University (Ireland)

    2013-10-11

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.

  3. Knockdown of flotillin-2 inhibits lung surfactant secretion by alveolar type Ⅱ cells

    Institute of Scientific and Technical Information of China (English)

    Narendranath Reddy Chintagari; Deming Gou; Lin Liu

    2008-01-01

    @@ Dear Editor, Lung surfactant is stored in lamellar bodies and exocytosed following fusion of the lamellar bodies with the plasma membrane of alveolar type Ⅱ (AT2) cells [1].A number of proteins have been shown to be involved in surfactant secretion including SNAREs,NSF,α-SNAP and annexin A2 [2,3].Lipid rafts enriched in SNAREs are crucial for surfactant secretion [4].

  4. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  5. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  6. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  7. The F309S mutation increases factor VIII secretion in human cell line

    Directory of Open Access Journals (Sweden)

    Daianne Maciely Carvalho Fantacini

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVES: The capacity of a human cell line to secrete recombinant factor VIII with a F309S point mutation was investigated, as was the effect of the addition of chemical chaperones (betaine and sodium-4-phenylbutyrate on the secretion of factor VIII. METHODS: This work used a vector with a F309S mutation in the A1 domain to investigate FVIII production in the HEK 293 human cell line. Factor VIII activity was measured by chromogenic assay. Furthermore, the effects of chemical drugs on the culture were evaluated. RESULTS: The addition of the F309S mutation to a previously described FVIII variant increased FVIII secretion by 4.5 fold. Moreover, the addition of betaine or sodium-4-phenylbutyrate increased the secretion rate of FVIIIΔB proteins in HEK 293 cells, but the same effect was not seen for FVIIIΔB-F309S indicating that all the recombinant protein produced had been efficiently secreted. CONCLUSION: Bioengineering factor VIII expressed in human cells may lead to an efficient production of recombinant factor VIII and contribute toward low-cost coagulation factor replacement therapy for hemophilia A. FVIII-F309S produced in human cells can be effective in vivo.

  8. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  9. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion.

    Science.gov (United States)

    Chin, A; Svejda, B; Gustafsson, B I; Granlund, A B; Sandvik, A K; Timberlake, A; Sumpio, B; Pfragner, R; Modlin, I M; Kidd, M

    2012-02-01

    Enterochromaffin (EC) cells of the diffuse neuroendocrine cell system secrete serotonin (5-HT) with activation of gut motility, secretion, and pain. These cells express adenosine (ADORA) receptors and are considered to function as mechanosensors. Physiological pathways mediating mechanosensitivity and adenosine responsiveness remain to be fully elucidated, as do their roles in inflammatory bowel disease (IBD) and neoplasia. Pure (98-99%) FACS-sorted normal and IBD human EC cells and neoplastic EC cells (KRJ-I) were studied. IBD-EC cells and KRJ-I overexpressed ADORA2B. NECA, a general ADORA receptor agonist, stimulated, whereas the A2B receptor antagonist MRS1754 inhibited, 5-HT release (EC50 = 1.8 × 10-6 M; IC50 = 3.7 × 10-8 M), which was associated with corresponding alterations in intracellular cAMP levels and pCREB (Ser133). Mechanical stimulation using a rhythmic flex model induced transcription and activation of Tph1 (tryptophan hydroxylase) and VMAT₁ (vesicular monoamine transporter 1) and the release of 5-HT, which could be inhibited by MRS1754 and amplified by NECA. Secretion was also inhibited by H-89 (PKA inhibitor) while Tph1 and VMAT₁ transcription was regulated by PKA/MAPK and PI₃K-mediated signaling. Normal and IBD-EC cells also responded to NECA and mechanical stimulation with PKA activation, cAMP production, and 5-HT release, effects reversible by MRS1754. EC cells express stimulatory ADORA2B, and rhythmic stretch induces A2B activation, PKA/MAPK/IP3-dependent transcription, and PKA-dependent secretion of 5-HT synthesis and secretion. Receptor expression is amplified in IBD and neoplasia, and 5-HT release is increased. Determination of factors that regulate EC cell function are necessary for understanding its role as a mechanosensory cell and to facilitate the development of agents that can selectively target cell function in EC cell-associated disease. PMID:22038827

  10. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    Science.gov (United States)

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  11. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.

    Science.gov (United States)

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai

    2016-04-01

    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  12. CaSR function in the intestine: Hormone secretion, electrolyte absorption and secretion, paracrine non-canonical Wnt signaling and colonic crypt cell proliferation.

    Science.gov (United States)

    Macleod, R John

    2013-06-01

    Expression and function of the CaSR have been shown in some mammalian taste buds and basal cells of the esophagus. Signaling cascades responsible for CaSR-mediated stimulation of H(+)-K(+)-ATPase on human parietal cells have been defined. Transgenic mice and reductionistic cell culture models have shown that the CaSR promotes gastrin secretion from G cells, cholecystokinin (CCK) secretion from duodenal I cells and BMP-2 secretion from sub-epithelial myofibroblasts. In addition, the CaSR mediates a novel paracrine relationship between myofibroblasts and overlying epithelial cells in the colon. Thus, CaSR activators stimulate secretion of Wnt5a from myofibroblasts and expression of the Wnt5a receptor Ror2 in epithelial cells. CaSR-mediated Wnt5a/Ror2 engagement stimulates epithelial differentiation and reduces expression of the receptor for tumor necrosis factor (TNFR1). CaSR activators also modulate intestinal motility, inhibit Cl(-) secretion and stimulate Na(+) absorption in both the small intestine and colon. Colonic epithelia from conditional and global CaSR knockout mice exhibit increased proliferation with increased Wnt/β-catenin signaling, demonstrating that the CaSR negatively modulates colonic epithelial growth.

  13. Retinoschisin, a photoreceptor-secreted protein, and its interaction with bipolar and muller cells

    OpenAIRE

    Reid, SNM; Yamashita, C; Farber, D B

    2003-01-01

    Usually, photoreceptors interact with other retinal cells through the neurotransmitter glutamate. Here we describe a nonsynaptic interaction via a secreted protein, retinoschisin. Using in situ hybridization, we found that from early postnatal life retinoschisin mRNA is present only in the outer retina of the mouse, and with single-cell RT-PCR we demonstrated its localization in rod and cone photoreceptor cells but not in Muller cells. Western blot analyses of proteins from cultured ocular ti...

  14. Requirement for noncognate interaction with T cells for the activation of B cell immunoglobulin secretion by IL-2

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    23.1+ TH1 clone E9.D4 in F23.1 (anti-T cell receptor V-beta 8)-coated microwells. This induced polyclonal B cell activation to enter cell cycle (thymidine incorporation) at 2 days and to secrete immunoglobulin at 5 days. An anti-IL-2 mAb (S4B6) inhibited antibody production completely. Anti-IL-2 did...... not inhibit either LPS-induced B cell responses, or T cell activation (measured as IL-3 secretion). Anti-IL-2 receptor (anti-Tac) mAbs also inhibited T-dependent B cell responses, without affecting LPS responses. An anti-IFN-gamma mAb partially inhibited Ig secretion, without affecting entry into...

  15. Morphine Attenuates Apically-Directed Cytokine Secretion from Intestinal Epithelial Cells in Response to Enteric Pathogens

    Directory of Open Access Journals (Sweden)

    Amanda J. Brosnahan

    2014-04-01

    Full Text Available Epithelial cells represent the first line of host immune defense at mucosal surfaces. Although opioids appear to increase host susceptibility to infection, no studies have examined opioid effects on epithelial immune functions. We tested the hypothesis that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2 monolayers in response to enteropathogens. Both entero-adherent Escherichia coli O157:H7 and entero-invasive Salmonella enterica serovar Typhimurium increased apically-directed IL-6 secretion and bi-directional IL-8 secretion from epithelial monolayers, but only IL-6 secretion evoked by E. coli was reduced by morphine acting through a naloxone-sensitive mechanism. Moreover, the respective type 4 and 5 Toll-like receptor agonists, lipopolysaccharide and flagellin, increased IL-8 secretion from monolayers, which was also attenuated by morphine pretreatment. These results suggest that morphine decreases cytokine secretion and potentially phagocyte migration and activation directed towards the mucosal surface; actions that could increase host susceptibility to some enteric infections.

  16. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells.

    Science.gov (United States)

    Pedersen, Morten Gram; Ahlstedt, Ingela; El Hachmane, Mickaël F; Göpel, Sven O

    2016-01-01

    Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na(+)/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications. PMID:27535321

  17. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells.

    OpenAIRE

    Ramasharma, K; Li, C. H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generation and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, w...

  18. Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells

    OpenAIRE

    Sengupta, Aniruddha; Mateo-Lozano, Silvia; Tirado, Oscar M.; Notario, Vicente

    2011-01-01

    Caveolin-1 (CAV1) is highly expressed in Ewing’s sarcoma (EWS). We previously showed that increased cellular CAV1 is associated with the regulation of the tumorigenicity, drug resistance and metastatic ability of EWS cells. Because several studies reported that melanoma and prostate cancer cells, which express relatively high CAV1 levels, secrete CAV1, and that secreted CAV1 is associated with tumor progression, our study explored the possibility that EWS cells also secreted CAV1 and that sec...

  19. Glucose stimulates calcium-activated chloride secretion in small intestinal cells.

    Science.gov (United States)

    Yin, Liangjie; Vijaygopal, Pooja; MacGregor, Gordon G; Menon, Rejeesh; Ranganathan, Perungavur; Prabhakaran, Sreekala; Zhang, Lurong; Zhang, Mei; Binder, Henry J; Okunieff, Paul; Vidyasagar, Sadasivan

    2014-04-01

    The sodium-coupled glucose transporter-1 (SGLT1)-based oral rehydration solution (ORS) used in the management of acute diarrhea does not substantially reduce stool output, despite the fact that glucose stimulates the absorption of sodium and water. To explain this phenomenon, we investigated the possibility that glucose might also stimulate anion secretion. Transepithelial electrical measurements and isotope flux measurements in Ussing chambers were used to study the effect of glucose on active chloride and fluid secretion in mouse small intestinal cells and human Caco-2 cells. Confocal fluorescence laser microscopy and immunohistochemistry measured intracellular changes in calcium, sodium-glucose linked transporter, and calcium-activated chloride channel (anoctamin 1) expression. In addition to enhancing active sodium absorption, glucose increased intracellular calcium and stimulated electrogenic chloride secretion. Calcium imaging studies showed increased intracellular calcium when intestinal cells were exposed to glucose. Niflumic acid, but not glibenclamide, inhibited glucose-stimulated chloride secretion in mouse small intestines and in Caco-2 cells. Glucose-stimulated chloride secretion was not seen in ileal tissues incubated with the intracellular calcium chelater BAPTA-AM and the sodium-potassium-2 chloride cotransporter 1 (NKCC1) blocker bumetanide. These observations establish that glucose not only stimulates active Na absorption, a well-established phenomenon, but also induces a Ca-activated chloride secretion. This may explain the failure of glucose-based ORS to markedly reduce stool output in acute diarrhea. These results have immediate potential to improve the treatment outcomes for acute and/or chronic diarrheal diseases by replacing glucose with compounds that do not stimulate chloride secretion.

  20. Intrathecal IgG synthesis and autoantibody-secreting cells in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Jensen, Claus V; Christiansen, Michael

    2000-01-01

    We studied intrathecal IgG synthesis and autoantibody-secreting cells in 148 patients with possible onset symptoms of MS (POSMS) or clinically definite MS (CDMS). In POSMS intrathecal synthesis of IgG oligoclonal bands and abnormalities on T2-weighted magnetic resonance imaging were associated...... but the former were more prevalent. The cerebrospinal fluid (CSF) leukocyte count and the number of anti-protelipid protein antibody-secreting cells in cerebrospinal fluid (CSF) correlated with disease activity in POSMS. Intrathecal IgG synthesis levels and the number of anti-myelin basic protein antibody......-secreting cells in CSF correlated with disease activity in CDMS. Our results support recent reports of pathogenetic heterogeneity and a pathogenetic role of the antibody response in MS...

  1. Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells

    DEFF Research Database (Denmark)

    Cheek, T R; Thastrup, Ole

    1989-01-01

    Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3......+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist...

  2. Migration of antibody secreting cells towards CXCL12 depends on the isotype that forms the BCR

    Science.gov (United States)

    Achatz-Straussberger, Gertrude; Zaborsky, Nadja; Königsberger, Sebastian; Luger, Elke O.; Lamers, Marinus; Crameri, Reto; Achatz, Gernot

    2010-01-01

    Truncation of the cytoplasmic tail of membrane-bound IgE in vivo results in lower serum IgE levels, decreased numbers of IgE-secreting plasma cells and the abrogation of specific secondary immune responses. Here we present mouse strain KN1 that expresses a chimeric ε-γ1 BCR, consisting of the extracellular domains of the ε gene and the trans-membrane and cytoplasmic domains of the γ1 gene. Thus, differences in the IgE immune response of KN1 mice reflect the influence of the “γ1-mediated signalling” of mIgE bearing B cells. KN1 mice show an increased serum IgE level, resulting from an elevated number of IgE-secreting cells. Although the primary IgE immune response in KN1 mice is inconspicuous, the secondary response is far more robust. Most strikingly, IgE-antibody secreting cells with “γ1-signalling history” migrate more efficiently towards the chemokine CXCL12, which guides plasmablasts to plasma cell niches, than IgE-antibody secreting cells with WT “ε-signalling history”. We conclude that IgE plasmablasts have an intrinsic, lower chance to contribute to the long-lived plasma cell pool than IgG1 plasmablasts. PMID:18925577

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  4. Root border cells and secretions as critical elements in plant host defense.

    Science.gov (United States)

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Vicré-Gibouin, Maïté; Hawes, Martha

    2013-08-01

    Border cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based matrix seems to function in root defense in a way similar to that of recently characterized neutrophil extracellular traps (NETs) in mammalian cells. This review discusses the role of the cells and secreted compounds in the protection of root tip against microbial infections.

  5. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Directory of Open Access Journals (Sweden)

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  6. Mechanical forces stimulate endothelial microparticle generation via caspase-dependent apoptosis-independent mechanism

    OpenAIRE

    Vion, Anne Clémence; Birukova, Anna A.; Boulanger, Chantal M; Birukov, Konstantin G.

    2013-01-01

    Microparticle release by vascular endothelium has been implicated in various cardiovascular pathologies. Ventilator-induced lung injury (VILI) is a life-threatening complication of mechanical ventilation at high tidal volumes associated with excessive mechanical stretch of pulmonary vascular endothelial cells. However, a role of VILI-relevant levels of cyclic stretch in microparticle generation by vascular endothelium remains unknown. We report microparticle formation by human pulmonary endot...

  7. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Hoon Young Choi

    Full Text Available We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188, bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.

  8. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    Science.gov (United States)

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  9. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  10. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  11. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line.

    Science.gov (United States)

    Traber, M G; Kayden, H J; Rindler, M J

    1987-11-01

    Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control

  12. Purification and Characterization of Abundant Secreted Protein in Suspension-Cultured Pumpkin Cells 1

    Science.gov (United States)

    Esaka, Muneharu; Enoki, Keiko; Kouchi, Bonko; Sasaki, Takuji

    1990-01-01

    The abundant secreted protein with molecular weight of 32,000 was purified from the culture medium of suspension-cultured pumpkin (Cucurbita sp.) cells. Two steps, ammonium sulfate fractionation and Sepharose 6B column chromatography, were sufficient for purification to homogeneity. Antibodies against the pure protein were used to show that a protein of the same size is made by callus cells. There is considerable homology between the amino-terminal amino acid sequence of this secreted protein and chitinase isolated from tobacco (Nicotiana tabacum L.) or bean (Phaseolus vulgaris L.). Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667554

  13. Tendon synovial cells secrete fibronectin in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Banes, A.J.; Link, G.W.; Bevin, A.G.; Peterson, H.D.; Gillespie, Y.; Bynum, D.; Watts, S.; Dahners, L.

    1988-01-01

    The chemistry and cell biology of the tendon have been largely overlooked due to the emphasis on collagen, the principle structural component of the tendon. The tendon must not only transmit the force of muscle contraction to bone to effect movement, but it must also glide simultaneously over extratendonous tissues. Fibronectin is classified as a cell attachment molecule that induces cell spreading and adhesion to substratum. The external surface of intact avian flexor tendon stained positively with antibody to cellular fibronectin. However, if the surface synovial cells were first removed with collagenase, no positive reaction with antifibronectin antibody was detected. Analysis of immunologically stained frozen sections of tendon also revealed fibronectin at the tendon synovium, but little was associated with cells internal in tendon. The staining pattern with isolated, cultured synovial cells and fibroblasts from the tendon interior substantiated the histological observations. Analysis of polyacrylamide gel profiles of /sup 35/S-methionine-labeled proteins synthesized by synovial cells and internal fibroblasts indicated that fibronectin was synthesized principally by synovial cells. Fibronectin at the tendon surface may play a role in cell attachment to prevent cell removal by the friction of gliding. Alternatively, fibronectin, with its binding sites for hyaluronic acid and collagen, may act as a complex for boundary lubrication.

  14. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  15. Antrodia Camphorata increases insulin secretion and protects from apoptosis in MIN6 cells

    Directory of Open Access Journals (Sweden)

    Chi Teng eVong

    2016-03-01

    Full Text Available Antrodia camphorata (A. camphorata is a Taiwanese-specific fungus which has been used clinically to treat hypertension, immune- and liver-related diseases and cancer, however it has never been studied in Type II Diabetes (T2DM. Hyperglycaemia in T2DM causes endoplasmic reticulum (ER stress, leading to β-cell dysfunction. During chronic ER stress, misfolded proteins accumulate and initiate β-cell apoptosis. Moreover, β-cell dysfunction leads to defect in insulin secretion, which is the key process in the development and progression of T2DM. Therefore, the aim of the present study was to examine the effects of A. camphorata on insulin secretion and ER stress-induced apoptosis in a mouse β-cell line, MIN6, and their underlying mechanisms. We demonstrated that the ethanolic extract of A. camphorata increased glucose-induced insulin secretion dose-dependently through peroxisome proliferator-activated receptor-γ (PPAR-γ pathway, and upregulated genes that were involved in insulin secretion, including PPAR-γ, glucose transporter-2 (GLUT-2 and glucokinase. Furthermore, A. camphorata slightly increased cell proliferation, as well as protected from ER stress-induced apoptosis in MIN6 cells. In conclusion, this study provided evidences that A. camphorata might have anti-diabetic effects and could be a novel drug for T2DM.

  16. Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo.

    Science.gov (United States)

    Kushibiki, T; Okawa, S; Hirasawa, T; Ishihara, M

    2015-07-01

    The present study assessed the ability of optogenetics techniques to provide a better understanding of the control of insulin secretion, particularly regarding pancreatic β-cell function in homeostasis and pathological conditions such as diabetes mellitus (DM). We used optogenetics to investigate whether insulin secretion and blood glucose homeostasis could be controlled by regulating intracellular calcium ion concentrations ([Ca(2+)]i) in a mouse pancreatic β-cell line (MIN6) transfected with the optogenetic protein channelrhodopsin-2 (ChR2). The ChR2-transfected MIN6 (ChR2-MIN6) cells secreted insulin following irradiation with a laser (470 nm). The increase in [Ca(2+)]i was accompanied by elevated levels of messenger RNAs that encode calcium/calmodulin-dependent protein kinase II delta and adenylate cyclase 1. ChR2-MIN6 cells suspended in matrigel were inoculated into streptozotocin-induced diabetic mice that were then subjected to a glucose tolerance test. Laser irradiation of these mice caused a significant decrease in blood glucose, and the irradiated implanted cells expressed insulin. These findings demonstrate the power of optogenetics to precisely and efficiently controlled insulin secretion by pancreatic β-cells 'on demand', in contrast to techniques using growth factors or chemical inducers. Optogenetic technology shows great promise for understanding the mechanisms of glucose homeostasis and for developing treatments for metabolic diseases such as DM. PMID:25809465

  17. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion.

    Science.gov (United States)

    Ainscow, E K; Zhao, C; Rutter, G A

    2000-07-01

    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  18. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)

    2014-09-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  19. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    International Nuclear Information System (INIS)

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization

  20. Sialoglycoproteins and N-Glycans from Secreted Exosomes of Ovarian Carcinoma Cells

    OpenAIRE

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S.; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abun...

  1. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion

    OpenAIRE

    Ilegems, E.; van Krieken, P. P.; Edlund, P. K.; Dicker, A.; Alanentalo, T.; Eriksson, Maria; Mandic, S.; Ahlgren, Ulf; Berggren, P.-O.

    2015-01-01

    The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulat...

  2. Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells

    OpenAIRE

    Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Lu, Rong-Wen; Thompson, Anthony; Yao, Xin-Cheng

    2010-01-01

    Simultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes as...

  3. The Secret Lives of Pluripotent Cells: There and Back Again

    Directory of Open Access Journals (Sweden)

    Paolo Cinelli

    2010-03-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (IPSCs hold great promise for the therapeutic treatment of human diseases, but their functional similarity, their stability and especially the mechanism underlying their derivation are not yet clearly explained. [...

  4. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis

    DEFF Research Database (Denmark)

    Nielsen, C T; Østergaard, O; Rekvig, O P;

    2015-01-01

    OBJECTIVE: A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls......, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. METHODS: Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow...... in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. RESULTS: Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P 

  5. SALMON SOFT ROE DNA ON BLOOD CELLS SECRETION OF CYTOKINES IN HEALTHY DONORS

    Directory of Open Access Journals (Sweden)

    L. N. Fedjanina

    2005-01-01

    Full Text Available Abstract. Salmon soft roe DNA influence on healthy donors blood cells secretion of early hemopoietic factors (IL-3, GM-CSF, TNFα as well as biologically active substance influence on cytokine balance of Тh1 and Тh2 responses (IFNγ, IL-10 in vitro was studied. It is established, that DNA has modulatory effect on secretion of all investigated cytokines - IL-3, GM-CSF, TNFα, INFγ and IL-10 by blood cells of healthy donors, increases their initially low concentration, reduces initially high and does not have essential influence at an average level of their secretion. Under action of DNA IFNγ level (stimulation index=3,3 increases more significantly than IL-10 level (stimulation index =1,9. Thus, salmon soft roe DNA possesses immunomodulatory properties.

  6. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  7. Midkine secretion protects Hep3B cells from cadmium induced cellular damage

    Institute of Scientific and Technical Information of China (English)

    Nuray Yazihan; Haluk Ataoglu; Ethem Akcil; Burcu Yener; Bulent Salman; Cengiz Aydin

    2008-01-01

    AIM:To evaluate role of midkine secretion during Cadmium (Cd) exposure in the human hepatocyte cell line Hep3B cells.METHODS: Different dosages of Cd (0.5-1-5-10 μg/mL) were applied to Hep3B cells and their effects to apoptosis, lactate dehydrogenase (LDH) leakage and midkine secretion were evaluated as time dependent manner. Same experiments were repeated with exogenously applied midkine (250-5000 pg/mL) and/or 5μg/mL Cd.RESULTS: Cd exposure induced prominent apoptosis and LDH leakage beginning from lower dosages at the 48th h. Cd induced midkine secretion with higher dosages (P < 0.001), (control, Cd 0.5-1-5-10μg/mL respectively: 1123±73, 1157±63, 1242±90, 1886± 175, 1712±166 pg/mL). Exogenous 500-5000 pg/mL midkine application during 5 μg/mL Cd toxicity prevented caspase-3 activation (control, Cd toxicity, 250, 500, 1000, 2500, 5000 pg/mL midkine+ Cd toxicity, respectively:374±64, 1786±156, 1545±179, 1203±113, 974±116, 646±56, 556±63 cfu) LDH leakage and cell death in Hep3B cells (P < 0.001).CONCLUSION: Our results showed that midkine secretion from Hep3B cells during Cd exposure protects liver cells from Cd induced cellular damage. Midkine has anti-apoptotic and cytoprotective role during Cd toxicity. Further studies are needed to explain the mechanism of midkine secretion and cytoprotective role of midkine during Cd exposure. Midkine may be a promising theurapatic agent in different toxic hepatic diseases.

  8. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Boncela, Joanna; Przygodzka, Patrycja [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Wyroba, Elzbieta [Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw (Poland); Papiewska-Pajak, Izabela [Department of Molecular and Medical Biophysics, Medical University of Lodz (Poland); Cierniewski, Czeslaw S., E-mail: czeslaw.cierniewski@umed.lodz.pl [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Department of Molecular and Medical Biophysics, Medical University of Lodz (Poland)

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. - Highlights: ► LPS stimulates generation of secretory vesicles containing SerpinB2. ► SerpinB2 concentrates in TGN46 positive vesicles close to the plasma membrane. ► Brefeldin A inhibits secretion of SerpinB2. ► The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa.

  9. [Therapeutic potential of human mesenchymal stromal cells secreted components: a problem with standartization].

    Science.gov (United States)

    Sagaradze, G D; Grigorieva, O A; Efimenko, A Yu; Chaplenko, A A; Suslina, S N; Sysoeva, V Yu; Kalinina, N I; Akopyan, Zh A; Tkachuk, V A

    2015-01-01

    Regenerative medicine approaches, such as replacement of damaged tissue by ex vivo manufactured constructions or stimulation of endogenous reparative and regenerative processes to treat different diseases, are actively developing. One of the major tools for regenerative medicine are stem and progenitor cells, including multipotent mesenchymal stem/stromal cells (MSC). Because the paracrine action of bioactive factors secreted by MSC is considered as a main mechanism underlying MSC regenerative effects, application of MSC extracellular secreted products could be a promising approach to stimulate tissue regeneration; it also has some advantages compared to the injection of the cells themselves. However, because of the complexity of composition and multiplicity of mechanisms of action distinguished the medicinal products based on bioactive factors secreted by human MSC from the most of pharmaceuticals, it is important to develop the approaches to their standardization and quality control. In the current study, based on the literature data and guidelines as well as on our own experimental results, we provided rationalization for nomenclature and methods of quality control for the complex of extracellular products secreted by human adipose-derived MSC on key indicators, such as "Identification", "Specific activity" and "Biological safety". Developed approaches were tested on the samples of conditioned media contained products secreted by MSC isolated from subcutaneous adipose tissue of 30 donors. This strategy for the standardization of innovative medicinal products and biomaterials based on the bioactive extracellular factors secreted by human MSC could be applicable for a wide range of bioactive complex products, produced using the different types of stem and progenitor cells. PMID:26716748

  10. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    International Nuclear Information System (INIS)

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  11. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  12. On the origin of microparticles: From "platelet dust" to mediators of intercellular communication.

    Science.gov (United States)

    Hargett, Leslie A; Bauer, Natalie N

    2013-04-01

    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation.

  13. Distinct linkage between post-translational processing and differential secretion of progastrin derivatives in endocrine cells

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Rehfeld, Jens Frederik

    2008-01-01

    Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications and the sec......Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications...... and the secretory pathways taken by peptides derived from progastrin, the prohormone of gastrin, which in vivo is secreted by cells of the pyloric glands and stimulates the release of gastric acid. Targeting progastrin to compartments of the early secretory pathway shows that endoproteolytic processing is initiated...... in a pre-trans-Golgi network compartment of endocrine but not non-endocrine cells. The resulting N-terminal fragments of progastrin are secreted via the constitutive pathway, whereas endoproteolytically processed C-terminal fragments are secreted via the regulated or constitutive-like pathways. C...

  14. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation.

    Science.gov (United States)

    Brady, Robert T; O'Brien, Fergal J; Hoey, David A

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24 hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. PMID:25721667

  15. IL13 activates autophagy to regulate secretion in airway epithelial cells.

    Science.gov (United States)

    Dickinson, John D; Alevy, Yael; Malvin, Nicole P; Patel, Khushbu K; Gunsten, Sean P; Holtzman, Michael J; Stappenbeck, Thaddeus S; Brody, Steven L

    2016-01-01

    Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.

  16. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling.

    Directory of Open Access Journals (Sweden)

    Jessica Wahlgren

    Full Text Available It has previously been shown that nano-meter sized vesicles (30-100 nm, exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3⁺ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3⁺ T cells have on resting CD3⁺ T cells by studying T cell proliferation, cytokine production and by performing T cell and exosome phenotype characterization. Human exosomes were generated in vitro following CD3⁺ T cell stimulation with anti-CD28, anti-CD3 and IL-2. Our results show that exosomes purified from stimulated CD3⁺ T cells together with IL-2 were able to generate proliferation in autologous resting CD3⁺ T cells. The CD3⁺ T cells stimulated with exosomes together with IL-2 had a higher proportion of CD8⁺ T cells and had a different cytokine profile compared to controls. These results indicate that activated CD3⁺ T cells communicate with resting autologous T cells via exosomes.

  17. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2016-01-01

    Full Text Available Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field.

  18. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging.

    Science.gov (United States)

    Xu, Yan; Guo, Shilei; Wei, Cui; Li, Honglan; Chen, Lei; Yin, Chang; Zhang, Chuansen

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field. PMID:27057176

  19. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells.

  20. Mucus-secreting 'signet-ring' cells in CSF revealing the site of primary cancer.

    OpenAIRE

    Agnelli, G.; Gresele, P.

    1980-01-01

    A case is reported of leptomeningeal carcinomatosis in which identification of mucus-secreting 'signet-ring' carcinoma cells in the CSF allowed diagnosis of an otherwise asymptomatic gastric cancer. When lumbar puncture is performed, careful cytological examination of the CSF should be carried out in any undiagnosed patient with neurological symptoms and signs.

  1. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.

    Science.gov (United States)

    Walid Rezanoor, Md; Dutta, Prashanta

    2016-03-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  2. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    Science.gov (United States)

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  3. Distribution of kappa and lambda light chain isotypes among human blood immunoglobulin-secreting cells after vaccination with pneumococcal polysaccharides

    DEFF Research Database (Denmark)

    Heilmann, C; Barington, T

    1989-01-01

    pokeweed mitogen (PWM) and Epstein-Barr virus (EBV), IgM-, IgG- and IgA-secreting cells expressed the kappa light chain isotype in approximately 65% of the cells. IgM- and IgG-secreting cells induced by vaccination with pneumococcal polysaccharides had a similar percentage of kappa light chain......-containing cells. In contrast, IgA-secreting cells induced by vaccination with pneumococcal polysaccharides showed a different (bimodal) distribution as regards expression of kappa light chain. The majority (56%) of the investigated individuals expressed kappa light chain in approximately 50% of the cells...... chain pattern of IgA-secreting cells from individuals vaccinated with pneumococcal polysaccharides and from unvaccinated individuals probably indicates that these cells are being derived from B-cell clones with a limited idiotypic heterogeneity, which have been selected and clonally expanded...

  4. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex.

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Guidobaldi

    Full Text Available Sperm chemotaxis in mammals have been identified towards several female sources as follicular fluid (FF, oviduct fluid, and conditioned medium from the cumulus oophorus (CU and the oocyte (O. Though several substances were confirmed as sperm chemoattractant, Progesterone (P seems to be the best chemoattractant candidate, because: 1 spermatozoa express a cell surface P receptor, 2 capacitated spermatozoa are chemotactically attracted in vitro by gradients of low quantities of P; 3 the CU cells produce and secrete P after ovulation; 4 a gradient of P may be kept stable along the CU; and 5 the most probable site for sperm chemotaxis in vivo could be near and/or inside the CU. The aim of this study was to verify whether P is the sperm chemoattractant secreted by the rabbit oocyte-cumulus complex (OCC in the rabbit, as a mammalian animal model. By means of videomicroscopy and computer image analysis we observed that only the CU are a stable source of sperm attractants. The CU produce and secrete P since the hormone was localized inside these cells by immunocytochemistry and in the conditioned medium by enzyme immunoassay. In addition, rabbit spermatozoa express a cell surface P receptor detected by western blot and localized over the acrosomal region by immunocytochemistry. To confirm that P is the sperm chemoattractant secreted by the CU, the sperm chemotactic response towards the OCC conditioned medium was inhibited by three different approaches: P from the OCC conditioned medium was removed with an anti-P antibody, the attractant gradient of the OCC conditioned medium was disrupted by a P counter gradient, and the sperm P receptor was blocked with a specific antibody. We concluded that only the CU but not the oocyte secretes P, and the latter chemoattract spermatozoa by means of a cell surface receptor. Our findings may be of interest in assisted reproduction procedures in humans, animals of economic importance and endangered species.

  5. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Eiko Kitamura

    Full Text Available Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS, an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.

  6. Uncoupling protein 2 regulates glucagon-like peptide-1secretion in L-cells

    Institute of Scientific and Technical Information of China (English)

    Yan Chen; Zheng-Yang Li; Yan Yang; Hong-Jie Zhang

    2012-01-01

    AIM:To investigate whether uncoupling protein 2(UCP2) affects oleic acid-induced secretion of glucagonlike peptide-1 (GLP-1) in L-cells.METHODS:mRNA and protein expression of UCP2were analyzed in human NCI-H716 cells,which serve as a model for enteroendocrine L-cells,by quantitative reverse transcription-polymerase chain reaction and Western blotting before and after treatment with oleic acid.Localization of UCP2 and GLP-1 in NCI-H716 cells was assessed by immunofluorescence labeling.NCI-H716cells were transiently transfected with a small interfering RNA (siRNA) that targets UCP2 (siUCP2) or with a nonspecific siRNA using Lipofectamine 2000.The concentrations of bioactive GLP-1 in the medium were measured by enzyme linked immunosorbent assay.RESULTS:Both GLP-1 and UCP2 granules were expressed mainly in the cytoplasm of NCI-H716 cells.NCI-H716 cells that secreted GLP-1 also expressed UCP2.Time-course experiments revealed that release of GLP-1 from NCI-H716 cells into the medium reached a maximum at 120 min and remained stable until at least 180 min after treatment with oleic acid (the level of GLP-1 increased about 2.3-fold as compared with the level of GLP-1 in the control cells,P < 0.05).In an experiment to determine dose dependence,stimulation of NCI-H716 cells with ≤ 8 mmol oleic acid led to a concentration-dependent release of GLP-1 into the medium; 10 mmol oleic acid diminished the release of GLP-1.Furthermore,GLP-1 secretion induced by oleic acid from NCI-H716 cells that were transfected with siUCP2 decreased to 41.8%,as compared with NCI-H716 cells that were transfected with a non-specific siRNA (P < 0.01).CONCLUSION:UCP2 affected GLP-1 secretion induced by oleic acid.UCP2 plays an important role in L-cell secretion that is induced by free fatty acids.

  7. Secretion of interleukin-17 by CD8+ T cells expressing CD146 (MCAM).

    Science.gov (United States)

    Dagur, Pradeep K; Biancotto, Angélique; Stansky, Elena; Sen, H Nida; Nussenblatt, Robert B; McCoy, J Philip

    2014-01-01

    Interleukin-17 (IL-17) has been associated with the pathogenesis of numerous autoimmune diseases. CD4+ T cells secreting IL-17 are termed Th17 cells. CD8+ T cells, designated Tc17 cells, are also capable of secreting IL-17. Here we describe a population of Tc17 cells characterized by the expression of surface CD146, an endothelial adhesion molecule. These cells display signatures of a human Tc17 genotype and phenotype. Circulating CD8+CD146+ T cells are present in low levels in healthy adults. Elevations in CD8+CD146+ T cells are found in Behcet's disease and birdshot retinochoroidopathy, which have been reported to have HLA class I associations. Sarcoidosis does not have a class I association and displays an increase in CD4+ CD146+ T cells but not in CD8+CD146+ T cells. CD146 on these cells may facilitate their ability to bind to, and migrate through, endothelium, as has been reported for CD4+CD146+ T cells. PMID:24681356

  8. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture

    OpenAIRE

    Arold, Stephen P.; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-01-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant se...

  9. Sox17 regulates insulin secretion in the normal and pathologic mouse β cell.

    Directory of Open Access Journals (Sweden)

    Diva Jonatan

    Full Text Available SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.

  10. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2008-10-01

    Full Text Available Abstract Background Higher concentrations of serum lipids and apolipoprotein B100 (apoB are major individual risk factors of atherosclerosis and coronary heart disease. Therefore ameliorative effects of food components against the diseases are being paid attention in the affluent countries. The present study was undertaken to investigate the effect of taurine on apoB secretion and lipid metabolism in human liver model HepG2 cells. Results The results demonstrated that an addition of taurine to the culture media reduces triacylglycerol (TG-mass in the cells and the medium. Similarly, cellular cholesterol-mass was decreased. Taurine inhibited the incorporation of [14C] oleate into cellular and medium TG, suggesting the inhibition of TG synthesis. In addition, taurine reduced the synthesis of cellular cholesterol ester and its secretion, suggesting the inhibition of acyl-coenzyme A:cholesterol acyltransferase activity. Furthermore, taurine reduced the secretion of apoB, which is a major protein component of very low-density lipoprotein. Conclusion This is a first report to demonstrate that taurine inhibits the secretion of apoB from HepG2 cells.

  11. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    Science.gov (United States)

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  12. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra

    2014-11-01

    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  13. Androgen - secreting steroid cell tumor of the ovary

    Directory of Open Access Journals (Sweden)

    Paras Ratilal Udhreja

    2014-01-01

    Full Text Available Steroid cell tumors (SCTs, not otherwise specified of the ovary are rare subgroup of sex cord tumors, which account for less than 0.1% of all ovarian tumors and also that will present at any age. The majority of these tumors produce steroids with testosterone being the most common. A case of a 28-year-old woman who presented with symptoms of virilization is reported. Although SCTs are generally benign, there is a risk for malignant transformation. Surgery is the most important and hallmark treatment.

  14. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    Science.gov (United States)

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  15. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  16. Insulin-secreting β cells require a post-genomic concept.

    Science.gov (United States)

    Jiang, Fang-Xu; Morahan, Grant

    2016-05-25

    Pancreatic insulin-secreting β cells are essential in maintaining normal glucose homeostasis accomplished by highly specialized transcription of insulin gene, of which occupies up to 40% their transcriptome. Deficiency of these cells causes diabetes mellitus, a global public health problem. Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells (i.e., primitive cells capable of giving rise to all cell types in the body), a regenerative therapy to diabetes has not yet been established. Furthermore, the nomenclature of β cells has become inconsistent, confusing and controversial due to the lack of standardized positive controls of developmental stage-matched in vivo cells. In order to minimize this negative impact and facilitate critical research in this field, a post-genomic concept of pancreatic β cells might be helpful. In this review article, we will briefly describe how β cells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy, suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell. PMID:27226815

  17. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  18. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores.

    Directory of Open Access Journals (Sweden)

    Yunxiang Zhu

    Full Text Available Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS. In human bronchial epithelial cell cultures (HBECCs, maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h, to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5-2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist

  19. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug.

    Science.gov (United States)

    Murueva, A V; Shishatskaya, E I; Kuzmina, A M; Volova, T G; Sinskey, A J

    2013-08-01

    Microparticles made from degradable polyhydroxyalkanoates of different chemical compositions a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids (P3HB/4HB), 3-hydroxybutyric and 3-hydroxyvaleric acids (P3HB/3HV), 3-hydroxybutyric and 3-hydroxyhexanoic acids (P3HB/3HHx) were prepared using the solvent evaporation technique, from double emulsions. The study addresses the influence of the chemical compositions on the size and ξ-potential of microparticles. P3HB microparticles loaded with doxorubicin have been prepared and investigated. Their average diameter and ξ-potential have been found to be dependent upon the level of loading (1, 5, and 10 % of the polymer mass). Investigation of the in vitro drug release behavior showed that the total drug released from the microparticle into the medium increased with mass concentration of the drug. In this study mouse fibroblast NIH 3T3 cells were cultivated on PHA microparticles, and results of using fluorescent DAPI DNA stain, and MTT assay showed that microparticles prepared from PHAs of different chemical compositions did not exhibit cytotoxicity to cells cultured on them and proved to be highly biocompatible. Cell attachment and proliferation on PHA microparticles were similar to those on polystyrene. The cytostatic drug encapsulated in P3HB/3HV microparticles has been proven to be effective against HeLa tumor cells.

  20. Diffusible Factors Secreted by Glioblastoma and Medulloblastoma Cells Induce Oxidative Stress in Bystander Neural Stem Progenitors.

    Science.gov (United States)

    Sharma, Neha; Colangelo, Nicholas W; de Toledo, Sonia M; Azzam, Edouard I

    2016-08-01

    Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p p21(Waf1) and p27(Kip1), and perturbations in cell cycle progression (p cells to radiation only slightly altered the induced oxidative changes in the bystander NSPs, except for medium from irradiated medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p cells is often used to support the growth of stem cells.

  1. Secretion of albumin and alpha-foetoprotein by dimethylsulphoxide-stimulated hepatocellular carcinoma cells.

    OpenAIRE

    Higgins, P. J.; Darzynkiewicz, Z; Melamed, M R

    1983-01-01

    Exposure of BW77-1 and BW77-2 mouse hepatic tumour cells to the polar solvent dimethylsulphoxide (DMSO) altered extracellular accumulation of albumin and alpha-foetoprotein (AFP) and perturbed their cell cycle kinetics. The amount of albumin secreted into the culture growth medium was dependent on the concentration of DMSO used. Hepatic tumour cells cultured in 1 and 2% DMSO accumulated 50% and 111% more albumin, respectively, than non-DMSO-stimulated cells during the final 24 h of a 4-day ex...

  2. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells

    DEFF Research Database (Denmark)

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias;

    2016-01-01

    in a donor-age-dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR-31 as a crucial component. We demonstrated that miR-31 is present at elevated levels in the plasma of elderly and of osteoporosis patients....... As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation...... by knocking down its target Frizzled-3. Therefore, we suggest that microvesicular miR-31 in the plasma of elderly might play a role in the pathogenesis of age-related impaired bone formation and that miR-31 might be a valuable plasma-based biomarker for aging and for a systemic environment that does not favor...

  3. Membrane-associated and secreted proteoglycans from a continuous cell line derived from fibrotic schistosomal granulomas.

    Science.gov (United States)

    Silva, L C; Borojevic, R; Mourão, P A

    1992-02-14

    Proteoglycans were isolated from a continuous murine cell line (GRX) established from fibrotic granulomas induced in mouse liver by schistosomal infection, representative of liver connective tissue cells. The proteoglycans were labelled with 35SO4, extracted by guanidine-HCl + Triton X-100 in the presence of proteinase inhibitors, and purified by anion-exchange, gel-filtration and affinity-column chromatography. The major fractions of cell-associated and secreted proteoglycans are heparan sulfate proteoglycans. Gel-filtration chromatography on Sephacryl S-400 revealed Kav values of 0.20 and 0.30 for the cell-associated and secreted heparan sulfate proteoglycans, respectively. About 50% of the cell-associated heparan sulfate proteoglycans contained hydrophobic regions, as evidenced by their ability to bind to octyl-Sepharose, while only about 20% of secreted proteoglycans bound to this resin. In addition, no proteoglycan was competitively displaced from the cell surface by heparin. Taken together with other reports on proteoglycan synthesis by a variety of cell types in culture, these observations suggest that cell-surface heparan sulfate proteoglycans possibly contain a hydrophobic domain that functions as a membrane anchor in their attachment to cells. Addition of beta-D-xyloside to the cultures greatly enhanced the release of 35S-dermatan sulfate to the medium. Interestingly, dermatan sulfate is the major glycosaminoglycan found in the schistosoma-induced granuloma, from which the GRX cell line is derived. These studies provide the first biochemical description of the proteoglycans produced by a liver connective tissue cell line derived from schistosomal granulomas.

  4. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  5. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    Full Text Available BACKGROUND: The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  6. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness

    Directory of Open Access Journals (Sweden)

    Neveu B

    2014-05-01

    Full Text Available Bertrand Neveu*, Xavier Moreel*, Marie-Pier Deschênes-Rompré, Alain Bergeron, Hélène LaRue, Cherifa Ayari, Yves Fradet, Vincent FradetDepartment of Surgery, Laval University Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC, Canada *These authors contributed equally to this workBackground: Chronic inflammation is believed to be a major factor in prostate cancer initiation and promotion and has been studied using prostate cancer cells and immortalized cell lines. However, little is known about the contribution of normal cells to the prostatic microenvironment and inflammation. We aim to study the contribution of normal prostate epithelial cells to prostate inflammation and to link the inflammatory status of normal cells to prostate cancer aggressiveness.Materials and methods: Short-term primary cell cultures of normal epithelial prostate cells were derived from prostate biopsies from 25 men undergoing radical prostatectomy, cystoprostatectomy, or organ donation. Cells were treated with polyinosinic:polycytidylic acid, a mimic of double-stranded viral RNA and a potent inducer of the inflammatory response. Secretion of interleukin (IL-8 in the cell culture medium by untreated and treated cells was measured and we determined the association between IL-8 levels in these primary cell cultures and prostate cancer characteristics. The Fligner–Policello test was used to compare the groups.Results: Baseline and induced IL-8 secretion were highly variable between cultured cells from different patients. This variation was not related to drug use, past medical history, age, or preoperative prostate-specific antigen value. Nonetheless, an elevated secretion of IL-8 from normal cultured epithelial cells was associated with prostate cancer aggressiveness (P=0.0005.Conclusion: The baseline secretion of IL-8 from normal prostate epithelial cells in culture is strongly correlated with cancer aggressiveness and may drive prostate cancer

  7. Evidence for regulated secretion of proteins by human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    There are two methods of protein secretion, regulated and constitutive. The purpose of this study was to determine if there is a regulated pathway of protein secretion in human umbilical vein endothelial cells (EC). EC were cultured as previously described and then incubated with 3H-leucine. Media and cell were analyzed with time (30 sec-16 hrs) for secreted TCA precipitable labelled protein which was then separated by SDS-PAGE, α-thrombin (Th) (5 x 10-12M). DFP-Th (5 x 10-12M), calcium ionophore A23187 (10-7M) but not Th stimulated rapid (125I-fibrin well assay of 1 mm gel slices of conditioned medium following SDS-PAGE. Th because of EC receptor binding, and possibly because of Ca+2 influx, stimulates a rapid secretion of EC proteins, some of which have been identified as u-PA and t-PA. This may represent a major regulatory function of ECs in maintaining normal hemostasis

  8. Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro

    OpenAIRE

    Webb Bob; Mitchell Marcus RP; Brankin Victoria; Hunter Morag G

    2003-01-01

    Abstract Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s) between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF); a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2–6 mm healthy follicles...

  9. Cytotoxic Activity and Antiproliferative Effects of Crude Skin Secretion from Physalaemus nattereri (Anura: Leptodactylidae on in vitro Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Andréa Cruz e Carvalho

    2015-10-01

    Full Text Available Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage, reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules.

  10. Porphyrin Microparticles for Biological and Biomedical Applications

    Science.gov (United States)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  11. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.

    Science.gov (United States)

    Lumelsky, N; Blondel, O; Laeng, P; Velasco, I; Ravin, R; McKay, R

    2001-05-18

    Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization. PMID:11326082

  12. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    Science.gov (United States)

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  13. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke;

    2013-01-01

    by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion......Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... of the ER does not affect global protein redox status until an extensive production of cargo proteins has started....

  14. Uranium induces TNFα secretion and MAPK activation in a rat alveolar macrophage cell line

    International Nuclear Information System (INIS)

    Uranium is a toxic heavy metal found mainly in the nuclear industry, but it is also used in the manufacturing of military munitions. Inhalation studies using animal models have demonstrated that long-term exposure to uranium can lead to the development of neoplasia and fibrosis at the pulmonary level. Because it has been demonstrated that such effects are often associated with inflammation, the effect of uranium on TNFα, IL-1β, and IL-10 synthesis by macrophages was assessed in vitro using the NR8383 cell line. Our results show that a significant TNFα secretion was induced by uranium but not by other metals such as gadolinium. However, IL-1β and IL-10 secretions were unaffected by uranium treatment. TNFα secretion was detectable since 50 μM of uranium and was maximal after 24 h of exposure. Determination of the mechanisms of uranium-induced TNFα production was assessed through the evaluation of protein kinases activation. Our results showed that uranium treatment induced c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) activation. The use of pharmacological inhibitors suggested that both p38 MAPK and protein kinase C (PKC) participate in the signal transduction of uranium-induced TNFα secretion. The regulation of TNFα secretion involves TNFα mRNA accumulation at least through the stabilization of TNFα mRNA, but p38 MAPK did not appear to be involved in this stabilization. However, this observation does not exclude regulation of TNFα synthesis at the transcriptional level, which remains to be demonstrated. Taking together, these results suggest that uranium can induce TNFα secretion by macrophages, thus contributing to a better understanding of the pathological effect of uranium on the lung

  15. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro.

    Science.gov (United States)

    Witkowski, Sarah; Guhanarayan, Gayatri; Burgess, Rachel

    2016-02-01

    Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony-forming unit CAC (CFU-CAC) were cultured from young active men (n = 9, 24 ± 2 years) at rest and after exercise under normal (5 mmol/L) and elevated (15 mmol/L) glucose. Preliminary relative multiplex cytokine analysis revealed that CAC conditioned culture media contained three of six measured cytokines: transforming growth factor-beta-1 (TGFβ1), tumor necrosis factor alpha (TNFα), and monocyte chemotactic protein-1 (MCP-1). Single quantitative cytokine analysis was used to determine the concentration of each cytokine from the four conditions. NO was measured via Griess assay. There was a significant effect of CAC exposure to in vivo exercise on in vitro TGFβ1 secretion (P = 0.024) that was independent of glucose concentration. There was no effect of glucose or acute exercise on TNFα or MCP-1 concentration (both P > 0.05). The concentration of NO from CFU-CAC cultured in elevated glucose was lower following acute exercise (P = 0.002) suggesting that exercise did not maintain NO secretion under hyperglycemic conditions. Our results identify paracrine signaling factors that may be responsible for the proangiogenic function of CFU-CAC and an influence of acute exercise and elevated glucose on CFU-CAC soluble factor secretion. PMID:26847726

  16. Artificial MicroRNAs as Novel Secreted Reporters for Cell Monitoring in Living Subjects.

    Science.gov (United States)

    Ronald, John A; D'Souza, Aloma L; Chuang, Hui-Yen; Gambhir, Sanjiv Sam

    2016-01-01

    Reporter genes are powerful technologies that can be used to directly inform on the fate of transplanted cells in living subjects. Imaging reporter genes are often employed to quantify cell number, location(s), and viability with various imaging modalities. To complement this, reporters that are secreted from cells can provide a low-cost, in vitro diagnostic test to monitor overall cell viability at relatively high frequency without knowing the locations of all cells. Whereas protein-based secretable reporters have been developed, an RNA-based reporter detectable with amplification inherent PCR-based assays has not been previously described. MicroRNAs (miRNAs) are short non-coding RNAs (18-22 nt) that regulate mRNA translation and are being explored as relatively stable blood-based disease biomarkers. We developed an artificial miRNA-based secreted reporter, called Sec-miR, utilizing a coding sequence that is not expressed endogenously and does not have any known vertebrate target. Sec-miR was detectable in both the cells and culture media of transiently transfected cells. Cells stably expressing Sec-miR also reliably secreted it into the culture media. Mice implanted with parental HeLa cells or HeLa cells expressing both Sec-miR and the bioluminescence imaging (BLI) reporter gene Firefly luciferase (FLuc) were monitored over time for tumor volume, FLuc signal via BLI, and blood levels of Sec-miR. Significantly (p<0.05) higher Sec-miR was found in the blood of mice bearing Sec-miR-expressing tumors compared to parental cell tumors at 21 and 28 days after implantation. Importantly, blood Sec-miR reporter levels after day 21 showed a trend towards correlation with tumor volume (R2 = 0.6090; p = 0.0671) and significantly correlated with FLuc signal (R2 = 0.7067; p<0.05). Finally, we could significantly (p<0.01) amplify Sec-miR secretion into the cell media by chaining together multiple Sec-miR copies (4 instead of 1 or 2) within an expression cassette. Overall, we

  17. Circulating Endothelial-Derived Activated Microparticle: A Useful Biomarker for Predicting One-Year Mortality in Patients with Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chin-Chou Wang

    2014-01-01

    Full Text Available Background. This study tested the hypothesis that circulating microparticles (MPs are useful biomarkers for predicting one-year mortality in patients with end-stage non-small cell lung cancer (ES-NSCLC. Methods and Results. One hundred seven patients were prospectively enrolled into the study between April 2011 and February 2012, and each patient received regular follow-up after enrollment. Levels of four MPs in circulation, (1 platelet-derived activated MPs (PDAc-MPs, (2 platelet-derived apoptotic MPs (PDAp-MPs, (3 endothelial-derived activated MPs (EDAc-MPs, and (4 endothelial-derived apoptotic MPs (EDAp-MPs, were measured just after the patient was enrolled into the study using flow cytometry. Patients who survived for more than one year were categorized into group 1 (n=56 (one-year survivors and patients who survived less than one year were categorized into group 2 (n=51 (one-year nonsurvivors. Male gender, incidence of liver metastasis, progression of disease after first-line treatment, poor performance status, and the Charlson comorbidity index were significantly higher in group 2 than in group 1 (all P<0.05. Additionally, as measured by flow cytometry, only the circulating level of EDAc-MPs was found to be significantly higher in group 2 than in group 1 (P=0.006. Multivariate analysis demonstrated that circulating level of EDAc-MPs along with brain metastasis and male gender significantly and independently predictive of one-year mortality (all P<0.035. Conclusion. Circulating EDAc-MPs may be a useful biomarker predictive of one-year morality in ES-NSCLC patients.

  18. Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation

    Directory of Open Access Journals (Sweden)

    McGrath Barbara C

    2009-09-01

    Full Text Available Abstract Background A deficiency in Perk (EIF2AK3 causes multiple neonatal defects in humans known as the Wolcott Rallison syndrome. Perk KO mice exhibit the same array of defects including permanent neonatal diabetes (PND. PND in mice was previously shown by us to be due to a decrease in beta cell proliferation and insulin secretion. The aim of this study was to determine if acute ablation of PERK in the 832/13 beta cells recapitulates these defects and to identify the primary molecular basis for beta cell dysfunction. Results The INS1 832/13 transformed rat beta cell line was transduced with a dominant-negative Perk transgene via an adenoviral vector. AdDNPerk-832/13 beta cells exhibited reduced expression of insulin and MafA mRNAs, reduced insulin secretion, and reduced cell proliferation. Although proinsulin content was reduced in AdDNPerk-832/13 beta cells, proinsulin was abnormally retained in the endoplasmic reticulum. A temporal study of the acute ablation of Perk revealed that the earliest defect seen was induced expression of two ER chaperone proteins, GRP78/BiP and ERp72. The oxidized states of ERp72 and ERp57 were also increased suggesting an imbalance in the redox state of the ER. Conclusion Acute ablation of Perk in INS 832/13 beta cells exhibited all of the major defects seen in Perk KO mice and revealed abnormal expression and redox state of key ER chaperone proteins. Dysregulation of ER chaperone/folding enzymes ERp72 and GRP78/BiP occurred early after ablation of PERK function suggesting that changes in ER secretory functions may give rise to the other defects including reduced insulin gene expression, secretion, and cell proliferation.

  19. Effect of house dust mite immunotherapy on interleukin-10-secreting regulatory T cells in asthmatic children

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; XIANG Li; LIU Yong-ge; WANG Yong-hong; SHEN Kun-ling

    2010-01-01

    Background Subcutaneous specific immunotherapy has been demonstrated to be capable of inducing T-cell regulatory response.Interleukin-10 (IL-10) plays a crucial role in inducing allergen-specific tolerance.However the reports of the changes of IL-10 in house dust mite (HDM)-specific immunotherapy were varied.The aim of this study was to evaluate the function of IL-10-secreting regulatory T cells in asthma children successfully treated with HDM immunotherapy.Methods Peripheral blood mononuclear cells (PBMCs) were isolated from 27 patients following 1.5--2 years of HDM-specific immunotherapy (SIT, SIT group) and from 27 matched treated asthmatic children allergic to HDM (asthmagroup).After 48 hours of in vitro stimulation with HDM extracts, IL-10-secreting regulatory T cells were measured by four colour flow cytometry.Sera were tested for allergen-specific IgG4 and IgE using the Immuno CAP 100 assay.Results PBMCs from children undergoing immunotherapy following HDM extracts stimuli produced significantly more IL-10 compared with the asthma group.The frequency of iTreg cells and aTreg cells increased in SIT group after HDM stimulation, while it was not affected in the asthma group.Among the iTreg cells and aTreg cells, the frequency of CD4+CD25-Foxp3-IL-10+ Treg cells increased the most which was 2 times higher than that in unstimulated cultures in SIT group.The levels of HDM-specific IgG4 of SIT group was significiently higher compared with asthma group, but there was no correlation of the levels of HDM-specific IgG4 and IL-10 secreting Treg cells.Conclusions HDM-specific immunotherapy can successfully upregulate the frequency of IL-10-secreting Treg cells.CD4+CD25-Foxp3-IL-10+ Treg cells may play a key role in inducing the immune tolerance in HDM-specific immunotherapy.

  20. Corticotropin-releasing factor secretion from dendritic cells stimulated by commensal bacteria

    Institute of Scientific and Technical Information of China (English)

    Mariko Hojo; Toshifumi Ohkusa; Harumi Tomeoku; Shigeo Koido; Daisuke Asaoka; Akihito Nagahara; Sumio Watanabe

    2011-01-01

    AIM: To study the production and secretion of corticotropin-releasing factor (CRF) by dendritic cells and the influence of commensal bacteria.METHODS: JAWSⅡ cells (ATCC CRL-11904), a mouse dendritic cell line, were seeded into 24-well culture plates and grown for 3 d. Commensal bacterial strains of Clostridium clostrodiiforme (JCM1291), Bacteroides vulgatus (B. vulgatus) (JCM5856), Escherichia coli (JCM1649), or Fusobacterium varium (F. varium) (ATCC8501) were added to the cells except for the control well, and incubated for 2 h. After incubation, we performed enzyme-linked immunosorbent assay for the cultured medium and reverse transcription polymerase chain reaction for the dendritic cells, and compared these values with controls.RESULTS: The level of CRF secretion by control dendritic cells was 40.4 ± 6.2 pg/mL. The CRF levels for cells incubated with F. varium and B. vulgatus were significantly higher than that of the control (P < 0.0001). CRF mRNA was present in the control sample without bacteria, and CRF mRNA levels in all samples treated with bacteria were above that of the control sample.F. varium caused the greatest increase in CRF mRNA expression. CONCLUSION: Our results suggest that dendritic cells produce CRF, a process augmented by commensal bacteria.

  1. Partial correction of defective Cl(-) secretion in cystic fibrosis epithelial cells by an analog of squalamine.

    Science.gov (United States)

    Jiang, C; Lee, E R; Lane, M B; Xiao, Y F; Harris, D J; Cheng, S H

    2001-11-01

    Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion. PMID:11597908

  2. Diffusible Factors Secreted by Glioblastoma and Medulloblastoma Cells Induce Oxidative Stress in Bystander Neural Stem Progenitors.

    Science.gov (United States)

    Sharma, Neha; Colangelo, Nicholas W; de Toledo, Sonia M; Azzam, Edouard I

    2016-08-01

    Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p < .001). The elucidation of such stressful bystander effects provides avenues to understand the biochemical events underlying the development or exacerbation of degenerative outcomes associated with brain cancers. It is also relevant to tissue culture protocols whereby growth medium conditioned by tumor cells is often used to support the growth of stem cells. PMID:27511909

  3. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    Science.gov (United States)

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  4. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  5. Lipid synthesis and secretion in HepG2 cells is not affected by ACTH

    Directory of Open Access Journals (Sweden)

    Nilsson-Ehle Peter

    2010-05-01

    Full Text Available Abstract Apolipoprotein B (apoB containing lipoproteins, i.e. VLDL, LDL and Lp(a, are consequently lowered by ACTH treatment in humans. This is also seen as reduced plasma apoB by 20-30% and total cholesterol by 30-40%, mostly accounted for by a decrease in LDL-cholesterol. Studies in hepatic cell line (HepG2 cells showed that apoB mRNA expression is reduced in response to ACTH incubation and is followed by a reduced apoB secretion, which may hypothesize that ACTH lowering apoB containing lipoproteins in humans may be mediated by the inhibition of hepatic apoB synthesis. This was recently confirmed in vivo in a human postprandial study, where ACTH reduced transient apoB48 elevation from the small intestine, however, the exogenic lipid turnover seemed unimpaired. In the present study we investigated if lipid synthesis and/or secretion in HepG2 cells were also affected by pharmacological levels of ACTH to accompany the reduced apoB output. HepG2 cells were incubated with radiolabelled precursors ([14C]acetate and [3H]glycerol either before or during ACTH stimuli. Cellular and secreted lipids were extracted with chloroform:methanol and separated by the thin layer chromatography (TLC, and [14C]labelled cholesterol and cholesteryl ester and [3H]labelled triglycerides and phospholipids were quantitated by the liquid scintillation counting. It demonstrated that ACTH administration did not result in any significant change in neither synthesis nor secretion of the studied lipids, this regardless of presence or absence of oleic acid, which is known to stabilize apoB and enhance apoB production. The present study suggests that ACTH lowers plasma lipids in humans mainly mediated by the inhibition of apoB synthesis and did not via the reduced lipid synthesis.

  6. The regulation of vasopressin secretion in a patient with oat cell carcinoma of the bronchus.

    OpenAIRE

    Spruce, B. A.; Baylis, P. H.

    1983-01-01

    We report a patient who had an oat cell bronchogenic carcinoma in association with the syndrome of inappropriate antidiuresis. There was an unusually long interval between the onset of hyponatraemia and clinically evident malignant disease. Dynamic testing of vasopressin secretion showed preservation of baroregulated, but not osmoregulated, vasopressin release. Immunoreactive vasopressin was detected in pleural fluid, which co-eluted with synthetic vasopressin on gel chromatography.

  7. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells

    OpenAIRE

    Heng Zhang; Meng Xiang; Dan Meng; Ning Sun; Sifeng Chen

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine. In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia/reperfusion injury based on the reports published between January 2000 and September 2015 and indexed in the PUBMED and Web of Science databases. The effect of exosomes on heart function was evaluated according to the following parameters: the area at risk as a percentage of the...

  8. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women

    Science.gov (United States)

    Jayachandran, Muthuvel; Litwiller, Robert D.; Owen, Whyte G.; Heit, John A.; Behrenbeck, Thomas; Mulvagh, Sharon L.; Araoz, Philip A.; Budoff, Matthew J.; Harman, S. Mitchell; Miller, Virginia M.

    2008-01-01

    While the risk for symptomatic atherosclerotic disease increases after menopause, currently recognized risk factors do not identify ongoing disease processes in low-risk women. This study tested the hypothesis that circulating cell-derived microparticles may reflect disease processes in women defined as low risk by the Framingham risk score. The concentration and phenotype of circulating microparticles were evaluated in a cross-sectional study of apparently healthy menopausal women, screened for enrollment into the Kronos Early Estrogen Prevention Study. Microparticles were evaluated by flow cytometry, and coronary artery calcification (CAC) was scored using 64-slice computed tomography scanners. The procoagulant activity of isolated microparticles was determined with a sensitive fluorescent thrombin generation assay. Chronological age, body mass index, serum lipids, systolic blood pressure (Framingham risk score 50; range, 93–315 Agatston units) CAC compared with women without calcification. The total concentration and percentage of microparticles derived from platelets and endothelial cells were greatest in women with high CAC scores. The thrombin-generating capacity of the isolated microparticles correlated with phosphatidylserine expression, which also was greatest in women with high CAC scores. The percentages of microparticles expressing granulocyte and monocyte markers were not significantly different among groups. Therefore, the characterization of platelet and endothelial microparticles may identify early menopausal women with premature CAC who would not otherwise be identified by the usual risk factor analysis. PMID:18621859

  9. Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion

    Institute of Scientific and Technical Information of China (English)

    Guanglin Cui; Helge L Waldum

    2007-01-01

    Gastric acid plays an important role in digesting food (especially protein), iron absorption, and destroying swallowed micro-organisms. H+ is secreted by the oxyntic parietal cells and its secretion is regulated by endocrine, neurocrine and paracrine mechanisms.Gastrin released from the antral G cell is the principal physiological stimulus of gastric acid secretion. Activation of the enterochromaffin-like (ECL) cell is accepted as the main source of histamine participating in the regulation of acid secretion and is functionally and trophically controlled by gastrin, which is mediated by gastrin/CCK-2 receptors expressed on the ECL cell. However, longterm hypergastrinemia will induce ECL cell hyperplasia and probably carcinoids. Clinically, potent inhibitors of acid secretion have been prescribed widely to patients with acid-related disorders. Long-term potent acid inhibition evokes a marked increase in plasma gastrin levels,leading to enlargement of oxyntic mucosa with ECL cell hyperplasia. Accordingly, the induction of ECL cell hyperplasia and carcinoids remains a topic of considerable concern, especially in long-term use. In addition, the activation of ECL cells also induces another clinical concern, i.e., rebound acid hypersecretion after acid inhibition. Recent experimental and clinical findings indicate that the activation of ECL cells plays a critical role both physiologically and clinically in the regulation of gastric acid secretion.

  10. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, P.; Kavathas, P. (Yale Univ. School of Medicine, New Haven, CT (USA)); Ledbetter, J.A. (Oncogen, Seattle, WA (USA))

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  11. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    International Nuclear Information System (INIS)

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8+ T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation

  12. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210

    Science.gov (United States)

    Bigagli, Elisabetta; Luceri, Cristina; Guasti, Daniele; Cinci, Lorenzo

    2016-01-01

    ABSTRACT Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer

  13. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion.

    Science.gov (United States)

    Nath, Shubhankar; Christian, Laura; Tan, Sarah Youngsun; Ki, Sanghee; Ehrlich, Lauren I R; Poenie, Martin

    2016-09-15

    Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively. PMID:27534551

  14. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice.

    Science.gov (United States)

    Wang, Yiming; Wu, Jingni; Kim, Sang Gon; Tsuda, Kenichi; Gupta, Ravi; Park, Sook-Young; Kim, Sun Tae; Kang, Kyu Young

    2016-04-01

    The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity. PMID:26780420

  15. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  16. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.To study the reciprocal effects of adipocytes and cancer cells, we co-cultured human mature adipocytes and breast cancer cells in a system devoid of heterogeneous cell-cell contact. To analyze the factors that were secreted from adipocytes and that affected the invasive abilities of breast cancer cells, we detected different cytokines in various co-culture media. To study the communication of mature adipocytes and breast cancer cells in vivo, we chose 10 metastatic pathologic samples and 10 non-metastatic pathologic samples to do immunostaining.The co-culture media of human MCF-7 breast cancer cells and human mature adipocytes increased motility of MCF-7 cells. In addition, MMP-2 was remarkably up-regulated, whereas E-cadherin was down-regulated in these MCF-7 cells. Based on our co-culture medium chip results, we chose four candidate cytokines and tested their influence on metastasis individually. We found that IGFBP-2 enhanced the invasion ability of MCF-7 cells in vitro more prominently than did the other factors. In vivo, metastatic human breast tumors had higher levels of MMP-2 than did non-metastatic tumor tissue, whereas adipocytes around metastatic breast tumors had higher levels of IGFBP-2 than did adipocytes surrounding non-metastatic breast tumors.IGFBP-2 secreted by mature adipocytes plays a key role in promoting the metastatic ability of MCF-7 breast cancer cells.

  17. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate.

    Science.gov (United States)

    Jeon, Oju; Wolfson, David W; Alsberg, Eben

    2015-04-01

    The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.

  18. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation.

    Directory of Open Access Journals (Sweden)

    Ruzica Livaja Koshiar

    Full Text Available Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte

  19. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles.

    Directory of Open Access Journals (Sweden)

    Limin Li

    Full Text Available Cell-secreted miRNAs are highly stable and can serve as biomarkers for various diseases and signaling molecules in intercellular communication. The mechanism underlying the stability of circulating miRNAs, however, remains incompletely understood. Here we show that Argonaute 2 (Ago2 complexes and microvesicles (MVs provide specific and non-specific protection for miRNA in cell-secreted MVs, respectively. First, the resistance of MV-encapsulated miRNAs to RNaseA was both depended on intact vesicular structure of MVs and protease-sensitive. Second, an immunoprecipitation assay using a probe complementary to human miR-16, a miRNA primarily located in the MVs and showed a strong, protease-sensitive resistance to RNaseA, identified Ago2 as a major miR-16-associated protein. Compared with protein-free miR-16, Ago2-associated miR-16 was resistant to RNaseA in a dose- and time-dependent fashion. Third, when the miR-16/Ago2 complex was disrupted by trypaflavine, the resistance of miR-16 to RNaseA was decreased. In contrast, when the association of miR-16 with the Ago2 complexes was increased during cell apoptosis, although the total amount of miR-16 and Ago2 remained unchanged, the resistance of miR-16 to RNaseA in the MVs was enhanced. A similar correlation between the increase of miR-223/Ago2 association and the resistance of miR-223 against RNaseA was observed during all trans retinoic acid (ATRA-induced cell differentiation of promyelocytic HL60 cells. In conclusion, the association of miRNAs with Ago2 complexes, an event that is linked to cell functional status, plays a critical role in stabilizing the circulating miRNAs in cell-secreted MVs.

  20. Modulation pf pulmonary surfactant secretion from alveolar type II cells by cytoplasmic free calcium ([Ca2+]/sub i/)

    International Nuclear Information System (INIS)

    Ca2+ is regulator of a variety of cellular functions including exocytosis. TPA and terbutaline have been shown to stimulate surfactant secretion from alveolar type II cells. The authors examined changes in [Ca2+]/sub i/ and surfactant secretion by secretagogues in primary culture of alveolar type II cells. Cells were isolated from adult rats and were cultured for 24 h with 3H-choline to label phosphatidylcholine. Percent secretion was determined by counting the lipids of cells and medium; cytotoxicity was excluded by measuring lactate dehydrogenase as cells and medium. [Ca2+]/sub i/ was determined by measuring quin2 fluroescence of cells cultured on a glass coverslip. Ionomycin increased secretion as well as [Ca2+] in dose dependent manner at the concentration from 25 to 400 nM. Ionomycin (50 nM) increased terbutaline-induced secretion in a synergistic manner but only increased TPA-induced secretion in an additive manner. Terbutaline mobilized [Ca2+]/sub i/ from intracellular stores and increased [Ca2+]/sub i/ by 20% from a basal level of 140 nM. TPA itself did not change [Ca2+]/sub i/ but inhibited the effect of terbutaline on [Ca2+]/sub i/. Loading of quin2 in the absence of extracellular calcium lowered [Ca2+]/sub i/ from 143 nM to 31 nM. Lowering [Ca2+]/sub i/ inhibited TPA- or terbutaline-induced secretion by 22% and 40% respectively. These results indicate that [Ca2+]/sub i/ effects cAMp-induced secretion more than protein kinase C-mediated secretion in alveolar type II cells

  1. Modulation pf pulmonary surfactant secretion from alveolar type II cells by cytoplasmic free calcium ((Ca/sup 2 +/)/sub i/)

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K.; Voelker, D.R.; Mason, R.J.

    1986-05-01

    Ca/sup 2 +/ is regulator of a variety of cellular functions including exocytosis. TPA and terbutaline have been shown to stimulate surfactant secretion from alveolar type II cells. The authors examined changes in (Ca/sup 2 +/)/sub i/ and surfactant secretion by secretagogues in primary culture of alveolar type II cells. Cells were isolated from adult rats and were cultured for 24 h with /sup 3/H-choline to label phosphatidylcholine. Percent secretion was determined by counting the lipids of cells and medium; cytotoxicity was excluded by measuring lactate dehydrogenase as cells and medium. (Ca/sup 2 +/)/sub i/ was determined by measuring quin2 fluroescence of cells cultured on a glass coverslip. Ionomycin increased secretion as well as (Ca/sup 2 +/) in dose dependent manner at the concentration from 25 to 400 nM. Ionomycin (50 nM) increased terbutaline-induced secretion in a synergistic manner but only increased TPA-induced secretion in an additive manner. Terbutaline mobilized (Ca/sup 2 +/)/sub i/ from intracellular stores and increased (Ca/sup 2 +/)/sub i/ by 20% from a basal level of 140 nM. TPA itself did not change (Ca/sup 2 +/)/sub i/ but inhibited the effect of terbutaline on (Ca/sup 2 +/)/sub i/. Loading of quin2 in the absence of extracellular calcium lowered (Ca/sup 2 +/)/sub i/ from 143 nM to 31 nM. Lowering (Ca/sup 2 +/)/sub i/ inhibited TPA- or terbutaline-induced secretion by 22% and 40% respectively. These results indicate that (Ca/sup 2 +/)/sub i/ effects cAMp-induced secretion more than protein kinase C-mediated secretion in alveolar type II cells.

  2. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  3. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    International Nuclear Information System (INIS)

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  4. Circulating CD62E+ microparticles and cardiovascular outcomes.

    Directory of Open Access Journals (Sweden)

    Soon-Tae Lee

    Full Text Available BACKGROUND: Activated endothelial cells release plasma membrane submicron vesicles expressing CD62E (E-selectin into blood, known as endothelial microparticles (EMPs. We studied whether the levels of endothelial microparticles expressing CD62E(+, CD31(+/Annexin-V(+, or CD31(+/CD42(- predict cardiovascular outcomes in patients with stroke history. METHODS/PRINCIPAL FINDINGS: Patients with stroke history at least 3 months prior to enrolment were recruited. Peripheral blood EMP levels were measured by flow cytometry. Major cardiovascular events and death were monitored for 36 months. Three hundred patients were enrolled, of which 298 completed the study according to protocol. Major cardiovascular events occurred in 29 patients (9.7%. Nine patients died, five from cardiovascular causes. Cumulative event-free survival rates were lower in patients with high levels of CD62E(+ microparticles. Multivariate Cox regression analysis adjusted for cardiovascular risk factors, medications and stroke etiologic groups showed an association between a high CD62E(+ microparticle level and a risk of major cardiovascular events and hospitalization. Levels of other kinds of EMPs expressing CD31(+/Annexin-V(+ or CD31(+/CD42(- markers were not predictive of cardiovascular outcomes. CONCLUSION: A high level of CD62E(+ microparticles is associated with cardiovascular events in patients with stroke history, suggesting that the systemic endothelial activation increases the risk for cardiovascular morbidities.

  5. Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces.

    Science.gov (United States)

    Suzuki, Masato; Yasukawa, Tomoyuki; Mase, Yoshiaki; Oyamatsu, Daisuke; Shiku, Hitoshi; Matsue, Tomokazu

    2004-12-01

    Two-dimensional micropatterns of microparticles were fabricated on glass substrates with negative dielectrophoretic force, and the patterned microparticles were covalently bound on the substrate via cross-linking agents. The line and grid patterns of microparticles were prepared using the repulsive force of negative dielectrophoresis (n-DEP). The template interdigitated microband array (IDA) electrodes (width and gap 50 mum) were incorporated into the dielectrophoretic patterning cell with a fluidic channel. The microstructures on the glass substrates with amino or sulfhydryl groups were immobilized with the cross-linking agents disuccinimidyl suberate (DSS) and m-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS). Diaphorase (Dp), a flavoenzyme, was selectively attached on the patterned microparticles using the maleimide groups of MBS. The enzyme activity on the patterned particles was electrochemically characterized with a scanning electrochemical microscope (SECM) in the presence of NADH and ferrocenylmethanol as a redox mediator. The SECM images proved that Dp was selectively immobilized onto the surface of microparticles to maintain its catalytic activity. PMID:15568852

  6. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion

    NARCIS (Netherlands)

    C. Donadee (Chenell); N.J.H. Raat (Nicolaas); T. Kanias (Tamir); J. Tejero (Jesús); J.S. Lee (Janet); E.E. Kelley (Eric); X. Zhao (Xuejun); C. Liu (Chen); H. Reynolds (Hannah); I. Azarov (Ivan); S. Frizzell (Sheila); E.M. Meyer (Michael); A.D. Donnenberg (Albert); L. Qu (Lirong); D. Triulzi (Darrel); D.B. Kim-Shapiro (Daniel); M.T. Gladwin (Mark)

    2011-01-01

    textabstractBacground-: Intravascular red cell hemolysis impairs nitric oxide (NO)-redox homeostasis, producing endothelial dysfunction, platelet activation, and vasculopathy. Red blood cell storage under standard conditions results in reduced integrity of the erythrocyte membrane, with formation of

  7. Towards injectable cell-based tissue-engineered bone : The effect of different calcium phosphate microparticles and pre-culturing

    NARCIS (Netherlands)

    Persson, C; Johansson, G; Dhert, WJA; Kruyt, Moyo C.; de Bruijn, Joost D.

    2006-01-01

    Bone tissue engineering by combining bone marrow stromal cells (BMSCs) with a porous scaffold is a promising technology. Current major challenges are to upscale the technique for clinical application and to improve the handling characteristics. With respect to minimal invasive surgery, moldable and/

  8. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa

    OpenAIRE

    Santos, Gustavo Jorge dos; Ferreira, Sandra Mara; Ortis, Fernanda; Rezende, Luiz Fernando; Li, Chengyang; Naji, Ali; Carneiro, Everardo Magalhães; Kaestner, Klaus H.; Boschero, Antonio Carlos

    2014-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of “metabolic memory”, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h con...

  9. Increasing Secretion of a Bivalent Anti-T-Cell Immunotoxin by Pichia pastoris

    OpenAIRE

    Woo, Jung Hee; Liu, Yuan Yi; Stavrou, Scott; Neville, David M.

    2004-01-01

    The bivalent anti-T-cell immunotoxin A-dmDT390-bisFv(G4S) was developed for treatment of T-cell leukemia and autoimmune diseases and for tolerance induction for transplantation. This immunotoxin was produced extracellularly in toxin-sensitive Pichia pastoris JW102 (Mut+) under control of the AOX1 promoter. There were two major barriers to efficient immunotoxin production, the toxicity of the immunotoxin for P. pastoris and the limited capacity of P. pastoris to secrete the immunotoxin. The im...

  10. An improved haemolytic plaque assay for the detection of cells secreting antibody to bacterial antigens

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C

    1992-01-01

    Recent advances in the development of conjugate polysaccharide vaccines for human use have stimulated interest in the use of assays detecting antibody-secreting cells (AbSC) with specificity for bacterial antigens. Here we present improved haemolytic plaque-forming cell (PFC) assays detecting Ab......SC with specificity for tetanus and diphtheria toxoid as well as for Haemophilus influenzae type b and pneumococcal capsular polysaccharides. These assays were found to be less time consuming, more economical and yielded 1.9-3.4-fold higher plaque numbers than traditional Jerne-type PFC assays. In the case of anti...

  11. Modification and secretion of human interleukin 2 produced in insect cells by a baculovirus expression vector.

    OpenAIRE

    Smith, G.E.; Ju, G; Ericson, B L; Moschera, J; Lahm, H W; Chizzonite, R; Summers, M D

    1985-01-01

    A cDNA coding for human interleukin 2 (IL-2) was inserted into the genome of Autographa californica nuclear polyhedrosis virus adjacent to the polyhedrin promoter. Cells infected with recombinant virus produced high levels of Mr 15,500 IL-2 polypeptide, the majority of which was secreted into the culture medium during infection. The recombinant IL-2 was able to stimulate the growth of an IL-2-dependent cell line. The N-terminal amino acid sequence of the insect-derived IL-2 was identical to t...

  12. Secretion of Cpn0796 from Chlamydia pneumoniae into the host cell cytoplasm by an autotransporter mechanism

    DEFF Research Database (Denmark)

    Vandahl, Brian B S; Stensballe, Allan; Roepstorff, Peter;

    2005-01-01

    infected cells, whereas only the 65 kDa full-length Cpn0796 could be detected in purified Chlamydia. Confocal immunofluorescence microscopy demonstrated that Cpn0796 was localized in the Chlamydia membrane in young inclusions. However, at 36 h post infection and later Cpn0796 was detected in the cytoplasm...... of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N-terminal of...... which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were...

  13. Autocrine secretion of interferon gamma negatively regulates homing of immature B cells.

    Science.gov (United States)

    Flaishon, L; Hershkoviz, R; Lantner, F; Lider, O; Alon, R; Levo, Y; Flavell, R A; Shachar, I

    2000-11-01

    The mechanism by which immature B cells are sequestered from encountering foreign antigens present in lymph nodes or sites of inflammation, before their final maturation in the spleen, has not been elucidated. We show here that immature B cells fail to home to the lymph nodes. These cells can actively exclude themselves from antigen-enriched sites by downregulating their integrin-mediated adhesion to the extracellular matrix protein, fibronectin. This inhibition is mediated by interferon gamma secretion. Perturbation of interferon gamma activity in vivo leads to the homing of immature B cells to the lymph nodes. This is the first example of autocrine regulation of immune cell migration to sites of foreign antigen presentation. PMID:11067886

  14. Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1

    NARCIS (Netherlands)

    Rossi, Oriana; Karczewski, Jurgen; Stolte, Ellen H; Brummer, Robert J M; van Nieuwenhoven, Michiel A; Meijerink, Marjolein; van Neerven, Joost R J; van Ijzendoorn, Sven C D; van Baarlen, Peter; Wells, Jerry M

    2013-01-01

    BACKGROUND: In the intestinal mucosa, several adaptations of TLR signalling have evolved to avoid chronic inflammatory responses to the presence of commensal microbes. Here we investigated whether polarized monolayers of intestinal epithelial cells might regulate inflammatory responses by secreting

  15. Direct visualization of secretion from single bovine adrenal chromaffin cells by laser-induced native fluorescence imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W.; Yeung, E.S. [Ames Laboratory---USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1998-03-01

    Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved with laser-induced native fluorescence imaging microscopy. By monitoring the native fluorescence of catecholamines excited by the 275 nm laser line with an intensified charge-coupled-device (CCD) camera, we obtained good temporal and spatial resolution simultaneously without using additional fluorescent probes. Large variations were found among individual cells in terms of the amounts of catecholamines secreted and the rates of secretion. Different regions of a cell also behave differently during the secretion process. However, the degree of this local heterogeneity is smaller than in neurons and neuralgia. The influence of deep-ultraviolet (UV) laser excitation on cells is also discussed. This quantitative imaging technique provides a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of secretory processes. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  16. Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells.

    Science.gov (United States)

    Costa, Marcilia P; Feitosa, Anderson C S; Oliveira, Fátima C E; Cavalcanti, Bruno C; da Silva, Eufrânio N; Dias, Gleiston G; Sales, Francisco A M; Sousa, Bruno L; Barroso-Neto, Ito L; Pessoa, Cláudia; Caetano, Ewerton W S; Di Fiore, Stefano; Fischer, Rainer; Ladeira, Luiz O; Freire, Valder N

    2016-07-02

    Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.

  17. Con A-induced secretion of IL-2-like activity by mouse Thy-1+ epidermal cells

    International Nuclear Information System (INIS)

    Recently the authors reported that Con A stimulates in vitro proliferation of Thy-1+ dendritic epidermal cells (EC). They have not investigated the capacity of Con A-stimulated Thy-1+ EC to secrete IL-2-like activity (IL-2) 7-17EC is a 4 month-old line of Thy-1+ EC established from AKR/J EC by repeated stimulation with Con A and IL-2; these cells were 99% Thy-1+, but <1% L3T4+ and only 4-10% Lyt-2+. 7-17EC were harvested, washed, and plated in 96-well U-plates. Proliferation was assayed after 3H-thymidine pulsing; culture media was tested for IL-2 using the IL-2-dependent HT-2 cell line. With continuous Con A, marked IL-2 secretion (day 2 peak) was followed in parallel by proliferation (day 4 peak). In the absence of Con A, neither IL-2 nor proliferation was seen; however, both were recovered by addition of Con A to cells cultured first for 48 hr in media alone. 7-17EC proliferation was maximal at 0.5-2 μg Con A while maximal IL-2 secretion (100-200 U/ml) was seen at 4-8 μg/ml. That this amount of IL-2 was in excess of that required for their own optimal proliferation was supported by the failure of additional recombinant IL-2 (10 U/ml) to enhance Con A-stimulated proliferation of 7-17EC over a 4 day period. These findings further document the wide range of immunologic capabilities of Thy-1+ cells derived from epidermis

  18. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion.

    Science.gov (United States)

    Wuttke, Anne; Idevall-Hagren, Olof; Tengholm, Anders

    2013-04-01

    Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes.

  19. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  20. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli

    2016-08-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. PMID:27426041

  1. Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model.

    Science.gov (United States)

    Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A; Gross, Gerhard; Hoffmann, Andrea

    2014-08-15

    True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue. PMID:24809660

  2. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells.

    Science.gov (United States)

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C B; Hashim, Onn H; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  3. Flavonoids stimulate cholecystokinin peptide secretion from the enteroendocrine STC-1 cells.

    Science.gov (United States)

    Al Shukor, Nadin; Ravallec, Rozenn; Van Camp, John; Raes, Katleen; Smagghe, Guy

    2016-09-01

    Animal experiments showed that flavonoids might have the potential for an anti-obesity effect by reducing weight and food intake. However, the exact mechanisms that could be involved in these proposed effects are still under investigation. The complex process of food intake is partially regulated by gastrointestinal hormones. Cholecystokinin (CCK) is the best known gastrointestinal hormone to induce satiety signal that plays a key role in food intake regulation. It is released from the endocrine cells (I cell) in response to the ingestion of nutrients into the small intestine. In this study, we investigated the possible effects of flavonoids (quercetin, kaempferol, apigenin, rutin and baicalein) on stimulation of CCK release in vitro using enteroendocrine STC-1 cells. In comparison with the control, quercetin, kaempferol and apigenin resulted in a significant increase in CCK secretion with quercetin showing the highest activity. On the other hand, no significant effect was seen by rutin and baicalein. To our knowledge, this is the first report to study the stimulation of CCK peptide hormone secretion from STC-1 cells by quercetin and kaempferol, rutin, apigenin and baicalein. Based on the cell-based results in this work, it can be suggested that the reported activity of flavonoids against food intake and weight could be mediated by stimulation of CCK signal which in turn is responsible for food intake reduction, but future animal and human studies are needed to confirm this conclusion at organism level. PMID:27496247

  4. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  5. Combination of hydrogel nanoparticles and proteomics to reveal secreted proteins associated with decidualization of human uterine stromal cells

    Directory of Open Access Journals (Sweden)

    Stephens Andrew N

    2011-09-01

    Full Text Available Abstract Background Identification of secreted proteins of low abundance is often limited by abundant and high molecular weight (MW proteins. We have optimised a procedure to overcome this limitation. Results Low MW proteins in the conditioned media of cultured cells were first captured using dual-size exclusion/affinity hydrogel nanoparticles and their identities were then revealed by proteomics. Conclusions This technique enables the analysis of secreted proteins of cultured cells low MW and low abundance.

  6. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  7. Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro

    Directory of Open Access Journals (Sweden)

    Webb Bob

    2003-08-01

    Full Text Available Abstract Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF; a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2–6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0–10 ng/ml SCF, 1 ng/ml FSH (granulosa, 0.01 ng/ml LH (theca or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture and with/without oocyte conditioned medium (OCM or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids. Oocyte secreted factors were shown to stimulate both granulosa cell proliferation (P

  8. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  9. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  10. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Directory of Open Access Journals (Sweden)

    Su-Jin Kwak

    Full Text Available Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  11. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca;

    ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... oxidation and dissipation of lipids particularly in skeletal muscle. Here we show that PPARd at the RNA as well as protein level is the most abundant PPAR subtype in the rat pancreatic ß-cell line INS-1E and in isolated rat pancreatic islets. In keeping with that, a large number of PPAR target genes...... involved in fatty acid uptake and oxidation. This correlates with a 5-fold induction of 14C-Oleate ß-oxidation when INS-1E cells are exposed to PPARd and RXR agonists. Notably, culture of INS-1E cells with oleate and other unsaturated fatty acids in the presence of an RXR agonist induces the same subset...

  12. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Christian; Wlokas, Irenaeus; Schulz, Christof [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); Schoot, Nadine van der; Lindken, Ralph [Center for Fuel Cell Technology ZBT GmbH, Duisburg (Germany); Kronemayer, Helmut [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); BASF SE, Ludwigshafen (Germany)

    2012-03-15

    Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed. (orig.)

  13. The pre-synaptic blocker toosendanin does not inhibit secretion in exocrine cells

    Institute of Scientific and Technical Information of China (English)

    Zong-Jie Cui; Xue-Hui He

    2002-01-01

    AIM: Toosendanin is a pre-synaptic blocker at theneuromuscular junction and its inhibitory effect is dividedinto an initial facilitative/stimulatory phase followed by aprolonged inhibitory phase. The present study investigatedwhether the subsequent inhibitory phase was due toexhaustion of the secretory machinery as a result of extensivestimulation during the initial facilitative phase. Morespecifically, this paper examined whether toosendanin coulddirectly inhibit the secretory machinery in exocrine cells.METHODS: Rat pancreatic acinar cells were isolated bycollagenase digestion. Secretion was assessed by measuringthe amount of amylase released into the extracellular mediumas a percentage of the total present in the cells beforestimulation. Cholecystokinin (CCK)-induced increases inintracellular calcium in single cells were measured with fura-2 microfluorometry.RESULTS: Effects of toosendanin on CCK-induced amylasesecretion and calcium oscillations were investigated.Toosendanin of 87-870 tM had no effect on 10 pM-100 nMCCK-stimulated amylase secretion, nor did 8.7-870 μMtoosendanin inhibit 5 pM CCK-induced calcium oscillations.In contrast, 10 nM CCK1 receptor antagonist FK 480 completelyblocked 5 pM CCK-induced calcium oscillations.CONCLUSION: The pre-synaptic "blocker" toosendanin is aselective activator of the voltage-dependent calcium channels,but does not interfere with the secretory machinery itself.

  14. Natural phenylpropanoids inhibit lipoprotein-induced endothelin-1 secretion by endothelial cells.

    Science.gov (United States)

    Martin-Nizard, Françoise; Sahpaz, Sevser; Kandoussi, Abdelmejid; Carpentier, Marie; Fruchart, Jean-Charles; Duriez, Patrick; Bailleul, François

    2004-12-01

    There is increasing evidence that oxidized low-density lipoproteins (Ox-LDL) might be involved in the pathogenesis of atherosclerosis and it has been reported that polyphenols inhibit LDL peroxidation and atherosclerosis. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from endothelial cells and it induces smooth muscle cell proliferation. ET-1 secretion is increased in atheroma and induces deleterious effects such as vasospasm and atherosclerosis. The goal of this study was to test the effect of four natural phenolic compounds against copper-oxidized LDL (Cu-LDL)-induced ET-1 liberation by bovine aortic endothelial cells (BAEC). The tested compounds were phenylpropanoid glycosides previously isolated from the aerial parts of Marrubium vulgare L. (acteoside 1, forsythoside B 2, arenarioside 3 and ballotetroside 4). ET-1 secretion increased when cells were incubated with Cu-LDL but the compounds 1-4 inhibited this increase. These results were confirmed by quantitative-polymerase chain reaction (QPCR) analysis. Since ET-1 plays an important role in atherosclerosis development, our work suggests that the tested phenylpropanoids could have a beneficial effect in inhibiting atherosclerosis development. PMID:15563769

  15. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [3H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (950C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO4/polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO4/polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  16. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias; Messner, Paul; Schneider, Karl; Wassermann, Klemens; Micutkova, Lucia; Fortschegger, Klaus; Maier, Andrea B; Westendorp, Rudi; Resch, Heinrich; Wolbank, Susanne; Redl, Heinz; Jansen-Dürr, Pidder; Pietschmann, Peter; Grillari-Voglauer, Regina; Grillari, Johannes

    2016-08-01

    Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor-age-dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR-31 as a crucial component. We demonstrated that miR-31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled-3. Therefore, we suggest that microvesicular miR-31 in the plasma of elderly might play a role in the pathogenesis of age-related impaired bone formation and that miR-31 might be a valuable plasma-based biomarker for aging and for a systemic environment that does not favor cell-based therapies whenever osteogenesis is a limiting factor. PMID:27146333

  17. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins during ex vivo Osteoblast Differentiation of Human Stromal Stem Cells

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Chen, Li; Nielsen, Maria Overbeck;

    2012-01-01

    labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited...... more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel......It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process...

  18. A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling β-glucan microparticles.

    Directory of Open Access Journals (Sweden)

    Magdia De Jesus

    Full Text Available Glucan particles (GPs are 2-4 μm hollow, porous shells composed of 1,3-β-D-glucan that have been effectively used for oral targeted-delivery of a wide range of payloads, including small molecules, siRNA, DNA, and protein antigens. While it has been demonstrated that the transepithelial transport of GPs is mediated by Peyer's patch M cells, the fate of the GPs once within gut-associated lymphoid tissue (GALT is not known. Here we report that fluorescently labeled GPs administered to mice by gavage accumulate in CD11c+ DCs situated in Peyer's patch sub-epithelial dome (SED regions. GPs appeared in DCs within minutes after gavage and remained within the SED for days afterwards. The co-administration or sequential administration of GPs with differentially labeled GPs or poly(lactic-co-glycolic acid nanoparticles demonstrated that the SED DC subpopulation in question was capable of internalizing particles of different sizes and material compositions. Phenotypic analysis identified the GP-containing DCs as being CD8α- and CD11blo/-, suggesting they are the so-called myeloid and/or double negative (DN subset(s of PP DCs. A survey of C-type lectin receptors (CLRs known to be expressed by leukocytes within the intestinal mucosa revealed that GP-containing SED DCs were positive for Langerin (CD207, a CLR with specificity for β-D-glucan and that has been shown to mediate the internalization of a wide range of microbial pathogens, including bacteria, viruses and fungi. The presence of Langerin+ DCs in the SED as determined by immunofluorescence was confirmed using Langerin E-GFP transgenic mice. In summary, our results demonstrate that following M cell-mediated transepithelial transport, GPs (and other micro/nanoparticles are sampled by a population of SED DCs distinguished from other Peyer's patch DC subsets by their expression of Langerin. Future studies will be aimed at defining the role of Langerin in antigen sampling and antigen presentation within

  19. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Science.gov (United States)

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  20. Microelectrode and Impedance Analysis of Anion Secretion in Calu-3 Cells

    Directory of Open Access Journals (Sweden)

    Tamada T

    2001-07-01

    Full Text Available Calu-3 cells secrete HCO(3(- in response to cAMP agonists but can be stimulated to secrete Cl(- with K(+ channel activating agonists. Microelectrode and impedance analysis experiments were performed to obtain a better understanding of the conductances and driving forces involved in these different modes of anion secretion in Calu-3 cells. Microelectrode studies revealed apical and basolateral membrane depolarizations upon the addition of forskolin (V(ap -52 mV vs. -21 mV; V(bl -60 mV vs. -44 mV that paralleled the hyperpolarization of the mucosal negative transepithelial voltage (V(T -8 mV vs. -23 mV. These changes were accompanied by a decrease in the apical membrane fractional resistance (F(Rap from approximately 0.50 to 0.08, consistent with the activation of an apical membrane conductance. The subsequent addition of 1-ethyl-2-benzimidazolinone (1-EBIO, a K(+ channel activator, hyperpolarized V(ap to -27 mV, V(bl to -60 mV and V(T to -33 mV. Impedance analysis revealed the apical membrane resistance (R(ap of the forskolin-stimulated cells was less than 20 ohm cm(2, indeed in most monolayers R(ap fell to less than 5 ohm cm(2. The impedance derived estimate of the basolateral membrane resistance (R(bl was approximately 170 ohm cm(2 in forskolin treated cells and fell to 50 ohm cm(2 with the addition of 1-EBIO. Using these values for the R(bl and the F(Rap value of 0.08 yields a R(ap of approximately 14 ohm cm(2 in the presence of forskolin and 4 ohm cm(2 in the presence of forskolin plus 1-EBIO. Thus, by two independent methods, forskolin-stimulated Calu-3 cells are seen to have a very high apical membrane conductance of 50 to 200 mS/cm(2. Therefore, we would assert that even at one-tenth the anion selectivity for Cl(-, this high conductance could support the conductive exit of HCO(3(- across the apical membrane. We further propose that this high apical membrane conductance serves to clamp the apical membrane potential near the equilibrium

  1. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    Science.gov (United States)

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  2. Effects of glycine on phagocytosis and secretion by Kupffer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui-Wen Wu; Ke-Ming Yun; De-Wu Han; Rui-Ling Xu; Yuan-Chang Zhao

    2012-01-01

    AIM:To investigate the effects and mechanisms of action of glycine on phagocytosis and tumor necrosis factor (TNF)-α secretion by Kupffer cells in vitro.METHODS:Kupffer cells were isolated from normal rats by collagenase digestion and Percoll density gradient differential centrifugation.After culture for 24 h,Kupffer cells were incubated in fresh Dulbecco's Modification of Eagle's Medium containing glycine (G1:1 mmol/L,G2:10 mmol/L,G3:100 mmol/L and G4:300 mmol/L) for 3 h,then used to measure phagocytosis by a bead test,TNF-α secretion after lipopolysaccharide stimulation by radioactive immunoassay,and microfilament and microtubule expression by staining with phalloidin-fluorescein isothiocyanate (FITC) or a monoclonal anti-α tubulin-FITC antibody,respectively,and evaluated under a ultraviolet fluorescence microscope.RESULTS:Glycine decreased the phagocytosis of Kupffer cells at both 30 min and 60 min (P < 0.01,P <0.05).The numbers of beads phagocytosed by Kupffer cells in 30 min were 16.9 ± 4.0 (control),9.6 ± 4.1 (G1),12.1 ± 5.7 (G2),8.1 ± 3.2 (G3) and 7.5 ± 2.0 (G4),and were 22.5 ± 7.9 (control),20.1 ± 5.8 (G1),19.3 ± 4.8 (G2),13.5 ± 4.7 (G3) and 9.2 ± 3.1 (G4) after 60 min.TNF-α secretion by Kupffer cells in G1 (0.19 ± 0.03),G2(0.16 ± 0.04),G3 (0.14 ± 0.03) and G4 (0.13 ± 0.05)was significantly less than that in controls (0.26 ± 0.03,P < 0.01),and the decrease in secretion was dose-dependent (P < 0.05).Microfilaments of Kupffer cells in G2,G3 and G4 groups were arranged in a disorderly manner.The fluorescence densities of microtubules in G1 (53.4±10.5),G2 (54.1 ± 14.6),G3 (64.9 ± 12.1) and G4 (52.1± 14.2) were all lower than those in the controls (102.2± 23.7,P < 0.01),but the decrease in microtubule fluorescence density was not dose-dependant.CONCLUSION:Glycine can decrease the phagocytosis and secretion by Kupffer cells in vitro,which may be related to the changes in the expression of microfilaments and microtubules induced

  3. [Dendritic Cells Promote the Proliferation of Peripheral Blood CRTH2 Cells (CD4(+)CD294(+)Th2) and Help B Cells to Secrete Immunoglobulin].

    Science.gov (United States)

    Tian, Fa-Qing; Li, Juan; Li, Ju-Heng; Tang, Mei-Qin; Cheng, Xiao-Hui; Huang, Ying-Cai; Li, Hui-Qing

    2016-08-01

    Objective:To investigate the promotive effect of dendritic cells(DCs) on proliferation of CRTH2 (CD4(+)CD294(+)Th2) cells and the influence of CRTH2 cells on secretion of immunoglobulin from B cells so as to provide a new approach for amplification and sorting of Th2 cells. Methods:DCs were induced from peripheral blood mononuclear cells, then the loaded-BCGV-Ag-DCs were cocultured with T cells, and the mixed lymphocyte reaction(MLR) was performed by CCK8 method. The phenotypes of DCs and CRTH2 cells were detected by flow cytometry. CRTH2 cells sorted by MACS were co-cultured with B cells for 5 days to detect the secretion of immunoglobulin. Results:The subsets and absolute number CRTH2 cells were significantly increased by loaded-BCGV-Ag-DCs. The levels of IgG, IgA and IgE were higher increased in supernatant of CRTH2 and B cell co-culture system than that in control group or that in transwell group(Pcells can be greatly promoted by loaded-BCGV-Ag-DCs, and the CRTH2 cells can help B cells to secrete IgG, IgA and IgE. PMID:27531793

  4. Effects of RXR Agonists on Cell Proliferation/Apoptosis and ACTH Secretion/Pomc Expression.

    Directory of Open Access Journals (Sweden)

    Akiko Saito-Hakoda

    Full Text Available Various retinoid X receptor (RXR agonists have recently been developed, and some of them have shown anti-tumor effects both in vivo and in vitro. However, there has been no report showing the effects of RXR agonists on Cushing's disease, which is caused by excessive ACTH secretion in a corticotroph tumor of the pituitary gland. Therefore, we examined the effects of synthetic RXR pan-agonists HX630 and PA024 on the proliferation, apoptosis, ACTH secretion, and pro-opiomelanocortin (Pomc gene expression of murine pituitary corticotroph tumor AtT20 cells. We demonstrated that both RXR agonists induced apoptosis dose-dependently in AtT20 cells, and inhibited their proliferation at their higher doses. Microarray analysis identified a significant gene network associated with caspase 3 induced by high dose HX630. On the other hand, HX630, but not PA024, inhibited Pomc transcription, Pomc mRNA expression, and ACTH secretion dose-dependently. Furthermore, we provide new evidence that HX630 negatively regulates the Pomc promoter activity at the transcriptional level due to the suppression of the transcription factor Nur77 and Nurr1 mRNA expression and the reduction of Nur77/Nurr1 heterodimer recruiting to the Pomc promoter region. We also demonstrated that the HX630-mediated suppression of the Pomc gene expression was exerted via RXRα. Furthermore, HX630 inhibited tumor growth and decreased Pomc mRNA expression in corticotroph tumor cells in female nude mice in vivo. Thus, these results indicate that RXR agonists, especially HX630, could be a new therapeutic candidate for Cushing's disease.

  5. Secretion, interaction and assembly of two O-glycosylated cell wall antigens from Candida albicans.

    Science.gov (United States)

    Pavia, J; Aguado, C; Mormeneo, S; Sentandreu, R

    2001-07-01

    The mechanisms of incorporation of two antigens have been determined using a monoclonal antibody (3A10) raised against the material released from the mycelial cell wall by zymolyase digestion and retained on a concanavalin A column. One of the hybridomas secreted an IgG that reacted with two bands in Western blots. Indirect immunofluorescence showed that the antigens were located on the surfaces of mycelial cells, but within the cell walls of yeasts. These antigens were detected in a membrane preparation, in the SDS-soluble material and in the material released by a 1,3-beta-glucanase and chitinase from the cell walls of yeast and mycelial cells. In the latter three samples, an additional high-molecular-mass, highly polydispersed band was also detected. Beta-elimination of each fraction resulted in the disappearance of all antigen bands, suggesting that they are highly O-glycosylated. In addition, the electrophoretic mobility of the high-molecular-mass, highly polydispersed bands increased after digestion with endoglycosidase H, indicating that they are also N-glycosylated. New antigen bands were released when remnants of the cell walls extracted with 1,3-beta-glucanase or chitinase were digested with chitinase or 1,3-beta-glucanase. These results are consistent with the notion that, after secretion, parts of the O-glycosylated antigen molecules are transferred to an N-glycosylated protein(s). This molecular complex, as well as the remaining original 70 and 80 kDa antigen molecules, next bind to 1,3-beta-glucan or chitin, probably via 1,6-beta-glucan, and, in an additional step, to chitin or 1,3-beta-glucan. This process results in the final molecular product of each antigen, and their distribution in the cell walls. PMID:11429475

  6. Galectin-9 enhances cytokine secretion, but suppresses survival and degranulation, in human mast cell line.

    Directory of Open Access Journals (Sweden)

    Reiji Kojima

    Full Text Available Galectin-9 (Gal-9, a lectin having a β-galactoside-binding domain, can induce apoptosis of Th1 cells by binding to TIM-3. In addition, Gal-9 inhibits IgE/Ag-mediated degranulation of mast cell/basophilic cell lines by binding to IgE, thus blocking IgE/Ag complex formation. However, the role of Gal-9 in mast cell function in the absence of IgE is not fully understood. Here, we found that recombinant Gal-9 directly induced phosphorylation of Erk1/2 but not p38 MAPK in a human mast cell line, HMC-1, which does not express FcεRI. Gal-9 induced apoptosis and inhibited PMA/ionomycin-mediated degranulation of HMC-1 cells. On the other hand, Gal-9 induced cytokine and/or chemokine production by HMC-1 cells, dependent on activation of ERK1/2 but not p38 MAPK. In addition, the lectin activity of Gal-9 was required for Gal-9-mediated cytokine secretion by HMC-1 cells. These observations suggest that Gal-9 has dual properties as both a regulator and an activator of mast cells.

  7. Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis.

    Science.gov (United States)

    Millán-Cañongo, Cynthia; Orona-Tamayo, Domancar; Heil, Martin

    2014-07-01

    Plants secrete extrafloral nectar (EFN) that attracts predators. The efficiency of the resulting anti-herbivore defense depends on the quantity and spatial distribution of EFN. Thus, according to the optimal defense hypothesis (ODH), plants should secrete EFN on the most valuable organs and when herbivore pressure is high. Ricinus communis plants secreted most EFN on the youngest (i.e., most valuable) leaves and after the simulation of herbivory via the application of jasmonic acid (JA). Here, we investigated the physiological mechanisms that might produce these seemingly adaptive spatiotemporal patterns. Cell wall invertase (CWIN; EC 3.2.1.26) was most active in the hours before peak EFN secretion, its decrease preceded the decrease in EFN secretion, and CWIN activity was inducible by JA. Thus, CWIN appears to be a central player in EFN secretion: its activation by JA is likely to cause the induction of EFN secretion after herbivory. Shading individual leaves decreased EFN secretion locally on these leaves with no effect on CWIN activity in the nectaries, which is likely to be because it decreased the content of sucrose, the substrate of CWIN, in the phloem. Our results demonstrate how the interplay of two physiological processes can cause ecologically relevant spatiotemporal patterns in a plant defense trait.

  8. Optical and non-optical methods for detection and characterization of microparticles and exosomes

    NARCIS (Netherlands)

    E. van der Pol; A.G. Hoekstra; A. Sturk; C. Otto; T.G. van Leeuwen; R. Nieuwland

    2010-01-01

    Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available fo

  9. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    Directory of Open Access Journals (Sweden)

    Thierry Arnould

    2012-06-01

    Full Text Available Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion.

  10. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion

    OpenAIRE

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and tran...

  11. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    Science.gov (United States)

    Demine, Stéphane; Michel, Sébastien; Vannuvel, Kayleen; Wanet, Anaïs; Renard, Patricia; Arnould, Thierry

    2012-01-01

    Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion. PMID:24710422

  12. Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells.

    Science.gov (United States)

    Tu, Qiufen; Zhao, Yuancong; Xue, Xiaoqing; Wang, Jin; Huang, Nan

    2010-12-01

    A variety of metals have been widely used in construction of cardiovascular implants (CVIs), such as artificial heart valves, ventricular pumps, and vascular stents. Although great effects have been put into rigorous anticoagulation, late thrombosis still occurred due to inferior blood and cell compatibility. Natural endothelium is popularly regarded as the only substance that has long-term anticoagulant ability. So, establishment of a compact endothelial cell (EC) monolayer on CVIs surface is a guarantee for their long-term potency. In the work described here, titanium (Ti) disks were coated with extracellular matrix (ECM) directly secreted by human umbilical vein endothelial cells (HUVECs), so as to help ECs proliferate and migrate and to improve their endothelialization in vivo. Deposition of ECM on Ti disks was detected by immunofluorescence microscopy, diffuse reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface topography and wettability of the Ti disks significantly changed after ECM deposition. Most importantly, it was found that ECM deposition inhibited platelet adhesion, stimulated EC proliferation, increased EC migration speed in vitro, and eventually accelerated the re-cellularization speed of Ti disks in vivo. These important results render it reasonable and feasible to modify CVIs with ECM secreted from ECs for improving their long-term potency. PMID:20666613

  13. Synthesis and secretion of transferrin by a bovine trabecular meshwork cell line

    Directory of Open Access Journals (Sweden)

    R. Bertazolli-Filho

    2007-10-01

    Full Text Available The trabecular meshwork (TM is the main outflow pathway in the mammalian eye. Oxidative damage to TM cells has been suggested to be an important cause of impairment of TM functions, leading to deficient drainage of aqueous humor, with deleterious consequences to the eye. Transferrin, a metalloprotein involved in iron transport, has been characterized as an intrinsic eye protein. Since transferrin is implicated in the control of oxidative stress, the objective of the present study was to determine if a bovine TM cell line (CTOB synthesizes and secretes transferrin. The CTOB cell line was cultured in the presence of 35S-methionine and the incubation medium was submitted to immunoprecipitation. Total RNAs from CTOB and isolated bovine TM (freshly isolated, incubated or not were subjected to the reverse transcription-polymerase chain reaction and the amplification products were sequenced. Also, both CTOB and histological TM preparations were processed for transferrin immunolocalization. A labeled peptide of about 80 kDa, the expected size for transferrin, was immunopurified from CTOB samples obtained from the incubation assays. The reverse transcription-polymerase chain reaction and sequencing experiments detected the presence of transferrin mRNA in CTOB and isolated bovine TM. Reactivity to antibodies against transferrin was observed both in CTOB and TM. The results obtained in all of these experiments indicated that the TM is capable of synthesizing and secreting transferrin. The possible implications for the physiology of the eye are discussed.

  14. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts.

  15. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  16. Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles.

    Science.gov (United States)

    Alves, Ana D; Cavaco, Joana S; Guerreiro, Filipa; Lourenço, João P; Rosa da Costa, Ana M; Grenha, Ana

    2016-01-01

    Tuberculosis remains a major global health problem and alternative therapeutic approaches are needed. Considering the high prevalence of lung tuberculosis (80% of cases), the pulmonary delivery of antitubercular drugs in a carrier system capable of reaching the alveoli, being recognised and phagocytosed by alveolar macrophages (mycobacterium hosts), would be a significant improvement to current oral drug regimens. Locust bean gum (LBG) is a polysaccharide composed of galactose and mannose residues, which may favour specific recognition by macrophages and potentiate phagocytosis. LBG microparticles produced by spray-drying are reported herein for the first time, incorporating either isoniazid or rifabutin, first-line antitubercular drugs (association efficiencies >82%). Microparticles have adequate theoretical properties for deep lung delivery (aerodynamic diameters between 1.15 and 1.67 μm). The cytotoxic evaluation in lung epithelial cells (A549 cells) and macrophages (THP-1 cells) revealed a toxic effect from rifabutin-loaded microparticles at the highest concentrations, but we may consider that these were very high comparing with in vivo conditions. LBG microparticles further evidenced strong ability to be captured by macrophages (percentage of phagocytosis >94%). Overall, the obtained data indicated the potential of the proposed system for tuberculosis therapy. PMID:27240337

  17. Glucagon-like peptide 1 receptor playsa critical role in geniposide-regulated insulin secretion in INS-1 cells

    Institute of Scientific and Technical Information of China (English)

    Li-xia GUO; Zhi-ning XIA; Xue GAO; Fei YIN; Jian-hui LIU

    2012-01-01

    Aim:To explore the role of the glucagon-like peptide 1 receptor (GLP-1R) in geniposide regulated insulin secretion in rat INS-1 insulinoma cells.Methods:Rat INS-1 insulinoma cells were cultured.The content of insulin in the culture medium was measured with ELISA assay.GLP-1R gene in INS-1 cells was knocked down with shRNA interference.The level of GLP-1R protein in INS-1 cells was measured with Western blotting.Results:Geniposide (0.01-100 μmol/L) increased insulin secretion from INS-1 cells in a concentration-dependent manner.Geniposide (10 μmol/L) enhanced acute insulin secretion in response to both the low (5.5 mmol/L) and moderately high levels (11 mmol/L) of glucose.Blockade of GLP-1R with the GLP-1R antagonist exendin (9-39) (200 nmol/L) or knock-down of GLP-1R with shRNA interference in INS-1 cells decreased the effect of geniposide (10 μmol/L) on insulin secretion stimulated by glucose (5.5 mmol/L).Conclusion:Geniposide increases insulin secretion through glucagon-like peptide 1 receptors in rat INS-1 insulinoma cells.

  18. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions

    DEFF Research Database (Denmark)

    Schwarz, Sandra; West, T Eoin; Boyer, Frédéric;

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial....... From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas...... fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly...

  19. Combined MSC-Secreted Factors and Neural Stem Cell Transplantation Promote Functional Recovery of PD Rats.

    Science.gov (United States)

    Yao, Yuan; Huang, Chen; Gu, Ping; Wen, Tieqiao

    2016-01-01

    Stem cell transplantation has enormous potential for the treatment of neurodegenerative disorders like Parkinson's disease (PD). Mesenchymal stem cells (MSCs) have attracted much attention because they can secrete a wide variety of cellular factors that promote cell growth. In this study, we prepared a conditioned medium (CM) using lyophilized MSC culture medium that contained the secretome of MSCs and applied this CM to the culture of neural stem cells (CM-NSCs) for the transplantation of PD model rats. Quantitative real-time PCR, Western blot, and immunocytochemistry were used to identify cell differentiation and expression of dopaminergic neuron-specific genes in vitro. Behavioral tests including rotational behavior and MWM training tests were also performed to assess the recovery. Our results indicated that combined treatment of CM and neural stem cell transplantation can significantly reduce apomorphine-induced rotational asymmetry and improve spatial learning ability. The CM-NSCs were able to differentiate into dopaminergic neurons in the ventral tegmental area (VTA) and medial forebrain bundle (MFB), and migrated around the lesion site. They showed a higher activity than untreated NSCs in cell survival, migration, and behavior improvement in the dopa-deficit rat model. These findings suggest that the neural stem cells treated with conditioned medium possess a great potential as a graft candidate for the treatment of Parkinson's disease. PMID:26607204

  20. Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes

    OpenAIRE

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I.; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alv...

  1. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  2. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Science.gov (United States)

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.

  3. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation

    KAUST Repository

    Abdallah, Abdallah

    2011-09-28

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5 - two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators - during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1b activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. Copyright © 2011 by The American Association of Immunologists, Inc.

  4. Stimulation of catecholamine secretion from cultured chromaffin cells by an ionophore-mediated rise in intracellular sodium

    OpenAIRE

    1982-01-01

    The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secr...

  5. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix.

    Science.gov (United States)

    Luecke, Nina; Templin, Christian; Muetzelburg, Marika Victoria; Neumann, Detlef; Just, Ingo; Pich, Andreas

    2010-03-15

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. Serum free culture supernatants of DKmix-conditioned medium were collected and the proteins present were separated, digested by trypsin and the resulting peptides were then analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) MS. Overall 95 different proteins were identified. Among them, secretory proteins galectin-3 and gelsolin were identified. These proteins are known to stimulate cell migration and influence wound healing and cardiac remodelling. The remaining proteins originate from intracellular compartments like cytoplasm (69%), nucleus (12%), mitochondria (4%), and cytoplasmic membrane (3%) indicating permeable or leaky DKmix cells in the conditioned medium. Additionally, a sandwich immunoassay was used to detect and quantify cytokines and chemokines. Interleukin-6 (IL-6), interleukin-13 (IL-13), monocyte-chemoattractant protein-1 (MCP-1), monocyte-chemoattractant protein-3 (MCP-3), monocyte-chemoattractant protein-1alpha (MIP-1alpha) and monocyte-chemoattractant protein-1beta (MIP-1beta) were detected in low concentrations. This study identified a subset of proteins present in the DKmix-conditioned medium that act as paracrine modulators of tissue repair. Moreover, it suggests that DKmix-derived conditioned medium might have therapeutic potency by promoting tissue regeneration. PMID:20127908

  6. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    Science.gov (United States)

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  7. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    Science.gov (United States)

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. PMID:27063801

  8. Modulation of human B cell immunoglobulin secretion by the C3b component of complement.

    Science.gov (United States)

    Tsokos, G C; Berger, M; Balow, J E

    1984-02-01

    The human C3b component of complement was found to inhibit the differentiation of human B lymphocytes into immunoglobulin-secreting cells in vitro. Pokeweed mitogen (PWM)-induced plaque-forming cell (PFC) responses were inhibited by C3-coated zymosan particles and by purified human C3b. C3b inhibited the PWM-driven responses in a dose-dependent fashion, and it was necessary for C3b to be present in the early phases of the cultures. C3b acted directly on B cells rather than on helper T cells because it inhibited the PFC responses of MNC depleted of T cells and subsequently stimulated with a T cell-independent Epstein Barr virus mitogen. Furthermore, C3b failed to stimulate the generation of suppressor lymphocytes and/or monocytes that might have been responsible for the inhibition of B cell responses. Our results indicate that C3b or its fragments exert negative modulatory effects on human B lymphocyte responses. PMID:6228593

  9. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  10. Human dendritic cell maturation and cytokine secretion upon stimulation with Bordetella pertussis filamentous haemagglutinin.

    Science.gov (United States)

    Dirix, Violette; Mielcarek, Nathalie; Debrie, Anne-Sophie; Willery, Eve; Alonso, Sylvie; Versheure, Virginie; Mascart, Françoise; Locht, Camille

    2014-07-01

    In addition to antibodies, Th1-type T cell responses are also important for long-lasting protection against pertussis. However, upon immunization with the current acellular vaccines, many children fail to induce Th1-type responses, potentially due to immunomodulatory effects of some vaccine antigens, such as filamentous haemagglutinin (FHA). We therefore analysed the ability of FHA to modulate immune functions of human monocyte-derived dendritic cells (MDDC). FHA was purified from pertussis toxin (PTX)-deficient or from PTX- and adenylate cyclase-deficient Bordetella pertussis strains, and residual endotoxin was neutralized with polymyxin B. FHA from both strains induced phenotypic maturation of human MDDC and cytokine secretion (IL-10, IL-12p40, IL-12p70, IL-23 and IL-6). To identify the FHA domains responsible for MDDC immunomodulation, MDDC were stimulated with FHA containing a Gly→Ala substitution at its RGD site (FHA-RAD) or with an 80-kDa N-terminal moiety of FHA (Fha44), containing its heparin-binding site. Whereas FHA-RAD induced maturation and cytokine production comparable to those of FHA, Fha44 did not induce IL-10 production, but maturated MDDC at least partially. Nevertheless, Fha44 induced the secretion of IL-12p40, IL-12p70, IL-23 and IL-6 by MDDC, albeit at lower levels than FHA. Thus, FHA can modulate MDDC responses in multiple ways, and IL-10 induction can be dissociated from the induction of other cytokines.

  11. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity.

    Science.gov (United States)

    Buck, Amy H; Coakley, Gillian; Simbari, Fabio; McSorley, Henry J; Quintana, Juan F; Le Bihan, Thierry; Kumar, Sujai; Abreu-Goodger, Cei; Lear, Marissa; Harcus, Yvonne; Ceroni, Alessandro; Babayan, Simon A; Blaxter, Mark; Ivens, Alasdair; Maizels, Rick M

    2014-11-25

    In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species.

  12. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis.

    Science.gov (United States)

    Ishikawa, Jun; Takahashi, Nobunori; Matsumoto, Takuya; Yoshioka, Yutaka; Yamamoto, Noriyuki; Nishikawa, Masaya; Hibi, Hideharu; Ishigro, Naoki; Ueda, Minoru; Furukawa, Koichi; Yamamoto, Akihito

    2016-02-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA.

  13. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis.

    Science.gov (United States)

    Ishikawa, Jun; Takahashi, Nobunori; Matsumoto, Takuya; Yoshioka, Yutaka; Yamamoto, Noriyuki; Nishikawa, Masaya; Hibi, Hideharu; Ishigro, Naoki; Ueda, Minoru; Furukawa, Koichi; Yamamoto, Akihito

    2016-02-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA. PMID:26603475

  14. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells.

    Science.gov (United States)

    Ohtsu, Yoshiaki; Nakagawa, Yuko; Nagasawa, Masahiro; Takeda, Shigeki; Arakawa, Hirokazu; Kojima, Itaru

    2014-08-25

    Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals. PMID:25017733

  15. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine .In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia /reperfusion injury based on the reports pub-lished between January 2000 and September 2015 and indexed in the PubMed and Web of Science databases .The effect of exosomes on heart function was evaluated according to the following parameters:the area at risk as a percentage of the left ventricle , infarct size as a percentage of the area at risk , infarct size as a percentage of the left ventricle , left ventricular ejection fraction , left ventricular frac-tion shortening , end-diastolic volume , and end-systolic volume .Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function .However , further mechanis-tic studies, therapeutic safety and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury .

  16. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine. In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia/reperfusion injury based on the reports published between January 2000 and September 2015 and indexed in the PUBMED and Web of Science databases. The effect of exosomes on heart function was evaluated according to the following parameters: the area at risk as a percentage of the left ventricle, infarct size as a percentage of the area at risk, infarct size as a percentage of the left ventricle, left ventricular ejection fraction, left ventricular fraction shortening, end-diastolic volume, and end-systolic volume. Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function. However, further mechanistic studies, therapeutic safety, and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury.

  17. In vivo IFN-γ secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes.

    Directory of Open Access Journals (Sweden)

    Andreas Kupz

    Full Text Available Natural killer (NK cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18, independently of Toll-like receptor (TLR-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

  18. Cafestol, a Bioactive Substance in Coffee, Stimulates Insulin Secretion and Increases Glucose Uptake in Muscle Cells: Studies in Vitro.

    Science.gov (United States)

    Mellbye, Fredrik Brustad; Jeppesen, Per Bendix; Hermansen, Kjeld; Gregersen, Søren

    2015-10-23

    Diet and exercise intervention can delay or prevent development of type-2-diabetes (T2D), and high habitual coffee consumption is associated with reduced risk of developing T2D. This study aimed to test whether selected bioactive substances in coffee acutely and/or chronically increase insulin secretion from β-cells and improve insulin sensitivity in skeletal muscle cells. Insulin secretion from INS-1E rat insulinoma cells was measured after acute (1-h) and long-term (72-h) incubation with bioactive substances from coffee. Additionally, we measured uptake of radioactive glucose in human skeletal muscle cells (SkMC) after incubation with cafestol. Cafestol at 10(-8) and 10(-6) M acutely increased insulin secretion by 12% (p coffee drinkers and be of therapeutic interest. PMID:26465380

  19. Pharmaceutical microparticle engineering with electrospraying

    DEFF Research Database (Denmark)

    Bohr, Adam; Wan, Feng; Kristensen, Jakob;

    2015-01-01

    Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, ace...

  20. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line.

    Directory of Open Access Journals (Sweden)

    Lotta E Andersson

    Full Text Available Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack of stable human beta cell lines. Recently, a human cell line, EndoC-βH1, was generated. Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in the rat beta cell line, INS-1 832/13, and human islets.Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmunoassay, gene expression (Gene Chip array, metabolite levels (GC/MS, respiration (Seahorse XF24 Extracellular Flux Analyzer, glucose utilization (radiometric, lactate release (enzymatic colorimetric, ATP levels (enzymatic bioluminescence and plasma membrane potential and cytoplasmic Ca2+ responses (microfluorometry were measured. Metabolite levels, respiration and insulin secretion were examined in human islets.Glucose increased insulin release, glucose utilization, raised ATP production and respiratory rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-βH1 cells exhibited higher insulin secretion, while plasma membrane depolarization was attenuated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concentration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-cycle intermediate levels increased in response to glucose in both cell lines, but responses were weaker in EndoC-βH1 cells, similar to those observed in human islets. Respiration in EndoC-βH1 cells was more similar to that in human islets than in INS-1 832/13 cells.Functions associated with early stimulus-secretion coupling, with the exception of plasma membrane potential and Ca2+ oscillations, were similar in the two cell lines; insulin secretion, respiration and metabolite responses were similar in EndoC-βH1 cells and human islets. While both cell lines are suitable in vitro models, with the caveat of replicating key findings in isolated islets, EndoC-βH1 cells have the

  1. Pancreatic hormone secretion in chronic pancreatitis without residual beta-cell function

    DEFF Research Database (Denmark)

    Larsen, S; Hilsted, J; Tronier, B;

    1988-01-01

    Hormonal responses (glucagon, pancreatic polypeptide and somatostatin) to iv glucagon, iv arginine, and ingestion of a mixed meal were investigated in 6 patients with insulin-dependent diabetes secondary to chronic pancreatitis without beta-cell function, in 8 Type I (insulin-dependent) diabetics...... without beta-cell function, and 8 healthy subjects. No significant differences were found between the two diabetic groups regarding glucagon responses to arginine and meal ingestion. In the patients with diabetes secondary to chronic pancreatitis compared with Type I diabetics and normal controls......, the pancreatic polypeptide concentrations were significantly lower and somatostatin concentrations were significantly higher after glucagon, arginine and a mixed meal. Thus, pancreatic glucagon secretion was preserved in patients with insulin-dependent diabetes secondary to chronic pancreatitis, having...

  2. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4+ intestinal intraepithelial lymphocytes

    International Nuclear Information System (INIS)

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4+ IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4+ IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4+ IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4+ IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4+ LPLs and primed splenic CD4+ T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4+ IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo

  3. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  4. 34. Effect and the Possible Mediated Pathway of Cortisol Secretion in Adrenocortical Cells Induced by Lead and Cadmium in Vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To understand the direct effect on the secretion of adreno-cortical cells induced by lead and cadmium and the possible mediated pathway. Methods: The adrenocortical cells of male guinea pigs were dispersed and primarily cultured, then the cells were incubated wich cadmiun chloride and lead acetate in dosage as 0,6.25, 12.5, 25, 50, 100 μmol/L respectively for different periods (30, 60, 120 and 240 minutes). The cortisol levels in culture medium and cellular cAMP concentration were measured with RIA. Results: Under the existence of ACTH, the levels of cortisol secreted from the cultured cells were showed significantly declined in dose-dependent manner when the cells were treated in 6.25-100μmol/L CdCl2 for 30 to 240 minutes. There would be an interaction for cortisol secretion between the dose of CdCl2 and the incubatal period. Nevertheless, it seemed to have no obvious linear relation in the alterations of cortisol secretion after 12.5~100μmol/L PbAc incubated for 30~240 minutes. It appeared to have a tendency of dual-phase response in a manner of inhibiting the cortisol secretion in low dose (lower than 25μmol/L) and stimulating the secretion function in high dose (50 and 100μmol/L). The cAMP level was presented a remarkably decrease after 6.25~100 μmol/L CdCl2 incubated with the cells. It was proved that the cAMP level had does-effect relations with the CdCl2 dose. PbAc appeared not only dual response with the tendency of cAMP inhibition in low dose and activating to raise in high dose but also dose-effect relationship. Conclusion: CdCl2 could directly inhibit the secretion of cortisol. PbAc is also of the toxic effect on the cortisol secretion with the characteristic of dual-response as inhibition in early phase and low dose while induction to raising in high dose. cAMP, as an important second messenger, play a role in synthesis and secretion of adrenocorticoids. The toxic effects on steroids secretion induced by cadmium and lead were

  5. Mechanisms of fat-induced gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells.

    Science.gov (United States)

    Yamane, Shunsuke; Harada, Norio; Inagaki, Nobuya

    2016-04-01

    Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose-stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendocrine K cells; chronic high-fat diet (HFD) loading enhances GIP secretion and induces obesity in mice in a GIP-dependent manner. However, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP hypersecretion in HFD-induced obesity are not well understood. We generated GIP-green fluorescent protein knock-in (GIP (gfp/+)) mice, in which K cells are labeled by enhanced GIP-green fluorescent protein. Microarray analysis of isolated K cells from GIP (gfp/+) mice showed that both fatty acid-binding protein 5 and G protein-coupled receptor 120 are highly expressed in K cells. Single oral administration of fat resulted in significant reduction of GIP secretion in both fatty acid-binding protein 5- and G protein-coupled receptor 120-deficient mice, showing that fatty acid-binding protein 5 and G protein-coupled receptor 120 are involved in acute fat-induced GIP secretion. Furthermore, the transcriptional factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using the mouse enteroendocrine cell line, STC-1, showed that GIP messenger ribonucleic acid levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD-induced obese mice, in which GIP content in the small intestine is increased compared with that in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecretion of GIP in HFD-induced obese conditions by increasing GIP gene expression. PMID:27186351

  6. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    Science.gov (United States)

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  7. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  8. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  9. A SELF-PRIMING EFFECT OF LHRH ON LH SECRETION IN DISPERSED ANTERIOR PITUITARY CELLS OF ADULT MALE RAT

    Institute of Scientific and Technical Information of China (English)

    QUZhi-Chao; GUOJing; GUOJian

    1989-01-01

    LHRH self-priming effect is simply defmed as an enhancement of LH response to LHRH, i. e., a second challenge with LHRH elicits more LH secretion as compared to the first challenge. The present study is to observe whether this phenomenon exists in perfused anterior pituitary (AP) cells of adult male rat. Dispersed AP cells of adult SD

  10. Review: the Multiple Roles of Monocytic Microparticles.

    Science.gov (United States)

    Halim, Ahmad Tarmizi Abdul; Ariffin, Nur Azrah Fazera Mohd; Azlan, Maryam

    2016-08-01

    Monocytic microparticles (mMP) are microparticles derived from human monocytes either under in vivo or in vitro conditions. The size of mMP is between 0.1 and 1.0 μm. Apart from the size range, mMPs are also identified based on phosphatidylserine and CD14 expression on their surface, though this is not always the case. Monocytic MP are critical players in inflammation, endothelial cell function, and blood coagulation. They exhibit dual function by either helping the progression of such conditions or limiting it, depending on certain factors. Furthermore, the numbers of mMP are elevated in some autoimmune diseases, infectious diseases, and metabolic disorders. However, it is unknown whether mMP play an active role in these diseases or are simply biomarkers. The mechanism of mMP modulation is yet to be identified. In this review, we highlight the mechanism of mMP formation and the roles that they play in inflammation, blood coagulation, and different disease settings. PMID:27216803

  11. Secretion of human parathyroid hormone from rat pituitary cells infected with a recombinant retrovirus encoding preproparathyroid hormone.

    OpenAIRE

    Hellerman, J G; Cone, R C; Potts, J T; Rich, A; Mulligan, R C; Kronenberg, H M

    1984-01-01

    In order to study the functions of precursors to secreted proteins, we expressed cloned DNA encoding human preproparathyroid hormone (preproPTH) in rat pituitary cells. We first constructed a recombinant plasmid containing human preproPTH cDNA and retroviral control signals. This recombinant plasmid was transfected into psi-2 cells, a packaging cell line that produces Moloney murine leukemia viral particles containing no retroviral RNA. The transfected psi-2 cells generated helper-free recomb...

  12. The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells.

    Science.gov (United States)

    Liu, Liyun; Hao, Shuai; Lan, Ruiting; Wang, Guangxia; Xiao, Di; Sun, Hui; Xu, Jianguo

    2015-07-01

    The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.

  13. Differential Cl-and HCO3-mediated anion secretion by different colonic cell types in response to tetromethylpyrazine

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Qiong He; Lai-Ling Tsang; Wen-Chao Zhao; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Colonic epithelium is known to secrete both Cl- and HCO3-, but the secretory mechanisms of different colonic cell types are not fully understood. The present study aimed to investigate the differential activation of Cl-and HCO3-secretion by tetramethylpyrazine (TMP) in human crypt-like cell line, T84, and villus-like cell line, Caco-2, in comparison to the TMP-induced secretory response in freshly isolated rat colonic mucosa.METHODS: Colonic epithelial anion secretion was studied by using the short circuit current (Isc) technique. RT-PCR was used to examine the expression of Na+-HCO3--cotranspoter in different epithelial cell types.RESULTS: TMP produced a concentration-dependent Isc which was increase in both T84 and Caco-2 cells. When extracellular Cl- was removed, TMP-induced Isc was abolished by 76.6% in T84 cells, but not in Caco-2 cells. However,after both Cl- and HCO3- were removed, TMlP-induced ISC in Caco-2 cells was reduced to 10%. Bumetanide, an inhibitor of Na+-K+-Cl--cotranspoter, inhibited the TMP-induced ISC by 96.7% in T84 cells, but only 47.9% in Caco-2 cells. In the presence of bumetanide and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Na+-HCO3- cotransporter,inhibited the TMP-induced current in Caco-2 cells by 93.3%.In freshly isolated rat colonic mucosa, TMP stimulated distinct ISC responses similar to that observed in T84 and Caco-2cells depending on the concentration used. RT-PCR revealed that the expression of Na+-HCO3- cotransporter in Caco-2cells was 4-fold more greater than that in T84 cells.CONCLUSION: TMP exerts concentration-dependent differential effects on different colonic cell types with stimulation of predominant Cl- secretion by crypt cells at a lower concentration, but predominant HCO3- secretion by villus cells at a higher concentration, suggesting different roles of these cells in colonic Cl- and HCO3- secretion.

  14. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    OpenAIRE

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J A; Kilby, M. D.; Chan, S Y

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction...

  15. Control of Secretion by Encodes of Action Potentials in Neuronal Cells

    Institute of Scientific and Technical Information of China (English)

    Kailai Duan; Zhuan Zhou

    2003-01-01

    @@ Action potentials (APs) are principle physiological stimuli of neurotransmitter secretion or synaptic transmis sion. Most studies on stimulus-secretion-coupling have been performed under voltage clamp using artificial electric stimulations.

  16. Clonal analysis of a human lymphoblastoid cell line (B17) secreting antibody to N-acetyl-D-glucosamine.

    Science.gov (United States)

    Polke, C; Greger, B; Steinitz, M; Eichmann, K

    1982-10-01

    In this paper we analyse the clonal composition of a human lymphoblastoid B-cell line secreting IgM/k antibody to N-acetyl-D-glucosamine, the immunodominant sugar of Group-A-streptococcal carbohydrate. Besides non-antibody secreting cells, the line consists of two clonotypes of antibody-secreting cells: B17 cells producing over 90% and F6 cells producing less than 10% of the antibody in the supernatant. The proportions of B17 and F6 cells in the cell line seem to be similar to the proportion of antibodies in the supernatant. F6 cells can be isolated by cloning and maintained as stable lines, whereas this is more difficult with B17 cells. The results suggest that upon establishment of the line, at least two N-acetyl-D-glucosamine-specific B cells were immortalized and coexist together as independent clonotypes. Although F6 cells seem to have a slight tissue culture advantage, they represent the minor clonotype in the B17 cell line.

  17. RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    2014-12-01

    Full Text Available Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca2+-channel genes resulting in the reduction in L-type Ca2+-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca2+-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes.

  18. The bioactive effects of casein proteins on enteroendocrine cell health, proliferation and incretin hormone secretion.

    Science.gov (United States)

    Gillespie, Anna L; Green, Brian D

    2016-11-15

    Previous studies suggest that casein exerts various anti-diabetic effects. However, it is not known which casein proteins are bioactive, nor their effects on enteroendocrine cells. This study evaluated the effects of intact whole casein, intact individual proteins (alpha, beta and kappa casein) and hydrolysates on an enteroendocrine cell line. High content analysis accurately monitored changes in cell health and intracellular glucagon-like peptide-1 (GLP-1) content. Cheese ripening duration and GLP-1 secretory responses were also considered. Beta casein significantly stimulated enteroendocrine cell proliferation and all caseins were potent GLP-1 secretagogues (except kappa casein). Interestingly the GLP-1 secretory activity was almost always lost or significantly reduced upon hydrolysis with proteolytic enzymes. Only pepsin-derived beta casein hydrolysates had significantly increased potency compared with the intact protein, but this was diminished with prolonged hydrolysis. In conclusion casein proteins are not detrimental to enteroendocrine cells, and alpha and beta casein are particularly beneficial stimulating proliferation and GLP-1 secretion. PMID:27283618

  19. Brucella abortus Induces the Secretion of Proinflammatory Mediators from Glial Cells Leading to Astrocyte Apoptosis

    Science.gov (United States)

    García Samartino, Clara; Delpino, M. Victoria; Pott Godoy, Clara; Di Genaro, María Silvia; Pasquevich, Karina A.; Zwerdling, Astrid; Barrionuevo, Paula; Mathieu, Patricia; Cassataro, Juliana; Pitossi, Fernando; Giambartolomei, Guillermo H.

    2010-01-01

    Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. In this study we present in vivo and in vitro evidence that B. abortus and its lipoproteins activate the innate immunity of the CNS, eliciting an inflammatory response that leads to astrogliosis, a characteristic feature of neurobrucellosis. Intracranial injection of heat-killed B. abortus (HKBA) or outer membrane protein 19 (Omp19), a B. abortus lipoprotein model, induced astrogliosis in mouse striatum. Moreover, infection of astrocytes and microglia with B. abortus induced the secretion of interleukin (IL)−6, IL-1β, tumor necrosis factor (TNF)-α, macrophage chemoattractant protein−1, and KC (CXCL1). HKBA also induced these inflammatory mediators, suggesting the involvement of a structural component of the bacterium. Accordingly, Omp19 induced the same cytokine and chemokine secretion pattern. B. abortus infection induced astrocyte, but not microglia, apoptosis. Indeed, HKBA and Omp19 elicited not only astrocyte apoptosis but also proliferation, two features observed during astrogliosis. Apoptosis induced by HKBA and L-Omp19 was completely suppressed in cells of TNF receptor p55−/− mice or when the general caspase inhibitor Z-VAD-FMK was added to cultures. Hence, TNF-α signaling via TNF receptor (TNFR) 1 through the coupling of caspases determines apoptosis. Our results provide proof of the principle that Brucella lipoproteins could be key virulence factors in neurobrucellosis and that astrogliosis might contribute to neurobrucellosis pathogenesis. PMID:20093491

  20. Bacillus Calmette-Guérin enhances production and secretion of type IV collagenases in peripheral blood mononuclear cells.

    Science.gov (United States)

    Kageyama, Y; Kawakami, S; Fujii, Y; Kihara, K; Oshima, H

    1997-03-01

    Intravesical administration of bacillus Calmette-Guérin (BCG) is an effective and widely accepted treatment for superficial bladder cancer. Rapid progression of the disease after BCG therapy, however, has been reported in some cases refractory to the treatment. We examined whether BCG treatment and coexistence of peripheral blood mononuclear cells (PBMCs) alter the invasive potential of bladder cancer cells. Production and secretion of two type IV collagenases, matrix metalloproteinase (MMP) 2 and MMP 9, by PBMCs from five healthy donors or bladder cancer cells (T24, JTC 30, and JTC 32) were evaluated by gelatin zymography, western blot analysis, and northern blot analysis. Invasion of bladder cancer cells was also examined using reconstituted basement membrane (Matrigel). BCG (5, 50, and 500 micrograms/ml) had no effect on secretion of MMP 2 and MMP 9 by bladder cancer cells, but increased the production and secretion of MMP 9 by PBMCs in a dose-dependent manner. The coexistence of PBMCs increased invasion of T24 cells and BCG further enhanced the invasion. Thus, BCG promotes invasion of bladder cancer cells under certain conditions. An increase in the secretion of MMP 9 by PBMCs may account in part for the effect.

  1. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  2. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  3. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available BACKGROUND: Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: Rat bone marrow-derived MSCs (5 × 10(6 were injected into Sprague-Dawley (SD rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.

  4. Modulation by retinoic acid of cellular, surface-exposed, and secreted glycoconjugates in cultured human sarcoma cells.

    Science.gov (United States)

    Meromsky, L; Lotan, R

    1984-02-01

    The effect of beta-all-trans-retinoic acid (RA) on the synthesis of cellular, cell surface, and secreted glycoconjugates by human Hs705 chondrosarcoma and Hs791 osteosarcoma cells was investigated in vitro. Untreated and RA-treated cells were labeled either metabolically with radioactive precursors or by oxidation of externally exposed cell membrane glycoprotein(s) (GP) by treatment with NalO4 or neuraminidase and galactose oxidase followed by reduction with NaB[3H]4. The cells were solubilized and analyzed by polyacrylamide gel electrophoresis followed by fluorography. RA enhanced the labeling of sialic acid and galactose residues on the GP of relative molecular weight(s) (Mr) in the range 95,000-300,000 on the surfaces of both cell types. [3H]glycosamine incorporation into GP with Mr of 100,000, 150,000, and 190,000 in both cell lines was also stimulated. In the Hs705 cells there was also an increase in the labeling of a 290,000-Mr GP. In contrast, [3H]glucosamine incorporation into glycoconjugates greater than 400,000 Mr in both the cells and the conditioned medium of Hs705 cells decreased. The latter glycoconjugates were susceptible to hyaluronidase and chondroitinases. [3H]glucosamine incorporation into a secreted 230,000-Mr GP, identified as fibronectin, was also reduced. Analyses of conditioned media of cells labeled with [35S]methionine or [14C]proline demonstrated that RA decreased the secretion of procollagen chains and fibronectin. Immunofluorescence revealed that RA alters the distribution of cell-associated fibronectin. These results demonstrated that RA increases the glycosylation of specific cellular and cell surface GP and decreases the production of secreted GP and glycosaminoglycans by the sarcoma cells.

  5. Resveratrol Inhibits the Secretion of Vascular Endothelial Growth Factor and Subsequent Proliferation in Human Leukemia U937 Cells

    Institute of Scientific and Technical Information of China (English)

    TANG Zehai; LIU Xinyue; ZOU Ping

    2007-01-01

    This study examined the effect of resveratrol on the secretion of vascular endothelial growth factor (VEGF) and subsequent proliferation of human leukemia U937 cells, and explored the mechanisms involved. Human leukemia U937 cells were treated with resveratrol of different concen- trations (12.5-200 μmol/L) for different time lengths (12-48 h). The proliferation of the U937 leu- kemic cells was determined by MTT assay. Apoptosis was observed by Annexin-Ⅴ-FIFC/PI double staining and flow cytometry (FCM). Cells cycle was analyzed by PI staining and FCM. The content of VEGF was determined by ELISA. Human umbibical vein endothelial cells were examined for vasoformation in vitro after exposures to resveratrol of various concetrations. The results showed that resveratrol inhibited the proliferation of U937 leukemia cells in a dose- and time-dependent manner. Resveratrol induced apoptosis and S-phase cell cycle arrest in human leukemic U937 cells. Resvera-trol inhibited the secretion of VEGF in U937 cells. Resveratrol inhibited the vasoformation of human vein endothelial cells in a dose-dependent manner. It was concluded that resveratrol could down-regulate the secretion of VEGE induce apoptosis and suppress the proliferation of U937 cells.

  6. Clonal expansions of CD8+ T cells with IL-10 secreting capacity occur during chronic Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Joshua C Cyktor

    Full Text Available The exact role of CD8(+ T cells during Mycobacterium tuberculosis (Mtb infection has been heavily debated, yet it is generally accepted that CD8(+ T cells contribute to protection against Mtb. In this study, however, we show that the Mtb-susceptible CBA/J mouse strain accumulates large numbers of CD8(+ T cells in the lung as infection progresses, and that these cells display a dysfunctional and immunosuppressive phenotype (PD-1(+, Tim-3(+, CD122(+. CD8(+ T cell expansions from the lungs of Mtb-infected CBA/J mice were also capable of secreting the immunosuppressive cytokine interleukin-10 (IL-10, although in vivo CD8(+ T cell depletion did not significantly alter Mtb burden. Further analysis revealed that pulmonary CD8(+ T cells from Mtb-infected CBA/J mice were clonally expanded, preferentially expressing T cell receptor (TcR Vβ chain 8 (8.2, 8.3 or Vβ 14. Although Vβ8(+ CD8(+ T cells were responsible for the majority of IL-10 production, in vivo depletion of Vβ8(+ did not significantly change the outcome of Mtb infection, which we hypothesize was a consequence of their dual IL-10/IFN-γ secreting profiles. Our data demonstrate that IL-10-secreting CD8(+ T cells can arise during chronic Mtb infection, although the significance of this T cell population in tuberculosis pathogenesis remains unclear.

  7. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women

    OpenAIRE

    Jayachandran, Muthuvel; Litwiller, Robert D.; Owen, Whyte G.; Heit, John A.; Behrenbeck, Thomas; Mulvagh, Sharon L.; Araoz, Philip A; Budoff, Matthew J.; Harman, S. Mitchell; Virginia M Miller

    2008-01-01

    While the risk for symptomatic atherosclerotic disease increases after menopause, currently recognized risk factors do not identify ongoing disease processes in low-risk women. This study tested the hypothesis that circulating cell-derived microparticles may reflect disease processes in women defined as low risk by the Framingham risk score. The concentration and phenotype of circulating microparticles were evaluated in a cross-sectional study of apparently healthy menopausal women, screened ...

  8. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    OpenAIRE

    Slepchenko, Kira G.; Li, Yang V

    2012-01-01

    Zinc (Zn2+) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM) was able to induce a rapid increase in...

  9. P-glycoprotein regulating biphasic insulin secretion in rat pancreatic beta cells

    Institute of Scientific and Technical Information of China (English)

    TANG Yun-zhao; LI Dai-qing; SUN Fu-jun; LI Li; YU De-min

    2009-01-01

    Background A 65-kD mdr1(multi-drug resistance protein 1,P-glycoprotein)-like protein has been suggested to be the regulatory protein to the chloride channel protein 3(CIC-3)mediating insulin granules acidification and release in mouse pancreatic beta cells.But the protein has not been deeply investigated.In this study,we identified existence of the 65-kda protein in rat islets and preliminarily explored its biological functions.Methods Total RNAs of rat kidneys served as positive controls,and pancreas,islets and INS-1 cells were extracted for reverse-transcript PCR(RT-PCR),respectively.The cDNAs were run with specific primers selected from the mRNA of abcblb encoding P-glycoprotein.All PCR products were visualized in agarose gel electrophoresis and sequenced.Homogenates of rat islets and INS-1 cells were applied to SDS-PAGE.P-glycoprotein was detected by a specific monoclonal antibody,C219.Biphasic insulin release was measured in static incubations of rat islets with radioimmunology assay.Results Compared with positive control,expression of the P-glycoprotein mRNA segments were detected in the islets,INS-1 cells and pancreas.Sequence analysis confirmed that the PCR products were matched with mRNA of P-glycoprotein.A 65-kda protein was recognized by the antibody in the islets homogenate but not in that of INS-1 cells in Western-blotting.Instead,the homogenate of INS-1 cells contained a 160-kda protein recognized by the antibody.Insulin secretion of rat islets were stimulated by high glucose(16.7mmol/L),and showed biphasic curve during 60-minute incubation.After co-incubation with cyclosporine A(CsA),specific inhibitor to P-glycoprotein,the second phase of insulin secretion was reduced significantly while the first phase was not influenced.Conclusions The 65-kda protein expressed in rat islets is most likely a mini-P-glycoprotein.It may play a key role regulating biphasic insulin release.

  10. Effects of follistatin on testosterone secretion of rat Leydig cell in vitro

    Institute of Scientific and Technical Information of China (English)

    李江源; 邵迎红; 窦京涛; 李明

    2003-01-01

    Objective: To investigate the effects of follistatin(rhFS-288) on biosynthesis andsecretion of testosterone in rat Leydig cell in vitro.Methods: Leydig cells were isolated from Wistar rat testes by a discontinuous Per-coll gradient procedure. Purified cells were incubated in 24-well plate(105 cell/ml/well)and maintained for 24 h in a CO2 incubator. rhFS-288 and Ca2+ were added to the wellsindependently or jointly in both baseline (without hCG) and stimulation condition (1.0IU/ml of hCG) to observe the change of testosterone concentration in the media.Results: rhFS-288 showed a dose-dependent inhibiting effect on testosterone releasein baseline and stimulating condition. Ca2+ presented inhibitory effect either. Whereas,escape phenomenon emerged while Ca2+ concentration reached to 100 mmol/L. A com-bination of rhFS-288 with Ca2+ displayed a dose-dependent inhibition on testosterone se-cretion.Conclusion: rhFS-288 inhibits testosterone secretion in a dose-dependent manner.Calcium is thought to be the second messenger of FS action. The mechanism of escapephenomenon during high dose of Ca2+ along is unknown.

  11. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products.

    Science.gov (United States)

    Caseiro, Ana Rita; Pereira, Tiago; Ivanova, Galya; Luís, Ana Lúcia; Maurício, Ana Colette

    2016-01-01

    Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  12. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products.

    Science.gov (United States)

    Caseiro, Ana Rita; Pereira, Tiago; Ivanova, Galya; Luís, Ana Lúcia; Maurício, Ana Colette

    2016-01-01

    Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest. PMID:26880998

  13. Stimulatory effect of trans-cinnamaldehyde on norepinephrine secretion in cultured pheochromocytoma (PC-12) cells

    Institute of Scientific and Technical Information of China (English)

    TSAI Chin-Chuan; L1U I-Min; CHENG Juei-Tang

    2000-01-01

    AIM: The effect of trans-cinnamaldehyde (CNMA) on the release of norepinephrine (NE) from nerve terminal was investigated using rat pheochromocytoma 12 (PC-12) cells. METHODS: The amount of NA released from PC-12 cells incubated with CNMA or related substances was quantified by high performance fiquid chromatography (HPLC)-electrochemical detection. The lipophilic anion bisoxonol was used to monitor the effect of CNMA on the membrane potential. RESULTS: CNMA stimulated the secretion of NE in a concentration-dependent manner from 5μmol/L to 50 μmol/L, while the value of lactate dehydrogenase in the incubated medium was not influenced by CNMA. However, acetaldehyde, cinnamic acid, cinnamoyl chloride and cinnamamide failed to produce similar effect. The action of CNMA can thus be considered specific. The depolarizing effect of CNMA on the membrane potential was also illustrated by a concentration-dependent increase in the fluorescence of bisoxonol, a potential-sensitive dye. Saxitoxin attenuated the depolarizing action of CNMA at concentrations sufficient to block sodium channels. Besides, the effect of CNMA to depolarize the membrane potential in PC-12 cells is greater than that of 4-aminopyridine (4-AP). The action of CNMA on NE releasing depends on extmcellular Ca2 + and is attenuated by 8-bromo-cAMP at concentrations sufficient to inhibit the action of cyclic AMP. CONCLUSION: These findings suggest that CNMA can depolarize the membrane to result in a Cas+-dependent and cyclic AMP-related release of NE from PC-12 cells.

  14. Matrix Metalloproteinase 9 Secreted by Hypoxia Cardiac Fibroblasts Triggers Cardiac Stem Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Gao

    2015-01-01

    Full Text Available Cessation of blood supply due to myocardial infarction (MI leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

  15. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion.

    Science.gov (United States)

    Ilegems, E; van Krieken, P P; Edlund, P K; Dicker, A; Alanentalo, T; Eriksson, M; Mandic, S; Ahlgren, U; Berggren, P-O

    2015-01-01

    The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulation and thereby to the development of diabetes. It is therefore necessary to develop tools for the assessment of both pancreatic islet mass and function, with the aim of understanding cellular regulatory mechanisms and factors guiding islet plasticity. Although most of the existing techniques rely on the use of artificial indicators, we present an imaging methodology based on intrinsic optical properties originating from mature insulin secretory granules within endocrine cells that reveals both pancreatic islet mass and function. We demonstrate the advantage of using this imaging strategy by monitoring in vivo scattering signal from pancreatic islets engrafted into the anterior chamber of the mouse eye, and how this versatile and noninvasive methodology permits the characterization of islet morphology and plasticity as well as hormone secretory status. PMID:26030284

  16. Inflammatory Cytokine Secretion Status of Bone Marrow Cells and Clinical Significance in Immune-related Hematocytopenia

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To observe the expression of inlfammatory molecules in bone marrow immune cells of patients with immune-related hematocytopenia (IRH), and to investigate the immune mechanism and clinical signiifcance of the disease. Methods Total of 36 IRH patients were selected as observation group and 30 healthy people were taken as control group. Serum cytokines levels, activity of immunocytes and expression of HLA-DR were detected. Immune lfuorescence was applied to observe the expression state of immunologic molecules and cytokines in IRH patients. Results Serum cytokines were elevated in various degrees in observation group. Compared with the control group, the cytokines levels were significantly higher (P Conclusions It is demonstrated that antibodies or self-reactive lymphocytes were produced in IRH marrow, which would cause lesions of hemocytes, and lead to pathological process ifnally. Structure of hematopoietic cells mutated and these cells might be acted as target cells of immunocytes in the pathological process. Immunocytes could secrete inlfammatory factors and lead to immunologic injury of hemocyte.

  17. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  18. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival.

    Science.gov (United States)

    Martin, David; Allagnat, Florent; Gesina, Emilie; Caille, Dorothee; Gjinovci, Asllan; Waeber, Gerard; Meda, Paolo; Haefliger, Jacques-Antoine

    2012-01-01

    The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival. PMID:23029270

  19. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival.

    Directory of Open Access Journals (Sweden)

    David Martin

    Full Text Available The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice, and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival.

  20. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  1. Brucella invasion of human intestinal epithelial cells elicits a weak proinflammatory response but a significant CCL20 secretion.

    Science.gov (United States)

    Ferrero, Mariana C; Fossati, Carlos A; Rumbo, Martín; Baldi, Pablo C

    2012-10-01

    In spite of the frequent acquisition of Brucella infection by the oral route in humans, the interaction of the bacterium with cells of the intestinal mucosa has been poorly studied. Here, we show that different Brucella species can invade human colonic epithelial cell lines (Caco-2 and HT-29), in which only smooth species can replicate efficiently. Infection with smooth strains did not produce a significant cytotoxicity, while the rough strain RB51 was more cytotoxic. Infection of Caco-2 cells or HT-29 cells with either smooth or rough strains of Brucella did not result in an increased secretion of TNF-α, IL-1β, MCP-1, IL-10 or TGF-β as compared with uninfected controls, whereas all the infections induced the secretion of IL-8 and CCL20 by both cell types. The MCP-1 response to flagellin from Salmonella typhimurium was similar in Brucella-infected or uninfected cells, ruling out a bacterial inhibitory mechanism as a reason for the weak proinflammatory response. Infection did not modify ICAM-1 expression levels in Caco-2 cells, but increased them in HT-29 cells. These results suggest that Brucella induces only a weak proinflammatory response in gut epithelial cells, but produces a significant CCL20 secretion. The latter may be important for bacterial dissemination given the known ability of Brucella to survive in dendritic cells.

  2. Interaction of sulfonylurea-conjugated polymer with insulinoma cell line of MIN6 and its effect on insulin secretion.

    Science.gov (United States)

    Park, K H; Kim, S W; Bae, Y H

    2001-04-01

    A carboxylated derivative of sulfonylurea (SU), an insulinotropic agent, was synthesized and grafted onto a water-soluble polymer as a biospecific and stimulating polymer for insulin secretion. To evaluate the effect of the SU-conjugated polymer on insulin secretion, its solution in dimethyl sulfoxide was added to the culture of insulinoma cell line of MIN6 cells to make 10 nM of SU units in the medium and incubated for 3 h at 37 degrees C. The culture medium was conditioned with glucose concentration of 3.3 or 25 mM. To verify the specific interaction between the SU (K+ channel closer)-conjugated polymer and MIN6 cells, the cells were pretreated with diazoxide, an agonist of adenosine triphosphate-sensitive K+ channel (K+ channel opener), before adding the SU-conjugated polymer to the cell culture medium. This treatment suppressed the action of SUs on MIN6 cells. Fluorescence-labeled polymer with rodamine-B isothiocyanate was used to visualize the interactions, and we found that the labeled polymer strongly absorbed to MIN6 cells, probably owing to its specific interaction mediated by SU receptors on the cell membrane. The fluorescence intensity on the cells significantly increased with an increase in incubation time and polymer concentration. A confocal laser microscopic study further confirmed this interaction. The results from this study provided evidence that SU-conjugated copolymer stimulates insulin secretion by specific interactions of SU moieties in the polymer with MIN6 cells.

  3. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Bruce A Stanton

    Full Text Available P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF. Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR.The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  4. Peptide production and secretion in GLUTag, NCI-H716 and STC-1 cells: a comparison to native L-cells

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Jacob Wewer; Deacon, Carolyn F.;

    2016-01-01

    normally co-localizes with GLP-1 in distal L-cells, was not detected in any of the cell lines. GLUTag and STC-1 cells also expressed vasoactive intestinal peptide, but none expressed pancreatic polypeptide or insulin. GLUTag contained and secreted large amounts of cholecystokinin while NCI-H716 did......GLUTag, NCI-H716 and STC-1 are cell lines that are widely used to study mechanisms underlying secretion of glucagon-like peptide (GLP-1), but the extent to which they resemble native L-cells is unknown. We used validated immunoassays for 14 different hormones to analyze peptide content (lysis...... samples; n=9 from different passage numbers) or peptide secretion in response to buffer (baseline), and after stimulation with 50 mM KCl or 10 mM glucose + 10 µM forskolin/3-isobutyl-1-methylxanthine (n=6 also different passage numbers). All cell lines produced and processed proglucagon into GLP-1, GLP-2...

  5. Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent.

    Science.gov (United States)

    Worrell, Roger T; Best, Alison; Crawford, Oscar R; Xu, Jie; Soleimani, Manoocher; Matthews, Jeffrey B

    2005-10-01

    Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is

  6. Decidual-Secreted Factors Alter Invasive Trophoblast Membrane and Secreted Proteins Implying a Role for Decidual Cell Regulation of Placentation

    OpenAIRE

    Ellen Melaleuca Menkhorst; Natalie Lane; Amy Louise Winship; Priscilla Li; Joanne Yap; Katie Meehan; Adam Rainczuk; Andrew Stephens; Evdokia Dimitriadis

    2012-01-01

    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by alteri...

  7. Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans

    OpenAIRE

    Maddi, Abhiram; Bowman, Shaun M.; Free, Stephen J.

    2009-01-01

    Cell wall proteins from purified Candida albicans and Neurospora crassa cell walls were released using trifluoromethanesulfonic acid (TFMS) which cleaves the cell wall glucan/chitin matrix and deglycosylates the proteins. The cell wall proteins were then characterized by SDS PAGE and identified by proteomic analysis. The analyses for C. albicans identified 15 cell wall proteins and 6 secreted proteins. For N. crassa, the analyses identified 26 cell wall proteins and 9 secreted proteins. Most ...

  8. Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA

    OpenAIRE

    Aguayo-Mazzucato, Cristina; Zavacki, Ann Marie; Marinelarena, Alejandra; Hollister-Lock, Jennifer; El Khattabi, Ilham; Marsili, Alessandro; Weir, Gordon C.; Sharma, Arun; Larsen, P. Reed; Bonner-Weir, Susan

    2013-01-01

    Neonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an age-dependent pattern as glucose responsiveness develops. In vivo neonatal triiodothyronine supplementation and TH inhibition, respectivel...

  9. In vitro effects of mesenchymal stem cells on secreting function of T lymphocytes and CD4~+CD25~+T cells from patients with immune thrombo-cytopenia

    Institute of Scientific and Technical Information of China (English)

    赵霞

    2014-01-01

    Objective To analyze in vitro the effect of mesenchymal stem cells(MSCs)on secreting cytokines by T lymphocytes and ratio of CD4+CD25+T cells from patients with immune thrombocytopenia(ITP).Methods Human bone marrow-derived MSCs were isolated by Ficoll Hypaque and cultured for proliferating to passage cells.Allogeneic T lymphocytes

  10. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    Science.gov (United States)

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  11. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  12. Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion.

    Directory of Open Access Journals (Sweden)

    Yanan Hou

    Full Text Available The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1. Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.

  13. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro

    2016-01-01

    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  14. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection.

    Science.gov (United States)

    Gladiator, André; Wangler, Nicolette; Trautwein-Weidner, Kerstin; LeibundGut-Landmann, Salomé

    2013-01-15

    IL-17-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. Although Th cells are generally thought to act as the major source of IL-17 in response to Candida albicans, we show that fungal control is mediated by IL-17-secreting innate lymphoid cells (ILCs) and not by Th17 cells. By using a mouse model of oropharyngeal candidiasis we found that IL-17A and IL-17F, which are both crucial for pathogen clearance, are produced promptly upon infection in an IL-23-dependent manner, and that ILCs in the oral mucosa are the main source for these cytokines. Ab-mediated depletion of ILCs in RAG1-deficient mice or ILC deficiency in retinoic acid-related orphan receptor c(-/-) mice resulted in a complete failure to control the infection. Taken together, our data uncover the cellular basis for the IL-23/IL-17 axis, which acts right at the onset of infection when it is most needed for fungal control and host protection.

  15. Human medullary thyroid carcinoma: cell cultures and xenotransplants in nude mice. Immunocytochemistry and calcitonin secretion.

    Science.gov (United States)

    Andry, G; Lothaire, P; Vico, P; Dumont, P; Libert, A; Degeyter, M; Larsimont, D; Saigo, P E; Body, J J; Atassi, G

    1989-12-01

    Occult primary and recurrent medullary thyroid carcinomas (MTC) detected only by elevated calcitonin levels in the peripheral blood, generally after pentagastrin-test stimulation, are difficult to localize. Some new imaging procedures with radionuclide tracers or radiolabelled monoclonal antibodies against carcinoembryonic antigen seem to bring some potentially therapeutic benefits. We report our results with cell cultures and xenotransplants of human MTC with the intention of establishing reproducible models in vitro and in vivo. Cell cultures secrete calcitonin at up to 1200 pg/ml for periods ranging from 3 to 13 weeks. Immunocytochemistry detects cytoplasmic granules positive for calcitonin in polygonal epithelioid cells with dendritic processes. Xenotransplants in nude mice fare better in the subcutaneous axilla than in the subrenal capsule assay. In the former location the tumor-take is good and calcitonin is detected in the blood of the tumor-bearing animals, at levels ranging from 286 to more than 20,000 pg/ml. These models would be potentially usable as targets for radionuclide tracers and/or radiolabelled monoclonal antibodies. PMID:2689238

  16. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  17. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth

    Science.gov (United States)

    Rhee, David K.; Marcelino, Jose; Baker, MacArthur; Gong, Yaoqin; Smits, Patrick; Lefebvre, Véronique; Jay, Gregory D.; Stewart, Matthew; Wang, Hongwei; Warman, Matthew L.; Carpten, John D.

    2005-01-01

    The long-term integrity of an articulating joint is dependent upon the nourishment of its cartilage component and the protection of the cartilage surface from friction-induced wear. Loss-of-function mutations in lubricin (a secreted glycoprotein encoded by the gene PRG4) cause the human autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP). A major feature of CACP is precocious joint failure. In order to delineate the mechanism by which lubricin protects joints, we studied the expression of Prg4 mRNA during mouse joint development, and we created lubricin-mutant mice. Prg4 began to be expressed in surface chondrocytes and synoviocytes after joint cavitation had occurred and remained strongly expressed by these cells postnatally. Mice lacking lubricin were viable and fertile. In the newborn period, their joints appeared normal. As the mice aged, we observed abnormal protein deposits on the cartilage surface and disappearance of underlying superficial zone chondrocytes. In addition to cartilage surface changes and subsequent cartilage deterioration, intimal cells in the synovium surrounding the joint space became hyperplastic, which further contributed to joint failure. Purified or recombinant lubricin inhibited the growth of these synoviocytes in vitro. Tendon and tendon sheath involvement was present in the ankle joints, where morphologic changes and abnormal calcification of these structures were observed. We conclude that lubricin has multiple functions in articulating joints and tendons that include the protection of surfaces and the control of synovial cell growth. PMID:15719068

  18. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

  19. Epigenetic inactivation of secreted frizzled-related protein 2 in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Wen Hao; Sheng-Tao Zhu; Yuan-Long He; Peng Li; Yong-Jun Wang; Shu-Tian Zhang

    2012-01-01

    AIM: To investigate the expression and methylation status of the secreted frizzled-related protein 2 (SFRP2) in esophageal squamous cell carcinoma (ESCC) and explore its role in ESCC carcinogenesis.METHODS: Seven ESCC cell lines (KYSE 30, KYSE150, KYSE410, KYSE510, EC109, EC9706 and TE-1) and one immortalized human esophageal epithelial cell line (Het-1A), 20 ESCC tissue samples and 20 paired adjacent non-tumor esophageal epithelial tissues were analyzed in this study. Reverse-transcription polymerase chain reaction (RT-PCR) was employed to investigate the expression of SFRP2 in cell lines, primary ESCC tumor tissue, and paired adjacent normal tissue. Methylation status was evaluated by methylation-specific PCR and bisulfite sequencing. The correlation between expression and promoter methylation of the SFRP2 gene was confirmed with treatment of 5-aza-2'-deoxycytidine. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2-transfected cells and examined them with regard to cell proliferation, colony formation, apoptosis and cell cycle in vivo and in vitro.RESULTS: SFRP2 mRNA was expressed in the immortalized normal esophageal epithelial cell line but not in seven ESCC cell lines. By methylation-specific PCR, complete methylation was detected in three cell lines with silenced SFRP2 expression, and extensive methylation was observed in the other four ESCC cell lines. 5-aza-2'-deoxycytidine could restore the expression of SFRP2 mRNA in the three ESCC cell lines lacking SFRP2 expression. SFRP2 mRNA expression was obviously lower in primary ESCC tissue than in adjacent normal tissue (0.939 ± 0.398 vs 1.51 ± 0.399, P < 0.01). SFRP2 methylation was higher in tumor tissue than in paired normal tissue (95% vs 65%, P < 0.05). The DNA methylation status of the SFRP2 correlated inversely with the SFRP2 expression. To assess the potential role of SFRP2 in ESCC, we established stable SFRP2 transfectants and control counterparts by introducing pcDNA3.1/v5 his

  20. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.

    Science.gov (United States)

    Levenstein, Mark E; Berggren, W Travis; Lee, Ji Eun; Conard, Kevin R; Llanas, Rachel A; Wagner, Ryan J; Smith, Lloyd M; Thomson, James A

    2008-12-01

    Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface, and their removal from CM impairs proliferation. Finally, we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography, immunoblotting, and mass spectrometry-based proteomic analysis, we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.

  1. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  2. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  3. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  4. Quercetin Stimulates Insulin Secretion and Reduces the Viability of Rat INS-1 Beta-Cells

    Directory of Open Access Journals (Sweden)

    Michael Kittl

    2016-06-01

    which was completely abolished in the absence of Ca2+ in the bath solution. Rutin (50 µM did not significantly alter the percentage of Annexin-V+ cells, MCV, Akt or Erk1/2 phosphorylation, insulin secretion, or the electrophysiological behavior of INS-1 cells. Conclusion: We conclude that quercetin acutely stimulates insulin release, presumably by transient KATP channel inhibition and ICa stimulation. Long term application of quercetin inhibits cell proliferation and induces apoptosis, most likely by inhibition of PI3K/Akt signaling.

  5. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture.

    OpenAIRE

    Coconnier, M H; Klaenhammer, T R; Kernéis, S; Bernet, M F; Servin, A L

    1992-01-01

    The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and i...

  6. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  7. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  8. Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)

    International Nuclear Information System (INIS)

    A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activity of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with [35S]-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S

  9. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells.

    Science.gov (United States)

    Atienzar-Aroca, Sandra; Flores-Bellver, Miguel; Serrano-Heras, Gemma; Martinez-Gil, Natalia; Barcia, Jorge M; Aparicio, Silvia; Perez-Cremades, Daniel; Garcia-Verdugo, Jose M; Diaz-Llopis, Manuel; Romero, Francisco J; Sancho-Pelluz, Javier

    2016-08-01

    The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes. PMID:26999719

  10. Circulating Endothelial Microparticles in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    A. F. Tramontano

    2010-01-01

    Full Text Available Background. Endothelial Microparticles (EMPs are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM is not known. We studied the cellular adhesion molecule (CAM profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization. Methods and Results. EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/L specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process. Conclusion. Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.

  11. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    Science.gov (United States)

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy.

  12. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    Science.gov (United States)

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy. PMID:27421102

  13. Ouabain enhancement of compound 48/80 induced histamine secretion from rat peritoneal mast cells: dependence on extracellular sodium

    DEFF Research Database (Denmark)

    Knudsen, T; Bertelsen, Niels Haldor; Johansen, Torben

    1992-01-01

    Purified populations of rat peritoneal mast cells were used to study the effect of ouabain on compound 48/80-induced histamine secretion and on 86Rb+ uptake. 86Rb+ was used as a tracer for extracellular K+. The calculated value of the ouabain-sensitive uptake of K+ and 86Rb+ was considered a meas...

  14. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems.

    Science.gov (United States)

    Cambronne, Eric D; Roy, Craig R

    2006-08-01

    The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. PMID:16734660

  15. Chloride-dependent secretion of alveolar wall liquid determined by optical-sectioning microscopy.

    Science.gov (United States)

    Lindert, Jens; Perlman, Carrie E; Parthasarathi, Kaushik; Bhattacharya, Jahar

    2007-06-01

    The liquid layer lining the pulmonary alveolar wall critically determines the lung's immune defense against inhaled pathogens, because it provides a liquid milieu in the air-filled alveolus for dispersal of immune cells and defensive surfactant proteins. However, mechanisms underlying formation of the liquid are unknown. We achieved visualization of the alveolar wall liquid (AWL) in situ in mouse lungs by means of optical-sectioning microscopy. Continuous liquid secretion was present in alveoli of wild-type (WT) mice under baseline conditions. This secretion was blocked by inhibitors of the cystic fibrosis transmembrane regulator (CFTR). The secretion was absent in Cftr(-/-) mice, and it was blocked when chloride was depleted from the perfusate of WT mice, providing the first evidence that CFTR-dependent chloride secretion causes AWL formation. Injected microparticles demonstrated flow of the AWL. The flow was blocked by CFTR inhibition and was absent in Cftr(-/-) mice. We conclude that CFTR-dependent liquid secretion is present in alveoli of the adult mouse. Defective alveolar secretion might impair alveolar immune defense and promote alveolar disease. PMID:17290033

  16. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  17. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells

    OpenAIRE

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Jing WANG; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L.; Bottino, Rita; Kim, Seung K.

    2013-01-01

    eLife digest Diabetes mellitus is a disease that can lead to dangerously high blood sugar levels, causing numerous complications such as heart disease, glaucoma, skin disorders, kidney disease, and nerve damage. In healthy individuals, beta cells in the pancreas produce a hormone called insulin, which stimulates cells in the liver, muscles and fat to take up glucose from the blood. However, this process is disrupted in people with diabetes, who either have too few pancreatic beta cells (type ...

  18. In vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells

    Science.gov (United States)

    Jukosky, James; Gosselin, Benoit J.; Foley, Leah; Dechen, Tenzin; Fiering, Steven; Crane-Godreau, Mardi A.

    2016-01-01

    Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual’s susceptibility to pathogen infection. PMID:26793127

  19. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells.

    Science.gov (United States)

    Rindler, M J; Traber, M G

    1988-08-01

    Caco-2 cells, derived from human colon, have the morphological, functional, and biochemical properties of small intestinal epithelial cells. After infection with enveloped viruses, influenza virions assembled at the apical plasma membrane while vesicular stomatitis virus (VSV) particles appeared exclusively at the basolateral membrane, similar to the pattern observed in virus-infected Madin-Darby canine kidney (MDCK). When grown in Millicell filter chamber devices and labeled with [35S]methionine, Caco-2 monolayers released all of their radiolabeled secretory products preferentially into the basal chamber. Among the proteins identified were apolipoproteins AI and E, transferrin, and alpha-fetoprotein. No proteins were observed to be secreted preferentially from the apical cell surface. The lysosomal enzyme beta-hexosaminidase was also secreted primarily from the basolateral surface of the cells in the presence or absence of lysosomotropic drugs or tunicamycin, which inhibit the targetting of lysosomal enzymes to lysosomes. Neither of these drug treatments significantly affected the polarized secretion of other nonlysosomal proteins. In addition, growth hormone (GH), which is released in a nonpolar fashion from MDCK cells, was secreted exclusively from the basolateral membrane after transfection of Caco-2 cells with GH cDNA in a pSV2-based expression vector. Similar results were obtained in transient expression experiments and after selection of permanently transformed Caco-2 cells expressing GH. Since both beta-hexosaminidase and GH would be expected to lack sorting signals for polarized exocytosis in epithelial cells, these results indicate that in intestinal cells, proteins transported via the basolateral secretory pathway need not have specific sorting signals.

  20. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Science.gov (United States)

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  1. Intrinsic optical signal imaging of glucose-stimulated physiological responses in the insulin secreting INS-1 β-cell line

    Science.gov (United States)

    Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng

    2011-03-01

    Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.

  2. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation

    OpenAIRE

    Wafa Markikou-Ouni; Sima Drini; Narges Bahi-Jaber; Mehdi Chenik; Amel Meddeb-Garnaoui

    2015-01-01

    Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vit...

  3. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  4. Activation of Chloride Secretion by Isoflavone Genistein in Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Chatsri Deachapunya

    2013-11-01

    Full Text Available Background /Aim: Genistein, the most active isoflavone found primarily in soybeans, alters ion transport functions in intestinal and airway epithelia. The present study aims to investigate the acute effects and mechanisms of action of genistein in immortalized porcine endometrial epithelial cells. Methods: Ussing chamber technique was used for transepithelial electrical measurements. Results: Genistein increased short-circuit currents (Isc which were inhibited by glibenclamide, NPPB, CFTRinh-172, DIDS or bumetanide, but not amiloride. In experiments with amphotericin B-permeabilized monolayers, genistein activated the apical Cl- current and barium-sensitive basolateral K+ current while inhibiting the apical K+ current. Genistein failed to increase the Isc in the presence of forskolin or IBMX, but did increase the Isc in UTP. Pretreatment with genistein also abolished the increase in the Isc when induced by forskolin, IBMX or UTP. However, Ca2+-chelating BAPTA-AM did not affect the genistein-induced increase in the Isc. The genistein-stimulated Isc was reduced by tyrosine kinase inhibitors, tyrphostin A23 or AG490. However, vanadate, a tyrosine phosphatase inhibitor, failed to inhibit the genistein response. Estrogen receptor antagonist ICI182,780 did not alter the genistein's action. Conclusion: The soy isoflavone, genistein, stimulates Cl- secretion in endometrial epithelial cells possibly via a direct activation of CFTR which appears to be modulated through a tyrosine kinase-dependent pathway. The present findings may be of benefit for the therapeutic application of genistein in the treatment of electrolyte transport disorders in the epithelia.

  5. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa

    Science.gov (United States)

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A.; Jacobson, Aaron; Phinney, Brett S.; Dolan, David; Durbin-Johnson, Blythe P.; Antonova, Elena S.; Lindow, Steven E.; Mellema, Matthew S.; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease “PrtA” that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542

  6. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa.

    Science.gov (United States)

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A; Jacobson, Aaron; Phinney, Brett S; Dolan, David; Durbin-Johnson, Blythe P; Antonova, Elena S; Lindow, Steven E; Mellema, Matthew S; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-01

    Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542

  7. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  8. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    Directory of Open Access Journals (Sweden)

    Morteza Abouzaripour

    2016-02-01

    Full Text Available Objective: Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone marrow have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1 positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods: This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS followed by characterization with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR, immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results: The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4 detected by immunocytochemistry and C-X-C chemokine receptor type 4 (CXCR4 and stem cell antigen-1 (SCA-1 detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors, Ngn3 (endocrine progenitor marker, Insulin1 and Insulin2 (pancreaticβ-cell markers. Additionally, our results demonstrate expression of PDX1 and GLUT2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion: Our study clearly demonstrates the potential of SSEA-1

  9. Optimisation of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and protein-free culture medium.

    Science.gov (United States)

    Schneider, Y J

    1989-01-01

    Monoclonal antibodies (MAbs), for human use require chemical and biological purity. The best approach seems in vitro cultivation in a serum-, protein-free medium. A basal defined culture medium has been developed to sustain optimal hybridoma cell growth and MAb secretion. It consists of Iscove's Dulbecco's modified, Eagle's, Ham's F12 and NCTC 135 media in a 5:5:1 mixture (v/v/v), to which glucose is added to reach a final concentration of 25 mM, glutamine to 4-6 mM, 2-mercaptoethanol to 50 microM, Pluronic F68 to 0.01-0.1% (w/v), Hepes to 25 mM and NaHCO3 to 3 g/l. Hybridoma cells, derived from Sp 2/0 myeloma and secreting a MAb to a human milk fat globule membrane-associated high molecular weight glycoprotein, were cloned in this medium containing 1% (v/v) fetal calf serum and then sequentially adapted in serum-free medium further supplemented with transferrin and insulin, both at 10 micrograms/ml. Clones producing immunoreactive MAbs secrete a mean of 50 micrograms IgG/ml, i.e., ca. 80% of the concentration reached in Dulbecco's modified Eagle's medium containing 10% serum. When cells were cultured in spinner flasks with a semi-continuous mode of cultivation (with a daily removal of 20% of the volume and its replacement by fresh culture medium), in serum-free medium further supplemented with 10 nM estradiol, a mixture of trace elements and albumin (at 30 micrograms/ml) complexed to linoleic acid, MAb secretion reached 100 micrograms/ml and became equal or higher to that obtained in serum-containing medium. MAb secretion was not decreased and was even significantly increased during the growth phase, when transferrin was replaced by another iron source, i.e., ferric citrate at 500 microM associated with 20 microM ascorbic acid. Finally, deletion of insulin and of albumin-linoleic acid did not affect significantly cell density nor MAb secretion. In conclusion, it appears from this study that semi-continuous cultivation in spinner flasks of hybridoma cells, after

  10. Bile Acids Acutely Stimulate Insulin Secretion of Mouse β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition

    OpenAIRE

    Düfer, Martina; Hörth, Katrin; Wagner, Rebecca; Schittenhelm, Björn; Prowald, Susanne; Wagner, Thomas F. J.; Oberwinkler, Johannes; Lukowski, Robert; Gonzalez, Frank J.; Krippeit-Drews, Peter; Drews, Gisela

    2012-01-01

    Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic β-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and β-cell ATP-dependent K+ (KATP) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by...

  11. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle;

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could...... that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic....

  12. Olfactory ensheathing cells (OECs) degrade neurocan in injured spinal cord by secreting matrix metalloproteinase-2 in a rat contusion model.

    Science.gov (United States)

    Yui, Sho; Fujita, Naoki; Chung, Cheng-Shu; Morita, Maresuke; Nishimura, Ryohei

    2014-11-01

    The mechanism by which olfactory ensheathing cells (OECs) exert their potential to promote functional recovery after transplantation into spinal cord injury (SCI) tissue is not fully understood, but the relevance of matrix metalloproteinases (MMPs) has been suggested. We evaluated the expression of MMPs in OECs in vitro and the MMP secretion by OECs transplanted in injured spinal cord in vivo using a rat SCI model. We also evaluated the degradation of neurocan, which is one of the axon-inhibitory chondroitin sulfate proteoglycans, using SCI model rats. The in vitro results showed that MMP-2 was the dominant MMP expressed by OECs. The in vivo results revealed that transplanted OECs secreted MMP-2 in injured spinal cord and that the expression of neurocan was significantly decreased by the transplantation of OECs. These results suggest that OECs transplanted into injured spinal cord degraded neurocan by secreting MMP-2.

  13. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    Science.gov (United States)

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-04-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p dysmenorrhea. PMID:26634864

  14. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase.

    Science.gov (United States)

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M

    1996-03-22

    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  15. Effects of free amino acids on cytokine secretion and proliferative activity of feline T cells in an in vitro study using the cell line MYA-1.

    Science.gov (United States)

    Paßlack, Nadine; Doherr, Marcus G; Zentek, Jürgen

    2016-10-01

    In vitro studies might be an interesting screening method for targeted in vivo studies in the field of immunonutrition and help to reduce and refine animal studies. As the role of amino acids for immune function of cats has not been evaluated in detail so far, the present study aimed at investigating the effects of eight different amino acids (arginine, leucine, isoleucine, valine, glutamine, lysine, threonine and tryptophan) in six concentrations each (0, 0.25, 0.5, 1, 2 and 8x the cat blood level) on cytokine secretion and proliferative activity of feline T cells (MYA-1) in vitro. The results demonstrated that high doses of arginine increased IL-4, IL-10 and TNF-α secretion of T cells, while increasing concentrations of lysine increased IL-10 secretion and proliferative activity of the T cells. High doses of leucine enhanced GM-CSF and IL-10 secretion, while concentrations of threonine in the cell culture media greater than blood concentration also increased GM-CSF and additionally TNF-α secretion of the cells. The effects of glutamine and isoleucine on T cell function were only small. In conclusion, the present in vitro study could evaluate the immunomodulating potential of specific amino acids for feline T cell function. High doses of arginine, lysine, leucine and threonine had a significant impact on cytokine secretion and proliferative activity of the T cells. Targeted in vivo studies should investigate the clinical relevance of dietary supplementation of those amino acids in healthy and diseased cats as a next step. PMID:27510653

  16. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  17. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. PMID:26348137

  18. Hyperpolarization of the Membrane Potential Caused by Somatostatin in Dissociated Human Pituitary Adenoma Cells that Secrete Growth Hormone

    Science.gov (United States)

    Yamashita, Naohide; Shibuya, Naohiko; Ogata, Etsuro

    1986-08-01

    Membrane electrical properties and the response to somatostatin were examined in dissociated human pituitary adenoma cells that secrete growth hormone (GH). Under current clamp condition with a patch electrode, the resting potential was -52.4 ± 8.0 mV, and spontaneous action potentials were observed in 58% of the cells. Under voltage clamp condition an outward K+ current, a tetrodotoxin-sensitive Na+ current, and a Ca2+ current were observed. Cobalt ions suppressed the Ca2+ current. The threshold of Ca2+ current activation was about -60 mV. Somatostatin elicited a membrane hyperpolarization associated with increased membrane permeability in these cells. The reversal potential of somatostatin-induced hyperpolarization was -78.4 ± 4.3 mV in 6 mM K+ medium and -97.2 ± 6.4 mV in 3 mM K+ medium. These reversal potential values and a shift with the external K+ concentration indicated that membrane hyperpolarization was caused by increased permeability to K+. The hyperpolarized membrane potential induced by somatostatin was -63.6 ± 5.9 mV in the standard medium. This level was subthreshold for Ca2+ and Na+ currents and was sufficient to inhibit spontaneous action potentials. Hormone secretion was significantly suppressed by somatostatin and cobalt ions. Therefore, we suggest that Ca2+ entering the cell through voltage-dependent channels are playing an important role for GH secretion and that somatostatin suppresses GH secretion by blocking Ca2+ currents. Finally, we discuss other possibilities for the inhibitory effect of somatostatin on GH secretion.

  19. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  20. Non FcεR-bearing Mast Cells Secrete Sufficient Interleukin-4 to Control Francisella tularensis Replication within Macrophages

    Science.gov (United States)

    Thathiah, Prea; Sanapala, Shilpa; Rodriguez, Annette R.; Yu, Jieh-Juen; Murthy, Ashlesh K.; Guentzel, M. Neal; Forsthuber, Thomas G.; Chambers, James P.; Arulanandam, Bernard P.

    2011-01-01

    Mast cells have classically been implicated in the triggering of allergic and anaphylactic reactions. However, recent findings have elucidated the ability of these cells to selectively release a variety of cytokines leading to bacterial clearance through neutrophil and dendritic cell mobilization, and suggest an important role in innate host defenses. Our laboratory has established a primary bone marrow derived mast cell-macrophage co-culture system and found that mast cells mediated a significant inhibition of Francisella tularensis LVS uptake and replication within macrophages through contact and the secreted product interleukin-4 (IL-4). In this study, we utilized P815 mast cells and J774 macrophages to further investigate whether mast cell activation by non-FcεR driven signals could produce IL-4 and control intramacrophage LVS replication. P815 supernatants collected upon activation by the mast cell activating peptide MP7, as well as P815 cells co-cultured with J774 macrophages, exhibited marked inhibition of bacterial uptake and replication, which correlated with the production of IL-4. The inhibition noted in vitro was titratable and preserved at ratios relevant to cellular infiltration events following pulmonary challenge. Collectively, our data suggest that both primary mast cell and P815 mast cell (lacking FcεR) secreted IL-4 can control intramacrophage Francisella replication. PMID:21565523

  1. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction

    Directory of Open Access Journals (Sweden)

    Alexander E. Berezin

    2016-02-01

    Conclusion: We found that CD31+/annexin V+ EMPs to CD14+CD309+ cell ratio added to NT-proBNP, clinical data, and cardiovascular risk factors has exhibited the best discriminate value and higher reliability to predict HFpEF compared with NT-proBNP and clinical data/cardiovascular risk factors alone.

  2. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies.

    Science.gov (United States)

    Hofer, Heidi R; Tuan, Rocky S

    2016-01-01

    Adult mesenchymal stem cells (MSCs) represent a subject of intense experimental and biomedical interest. Recently, trophic activities of MSCs have become the topic of a number of revealing studies that span both basic and clinical fields. In this review, we focus on recent investigations that have elucidated trophic mechanisms and shed light on MSC clinical efficacy relevant to musculoskeletal applications. Innate differences due to MSC sourcing may play a role in the clinical utility of isolated MSCs. Pain management, osteochondral, nerve, or blood vessel support by MSCs derived from both autologous and allogeneic sources have been examined. Recent mechanistic insights into the trophic activities of these cells point to ultimate regulation by nitric oxide, nuclear factor-kB, and indoleamine, among other signaling pathways. Classic growth factors and cytokines-such as VEGF, CNTF, GDNF, TGF-β, interleukins (IL-1β, IL-6, and IL-8), and C-C ligands (CCL-2, CCL-5, and CCL-23)-serve as paracrine control molecules secreted or packaged into extracellular vesicles, or exosomes, by MSCs. Recent studies have also implicated signaling by microRNAs contained in MSC-derived exosomes. The response of target cells is further regulated by their microenvironment, involving the extracellular matrix, which may be modified by MSC-produced matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs. Trophic activities of MSCs, either resident or introduced exogenously, are thus intricately controlled, and may be further fine-tuned via implant material modifications. MSCs are actively being investigated for the repair and regeneration of both osteochondral and other musculoskeletal tissues, such as tendon/ligament and meniscus. Future rational and effective MSC-based musculoskeletal therapies will benefit from better mechanistic understanding of MSC trophic activities, for example using analytical "-omics" profiling approaches. PMID:27612948

  3. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Ida M Smith

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications

  4. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    Science.gov (United States)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039. PMID:27145382

  5. Circulating microparticles and plasma levels of soluble E- and P-selectins in patients with systemic sclerosis

    DEFF Research Database (Denmark)

    Iversen, Lars; Østergaard, O; Ullman, S;

    2013-01-01

    Microparticles (MPs) may be involved in the pathogenesis of systemic sclerosis (SSc), which includes vasculopathy, endothelial cell activation, and coagulation activation. Circulating MPs from SSc patients were characterized and their relationship with soluble markers of vascular activation inves...

  6. Chitosan Microparticles Intended for Anti-caries DNA Vaccine Mucosal Delivery: Synthesis, Characterization and Transfection

    Institute of Scientific and Technical Information of China (English)

    LI Yuhong; FAN Mingwen; BIAN Zhuan; CHEN Zhi; Zhang Qi

    2005-01-01

    In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was investigated by a scanning electron microscope (SEM) and a cofocal laser scanning microscope (CLSM). For in-vitro studies, Hela cell was transfected by chitosan-DNA microparticles.The expression of proteins was measured by the immunohistochemical methods, and the cytotocity of chitosan in Hela cell line was determined by the MTT assay. The experimental results show that the microparticles are about 2-6 μm in size and spherical in shape. The encapsulation efficiency is 99%, and the DNA is almost captured in the micropraticles. Plasmid loaded into chitosan microparticles is distributed throughout these particles. The number of positive staining cells of chitosan-pGJA-P transfected cell is more than that of naked plasmid transfect cells, but less than that of Lipofect-DNA complex group. Chitosan was found to be less cytotoxic compared with lipofectin (p<0.01).

  7. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus

    DEFF Research Database (Denmark)

    Kalis, Martins; Bolmeson, Caroline; Esguerra, Jonathan L.S.;

    2011-01-01

    -blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses...... revealed altered islet morphology, marked decreased ß-cell mass, reduced numbers of granules within the ß-cells and reduced granule docking in adult RIP-Cre Dicer1(¿/¿) mice. ß-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal ß-cell development as 2-week old RIP-Cre Dicer1...... and diabetes development....

  8. Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Lombardi

    2014-06-01

    Full Text Available Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  9. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells.

    Science.gov (United States)

    Lombardi, Sara; Honeth, Gabriella; Ginestier, Christophe; Shinomiya, Ireneusz; Marlow, Rebecca; Buchupalli, Bharath; Gazinska, Patrycja; Brown, John; Catchpole, Steven; Liu, Suling; Barkan, Ariel; Wicha, Max; Purushotham, Anand; Burchell, Joy; Pinder, Sarah; Dontu, Gabriela

    2014-06-01

    Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH) is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR) and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  10. Effects of RHC 80267, a diglyceride lipase inhibitor, on prolactin secretion and calcium uptake in GH3 pituitary cells

    International Nuclear Information System (INIS)

    The effect of the diglyceride lipase inhibitor RHC 80267 on the prolactin secretory process was examined in clonal anterior pituitary GH3 cells. This compound reduced basal prolactin secretion as well as secretion induced by TRH and phospholipase C but not that induced by phorbol myristate acetate. Although exogenous phospholipase C increased diglyceride, no increase in the products of diglyceride lipase was detected. Moreover, low doses of RHC 80267 were observed to effectively block potassium-stimulated 45calcium influx. It is unlikely that RHC 80267 inhibits prolactin release solely by inhibiting diglyceride lipase. These data suggest blockage of plasma membrane calcium channels as an alternate mechanism for the inhibitory actions of RHC 80267 on intact GH3 cells. These observations may have implications for RHC 80267 action in other cell types

  11. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease.

    Science.gov (United States)

    Sadan, Ofer; Bahat-Stromza, Merav; Barhum, Yael; Levy, Yossef S; Pisnevsky, Anat; Peretz, Hagit; Ilan, Avihay Bar; Bulvik, Shlomo; Shemesh, Noam; Krepel, Dana; Cohen, Yoram; Melamed, Eldad; Offen, Daniel

    2009-10-01

    Stem cell-based therapy is a promising treatment for neurodegenerative diseases. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells (MSC) into neurotrophic factors- secreting cells (NTF-SC), thus combining stem cell-based therapy with the NTF-based neuroprotection. These cells produce and secrete factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Conditioned medium of the NTF-SC that was applied to a neuroblastoma cell line (SH-SY5Y) 1 h before exposure to the neurotoxin 6-hydroxydopamine (6-OHDA) demonstrated marked protection. An efficacy study was conducted on the 6-OHDA-induced lesion, a rat model of Parkinson's disease. The cells, either MSC or NTF-SC, were transplanted on the day of 6-OHDA administration and amphetamine-induced rotations were measured as a primary behavior index. We demonstrated that when transplanted posterior to the 6-OHDA lesion, the NTF-SC ameliorated amphetamine-induced rotations by 45%. HPLC analysis demonstrated that 6-OHDA induced dopamine depletion to a level of 21% compared to the untreated striatum. NTF-SC inhibited dopamine depletion to a level of 72% of the contralateral striatum. Moreover, an MRI study conducted with iron-labeled cells, followed by histological verification, revealed that the engrafted cells migrated toward the lesion. In a histological assessment, we found that the cells induced regeneration in the damaged striatal dopaminergic nerve terminal network. We therefore conclude that the induced MSC have a therapeutic potential for neurodegenerative processes and diseases, both by the NTFs secretion and by the migratory trait toward the diseased tissue.

  12. Tolvaptan Treatment in Syndrome of Inappropriate ADH Secretion due to Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mucahit Gur

    2014-06-01

    Full Text Available Experience of ADH receptor antagonist (-vaptanes treatment in hyponatremia in malign patient is very limited. 68 years old male patient admitted to our department with a complain of nause, vomitting and epigastric pain. He has advanced stage of small cell lung cancer. He had treated with cisplatin and etoposide regimen 10 days ago as a first cure. We diagnosed inapropriate secretion of antidiuretic hormone syndrome (SIADH with low sodium level (118 meq/dl. Although the treatment with water restriction and 3% NaCl infusion, sodium level was not in normal. So we ordered 30 mg tolvaptan tablet. And then sodium levels were reached normal. After one month of discharge from hospital, he has hospitilized with same symptom and diagnosis. And again we ordered same treatment procedure and tolvaptane treatment. He had normal sodium (136 mEq/dl level during his follow up. This case demostrate that tolvaptane treatment is suitable aproaches in hyponatremia due to SIADH in oncologic patient.

  13. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Nahuel A Garcia

    Full Text Available Cardiomyocytes (CMs and endothelial cells (ECs have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.

  14. Pattern secretion of matrix Metalloproteinases and their biological tissue inhibitors by human glomerular mesangial cells in culture

    Directory of Open Access Journals (Sweden)

    "Hosseini R

    2001-08-01

    Full Text Available The glomerular mesangial cells (GMC play a central role in the synthesis and turnover of the glomerular mesangial matrix. The breakdown of the matrix likely depends on the balance between of a variety of proteinases including matrix metalloproteinases and their biological inhibitors secreted by the GMC, and any disturbance in the balance may result in appearance of various pathological states such as glomerulosclerosis. We therefore studied pattern secretion of matrix metalloproteinases (MMPs, MMP-1, MMP-2, MMP-3, MMP-9 and their biological tissue inhibitor of matrix metalloproteinases (TIMPs, TIMP-1 and TIMP-2 by cultured human GMC. We also measured MMP-1/TIMP-1 complex level in the cell culture supernatants. For this purpose, the GMC were incubated under serum-free conditions with medium (RPMI-1640 alone or in combination with TNF-α (30 ng/ml or phorbol myristate acetate (PMA (50 ng/ml for exactly 24, 48 and 72 hours. The above parameters were assayed by established ELISA techniques. Our results showed that the lowest and largest secretions were related to MMP-9 and MMP-2, respectively. The results indicated that the MMPs and TIMPs secretion were increased by TNF-α (MMP-1, MMP-2, TIMP-1 and TIMP-2 and PMA (MMP-2, TIMP-1 and TIMP-2, significantly (P<0.05. These results suggest that the GMC can synthesis and release various MMPs and their inhibitors (TIMPs that, in part, control turnover of extracellular matrix proteins.

  15. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  16. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yue Tang; Yongchun Cui; Fuliang Luo; Xiaopeng Liu; Xiaojuan Wang; Aili Wu; Junwei Zhao; Zhong Tian; Like Wu

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12