WorldWideScience

Sample records for cell receptor response

  1. Histamine receptor 2 modifies dendritic cell responses to microbial ligands.

    Science.gov (United States)

    Frei, Remo; Ferstl, Ruth; Konieczna, Patrycja; Ziegler, Mario; Simon, Tunde; Rugeles, Tulia Mateus; Mailand, Susanne; Watanabe, Takeshi; Lauener, Roger; Akdis, Cezmi A; O'Mahony, Liam

    2013-07-01

    The induction of tolerance and protective immunity to microbes is significantly influenced by host- and microbiota-derived metabolites, such as histamine. We sought to identify the molecular mechanisms for histamine-mediated modulation of pattern recognition receptor signaling. Human monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells, and plasmacytoid dendritic cells were examined. Cytokine secretion, gene expression, and transcription factor activation were measured after stimulation with microbial ligands and histamine. Histamine receptor 2 (H₂R)-deficient mice, histamine receptors, and their signaling pathways were investigated. Histamine suppressed MDDC chemokine and proinflammatory cytokine secretion, nuclear factor κB and activator protein 1 activation, mitogen-activated protein kinase phosphorylation, and T(H)1 polarization of naive lymphocytes, whereas IL-10 secretion was enhanced in response to LPS and Pam3Cys. Histamine also suppressed LPS-induced myeloid dendritic cell TNF-α secretion and suppressed CpG-induced plasmacytoid dendritic cell IFN-α gene expression. H₂R signaling through cyclic AMP and exchange protein directly activated by cyclic AMP was required for the histamine effect on LPS-induced MDDC responses. Lactobacillus rhamnosus, which secretes histamine, significantly suppressed Peyer patch IL-2, IL-4, IL-5, IL-12, TNF-α, and GM-CSF secretion in wild-type but not H₂R-deficient animals. Both host- and microbiota-derived histamine significantly alter the innate immune response to microbes through H₂R. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  3. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  4. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  5. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  6. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  7. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein.

    Directory of Open Access Journals (Sweden)

    Marco Pedrazzi

    Full Text Available BACKGROUND: Extracellular high mobility group box 1 (HMGB1 protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139 peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.

  8. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli...... differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment...

  9. Regulation of gonadotropin receptors, gonadotropin responsiveness, and cell multiplication by somatomedin-C and insulin in cultured pig Leydig cells

    International Nuclear Information System (INIS)

    Bernier, M.; Chatelain, P.; Mather, J.P.; Saez, J.M.

    1986-01-01

    The author have investigated the effects of insulin and somatomedin-C/insulin like growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 μg/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolin was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 μg/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated [ 3 H]-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through the receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors

  10. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  11. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  12. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    International Nuclear Information System (INIS)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  13. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    International Nuclear Information System (INIS)

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-01-01

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERα crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1α or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFκB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide

  14. Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human

    Directory of Open Access Journals (Sweden)

    Désirée Christine Haid

    2012-04-01

    Full Text Available Monitoring the luminal content in the stomach is of vital importance for adjusting the gastric activities, including the release of gastric hormones such as gastrin. Our previous studies have shown that in mice the gastrin-secreting G-cells express receptor types which are responsive to amino acids. Since the pig is considered as more suitable model for studying gastro-physiological aspects relevant for men, in this study we have analysed the distribution of G-cells and D-cells in the gastric antrum of men, swine and mouse and the expression of receptor types which may render these cells responsiveness to protein breakdown products. The results indicate that the number of G-cells per antral invagination was significantly higher in swine and human compared to mice and also the distribution pattern for G-cells differed between the species. The molecular phenotyping revealed that the receptors GPRC6A and CaSR were also expressed in G- and D-cells from swine and men. In the course of this study, an additional receptor type was found to be expressed in G- and D-cells, the peptone-receptor GPR92. This receptor type may be particular suitable for sensing protein breakdown products and thus be a key element to adjust the activity of G-cells and D-cells according to the progress of the digestive processes in the stomach. In search for elements of an intracellular signaling cascade it was found that G-cells express the G-protein subunits Gαq and Gαi2, as well as the phospholipase C subtype PLCβ3. In contrast, D-cells expressed the subtype PLCβ2 and neither Gαq nor Gαi2. These results indicate that there are significant species differences concerning the number and distribution pattern of gastric endocrine cells. However, the molecular phenotype of G-cells and D-cells appears to be similar in the three species.

  15. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  16. Non-canonical Glucocorticoid Receptor Transactivation of gilz by Alcohol Suppresses Cell Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Hang Pong Ng

    2017-06-01

    Full Text Available Acute alcohol exposure suppresses cell inflammatory response. The underlying mechanism has not been fully defined. Here we report that alcohol was able to activate glucocorticoid receptor (GR signaling in the absence of glucocorticoids (GCs and upregulated glucocorticoid-induced leucine zipper (gilz, a prominent GC-responsive gene. Such a non-canonical activation of GR was not blocked by mifepristone, a potent GC competitor. The proximal promoter of gilz, encompassing five GC-responsive elements (GREs, was incorporated and tested in a luciferase reporter system. Deletion and/or mutation of the GREs abrogated the promoter responsiveness to alcohol. Thus, the GR–GRE interaction transduced the alcohol action on gilz. Alcohol induced GR nuclear translocation, which was enhanced by the alcohol dehydrogenase inhibitor fomepizole, suggesting that it was alcohol, not its metabolites, that engendered the effect. Gel mobility shift assay showed that unliganded GR was able to bind GREs and such interaction withstood clinically relevant levels of alcohol. GR knockout via CRISPR/Cas9 gene targeting or GILZ depletion via small RNA interference diminished alcohol suppression of cell inflammatory response to LPS. Thus, a previously unrecognized, non-canonical GR activation of gilz is involved in alcohol modulation of cell immune response.

  17. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Haydn T Kissick

    Full Text Available The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC's with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.

  18. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    International Nuclear Information System (INIS)

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H.; Mathews, L.S.; Norstedt, G.

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 μM Zn 2+ was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells

  19. Identification of ionotrophic purinergic receptors in Huh-7 cells and their response towards structural proteins of HCV genotype 3a

    Directory of Open Access Journals (Sweden)

    Fatima Kaneez

    2011-09-01

    Full Text Available Abstract Hepatitis C virus (HCV is a major health problem in developing countries including Pakistan. Chronic HCV infection results in progressive liver disease including fibrosis, cirrhosis, insulin resistance and eventually hepatocellular carcinoma (HCC. Ionotrophic purinergic (P2X receptors are identified to involve in a spectrum of physiological and pathophysiological processes. However, the role of P2X receptors in HCV liver associated diseases still remains to be investigated. The current study was designed to identify the presence of P2X receptors in human liver cells. Furthermore, it investigates the response of P2X receptors towards HCV structural proteins (E1E2. To determine that how many isoforms of P2X receptors are expressed in human liver cells, human hepatoma cell line (Huh-7 was used. Transcripts (mRNA of five different isoforms of P2X receptors were identified in Huh-7 cells. To examine the gene expression of identified isoforms of P2X receptors in presence of HCV structural proteins E1E2, Huh-7/E1E2 cell line (stably expressing HCV structural proteins E1E2 was used. The results showed significant increase (6.2 fold in gene expression of P2X4 receptors in Huh-7/E1E2 cells as compared to control Huh-7 cells. The findings of present study confirmed the presence of transcripts of five different isoforms of P2X receptors in human liver cells and suggest that P2X4 receptors could be represented an important component of the purinergic signaling complex in HCV induced liver pathogenesis.

  20. Burn-induced alterations in toll-like receptor-mediated responses by bronchoalveolar lavage cells.

    Science.gov (United States)

    Oppeltz, Richard F; Rani, Meenakshi; Zhang, Qiong; Schwacha, Martin G

    2011-09-01

    Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung. Male C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex. BAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES. Burn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  2. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation.

    Science.gov (United States)

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-21

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux.

  3. Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation

    Science.gov (United States)

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M.; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-01

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5′-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux. PMID:11805146

  4. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Sanborn, B.B.; Schneider, A.S.

    1990-01-01

    Inositol trisphosphate (IP 3 ), a product of the phosphoinositide cycle, mobilizes intracellular Ca 2+ in many cell types. New evidence suggests that inositol tetrakisphosphate (IP 4 ), an IP 3 derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP 4 are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP 4 in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in [ 3 H]IP 4 and [ 3 H]IP 3 accumulation in chromaffin cells and this effect was completely blocked by atropine. [ 3 H]IP 4 accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP 3 and IP 4 hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP 4 and calcium homeostasis

  5. MEMBRANE OESTROGEN RECEPTORS ON RAT PITUITARY TUMOUR CELLS: IMMUNO-IDENTIFICATION AND RESPONSES TO OESTRADIOL AND XENOESTROGENS

    Science.gov (United States)

    WATSON, CHERYL S.; CAMPBELL, CELESTE H.; GAMETCHU, BAHIRU

    2007-01-01

    SUMMARY Our laboratory has identified plasma membrane oestrogen receptors on a GH3/B6 rat pituitary tumour cell line and several sublines which produce rapid (within minutes), non-genomic responses to oestrogens. Oestrogen receptors have been identified by their binding to nine different antibodies (Abs) which together recognize at least seven epitopes on the oestrogen receptor-α. GH3/B6/F10 cells, a membrane oestrogen receptor-enriched subline, elevate intracellular calcium levels in response to 10 nM oestradiol. Prolactin release in these cells is triggered by both 1 pM and 1 nM oestradiol and diethylstilbestrol (DES). A membrane oestrogen receptor-α immunocyto-chemical signal rapidly disappears (at 3 min) and reappears (at 12–15 min) when 1 nM oestradiol, 10 nM diethylstilbestrol, or 10 nM nonylphenol is applied to the cells. This suggests that both oestrogens and xenoestrogens can utilize this alternative pathway for oestrogenic action. Xenoestrogens, which have so far shown weak effects in genomic assay systems, should now be retested for activity in eliciting membrane-initiated oestrogenic responses. PMID:10564698

  6. Lipopolysaccharide induces H1 receptor expression and enhances histamine responsiveness in human coronary artery endothelial cells.

    Science.gov (United States)

    Raveendran, Vineesh V; Tan, Xiaoyu; Sweeney, Matthew E; Levant, Beth; Slusser, Joyce; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2011-04-01

    Summary Histamine is a well-recognized modulator of vascular inflammation. We have shown that histamine, acting via H1 receptors (H1R), synergizes lipopolysaccharide (LPS)-induced production of prostaglandin I(2) (PGI(2)), PGE(2) and interleukin-6 (IL-6) by endothelial cells. The synergy between histamine and LPS was partly attributed to histamine -induced expression of Toll-like receptor 4 (TLR4). In this study, we examined whether LPS stimulates the H1R expression in human coronary artery endothelial cells (HCAEC) with resultant enhancement of histamine responsiveness. Incubation of HCAEC with LPS (10-1000 ng/ml) resulted in two-fold to fourfold increases in H1R mRNA expression in a time-dependent and concentration-dependent fashion. In contrast, LPS treatment did not affect H2R mRNA expression. The LPS-induced H1R mRNA expression peaked by 4 hr after LPS treatment and remained elevated above the basal level for 20-24 hr. Flow cytometric and Western blot analyses revealed increased expression of H1R protein in LPS-treated cells. The specific binding of [(3)H]pyrilamine to H1R in membrane proteins from LPS-treated HCAEC was threefold higher than the untreated cells. The LPS-induced H1R expression was mediated through TLR4 as gene silencing by TLR4-siRNA and treatment with a TLR4 antagonist inhibited the LPS effect. When HCAEC were pre-treated with LPS for 24 hr, washed and challenged with histamine, 17-, 10- and 15-fold increases in PGI(2), PGE(2) and IL-6 production, respectively, were noted. Histamine-induced enhancement of the synthesis of PGI(2), PGE(2) and IL-6 by LPS-primed HCAEC was completely blocked by an H1R antagonist. The results demonstrate that LPS, through TLR4 activation, up-regulates the expression and function of H1R and amplifies histamine-induced inflammatory responses in HCAEC. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  7. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.

    Directory of Open Access Journals (Sweden)

    Shreoshi Pal Choudhuri

    Full Text Available Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5' monophosphate (IMP. The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.

  8. Comparison of P2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response.

    Science.gov (United States)

    Allsup, D J; Boarder, M R

    1990-07-01

    Vascular endothelial cells from different parts of the circulation are known to show different functional responses, presumably corresponding to physiological roles. Previous studies have shown that ATP acts on P2 purinergic receptors of endothelial cells of major blood vessels, stimulating the formation of inositol phosphates. Here we have compared the action of ATP and congeners acting on endothelial cells of bovine thoracic aorta with cells derived from the microvasculature of bovine adrenal medulla. With measurement of total inositol phosphates, cells from the aorta showed a rank order of agonist potency of 2-methylthio-ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP greater than ATP greater than beta, gamma-imido-ATP greater than beta, gamma-methylene-ATP, consistent with action at receptors of the P2Y subtype. However, with adrenal cells the rank order of potency was ATP gamma S greater than ATP greater than beta, gamma-imido-ATP greater than ADP greater than beta, gamma-methylene-ATP = 2-methylthio-ATP. This profile is not consistent with either P2X or P2Y receptors. When the nature of this inositol phosphate response was analyzed with anion exchange chromatography, it was found that the aortic cells showed an inositol trisphosphate stimulation that peaked within a few seconds and rapidly declined, whereas the response of the adrenal medulla cells continued to rise through 5 min. Analysis of isomers of inositol phosphates revealed a different pattern of metabolism between the two cell types, which may account for the different time course of response. With adrenal cells, ATP at low micromolar concentrations caused a dose-dependent increase in levels of cyclic AMP and had a greater than additive effect on cyclic AMP levels when combined with submaximal stimulation by prostaglandin E2. These results suggest the presence of a P2Y receptor on aortic endothelial cells, with an 'atypical' purinocepter, i.e., neither P2X nor P2Y

  9. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Alexandra M Fajardo

    Full Text Available Tocopherylquinone (TQ, the oxidation product of alpha-tocopherol (AT, is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells, whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells.

  10. The Response of Prostate Smooth Muscle Cells to Testosterone Is Determined by the Subcellular Distribution of the Androgen Receptor.

    Science.gov (United States)

    Peinetti, Nahuel; Scalerandi, María Victoria; Cuello Rubio, Mariana Micaela; Leimgruber, Carolina; Nicola, Juan Pablo; Torres, Alicia Ines; Quintar, Amado Alfredo; Maldonado, Cristina Alicia

    2018-02-01

    Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs. Copyright © 2018 Endocrine Society.

  11. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals

    DEFF Research Database (Denmark)

    Kasprowicz, V; Isa, Adiba; Jeffery, K

    2006-01-01

    Six of seven HLA-A*2402-positive individuals with acute parvovirus B19 infections made vigorous CD8-positive cytotoxic T-cell (CTL) responses to the viral epitope FYTPLADQF. All responders showed highly focused T-cell receptor (TCR) usage, using almost exclusively BV5.1. The BV5.1 TCR dominated...

  12. Thimerosal increases the responsiveness of the calcium receptor in human parathyroid and rMTC6-23 cells.

    Science.gov (United States)

    Mihai, R; Lai, T; Schofield, G; Farndon, J R

    1999-01-01

    Parathyroid cells express a plasma membrane calcium receptor (CaR), which is stimulated by a rise in extracellular calcium concentration ([Ca2+]ext). A decreased sensitivity to [Ca2+]ext occurs in adenomatous parathyroid cells in patients with primary hyperparathyroidism, but the underlying functional mechanism is not yet fully understood. This study explored whether CaR responsiveness is influenced by increasing the affinity of IP3 receptors--a major signalling component of other G-protein-coupled receptors. The sulphydryl reagent thimerosal was used to increase the responsiveness of IP3-receptors. Quantitative fluorescence microscopy in Fura-2-loaded cells was used to investigate the effects of thimerosal on the cytoplasmic calcium concentrations ([Ca2+]i) in human parathyroid cells and to compare its effects in a rat medullary thyroid carcinoma cell line (rMTC6-23) also expressing CaR. During incubation in Ca(2+)-free medium, thimerosal 5 microM induced a rapid sustained rise in [Ca2+]i in human parathyroid cells and no further [Ca2+]i increase appeared in response to the CaR agonist Gd3+ (100 microM). Thimerosal 1 microM induced only slow and minimal changes of basal [Ca2+]i and allowed a rapid response to Gd3+ 20 nM (a concentration without effect in control cells). The slope of the thimerosal-induced [Ca2+]i responses was steeper following exposure to CaR agonists. In the presence of 1 mM [Ca2+]ext, thimerosal (0.5 microM) induced a sharp increase in [Ca2+]i to a peak (within 60 s), followed either by return to basal [Ca2+]i or by a plateau of slightly higher amplitude. Similar results were obtained using rMTC6-23 cells. Thimerosal increases the responsiveness to CaR agonists through modulation of the sensitivity of the IP3 receptor in both parathyroid and rMTC6-23 cells.

  13. ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors

    Science.gov (United States)

    Kumari, Rajendra; Goh, Gareth; Ng, Leong L; Boarder, Michael R

    2003-01-01

    It has previously been shown that ATP and UTP stimulate P2Y receptors in vascular smooth muscle cells (VSMCs), but the nature of these receptors, in particular the contribution of P2Y2 and P2Y4 subtypes, has not been firmly established. Here we undertake a further pharmacological analysis of [3H]inositol polyphosphate responses to nucleotides in cultured rat VSMCs. ATP generated a response that was partial compared to UTP, as reported earlier. In the presence of a creatine phosphokinase (CPK) system for regenerating nucleoside triphosphates, the response to ATP was increased, the response to UTP was unchanged, and the difference between UTP and ATP concentration–response curves disappeared. Chromatographic analysis showed that ATP was degraded slightly faster than UTP. The response to UDP was always smaller than that to UTP, but with a shallow slope and a high potency component. In the presence of hexokinase (which prevents the accumulation of ATP/UTP from ADP/UDP), the maximum response to UDP was reduced and the high-potency component of the curve was retained. By contrast, the response to ADP was weaker throughout in the presence of hexokinase. ATPγS was an effective agonist with a similar EC50 to UTP, but with a lower maximum. ITP was a weak agonist compared with UTP. Suramin was an effective antagonist of the response to UTP (pA2=4.48), but not when ATP was the agonist. However, suramin was an effective antagonist (pA2=4.45) when stimulation with ATP was in the presence of the CPK regenerating system. Taken together with the results of others, these findings indicate that the response of cultured rat VSMCs to UTP and to ATP is predominantly at the P2Y2 receptor, and that there is also a response to UDP at the P2Y6 receptor. PMID:14597595

  14. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    Science.gov (United States)

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  15. Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation

    OpenAIRE

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M.; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-01

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also de...

  16. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses.

    Science.gov (United States)

    Baumann, Claudia; Bonilla, Weldy V; Fröhlich, Anja; Helmstetter, Caroline; Peine, Michael; Hegazy, Ahmed N; Pinschewer, Daniel D; Löhning, Max

    2015-03-31

    During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.

  17. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors

    Science.gov (United States)

    Budi, Erine H.; Muthusamy, Baby Periyanayaki; Derynck, Rik

    2015-01-01

    Increased activity of transforming growth factor β (TGF-β), which binds to and stimulates cell surface receptors, contributes to cancer progression and fibrosis by driving epithelial cells toward a migratory mesenchymal phenotype and increasing the abundance of extracellular matrix proteins. The abundance of TGF-β receptors at the cell surface determines cellular responsiveness to TGF-β, which is often produced by the same cells that have the receptors, and thus serves as an autocrine signal. We found that Akt-mediated phosphorylation of AS160, a RabGAP [guanosine triphosphatase (GTPase)-activating protein] promoted the translocation of TGF-β receptors from intracellular stores to the plasma membrane of mouse embryonic fibroblasts (MEFs) and NMuMG epithelial cells. Consequently, insulin, which is commonly used to treat hyperglycemia and activates Akt signaling, increased the amount of TGF-β receptors at the cell surface, thereby enhancing TGF-β responsiveness. This insulin-induced increase in autocrine TGF-β signaling contributed to insulin-induced gene expression responses, attenuated the epithelial phenotype, and promoted the migration of NMuMG cells. Furthermore, the enhanced delivery of TGF-β receptors at the cell surface enabled insulin to increase TGF-β-induced gene responses. The enhancement of TGF-β responsiveness in response to Akt activation may help to explain the biological effects of insulin, the progression of cancers in which Akt is activated, and the increased incidence of fibroses in diabetes. PMID:26420907

  18. Toll-like receptor 11-initiated innate immune response in male mouse germ cells.

    Science.gov (United States)

    Chen, Qiaoyuan; Zhu, Weiwei; Liu, Zhenghui; Yan, Keqin; Zhao, Shutao; Han, Daishu

    2014-02-01

    Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.

  19. Spatio-temporal dependence of the signaling response in immune-receptor trafficking networks regulated by cell density: a theoretical model.

    Directory of Open Access Journals (Sweden)

    Pilar García-Peñarrubia

    Full Text Available Cell signaling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signaling pathways. In most experimental systems, ligand concentration and cell density vary within a wide range of values. Dependence of the signal response on cell density is related with the extracellular volume available per cell. This dependence has previously been studied using non-spatial models which assume that signaling components are well mixed and uniformly distributed in a single compartment. In this paper, a mathematical model that shows the influence exerted by cell density on the spatio-temporal evolution of ligands, cell surface receptors, and intracellular signaling molecules is developed. To this end, partial differential equations were used to model ligand and receptor trafficking dynamics through the different domains of the whole system. This enabled us to analyze several interesting features involved with these systems, namely: a how the perturbation caused by the signaling response propagates through the system; b receptor internalization dynamics and how cell density affects the robustness of dose-response curves upon variation of the binding affinity; and c that enhanced correlations between ligand input and system response are obtained under conditions that result in larger perturbations of the equilibrium ligand + surface receptor [Please see text] ligand - receptor complex. Finally, the results are compared with those obtained by considering that the above components are well mixed in a single compartment.

  20. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...

  1. Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Rebecca Rogier

    2015-01-01

    Full Text Available In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17 and regulatory T cells (Tregs is often observed. This disturbed balance is also the case in rheumatoid arthritis (RA. Genetic predisposition to RA confers the presence of several polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have shown that commensal gut microbiota is of great influence on immune homeostasis and can trigger the development of autoimmune diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs in modulating the relevant Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new therapeutic targets or even preventive measures.

  2. Xenoestrogens modulate genotoxic (UVB)-induced cellular responses in estrogen receptors positive human breast cancer cells.

    Science.gov (United States)

    Cargouët, Maëlle; Bimbot, Maya; Levi, Yves; Perdiz, Daniel

    2006-07-01

    Human populations and wildlife are exposed to mixtures of both anthropogenic and natural chemicals. Some of these compounds are known to interact principally with the endocrine function, whereas others act mainly on genomic DNA. Given this evidence, we wanted to address the question of whether concomitant exposure of such chemicals was able to interact at the cellular level. We have previously shown that 17β-Estradiol (E(2)) modulates the DNA repair capacity of cells. In this work, we wanted to examine if other xenoestrogens (i.e. industrial compounds, pesticides or pharmaceuticals) were able to interact with the UVB-induced cellular response as E(2) does. Here, we show that xenoestrogens modulate the capacity of cells to repair their DNA damage according to the type of compounds. For example, the oral contraceptive 17α-Ethinylestradiol down-regulated the repair of UVB-induced DNA damage whereas the UV filter Eusolex 6007 up-regulated this pathway. The notion that xenoestrogens could interact with a genotoxic stress is reinforced by the modulation of the estrogens-dependent luciferase reporter gene expression when cells are UVB-irradiated. Finally, these observations suggested the potential role of xenoestrogens in carcinogenesis by their capacity to modulate cells responses to genotoxic stress.

  3. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  4. NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies.

    Science.gov (United States)

    Magri, Giuliana; Muntasell, Aura; Romo, Neus; Sáez-Borderías, Andrea; Pende, Daniela; Geraghty, Daniel E; Hengel, Hartmut; Angulo, Ana; Moretta, Alessandro; López-Botet, Miguel

    2011-01-20

    Information on natural killer (NK)-cell receptor-ligand interactions involved in the response to human cytomegalovirus (HCMV) is limited and essentially based on the study of infected fibroblasts. Experimental conditions were set up to characterize the NK response to HCMV-infected myeloid dendritic cells (DCs). Monocyte-derived DCs (moDCs) infected by the TB40/E HCMV strain down-regulated the expression of human leukocyte antigen class I molecules and specifically activated autologous NK-cell populations. NKG2D ligands appeared virtually undetectable in infected moDCs, reflecting the efficiency of immune evasion mechanisms, and explained the lack of antagonistic effects of NKG2D-specific monoclonal antibody. By contrast, DNAM-1 and DNAM-1 ligands (DNAM-1L)-specific monoclonal antibodies inhibited the NK response at 48 hours after infection, although the impact of HCMV-dependent down-regulation of DNAM-1L in infected moDCs was perceived at later stages. moDCs constitutively expressed ligands for NKp46 and NKp30 natural cytotoxicity receptors, which were partially reduced on HCMV infection; yet, only NKp46 appeared involved in the NK response. In contrast to previous reports in fibroblasts, human leukocyte antigen-E expression was not preserved in HCMV-infected moDCs, which triggered CD94/NKG2A(+) NK-cell activation. The results provide an insight on key receptor-ligand interactions involved in the NK-cell response against HCMV-infected moDCs, stressing the importance of the dynamics of viral immune evasion mechanisms.

  5. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chao, How-Ran [Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University and Science and Technology, Neipu, Pingtung 912, Taiwan (China)

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  6. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    Science.gov (United States)

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  7. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation.

    Science.gov (United States)

    Malyukova, A; Brown, S; Papa, R; O'Brien, R; Giles, J; Trahair, T N; Dalla Pozza, L; Sutton, R; Liu, T; Haber, M; Norris, M D; Lock, R B; Sangfelt, O; Marshall, G M

    2013-04-01

    Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

  8. Silenced B-Cell Receptor Response To Autoantigen In A Poor-Prognostic Subset Of Chronic Lymphocytic Leukemia

    DEFF Research Database (Denmark)

    Bergh, Ann-Charlotte; Evaldsson, Chamilly; Pedersen, Lone Bredo

    2014-01-01

    Chronic lymphocytic leukemia B cells express auto/xeno antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation-induced malonedialdehyde that is present on low-density lipoprotein......, apoptotic blebs, and on certain microbes. The poor-prognostic stereotyped subset #1 (Clan I IGHV genes-IGKV1(D)-39) express IgM B-cell receptors that bind oxidized low-density lipoprotein. In this study, we have used for the first time this authentic cognate antigen for analysis of downstream B......-cell receptor-signal transduction events, since it is more faithful to B-cell physiology than anti-IgM. Multivalent oxidized low-density lipoprotein showed specific binding to subset #1 IgM/IgD B-cell receptors, whereas native low-density lipoprotein did not. The antigen binding induced prompt receptor...

  9. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  10. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  11. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  12. Elusive Role of the CD94/NKG2C NK Cell Receptor in the Response to Cytomegalovirus: Novel Experimental Observations in a Reporter Cell System

    Directory of Open Access Journals (Sweden)

    Aldi Pupuleku

    2017-10-01

    Full Text Available Human cytomegalovirus (HCMV infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12 were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc under NFAT/AP1-dependent control. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific monoclonal antibodies (mAbs triggered Luc expression. Moreover, reporter activation was detectable upon interaction with HLA-E+ 721.221 (.221-AEH cells, as well as with 721.221 cells incubated with synthetic peptides, which stabilized surface expression of endogenous HLA-E; the response was specifically antagonized by soluble NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF infected with HCMV laboratory strains (i.e., AD169, Towne, regardless of their differential ability to preserve surface HLA-E expression. On the other hand, infection with two clinical isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activation; yet, this response was not inhibited by blocking mAbs and was independent of CD94/NKG2C expression. The results are discussed in the framework of previous observations supporting the hypothetical existence of specific ligand(s for CD94/NKG2C in HCMV-infected cells.

  13. Two different mechanosensitive calcium responses in Müller glial cells of the guinea pig retina: Differential dependence on purinergic receptor signaling.

    Science.gov (United States)

    Agte, Silke; Pannicke, Thomas; Ulbricht, Elke; Reichenbach, Andreas; Bringmann, Andreas

    2017-01-01

    Tractional forces or mechanical stimulation are known to induce calcium responses in retinal glial cells. The aim of the study was to determine the characteristics of calcium responses in Müller glial cells of the avascular guinea pig retina induced by focal mechanical stimulation. Freshly isolated retinal wholemounts were loaded with Mitotracker Deep Red (to fill Müller cells) and the calcium-sensitive dye Fluo-4/AM. The inner retinal surface was mechanically stimulated with a micropipette tip for 10 ms. Stimulation induced two different cytosolic calcium responses in Müller cells with different kinetics in dependence on the distance from the stimulation site. Müller cells near the stimulation site displayed an immediate and long-lasting calcium response with high amplitude. This response was mediated by calcium influx from the extracellular space likely triggered by activation of ATP-insensitive P2 receptors. More distant Müller cells displayed, with a delay of 2.4 s, transient calcium responses which propagated laterally in a wave-like fashion. Propagating calcium waves were induced by a calcium-independent release of ATP from Müller cells near the stimulation site, and were mediated by a release of calcium from internal stores triggered by ATP, acting in part at P2Y 1 receptors. The data suggest that mechanically stimulated Müller cells of the guinea pig retina release ATP which induces a propagating calcium wave in surrounding Müller cells. Propagating calcium waves may be implicated in the spatial regulation of the neuronal activity and homeostatic glial functions, and may transmit gliosis-inducing signals across the retina. Mechanical stimulation of guinea pig Müller cells induces two calcium responses: an immediate response around the stimulation site and propagating calcium waves. Both responses are differentially mediated by activation of purinergic receptors. GLIA 2016 GLIA 2017;65:62-74. © 2016 Wiley Periodicals, Inc.

  14. Cholest-4-en-3-one attenuates TGF-β responsiveness by inducing TGF-β receptors degradation in Mv1Lu cells and colorectal adenocarcinoma cells.

    Science.gov (United States)

    Chen, Chun-Lin; Wu, Deng-Chyang; Liu, Min-Yun; Lin, Ming-Wei; Huang, Hung-Tu; Huang, Yaw-Bin; Chen, Li-Chai; Chen, Yu-Yu; Chen, Jih-Jung; Yang, Pei-Hua; Kao, Yu-Chen; Chen, Pei-Yu

    2017-04-01

    The transforming growth factor-beta (TGF-β) pathway is an important in the initiation and progression of cancer. Due to a strong association between an elevated colorectal cancer risk and increase fecal excretion of cholest-4-en-3-one, we aim to determine the effects of cholest-4-en-3-one on TGF-β signaling in the mink lung epithelial cells (Mv1Lu) and colorectal cancer cells (HT29) in vitro. The inhibitory effects of cholest-4-en-3-one on TGF-β-induced Smad signaling, cell growth inhibition, and the subcellular localization of TGF-β receptors were investigated in epithelial cells using a Western blot analysis, luciferase reporter assays, DNA synthesis assay, confocal microscopy, and subcellular fractionation. Cholest-4-en-3-one attenuated TGF-β signaling in Mv1Lu cells and HT29 cells, as judged by a TGF-β-specific reporter gene assay of plasminogen activator inhibitor-1 (PAI-1), Smad2/3 phosphorylation and nuclear translocation. We also discovered that cholest-4-en-3-one suppresses TGF-β responsiveness by increasing lipid raft and/or caveolae accumulation of TGF-β receptors and facilitating rapid degradation of TGF-β and thus suppressing TGF-β-induced signaling. Our results suggest that cholest-4-en-3-one inhibits TGF-β signaling may be due, in part to the translocation of TGF-β receptor from non-lipid raft to lipid raft microdomain in plasma membranes. Our findings also implicate that cholest-4-en-3-one may be further explored for its potential role in colorectal cancer correlate to TGF-β deficiency.

  15. Oxidized Low-Density Lipoprotein Induces Inflammatory Responses in Cultured Human Mast Cells Via Toll-Like Receptor 4

    Directory of Open Access Journals (Sweden)

    Zhe Meng

    2013-06-01

    Full Text Available Background/Aims: Oxidized low-density lipoprotein (ox-LDL is a powerful atherogen. Toll-like receptor 4 (TLR4 has a pathophysiological role in regulating inflammatory responses and atherosclerosis. Mast cells can infiltrate into the atheromatous plaque and secrete various pro-inflammatory cytokines, which significantly amplify the atherogenic processes and promote plaque vulnerability. Small interfering RNA (siRNA is an effective method to silence the target genes. We evaluated whether ox-LDL-induced inflammation depended in part on the activation of TLR4-dependent signaling pathways in a cultured human mast cell line (HMC-1. Method: HMC-1 cells were cultured, and treated with ox-LDL, TLR4-specific siRNA, or inhibitors of phosphorylation of mitogen-activated protein kinase (MAPKs, and nuclear factor-κB (NF-κB, a critical mediator of inflammation. The expression of monocyte chemoattractant protein-1 (MCP-1, tumor necrosis factor-a (TNF-a and interleukin 6 (IL-6 was measured subsequently. Results: Ox-LDL increased the expression of TLR4 and secretion of MCP-1, TNF-a and IL-6. Moreover, ox-LDL stimulated the translocation of NF-κB, from the cytoplasm to nucleus. Additionally, phosphorylation of MAPK was greatly increased. These ox-LDL-induced alterations were significantly attenuated by pretreatment with TLR4-specific siRNA. Conclusion: Ox-LDL induced inflammatory responses in cultured HMC-1 cells including NF-κB nuclear translocation and phosphorylation of MAPKs, a process mediated in part by TLR4.

  16. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    Science.gov (United States)

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness

    DEFF Research Database (Denmark)

    Svendsen, Berit; Pais, Ramona; Engelstoft, Maja S

    2016-01-01

    the secretion of both GLP1 and GIP, whereas bombesin/neuromedin C only stimulated GLP1 secretion. Expression analysis showed high expression of the bombesin 2 receptor in GLP1 positive cells, but no expression in GIP-positive cells. These data indicate both expressional and functional differences between...

  18. Molecular Interactions between NR4A Orphan Nuclear Receptors and NF-κB Are Required for Appropriate Inflammatory Responses and Immune Cell Homeostasis.

    Science.gov (United States)

    Murphy, Evelyn P; Crean, Daniel

    2015-06-29

    Appropriate innate and adaptive immune responses are essential for protection and resolution against chemical, physical or biological insults. Immune cell polarization is fundamental in orchestrating distinct phases of inflammation, specifically acute phase responses followed by resolution and tissue repair. Dysregulation of immune cell and inflammatory responses is a hallmark of multiple diseases encompassing atherosclerosis, rheumatoid arthritis, psoriasis and metabolic syndromes. A master transcriptional mediator of diverse inflammatory signaling and immune cell function is NF-κB, and altered control of this key regulator can lead to an effective switch from acute to chronic inflammatory responses. Members of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors crosstalk with NF-κB to regulate immune cell function(s). Within the NR superfamily the NR4A1-3 orphan receptors have emerged as important regulators of immune cell polarization and NF-κB signaling. NR4A receptors modulate NF-κB activity in a dynamic fashion, either repressing or enhancing target gene expression leading to altered inflammatory outcome. Here we will discuss the pivotal role NR4A's receptors play in orchestrating immune cell homeostasis through molecular crosstalk with NF-κB. Specifically, we will examine such NR4A/NF-κB interactions within the context of distinct cell phenotypes, including monocyte, macrophage, T cells, endothelial, and mesenchymal cells, which play a role in inflammation-associated disease. Finally, we review the therapeutic potential of altering NR4A/NF-κB interactions to limit hyper-inflammatory responses in vivo.

  19. A transient receptor potential channel expressed in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Huang, Liquan; Rong, Minqing; Kozak, J Ashot; Preuss, Axel K; Zhang, Hailin; Max, Marianna; Margolskee, Robert F

    2002-11-01

    We used differential screening of cDNAs from individual taste receptor cells to identify candidate taste transduction elements in mice. Among the differentially expressed clones, one encoded Trpm5, a member of the mammalian family of transient receptor potential (TRP) channels. We found Trpm5 to be expressed in a restricted manner, with particularly high levels in taste tissue. In taste cells, Trpm5 was coexpressed with taste-signaling molecules such as alpha-gustducin, Ggamma13, phospholipase C-beta2 (PLC-beta2) and inositol 1,4,5-trisphosphate receptor type III (IP3R3). Our heterologous expression studies of Trpm5 indicate that it functions as a cationic channel that is gated when internal calcium stores are depleted. Trpm5 may be responsible for capacitative calcium entry in taste receptor cells that respond to bitter and/or sweet compounds.

  20. Vitamin D receptor signals regulate effector and memory CD8 T cell responses to infections in mice.

    Science.gov (United States)

    Yuzefpolskiy, Yevgeniy; Baumann, Florian M; Penny, Laura A; Studzinski, George P; Kalia, Vandana; Sarkar, Surojit

    2014-12-01

    Vitamin D insufficiency is associated with broad-ranging human disease sequelae such as bone disease, cancer, cardiovascular disease, allergy, autoimmune disorders, diabetes, and infectious diseases. Disease risk and severity of a large proportion of the nonskeletal disorders heavily involve the cytotoxic cluster of differentiation (CD) 8 T lymphocyte (CTL) arm of cellular adaptive immunity. Considering the importance of vitamin D in CTL-dependent diseases, there is a critical need for systematic in-depth explorations into the role of vitamin D deficiency in generation and maintenance of CTL immunity during infections and vaccinations. With the use of wild-type (WT) vitamin D-sufficient mice and the vitamin D receptor knockout (Vdr(-/-)) mouse model of in vivo deficiency of vitamin D signaling, we systematically analyzed the impact of vitamin D deficiency on antigen-specific effector and memory CD8 T cell responses to acute viral and bacterial infections. WT and Vdr(-/-) mice were infected with lymphocytic choriomeningitis virus, a natural mouse pathogen, and antigen-specific CTL responses were analyzed during priming, expansion, contraction, and memory phases. Magnitude, breadth, cytokine production, and localization of antiviral effector and memory CTLs to lymphoid and nonlymphoid tissues were specifically assessed. The absence of vitamin D signals led to 1) aberrant CD8 T cell effector differentiation (∼2-fold lower granzyme B and reduced B cell lymphoma 2; P ≤ 0.05) and enhanced contraction (∼15% increase; P ≤ 0.05) in antigen-specific CTLs; 2) a significantly restricted (P ≤ 0.05) breadth of the antigen-specific CD8 T cell effector and memory repertoire; and 3) preferential localization of effector (∼2.5-fold increase; P ≤ 0.01) and memory (∼5-fold increase; P ≤ 0.001) CD8 T cells to the lymph nodes compared to nonlymphoid tissues. Our data show a previously unrecognized impact of vitamin D deficiency on the quantity, quality, breadth, and

  1. A pilot study on expression of toll like receptors (TLRs in response to herpes simplex virus (HSV infection in acute retinal pigment epithelial cells (ARPE cells

    Directory of Open Access Journals (Sweden)

    S Moses

    2014-01-01

    Full Text Available Introduction: Toll like receptors (TLRs have been proven to play an important role in mounting the innate immune response in an infected host. The expression of TLRs against herpes simplex virus (HSV have not been studied in retinitis. Therefore, the current study was undertaken to determine the same using the retinal pigment epithelial (ARPE-19 cell line. Materials and Methods: APRE cells cultured in vitro were challenged with HSV 1 and 2 standard strains and 20 other clinical isolates. The cells were observed for cytopathic changes. The cell culture harvest was subjected to RNA extraction using a Total RNA mini kit. The RNA was subjected to reverse transcriptase polymerase chain reaction (PCR for the amplification of TLRs 3, 4 and 9 and GAPDH housekeeping gene. The amplified products were subjected to electrophoresis on a 2% agarose gel and viewed under a transilluminator. Results: TLR 3 and 4 were expressed by ARPE treated with all the 22 isolates. TLR 9 expression was seen in 16 of the 22 isolates. Bacterial contamination was ruled out by subjecting the harvests to PCR amplification of 16sRNA gene amplification of the eubacterial genome. Conclusions: The expression of TLR 4 has been reported for the first time in HSV infection. TLR 4 along with TLR 3 and 9 is responsible for the antiviral response in HSV infections.

  2. A pilot study on expression of toll like receptors (TLRs) in response to herpes simplex virus (HSV) infection in acute retinal pigment epithelial cells (ARPE) cells.

    Science.gov (United States)

    Moses, S; Jambulingam, M; Madhavan, H N

    2014-01-01

    Toll like receptors (TLRs) have been proven to play an important role in mounting the innate immune response in an infected host. The expression of TLRs against herpes simplex virus (HSV) have not been studied in retinitis. Therefore, the current study was undertaken to determine the same using the retinal pigment epithelial (ARPE-19) cell line. APRE cells cultured in vitro were challenged with HSV 1 and 2 standard strains and 20 other clinical isolates. The cells were observed for cytopathic changes. The cell culture harvest was subjected to RNA extraction using a Total RNA mini kit. The RNA was subjected to reverse transcriptase polymerase chain reaction (PCR) for the amplification of TLRs 3, 4 and 9 and GAPDH housekeeping gene. The amplified products were subjected to electrophoresis on a 2% agarose gel and viewed under a transilluminator. TLR 3 and 4 were expressed by ARPE treated with all the 22 isolates. TLR 9 expression was seen in 16 of the 22 isolates. Bacterial contamination was ruled out by subjecting the harvests to PCR amplification of 16sRNA gene amplification of the eubacterial genome. The expression of TLR 4 has been reported for the first time in HSV infection. TLR 4 along with TLR 3 and 9 is responsible for the antiviral response in HSV infections.

  3. Prolonged hypoxia modulates platelet activating factor receptor-mediated responses by fetal ovine pulmonary vascular smooth muscle cells.

    Science.gov (United States)

    Renteria, Lissette S; Raj, J Usha; Ibe, Basil O

    2010-12-01

    Hypoxia augments PAF receptor (PAFr) binding and PAFr protein expression in venous SMC (SMC-PV). We compared effect of acute and prolonged hypoxia (pO(2)<40 torr) on PAFr-mediated responses in arterial SMC (SMC-PA) and SMC-PV. Cells were studied for 30 min (acute) or for 48 h (prolonged) hypoxia and compared to normoxic (pO(2) ~100 torr) conditions. PAF binding was quantified in fmol/10(6) cells (mean ± SEM). PAF binding in normoxia were SMC-PA, 5.2 ± 0.2 and in SMC-PV, 19.3 ± 1.1; values in acute hypoxia were SMC-PA, 7.7 ± 0.4 and in SMC-PV, 27.8 ± 1.7. Prolonged hypoxia produced 6-fold increase in binding in SMC-PA, but only 2-fold increase in SMC-PV, but binding in SMC-PV was still higher. Acute hypoxia augmented inositol phosphate release by 50% and 40% in SMC-PA and SMC-PV, respectively. During normoxia, PAFr mRNA expression by both cell types was similar, but expression in hypoxia by SMC-PA was greater. In SMC-PA, hypoxia and PAF augmented intracellular calcium flux. Re-exposure of cells to 30 min normoxia after 48 h hypoxia decreased binding by 45-60%, suggesting immediate down-regulation of hypoxia-induced PAFr-mediated effects. We speculate that re-oxygenation immediately reverses hypoxia effect probably due to oxygen tension-dependent reversibility of PAFr activation and suggest that exposure of the neonate to prolonged state of hypoxia will vilify oxygen exchange capacity of the neonatal lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Restoration of Radiation-Responsiveness of Estrogen-Receptor Negative Breast Cancer Cells

    National Research Council Canada - National Science Library

    Munshi, Anupama

    2005-01-01

    ER-negative human breast cancers are radioresistant due to hypermethylation and hypoacetylation of the ER gene and restoration of ER expression in ER-negative cells by treatment with the demethylating agent (5-Aza-dC...

  5. Association of killer cell immunoglobulin-like receptor polymorphisms with chronic hepatitis C and responses to therapy in Brazil

    Directory of Open Access Journals (Sweden)

    Janaina Mota de Vasconcelos

    2013-01-01

    Full Text Available Soroprevalence for Hepatitis C virus is reported as 2.12% in Northern Brazil, with about 50% of the patients exhibiting a sustained virological response (SVR. Aiming to associate polymorphisms in Killer Cell Immunoglobulin-like Receptors (KIR with chronic hepatitis C and therapy responses we investigated 125 chronic patients and 345 controls. Additionally, 48 ancestry markers were genotyped to control for population stratification. The frequency of the KIR2DL2 and KIR2DL2+HLA-C Asp80 gene and ligand was higher in chronic infected patients than in controls (p < 0.0009, OR = 3.4; p = 0.001, OR = 3.45. In fact, KIR2DL3 is a weaker inhibitor of NK activity than KIR2DL2, which could explain the association of KIR2DL2 with chronic infection. Moreover, KIR2DS2 and KIR2DS2+HLA-C Asp80 (p < 0.0001, OR = 2.51; p = 0.0084, OR = 2.62 and KIR2DS3 (p < 0.0001; OR = 2.57 were associated with chronic infection, independently from KIR2DL2. No differences in ancestry composition were observed between control and patients, even with respect to therapy response groups. The allelic profile KIR2DL2/KIR2DS2/KIR2DS3 was associated with the chronic hepatitis C (p < 0.0001; OR = 3. Furthermore, the patients also showed a higher mean number of activating genes and a lower frequency of the homozygous AA profile, which is likely secondary to the association with non-AA and/or activating genes. In addition, the KIR2DS5 allele was associated with SVR (p = 0.0261; OR = 0.184.The ancestry analysis of samples ruled out any effects of population substructuring and did not evidence interethnic differences in therapy response, as suggested in previous studies.

  6. Synergic activation of toll-like receptor (TLR 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Martha Triantafilou

    Full Text Available Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM, preterm labour (PL pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs in order to "sense" pathogens. One such family of PRRs are the Toll like receptor family (TLR. In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA, trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly.

  7. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection.

    Science.gov (United States)

    Brown, Damien P; Jones, Des C; Anderson, Katie J; Lapaque, Nicolas; Buerki, Robin A; Trowsdale, John; Allen, Rachel L

    2009-10-27

    Leukocyte Ig-like receptors (LILR) are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4) and LILRB4 (ILT3) is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.

  8. The inhibitory receptor LILRB4 (ILT3 modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4, is upregulated in response to Salmonella infection

    Directory of Open Access Journals (Sweden)

    Buerki Robin A

    2009-10-01

    Full Text Available Abstract Background Leukocyte Ig-like receptors (LILR are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4 and LILRB4 (ILT3 is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. Results We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. Conclusion Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.

  9. Prenatal stress induces up-regulation of glucocorticoid receptors on lymphoid cells modifying the T-cell response after acute stress exposure in the adult life.

    Science.gov (United States)

    Pascuan, Cecilia Gabriela; Rubinstein, Mara Roxana; Palumbo, María Laura; Genaro, Ana María

    2014-04-10

    It has been demonstrated that a short-duration stress (acute stress) may result in immunopreparatory or immunoenhancing physiological conditions. The aim of the present study was to investigate whether exposure to prenatal restraint stress (PRS) influences the impact of acute stress on the T-cell response in the adult life. We found that female mice exposed to PRS (PS mice) did not exhibit changes in the T-cell-dependent IgG antibody production with respect to prenatally non-stressed mice (no-PS mice). However, no-PS mice exposed to acute stress showed an increase of antibody production after antigen stimulation. In contrast, PS mice exhibited a decreased response after an acute situation. Spleen catecholamines and plasma corticosterone levels were increased in acute stress in both PS and no-PS mice. Nevertheless, lymphocyte response to hormones was altered in PS mice. Particularly, inhibitory effect of corticosterone was higher on lymphocytes from PS mice. In addition, an increase in protein levels and mRNA expression of glucocorticoid receptor was found in lymphoid cells from PS mice. These results show that prenatal stress alters the immune intrinsic regulatory mechanism that in turn induces an increased vulnerability to any stressful situation able to modify immune homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site.

    Science.gov (United States)

    Bogers, Willy M J M; Barnett, Susan W; Oostermeijer, Herman; Nieuwenhuis, Ivonne G; Beenhakker, Niels; Mortier, Daniella; Mooij, Petra; Koopman, Gerrit; Remarque, Edmund; Martin, Gregoire; Lai, Rachel Pei-Jen; Dey, Antu K; Sun, Yide; Burke, Brian; Ferrari, Guido; Montefiori, David; Martin, Loic; Davis, David; Srivastava, Indresh; Heeney, Jonathan L

    2017-10-01

    Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4 + T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell ( P durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines. Copyright © 2017

  11. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  12. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells.

    Science.gov (United States)

    Lapel, Martin; Weston, Philip; Strassheim, Derek; Karoor, Vijaya; Burns, Nana; Lyubchenko, Taras; Paucek, Petr; Stenmark, Kurt R; Gerasimovskaya, Evgenia V

    2017-01-01

    Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F 1 F 0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca 2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  13. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.

    Science.gov (United States)

    Paradis, Justine S; Ly, Stevenson; Blondel-Tepaz, Élodie; Galan, Jacob A; Beautrait, Alexandre; Scott, Mark G H; Enslen, Hervé; Marullo, Stefano; Roux, Philippe P; Bouvier, Michel

    2015-09-15

    MAPKs are activated in response to G protein-coupled receptor (GPCR) stimulation and play essential roles in regulating cellular processes downstream of these receptors. However, very little is known about the reciprocal effect of MAPK activation on GPCRs. To investigate possible crosstalk between the MAPK and GPCRs, we assessed the effect of ERK1/2 on the activity of several GPCR family members. We found that ERK1/2 activation leads to a reduction in the steady-state cell-surface expression of many GPCRs because of their intracellular sequestration. This subcellular redistribution resulted in a global dampening of cell responsiveness, as illustrated by reduced ligand-mediated G-protein activation and second-messenger generation as well as blunted GPCR kinases and β-arrestin recruitment. This ERK1/2-mediated regulatory process was observed for GPCRs that can interact with β-arrestins, such as type-2 vasopressin, type-1 angiotensin, and CXC type-4 chemokine receptors, but not for the prostaglandin F receptor that cannot interact with β-arrestin, implicating this scaffolding protein in the receptor's subcellular redistribution. Complementation experiments in mouse embryonic fibroblasts lacking β-arrestins combined with in vitro kinase assays revealed that β-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This previously unidentified regulatory mechanism was observed after constitutive activation as well as after receptor tyrosine kinase- or GPCR-mediated activation of ERK1/2, suggesting that it is a central node in the tonic regulation of cell responsiveness to GPCR stimulation, acting both as an effector and a negative regulator.

  14. Interleukin-21 receptor deficiency increases the initial toll-like receptor 2 response but protects against joint pathology by reducing Th1 and Th17 cells during streptococcal cell wall arthritis.

    Science.gov (United States)

    Marijnissen, Renoud J; Roeleveld, Debbie M; Young, Deborah; Nickerson-Nutter, Cheryl; Abdollahi-Roodsaz, Shahla; Garcia de Aquino, Sabrina; van de Loo, Fons A J; van Spriel, Annemiek B; Boots, Annemieke M H; van den Berg, Wim B; Koenders, Marije I

    2014-04-01

    The cytokine interleukin-21 (IL-21) can have both proinflammatory and immunosuppressive effects. The purpose of this study was to investigate the potential dual role of IL-21 in experimental arthritis in relation to Th17 cells. Antigen-induced arthritis (AIA) and chronic streptococcal cell wall (SCW) arthritis were induced in IL-21 receptor-deficient (IL-21R(-/-) ) and wild-type mice. Knee joints, synovial tissue, and serum were analyzed for arthritis pathology and inflammatory markers. During AIA and chronic SCW arthritis, IL-21R deficiency protected against severe inflammation and joint destruction. This was accompanied by suppressed serum IgG1 levels and antigen-specific T cell responses. Levels of IL-17 were reduced during AIA, and synovial lymphocytes isolated during SCW arthritis for flow cytometry demonstrated that mainly IL-17+ interferon-γ (IFNγ)-positive T cells were reduced in IL-21R(-/-) mice. However, during the acute phases of SCW arthritis, significantly higher joint swelling scores were observed, consistent with enhanced tumor necrosis factor and IL-6 expression. Interestingly, IL-21R(-/-) mice were significantly less capable of up-regulating suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 messenger RNA. IL-21 stimulation also affected the Toll-like receptor 2 (TLR-2)/caspase recruitment domain 15 response to SCW fragments in vitro, indicating that impaired SOCS regulation in the absence of IL-21 signaling might contribute to the increased local activation during SCW arthritis. In contrast to the proinflammatory role of IL-21 in adaptive immunity, which drives IL-17+IFN+ cells and joint pathology during chronic experimental arthritis, IL-21 also has an important immunosuppressive role, presumably by inhibiting TLR signaling via SOCS-1 and SOCS-3. If this dual role of IL-21 in various immune processes is present in human disease, it could make IL-21 a difficult therapeutic target in rheumatoid arthritis. Copyright © 2014 by the American

  15. Cord blood Vα24-Vβ11 natural killer T cells display a Th2-chemokine receptor profile and cytokine responses.

    Directory of Open Access Journals (Sweden)

    Susanne Harner

    Full Text Available BACKGROUND: The fetal immune system is characterized by a Th2 bias but it is unclear how the Th2 predominance is established. Natural killer T (NKT cells are a rare subset of T cells with immune regulatory functions and are already activated in utero. To test the hypothesis that NKT cells are part of the regulatory network that sets the fetal Th2 predominance, percentages of Vα24(+Vβ11(+ NKT cells expressing Th1/Th2-related chemokine receptors (CKR were assessed in cord blood. Furthermore, IL-4 and IFN-γ secreting NKT cells were quantified within the single CKR(+ subsets. RESULTS: Cord blood NKT cells expressed the Th2-related CCR4 and CCR8 at significantly higher frequencies compared to peripheral blood NKT cells from adults, while CXCR3(+ and CCR5(+ cord blood NKT cells (Th1-related were present at lower percentages. Within CD4(negCD8(neg (DN NKT cells, the frequency of IL-4 producing NKT cells was significantly higher in cord blood, while frequencies of IFN-γ secreting DN NKT cells tended to be lower. A further subanalysis showed that the higher percentage of IL-4 secreting DN NKT cells was restricted to CCR3(+, CCR4(+, CCR5(+, CCR6(+, CCR7(+, CCR8(+ and CXCR4(+ DN subsets in cord blood. This resulted in significantly decreased IFN-γ /IL-4 ratios of CCR3(+, CCR6(+ and CCR8(+ cord blood DN NKT cells. Sequencing of VA24AJ18 T cell receptor (TCR transcripts in sorted cord blood Vα24Vβ11 cells confirmed the invariant TCR alpha-chain ruling out the possibility that these cells represent an unusual subset of conventional T cells. CONCLUSIONS: Despite the heterogeneity of cord blood NKT cells, we observed a clear Th2-bias at the phenotypic and functional level which was mainly found in the DN subset. Therefore, we speculate that NKT cells are important for the initiation and control of the fetal Th2 environment which is needed to maintain tolerance towards self-antigens as well as non-inherited maternal antigens.

  16. The Role of Aryl Hydrocarbon Receptor and Crosstalk with Estrogen Receptor in Response of Breast Cancer Cells to the Novel Antitumor Agents Benzothiazoles and Aminoflavone

    Directory of Open Access Journals (Sweden)

    Mariana A. Callero

    2011-01-01

    Full Text Available Many estrogen-receptor- (ER- expressing breast cancers become refractory to ER-based therapies. New antitumor drugs like aminoflavone (AF and benzothiazoles (Bzs have been developed and have exquisite antitumor activity in ER+MCF-7 and T47D cells and in a MCF-7 nude mouse model. ER(− breast cancer cells like MDA-MB-231 are less susceptible. We previously found in MCF-7 cells that these drugs activate the aryl hydrocarbon receptor (AhR via translocation to the nucleus, induction of AhR-specific DNA binding activity, and expression of CYP1A1, whose transcription is controlled by the AhR-ARNT transcription factor. CYP1A1 metabolizes AF and Bz to a species which directly or after further metabolism damages DNA. In contrast an AhR-deficient variant of MCF-7 or cells with predominantly nuclear AhR expression, such as MDA-MB 231, are resistant. Thus, these drugs, unlike other neoplastic agents, require AhR-mediated signaling to cause DNA damage. This is a new treatment strategy for breast cancers with intact AhR signaling.

  17. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  18. Distinctly different dynamics and kinetics of two steroid receptors at the same response elements in living cells.

    Directory of Open Access Journals (Sweden)

    Hatice Z Nenseth

    Full Text Available Closely related transcription factors (TFs can bind to the same response elements (REs with similar affinities and activate transcription. However, it is unknown whether transcription is similarly orchestrated by different TFs bound at the same RE. Here we have compared the recovery half time (t1/2, binding site occupancy and the resulting temporal changes in transcription upon binding of two closely related steroid receptors, the androgen and glucocorticoid receptors (AR and GR, to their common hormone REs (HREs. We show that there are significant differences at all of these levels between AR and GR at the MMTV HRE when activated by their ligands. These data show that two TFs bound at the same RE can have significantly different modes of action that can affect their responses to environmental cues.

  19. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  20. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells.

    Science.gov (United States)

    Jeng, Yow-Jiun; Kochukov, Mikhail; Watson, Cheryl S

    2010-10-15

    Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally

  1. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells.

    Science.gov (United States)

    Zhang, Chi; Duan, Xuening; Xu, Ling; Ye, Jingming; Zhao, Jianxin; Liu, Yinhua

    2012-12-01

    Resistance to trastuzumab is a major issue in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several potential resistance mechanisms have been investigated, but the results are controversial and no conclusion has been reached. Erythropoietin receptor (EPOR) may function in cell growth, and expressed in various cancer cells. Because the downstream signaling pathways for EPOR and HER2 partially overlapped, we hypothesized that EPOR may play a role in the inhibition effect of trastuzumab and resistance to trastuzumab. Here, we detected the expression of EPOR mRNA and protein in HER2-positive breast cancer cell lines and tissues. EPOR expressed in SKBR3, MDA-MB-453, and UACC-812 cell lines, but not in BT474. Of the 55 HER2-positive cancer tissues, EPOR was positive in 42 samples and highly expressed (H-score ≥ 25) in 24 by immunohistochemistry. The difference between EPOR expression and Ki67 index was significant (P = 0.033), and EPOR expression also positively correlated with higher pathological stage (Spearman correlation coefficient = 0.359; P = 0.007). Exogenous EPO antagonized trastuzumab-induced inhibition of cell proliferation in HER2/EPOR dual-positive breast cancer cells. We then exposed SKBR3 cells to trastuzumab for 4 months to obtain trastuzumab-resistant SKBR3 cell line, which demonstrated higher phosphorylated EPOR level, higher EPO expression and more extracellular secretion than non-resistant parental SKBR3 cells. Downregulation EPOR expression using short hairpin RNA resensitized trastuzumab-resistant cells to this drug, and SKBR3 cells with EPOR downregulation demonstrated attenuated trastuzumab resistance after the same resistance induction. EPOR downregulation plus trastuzumab produced a synergetic action in the inhibition of cell proliferation and invasion in SKBR3 and MDA-MB-453 cell lines. Therefore, EPOR expression may be involved in tumor progression and proliferation in HER2-positive breast cancer

  2. The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.

    Directory of Open Access Journals (Sweden)

    Christian Bleux

    2010-01-01

    Full Text Available Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH which activates specific receptors (GnRHR present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to

  3. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response.

    Science.gov (United States)

    Robbins, Paul F; Kassim, Sadik H; Tran, Thai L N; Crystal, Jessica S; Morgan, Richard A; Feldman, Steven A; Yang, James C; Dudley, Mark E; Wunderlich, John R; Sherry, Richard M; Kammula, Udai S; Hughes, Marybeth S; Restifo, Nicholas P; Raffeld, Mark; Lee, Chyi-Chia R; Li, Yong F; El-Gamil, Mona; Rosenberg, Steven A

    2015-03-01

    Although adoptive cell therapy can be highly effective for the treatment of patients with melanoma, the application of this approach to the treatment of other solid tumors has been limited. The observation that the cancer germline (CG) antigen NY-ESO-1 is expressed in 70% to 80% and in approximately 25% of patients with synovial cell sarcoma and melanoma, respectively, prompted us to perform this first-in-man clinical trial using the adoptive transfer of autologous peripheral blood mononuclear cells that were retrovirally transduced with an NY-ESO-1-reactive T-cell receptor (TCR) to heavily pretreated patients bearing these metastatic cancers. HLA-*0201 patients with metastatic synovial cell sarcoma or melanoma refractory to standard treatments and whose cancers expressed NY-ESO-1 received autologous TCR-transduced T cells following a lymphodepleting preparative chemotherapy. Response rates using Response Evaluation Criteria in Solid Tumors (RECIST), as well as immunologic correlates of response, are presented in this report. Eleven of 18 patients with NY-ESO-1(+) synovial cell sarcomas (61%) and 11 of 20 patients with NY-ESO-1(+) melanomas (55%) who received autologous T cells transduced with an NY-ESO-1-reactive TCR demonstrated objective clinical responses. The estimated overall 3- and 5-year survival rates for patients with synovial cell sarcoma were 38% and 14%, respectively, whereas the corresponding estimated survival rates for patients with melanoma were both 33%. The adoptive transfer of autologous T cells transduced with a retrovirus encoding a TCR against an HLA-A*0201 restricted NY-ESO-1 epitope can be an effective therapy for some patients bearing synovial cell sarcomas and melanomas that are refractory to other treatments. ©2014 American Association for Cancer Research.

  4. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.

    Directory of Open Access Journals (Sweden)

    Dieuwertje Van der Does

    2017-06-01

    Full Text Available Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.

  5. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2.

    Science.gov (United States)

    Karmaus, Peer W F; Chen, Weimin; Crawford, Robert; Kaplan, Barbara L F; Kaminski, Norbert E

    2013-02-01

    Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has potent immune modulatory properties and can impair pathogen-induced immune defenses, which in part have been attributed to ligation of the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). Most recently, dendritic cells (DC) were identified for their potential to enhance influenza-induced immunopathology in mice lacking CB(1) and CB(2) (CB(1) (-/-)CB(2) (-/-)). This study focused on the modulation of the inflammatory immune response to influenza by Δ(9)-THC and the role of CB(1) and/or CB(2) as receptor targets for Δ(9)-THC. C57Bl/6 (wild type) and CB(1) (-/-)CB(2) (-/-) mice were administered Δ(9)-THC (75 mg/kg) surrounding the intranasal instillation of A/PR/8/34 influenza virus. Three days post infection (dpi), Δ(9)-THC broadly decreased expression levels of mRNA induced by the innate immune response to influenza, suppressed the percentage of interferon-gamma (IFN-γ)-producing CD4(+) and interleukin-17-producing NK1.1(+) cells, and reduced the influx of antigen-presenting cells (APC), including inflammatory myeloid cells and monocytes/macrophages, into the lung in a CB(1)- and/or CB(2)-dependent manner. Δ(9)-THC had little effect on the expression of CD86, major histocompatibility complex I (MHC I), and MHC II by APC isolated from the lung. In vitro studies demonstrated that lipopolysaccharide (LPS)-induced maturation was suppressed by Δ(9)-THC in bone marrow-derived DC (bmDC). Furthermore, antigen-specific IFN-γ production by CD8(+) T cells after coculture was reduced by Δ(9)-THC treatment of bmDC in a CB(1)- and/or CB(2)-dependent manner. Collectively, these studies suggest that Δ(9)-THC potently suppresses myeloid cell immune function, in a manner involving CB(1) and/or CB(2), thereby impairing immune responses to influenza infection.

  6. A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells.

    Science.gov (United States)

    Mardiana, Sherly; John, Liza B; Henderson, Melissa A; Slaney, Clare Y; von Scheidt, Bianca; Giuffrida, Lauren; Davenport, Alexander J; Trapani, Joseph A; Neeson, Paul J; Loi, Sherene; Haynes, Nicole M; Kershaw, Michael H; Beavis, Paul A; Darcy, Phillip K

    2017-03-15

    Adoptive immunotherapy utilizing chimeric antigen receptor (CAR) T cells has demonstrated high success rates in hematologic cancers, but results against solid malignancies have been limited to date, due in part to the immunosuppressive tumor microenvironment. Activation of the 4-1BB (CD137) pathway using an agonistic α-4-1BB antibody is known to provide strong costimulatory signals for augmenting and diversifying T-cell responses. We therefore hypothesized that a combination of α-4-1BB and CAR T-cell therapy would result in improved antitumor responses. Using a human-Her2 self-antigen mouse model, we report here that α-4-1BB significantly enhanced CAR T-cell efficacy directed against the Her2 antigen in two different established solid tumor settings. Treatment also increased the expression of IFNγ and the proliferation marker Ki67 in tumor-infiltrating CAR T cells when combined with α-4-1BB. Strikingly, α-4-1BB significantly reduced host immunosuppressive cells at the tumor site, including regulatory T cells and myeloid-derived suppressor cells, correlating with an increased therapeutic response. We conclude that α-4-1BB has a multifunctional role for enhancing CAR T-cell responses and that this combination therapy has high translational potential, given current phase I/II clinical trials with α-4-1BB against various types of cancer. Cancer Res; 77(6); 1296-309. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Brigid M O'Flaherty

    Full Text Available Idiopathic pulmonary fibrosis (IPF, one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68 infection of interferon gamma receptor deficient (IFNγR-/- mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.

  8. Identified lhb-expressing cells from medaka (Oryzias latipes) show similar Ca(2+)-response to all endogenous Gnrh forms, and reveal expression of a novel fourth Gnrh receptor.

    Science.gov (United States)

    Strandabø, Rønnaug A U; Grønlien, Heidi K; Ager-Wick, Eirill; Nourizadeh-Lillabadi, Rasoul; Hildahl, Jon P; Weltzien, Finn-Arne; Haug, Trude M

    2016-04-01

    We have previously characterized the response to gonadotropin-releasing hormone (Gnrh) 2 in luteinizing hormone (lhb)-expressing cells from green fluorescent protein (Gfp)-transgenic medaka (Oryzias latipes), with regard to changes in the cytosolic Ca(2+) concentration. In the current study we present the corresponding responses to Gnrh1 and Gnrh3. Ca(2+) imaging revealed three response patterns to Gnrh1 and Gnrh3, one monophasic and two types of biphasic patterns. There were few significant differences in the shape of the response patterns between the three Gnrh forms, although the amplitude of the Ca(2+) signal was considerably lower for Gnrh1 and Gnrh3 than for Gnrh2, and the distribution between the two different biphasic patterns differed. The different putative Ca(2+) sources were examined by depleting intracellular Ca(2+) stores with thapsigargin, or preventing influx of extracellular Ca(2+) by either extracellular Ca(2+) depletion or the L-type Ca(2+)-channel blocker verapamil. Both Gnrh1 and 3 relied on Ca(2+) from both intracellular and extracellular sources, with some unexpected differences in the relative contribution. Furthermore, gene expression of Gnrh-receptors (gnrhr) in whole pituitaries was studied during development from juvenile to adult. Only two of the four identified medaka receptors were expressed in the pituitary, gnrhr1b and gnrhr2a, with the newly discovered gnrhr2a showing the highest expression level at all stages as analyzed by quantitative PCR. While both receptors differed in expression level according to developmental stage, only the expression of gnrhr2a showed a clear-cut increase with gonadal maturation. RNA sequencing analysis of FACS-sorted Gfp-positive lhb-cells revealed that both gnrhr1b and gnrhr2a were expressed in lhb-expressing cells, and confirmed the higher expression of gnrhr2a compared to gnrhr1b. These results show that although lhb-expressing gonadotropes in medaka show similar Ca(2+) response patterns to all three

  9. Enhanced inflammatory responses to toll-like receptor 2/4 stimulation in type 1 diabetic coronary artery endothelial cells: the effect of insulin

    Directory of Open Access Journals (Sweden)

    Ao Lihua

    2010-12-01

    Full Text Available Abstract Background Endothelial inflammatory responses mediated by Toll-like receptors (TLRs, particularly TLR2 and TLR4, play an important role in atherogenesis. While Type 1 diabetes (T1D promotes the development and progression of atherosclerosis, the effect of T1D on TLR2/4-mediated inflammatory responses in coronary artery endothelial cells (CAECs remains unclear. Methods We tested the hypothesis that diabetic CAECs have enhanced inflammatory responses to TLR2/4 stimulation. Non-diabetic and diabetic CAECs were treated with TLR2 agonist peptidoglycan and TLR4 agonist lipopolysaccharide. The expression of ICAM-1, IL-6 and IL-8 were analyzed by real-time PCR, immunoblotting and ELISA, and NF-κB activation by immunoblotting and immunostaining. In additional experiments, insulin was added before TLR stimulation to determine whether insulin deficiency alone is responsible for the alteration of TLR2/4-mediated inflammatory responses. Results Stimulation of TLR2 or TLR4 induced NF-κB activation, and the expression of ICAM-1, IL-6 and IL-8. Interestingly, the expression of inflammatory mediators was significantly enhanced in diabetic cells. The enhanced inflammatory responses correlated with augmented NF-κB activation in the absence of a change in TLR2 or TLR4 protein levels. Further, pretreatment of diabetic cells with insulin failed to suppress the enhanced inflammatory responses. Conclusions Diabetic CAECs have enhanced inflammatory responses to stimulation of TLR2 or TLR4, and insulin alone is insufficient to correct the hyper-inflammatory responses. The mechanism underlying the enhanced inflammatory responses appears to be augmentation of pro-inflammatory signaling, rather than up-regulation of levels of TLR2 and TLR4. These findings suggest that diabetic CAECs adopt a hyper-inflammatory phenotype and that this endothelial phenotypic change may predispose coronary artery to atherogenesis.

  10. Type I interferon receptor in peripheral blood mononuclear cells may predict response to intra-arterial 5-fluorouracil + interferon therapy for advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Korenaga K

    2011-04-01

    Full Text Available Yasuyuki Tomiyama1, Naoko Yoshioka1, Yoshiaki Yanai2,3, Tomoya Kawase1, Sohji Nishina1, Yuichi Hara1, Koji Yoshida1, Keiko Korenaga1, Masaaki Korenaga1, Keisuke Hino11Department of Hepatology and Pancreatology, Kawasaki Medical University, Kurashiki, Japan; 2Institute of Fujisaki, Hayashibara Biochemical Lab Inc, Okayama, Japan; 3Pharmaceutical Marketing Division, Otsuka Pharmaceutical Co Ltd, Tokyo, JapanBackground: Type 1 interferon alpha receptor 2 (IFNAR2 in the liver has been reported to be a predictive factor for the response to intra-arterial 5-fluorouracil (5-FU + systemic interferon (IFN-alpha combination therapy in patients with advanced hepatocellular carcinoma. We tested whether IFNAR2 expression in peripheral blood mononuclear cells could predict the response to 5-FU + IFN.Methods: Predictive factors for survival and response to therapy were determined in 30 patients with advanced hepatocellular carcinoma who underwent treatment with 5-FU + IFN. IFNAR2 expression in peripheral blood mononuclear cells was measured in 11 of the 30 patients.Results: With a mean number of 4.2 courses of combination therapy, one patient (3% showed a complete response, eight (27% showed partial responses, 13 (43% had stable disease, and eight (27% showed progressive disease. The median survival time of responders (complete response/partial response was 12.7 months and that of nonresponders (stable disease/progressive disease was 7.5 months. The one-year and two-year cumulative survival rates of responders and nonresponders were 87/69% and 40/11%, respectively (P = 0.019. Multivariate analysis identified response to therapy (P = 0.037 as the sole independent determinant of survival. The expression level of IFNAR2 in peripheral blood mononuclear cells was significantly (P = 0.012 higher in responders (6.5 ± 2.4 than in nonresponders (2.4 ± 0.6, even though no clinical factors were identified as being associated with the response to the combination

  11. Effect of gsp oncogene on somatostatin receptor subtype 1 and 2 mRNA levels in GHRH-responsive GH3 cells.

    Science.gov (United States)

    Kim, Eunhee; Sohn, Sookjin; Lee, Mina; Park, Cheolyoung; Jung, Jeechang; Park, Seungjoon

    2005-01-01

    Growth hormone releasing hormone (GHRH) signals via G protein-coupled receptors (GHRH-R) to enhance intracellular Galphas/adenylyl cyclase/cAMP signaling, which in turn has positive effects on GH synthesis and release, as well as proliferation of the GH-producing cells of the anterior pituitary gland. Some GH-producing pituitary tumors express a constitutively active mutant form of Galphas (gsp oncogene). It has been reported that these tumors are more responsive to octreotide therapy. In this study we used a rat GH-producing cell line (GH3) stably transfected with the human GHRH-R cDNA (GH3-GHRHR cells) as a model to study the effects of gsp oncogene on somatostatin (SRIH) receptor subtype 1 and 2 (sst1 and sst2) mRNA levels. Transient transfection of gsp oncogene in GH3-GHRHR cells for 48 h increased intracellular cAMP levels and GH release. Phosphodiesterase (PDE) 4, sst1 and sst2 mRNA levels were increased by G protein mutation as assessed by real-time RT-PCR. Increased PDE mRNA levels in gsp-transfected cells may be a compensatory mechanism to the constitutive activation of cAMP-dependent pathway by G protein mutation and is consistent with reports of higher PDE expression in human pituitary tumor that express gsp. Our data suggest that higher expression of sst1 and sst2 mRNA induced by the gsp oncogene may be a mechanism by which gsp-positive tumors show a greater response to SRIH. GH3 cells permanently transfected with GHRH-R can be used for in vitro studies of actions of GHRH.

  12. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  13. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells.

    Science.gov (United States)

    Jiang, Zhongjia; Song, Fuyang; Li, Yanan; Xue, Di; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-01-01

    Mycoplasma ovipneumoniae ( M. ovipneumoniae ) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF- κ B), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1 β , TNF α , and IL8, and anti-inflammatory cytokines such as IL10 and TGF β of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae -induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae , which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  14. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Zhongjia Jiang

    2017-01-01

    Full Text Available Mycoplasma ovipneumoniae (M. ovipneumoniae is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR- mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB, activator protein-1 (AP-1, and interferon regulatory factor 3 (IRF3 as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  15. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas.

    Science.gov (United States)

    Lee, Tin Lap; Yeh, Jason; Van Waes, Carter; Chen, Zhong

    2006-01-01

    Signal transducer and activator of transcription 3 (STAT3) has been reported to be activated by interleukin-6 receptor (IL-6R) or epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC), which may have important implications for responsiveness to therapeutics targeted at EGFR, IL-6R, or intermediary kinases. Suppressor of cytokine signaling-1 (SOCS-1) has been implicated recently in the negative regulation of IL-6R/Janus-activated kinase (JAK)-mediated activation of STAT3, suggesting that SOCS-1 could affect alternative activation of STAT3 by EGFR, IL-6R, and associated kinases. We investigated whether epigenetic modification of SOCS-1 affects STAT3 activation in response to IL-6R-, EGFR-, JAK-, or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-mediated signal activation. STAT3 was predominantly activated by IL-6R via Jak1/Jak2 in HNSCC lines UMSCC-9 and UMSCC-38 in association with transcriptional silencing of SOCS-1 by hypermethylation. In UMSCC-11A cells with unmethylated SOCS-1, STAT3 activation was regulated by both EGFR and IL-6R via a JAK-independent pathway involving MEK. Pharmacologic inhibitors of JAK and MEK and expression of SOCS-1 following demethylation or transient transfection inhibited STAT3 activation and cell proliferation and induced cell apoptosis in corresponding cell lines. Hypermethylation of SOCS-1 was found in about one-third of human HNSCC tissues, making it a potentially relevant marker for STAT-targeted therapy in HNSCC patients. We conclude that SOCS-1 methylation status can differentially affect STAT3 activation by IL-6R and EGFR through JAK or MEK in different HNSCC and response to pharmacologic antagonists. Identifying the potential factors and the regulatory pathways in STAT3 activation has important implications for the development and selection of molecularly targeted therapy in HNSCC.

  16. Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Monteiro

    2007-11-01

    Full Text Available Although the concept that dendritic cells (DCs recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R. Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.] in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i. showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+ T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86 is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired

  17. Toll-like receptor 3-induced immune response by poly(d,l-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy.

    Science.gov (United States)

    Han, Hee Dong; Byeon, Yeongseon; Kang, Tae Heung; Jung, In Duk; Lee, Jeong-Won; Shin, Byung Cheol; Lee, Young Joo; Sood, Anil K; Park, Yeong-Min

    Dendritic cells (DCs) are potent professional antigen-presenting cells that are capable of initiating a primary immune response and activating T cells, and they play a pivotal role in the immune responses of the host to cancer. Prior to antigen presentation, efficient antigen and adjuvant uptake by DCs is necessary to induce their maturation and cytokine generation. Nanoparticles (NPs) are capable of intracellular delivery of both antigen and adjuvant to DCs. Here, we developed an advanced poly(d,l-lactide-co-glycolide) (PLGA)-NP encapsulating both ovalbumin (OVA) as a model antigen and polyinosinic-polycytidylic acid sodium salt (Toll-like receptor 3 ligand) as an adjuvant to increase intracellular delivery and promote DC maturation. The PLGA-NPs were taken up by DCs, and their uptake greatly facilitated major histocompatibility class I antigen presentation in vitro. Moreover, vaccination with PLGA-NP-treated DCs led to the generation of ovalbumin-specific CD8 + T cells, and the resulting antitumor efficacy was significantly increased in EG.7 and TC-1 tumor-bearing mice compared to control mice ( P effective method for delivering tumor-specific antigens or adjuvants to DCs.

  18. Toll-like Receptors 4 and 5 Cooperatively Initiate the Innate Immune Responses to Uropathogenic Escherichia coli Infection in Mouse Epididymal Epithelial Cells.

    Science.gov (United States)

    Cheng, Lijing; Chen, Qiaoyuan; Zhu, Weiwei; Wu, Han; Wang, Qing; Shi, Lili; Zhao, Xiang; Han, Daishu

    2016-03-01

    Uropathogenic Escherichia coli (UPEC) may cause epididymitis and impair male fertility. The mechanisms underlying the innate immune responses to UPEC infection in the epididymis are not fully understood. This study showed that UPEC induced innate immune responses in mouse epididymal epithelial cells (EECs) through the activation of Toll-like receptor 4 (TLR4) and TLR5. Infection with UPEC significantly induced the expression of proinflammatory cytokines, including tumor necrosis factor alpha, interleukin 6, and monocyte chemoattractant protein 1, in EECs through the activation of nuclear factor kappa B. Moreover, UPEC induced the production of type 1 interferons by EECs through the activation of interferon regulatory factor 3. The UPEC-induced innate immune responses were significantly reduced in the EECs of Tlr4 or Tlr5 knockout mice. The innate immune responses were further reduced in Tlr4 and Tlr5 double-knockout EECs. Furthermore, we demonstrated that TLR4 and TLR5 cooperatively initiated the epididymal innate immune responses to UPEC infection in vivo. The results provide novel insights into the mechanisms underlying the epididymal innate immune responses to UPEC infection. © 2016 by the Society for the Study of Reproduction, Inc.

  19. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  20. Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection.

    Science.gov (United States)

    Chucair-Elliott, Ana J; Gurung, Hem R; Carr, Meghan M; Carr, Daniel J J

    2017-09-01

    Herpes simplex virus type-1 (HSV-1) is a leading cause of neurotrophic keratitis, characterized by decreased or absent corneal sensation due to damage to the sensory corneal innervation. We previously reported the elicited immune response to infection contributes to the mechanism of corneal nerve regression/damage during acute HSV-1 infection. Our aim is to further establish the involvement of infiltrated macrophages in the mechanism of nerve loss upon infection. Macrophage Fas-Induced Apoptosis (MAFIA) transgenic C57BL/6 mice were systemically treated with AP20187 dimerizer or vehicle (VEH), and their corneas, lymph nodes, and blood were assessed for CD45+CD11b+GFP+ cell depletion by flow cytometry (FC). Mice were ocularly infected with HSV-1 or left uninfected. At 2, 4, and/or 6 days post infection (PI), corneas were assessed for sensitivity and harvested for FC, nerve structure by immunohistochemistry, viral content by plaque assay, soluble factor content by suspension array, and activation of signaling pathways by Western blot analysis. C57BL6 mice were used to compare to the MAFIA mouse model. MAFIA mice treated with AP20187 had efficient depletion of CD45+CD11b+GFP+ cells in the tissues analyzed. The reduction of CD45+CD11b+GFP+ cells recruited to the infected corneas of AP20187-treated mice correlated with preservation of corneal nerve structure and function, decreased protein concentration of inflammatory cytokines, and decreased STAT3 activation despite no changes in viral content in the cornea compared to VEH-treated animals. Our results suggest infiltrated macrophages are early effectors in the nerve regression following HSV-1 infection. We propose the neurodegeneration mechanism involves macrophages, local up-regulation of IL-6, and activation of STAT3.

  1. Differential protective effects of exenatide, an agonist of GLP-1 receptor and Piragliatin, a glucokinase activator in beta cell response to streptozotocin-induced and endoplasmic reticulum stresses.

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    Full Text Available BACKGROUND: Agonists of glucagon-like peptide-1 receptor (GLP-1R and glucokinase activators (GKA act as antidiabetic agents by their ability protect beta cells, and stimulate insulin secretion. Oxidative and endoplasmic reticulum (ER stresses aggravate type 2 diabetes by causing beta cell loss. It was shown that GLP-1R agonists protect beta cells from oxidative and ER stresses. On the other hand, little is known regarding how GKAs protect beta cells. We hypothesized that GKAs protect beta cells by mechanisms distinct from those underlying GLP-1R agonist and tested our hypothesis by comparing the molecular effects of exenatide, a GLP-1R agonist, and piragliatin, a GKA, on INS-1 cells under oxidative and ER-induced stresses. METHODS: BETA CELLS WERE TREATED WITH STREPTOZOTOCIN (STZ TO INDUCE OXIDATIVE STRESS AND WITH PALMITATE OR THAPSIGARGIN (TG TO INDUCE ER STRESS RESPECTIVELY, AND THE EFFECTS OF EXENATIDE AND PIRAGLIATIN ON THESE CELLS WERE INVESTIGATED BY: a characterizing the kinases involved employing specific kinase inhibitors, and b by identifying the differentially regulated proteins in response to stresses with proteomic analysis. RESULTS: Exenatide protected INS-1 cells from both ER and STZ-induced death. In contrast, piragliatin rescued the cells only from STZ-induced stress. Akt activation by exenatide appeared to contribute to its protective effects of beta cells while enhanced glucose utilization was the contributing factor in the case of piragliatin. Also, exenatide, not piragliatin, blocked changes in proteins 14-3-3β, ε and θ, and preserved the 14-3-3θ levels under the ER stress. Isoform-specific modifications of 14-3-3, and the reduction of 14-3-3θ, commonly associated with beta cell death were assessed. CONCLUSIONS: Exenatide and piragliatin exert distinct effects on beta cell survival and thus on type 2 diabetes. This study which confirmed our hypothesis is also the first to observe specific modulation of 14-3-3 isoform

  2. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response.

    Science.gov (United States)

    Aldinucci, Alessandra; Bonechi, Elena; Manuelli, Cinzia; Nosi, Daniele; Masini, Emanuela; Passani, Maria Beatrice; Ballerini, Clara

    2016-07-08

    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response*

    Science.gov (United States)

    Bonechi, Elena; Manuelli, Cinzia

    2016-01-01

    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1–4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance. PMID:27226579

  4. Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells

    Science.gov (United States)

    Kang, Byong H.; Jensen, Karin J.; Hatch, Jaime A.; Janes, Kevin A.

    2013-01-01

    Many signal transduction cascades are initiated by transmembrane receptors with the presence or absence and abundance of receptors dictating cellular responsiveness. Here, we provide a validated array of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) reagents for high-throughput profiling of the presence and relative abundance of transcripts for 194 transmembrane receptors in the human genome. We found that the qRT-PCR array had greater sensitivity and specificity for the detected receptor transcript profiles compared to conventional oligonucleotide microarrays or exon microarrays. The qRT-PCR array also distinguished functional receptor presence versus absence more accurately than deep sequencing of adenylated RNA species, RNA-seq. By applying qRT-PCR-based receptor transcript profiling to 40 human cell lines representing four main tissues (pancreas, skin, breast, and colon), we identified clusters of cell lines with enhanced signaling capabilities and revealed a role for receptor silencing in defining tissue lineage. Ectopic expression of the interleukin 10 (IL-10) receptor encoding gene IL10RA in melanoma cells engaged an IL-10 autocrine loop not otherwise present in this cell type, which altered signaling, gene expression, and cellular responses to proinflammatory stimuli. Our array provides a rapid, inexpensive, and convenient means for assigning a receptor signature to any human cell or tissue type. PMID:23921087

  5. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Zsolt K. Bali

    2017-09-01

    Full Text Available The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA and acetylcholine (ACh. Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA to assess the contribution of muscarinic ACh receptor (mAChR or α7 nicotinic ACh receptor (nAChR receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline.

  6. Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C on the regulation of Toll-like receptors, adaptor proteins and inflammatory response

    Directory of Open Access Journals (Sweden)

    Weith Andreas

    2005-11-01

    Full Text Available Abstract Background Bacterial and viral exacerbations play a crucial role in a variety of lung diseases including COPD or asthma. Since the lung epithelium is a major source of various inflammatory mediators that affect the immune response, we analyzed the inflammatory reaction of primary lung epithelial cells to different microbial molecules that are recognized by Toll-like receptors (TLR. Methods The effects of TLR ligands on primary small airway epithelial cells were analyzed in detail with respect to cytokine, chemokine and matrix metalloproteinase secretion. In addition, the regulation of the expression of TLRs and their adaptor proteins in small airway epithelial cells was investigated. Results Our data demonstrate that poly(I:C, a synthetic analog of viral dsRNA, mediated the strongest proinflammatory effects among the tested ligands, including an increased secretion of IL-6, IL-8, TNF-α, GM-CSF, GRO-α, TARC, MCP-1, MIP-3α, RANTES, IFN-β, IP-10 and ITAC as well as an increased release of MMP-1, MMP-8, MMP-9, MMP-10 and MMP-13. Furthermore, our data show that poly(I:C as well as type-1 and type-2 cytokines have a pronounced effect on the expression of TLRs and molecules involved in TLR signaling in small airway epithelial cells. Poly(I:C induced an elevated expression of TLR1, TLR2 and TLR3 and increased the gene expression of the general TLR adaptor MyD88 and IRAK-2. Simultaneously, poly(I:C decreased the expression of TLR5, TLR6 and TOLLIP. Conclusion Poly(I:C, an analog of viral dsRNA and a TLR3 ligand, triggers a strong inflammatory response in small airway epithelial cells that is likely to contribute to viral exacerbations of pulmonary diseases like asthma or COPD. The pronounced effects of poly(I:C on the expression of Toll-like receptors and molecules involved in TLR signaling is assumed to influence the immune response of the lung epithelium to viral and bacterial infections. Likewise, the regulation of TLR expression by type

  7. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells.

    Science.gov (United States)

    Liu, Xianfang; Guo, Sen; Liu, Xiangguo; Su, Ling

    2015-11-01

    Epigenetic abnormalities are associated with non-small cell lung cancer (NSCLC) initiation and progression. Epigenetic drugs are being studied and in clinical trials. However, the molecular mechanism underlying the apoptosis by the epigenetic agents remains unclear. SUV39H1 is an important methyl-transferase for lysine 9 on histone H3 and usually related to gene transcriptional suppression, and chaetocin acts as the inhibitor of SUV39H1. We demonstrated here that chaetocin effectively suppressed the growth of multiple lung cancer cells through inducing apoptosis in a death receptor 5 (DR5)-dependent manner. Chaetocin treatment activated endoplasmic reticulum (ER) stress which gave rise to the up-regulation of ATF3 and CHOP. Furthermore, ATF3 and CHOP contributed to the induction of DR5 and subsequent apoptosis. When SUV39H1 was silenced with siRNA, the expression of ATF3, CHOP and DR5 was elevated. Thereafter, knockdown of SUV39H1 induced apoptosis in NSCLC cells. In summary, chaetocin pharmacologically inhibits the activity of SUV39H1 which provokes ER stress and results in up-regulation of ATF3 and CHOP, leading to DR5-dependent apoptosis eventually. These findings provide a novel interpretation on the anti-neoplastic activity of epigenetic drugs as a new therapeutic approach in NSCLC.

  8. STUDY OF THE DYNAMICS AND CELL SURFACE EXPRESSION OF THE COLD RECEPTOR TRPM8 IN RESPONSE TO AGONISTS

    OpenAIRE

    TORO CHACON, CARLOS ALEJANDRO

    2013-01-01

    Una característica inherente a los seres vivos es la capacidad de detectar estímulos presentes en el medioambiente. En mamíferos, la percepción de estímulos requiere de la presencia de canales iónicos ubicados en neuronas sensoriales capaces de detectar y responder a cambios en el entorno. La distribución espacio-temporal de receptores en la membrana plasmática constituye, por ende, un importante mecanismo para controlar la magnitud de las respuestas celulares. Varios canale...

  9. High-Resolution Longitudinal Study of HIV-1 Env Vaccine-Elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence.

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O'Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E; Zhu, Jiang; Xiao, Yongli; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T; Li, Yuxing

    2016-05-01

    Because of the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing Abs to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited Ab responses, we used single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques after five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third CDR of Ig H chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in Ab sequences isolated at the late immunization time point compared with the early time point. Abs with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of Ag affinity selection in Ab maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high-resolution understanding of the dynamically evolving CD4bs-specific B cell response after Env immunization in primates. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. High Resolution Longitudinal Study of HIV-1 Env Vaccine-elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O’Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E.; Zhu, Jiang; Xiao, Yongli; Mascola, John R.; Karlsson Hedestam, Gunilla B.; Wyatt, Richard T.; Li, Yuxing

    2016-01-01

    Due to the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing antibodies to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited antibody responses, we utilized single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques following five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third complementarity determining region (CDR3) of Ig heavy chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in antibody sequences isolated at late immunization time point compared to the early time point. Antibodies with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of antigen affinity selection in antibody maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high resolution understanding of the dynamically evolving CD4bs-specific B cell response following Env immunization in primates. PMID:27001953

  11. Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

    Science.gov (United States)

    Fu, Yan; Browne, John A.; Killick, Kate; Mulcahy, Grace

    2017-01-01

    The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG) from ovine peripheral blood mononuclear cells (PBMCs) at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first) were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only favors parasite

  12. Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2017-04-01

    Full Text Available The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG from ovine peripheral blood mononuclear cells (PBMCs at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only

  13. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  14. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  15. Breast cancer progression in MCF10A series of cell lines is associated with alterations in retinoic acid and retinoid X receptors and with differential response to retinoids.

    Science.gov (United States)

    Peng, Xinjian; Yun, Duri; Christov, Konstantin

    2004-10-01

    In most breast carcinomas and in breast cancer cell lines, retinoic acid receptor beta (RARbeta) is lost or down-regulated, whereas retinoic acid receptor alpha and gamma (RARalpha, gamma) and retinoid X receptors (RXRalpha, beta, gamma) are variably expressed. Little is known about alterations of the above receptors in hyperplastic and premalignant stages of breast cancer development. In this study, we employed the MCF10A series of breast epithelial cell lines (the parental and benign MCF10A, premalignant MCF10AT, and malignant MCF10CA1a) to assess whether in the course of their malignant transformation specific alterations in RARalpha, beta, gamma and RXRalpha, beta, gamma expression occur and whether they may affect the sensitivity of cells to retinoids. Malignant properties of the above cell lines were estimated by the nude mice xenograft transplantation assay. Among the above receptors most significant alterations occurred in RARbeta2, which was detected in the normal breast epithelial cells both, at mRNA and protein levels, but expressed in the MCF10A cell lines at mRNA level only. The transformation of benign MCF10A cells into premalignant MCF10AT and malignant MCF10CA1a was also associated with increase in RARalpha, RARgamma, RXRalpha, and RXRbeta proteins expression. All-trans retinoic acid (atRA), 9-cis retinoic acid (9cRA), and 4-(hydroxyphenyl) retinamide (4-HPR) induced RARbeta2 protein expression exclusively in the benign MCF10A cells and the former two retinoids, mRNA expression in MCF10A and MCF10AT cells, but not in malignant, MCF10CA1a cells, suggesting that the loss of inducible RARbeta expression is associated with the progression and malignant transformation of MCF10A cells. Retinoids also variable decreased the RARalpha, RARgamma and RXRalpha protein expression preferentially in the premalignant and malignant, but not in benign MCF10A cells. Among the above retinoids, 4-HPR was most efficacious in inhibiting the growth of the three cell lines

  16. Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Kelly, Marcus P; Ramakrishna, Venky; Vitale, Laura; He, Li-Zhen; Keler, Tibor; Odunsi, Kunle; Old, Lloyd J; Ritter, Gerd; Gnjatic, Sacha

    2011-01-15

    Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.

  17. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  18. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  19. Fungal pattern-recognition receptors and tetraspanins: partners on antigen-presenting cells.

    NARCIS (Netherlands)

    Figdor, C.G.; Spriel, A.B. van

    2010-01-01

    Fungal pattern-recognition receptors (F-PRRs), including C-type lectins, Toll-like receptors, scavenger receptors and Fc/complement receptors, are crucial for inducing anti-fungal immune responses by antigen-presenting cells. The recent identification of specific F-PRR interactions with tetraspanins

  20. GLA-SE, a Synthetic Toll-like Receptor 4 Agonist, Enhances T-Cell Responses to Influenza Vaccine in Older Adults

    NARCIS (Netherlands)

    Behzad, Hayedeh; Huckriede, Anke L. W.; Haynes, Laura; Gentleman, Beth; Coyle, Krysta; Wilschut, Jan C.; Kollmann, Tobias R.; Reed, Steven G.; McElhaney, Janet E.

    2012-01-01

    Background. The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. Methods. The Toll-like receptor 4 agonist

  1. Altered peptide ligands can modify the Th2 T cell response to the immunodominant 161-175 peptide of LACK (Leishmania homolog for the receptor of activated C kinase).

    Science.gov (United States)

    Jensen, Kirk D C; Sercarz, Eli E; Gabaglia, Claudia Raja

    2009-01-01

    Following Leishmania major infection, the early LACK (Leishmania homolog of receptors for activated C kinase)-induced IL-4 response appears to determine disease susceptibility in BALB/c mice. Therefore, we sought to manipulate the pathogenic T cell responses to the immunodominant epitope with the use of altered peptide ligands (APLs). Conservative and non-conservative substitutions for each amino acid of the LACK 161-175 peptide determinant were tested for their stimulatory capacity in four different LACK-reactive T cell systems. From these results, we propose a likely LACK 163-171/I-A(d) core peptide register and show that APLs with changes at putative T cell receptor (TCR) contacts provide the greatest potential for immune deviation. In particular, the TCR-contact H164V APL expanded Th1 cells upon in vitro recall of naïve splenocytes from LACK-specific BV4 T cell receptor transgenic mice and stimulated IFN-gamma secretion from a Th2-committed LACK-reactive T cell line. We also observed that non-conservative substitutions flanking the core determinant had strong agonistic effects for proliferation and Th1/Th2 modulation. However, upon immunization, the H164V APL considerably downregulated proliferation and cytokine responses to the wild type LACK 161-175 peptide, while immunization with the weak agonist, MHC contact APL S171K, increased the IFN-gamma/IL-4 ratio to the wild type peptide. In these instances, a hyporesponsive T cell response to the wild-type peptide was achieved by immunizing with an APL possessing non-conservative substitutions at TCR contact sites, while immune deviation was accomplished using a weak-agonist APL that retained the core determinant. Thus, certain LACK-APLs are able to induce T cell responses with a protective phenotype in an infectious disease such as leishmaniasis.

  2. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  3. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  4. Correlated receptor transport processes buffer single-cell heterogeneity.

    Science.gov (United States)

    Kallenberger, Stefan M; Unger, Anne L; Legewie, Stefan; Lymperopoulos, Konstantinos; Klingmüller, Ursula; Eils, Roland; Herten, Dirk-Peter

    2017-09-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  5. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  6. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  7. Regulation of cell polarity by cell adhesion receptors.

    Science.gov (United States)

    Ebnet, Klaus; Kummer, Daniel; Steinbacher, Tim; Singh, Amrita; Nakayama, Masanori; Matis, Maja

    2017-07-22

    The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus

    Directory of Open Access Journals (Sweden)

    Luisa C. Carneiro

    2017-08-01

    Full Text Available Bovine herpesvirus-4 (BoHV-4 and bovine viral diarrhea virus (BVDV infect the uterus of cattle, often resulting in reduced fertility, or abortion of the fetus, respectively. Here, exposure of primary bovine endometrial cells to BoHV-4 or BVDV modulated the production of inflammatory mediators. Viral pathogen-associated molecular patterns (PAMPs are detected via pattern-recognition receptors (PRRs. However, the relative contribution of specific PRRs to innate immunity, during viral infection of the uterus, is unclear. Endometrial epithelial and stromal cells constitutively express the PRR Toll-like receptor (TLR-3, but, the status of retinoic acid-inducible gene I (RIG-I, a sensor of cytosolic nucleic acids, is unknown. Primary endometrial epithelial and stromal cells had low expression of RIG-I, which was increased in stromal cells after 12 h transfection with the TLR3 ligand Poly(I:C, a synthetic analog of double-stranded RNA. Furthermore, short interfering RNA targeting TLR3, or interferon (IFN regulatory transcription factor 3, an inducer of type I IFN transcription, reduced Poly(I:C-induced RIG-I protein expression and reduced inflammatory mediator secretion from stromal cells. We conclude that antiviral defense of endometrial stromal cells requires coordinated recognition of PAMPs, initially via TLR3 and later via inducible RIG-I.

  9. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  10. Nuclear translocation of MEK1 triggers a complex T cell response through the corepressor silencing mediator of retinoid and thyroid hormone receptor.

    Science.gov (United States)

    Guo, Lei; Chen, Chaoyu; Liang, Qiaoling; Karim, Mohammad Zunayet; Gorska, Magdalena M; Alam, Rafeul

    2013-01-01

    MEK1 phosphorylates ERK1/2 and regulates T cell generation, differentiation, and function. MEK1 has recently been shown to translocate to the nucleus. Its nuclear function is largely unknown. By studying human CD4 T cells, we demonstrate that a low level of MEK1 is present in the nucleus of CD4 T cells under basal conditions. T cell activation further increases the nuclear translocation of MEK1. MEK1 interacts with the nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptor (SMRT). MEK1 reduces the nuclear level of SMRT in an activation-dependent manner. MEK1 is recruited to the promoter of c-Fos upon TCR stimulation. Conversely, SMRT is bound to the c-Fos promoter under basal conditions and is removed upon TCR stimulation. We examined the role of SMRT in regulation of T cell function. Small interfering RNA-mediated knockdown of SMRT results in a biphasic effect on cytokine production. The production of the cytokines IL-2, IL-4, IL-10, and IFN-γ increases in the early phase (8 h) and then decreases in the late phase (48 h). The late-phase decrease is associated with inhibition of T cell proliferation. The late-phase inhibition of T cell activation is, in part, mediated by IL-10 that is produced in the early phase and, in part, by β-catenin signaling. Thus, we have identified a novel nuclear function of MEK1. MEK1 triggers a complex pattern of early T cell activation, followed by a late inhibition through its interaction with SMRT. This biphasic dual effect most likely reflects a homeostatic regulation of T cell function by MEK1.

  11. Retinoid-X-receptors (α/β in melanocytes modulate innate immune responses and differentially regulate cell survival following UV irradiation.

    Directory of Open Access Journals (Sweden)

    Daniel J Coleman

    2014-05-01

    Full Text Available Understanding the molecular mechanisms of ultraviolet (UV induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/β. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/β. Loss of RXRs α/β specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a "non-cell autonomous" manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a "cell autonomous" manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.

  12. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Palchetti, Sara; Starace, Donatella; De Cesaris, Paola; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna

    2015-02-27

    Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Science.gov (United States)

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  15. Dynamics of Corticosteroid Receptors: Lessons from Live Cell Imaging

    International Nuclear Information System (INIS)

    Nishi, Mayumi

    2011-01-01

    Adrenal corticosteroids (cortisol in humans or corticosterone in rodents) exert numerous effects on the central nervous system that regulates the stress response, mood, learning and memory, and various neuroendocrine functions. Corticosterone (CORT) actions in the brain are mediated via two receptor systems: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). It has been shown that GR and MR are highly colocalized in the hippocampus. These receptors are mainly distributed in the cytoplasm without hormones and translocated into the nucleus after treatment with hormones to act as transcriptional factors. Thus the subcellular dynamics of both receptors are one of the most important issues. Given the differential action of MR and GR in the central nervous system, it is of great consequence to clarify how these receptors are trafficked between cytoplasm and nucleus and their interactions are regulated by hormones and/or other molecules to exert their transcriptional activity. In this review, we focus on the nucleocytoplasmic and subnuclear trafficking of GR and MR in neural cells and non-neural cells analyzed by using molecular imaging techniques with green fluorescent protein (GFP) including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET), and discuss various factors affecting the dynamics of these receptors. Furthermore, we discuss the future directions of in vivo molecular imaging of corticosteroid receptors at the whole brain level

  16. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder.

    Science.gov (United States)

    Kéri, Szabolcs; Szabó, Csilla; Kelemen, Oguz

    2014-08-01

    In recent years, increased attention has been paid to the inflammatory mechanisms of major depressive disorder (MDD). The aim of the present study was to investigate pro-inflammatory pathways related to the "leaky gut" hypothesis of MDD, which is based on the putative intestinal translocation of Gram-negative bacteria and a subsequent abnormal immune response mediated by the Toll-Like Receptor-4 (TLR-4) pathway. 50 patients with first-episode MDD and 30 healthy control subjects participated in the study. Real-time quantitative PCR was used to measure TLR-4 and TLR-2 RNA from peripheral mononuclear blood cells, as well as the expression of NF-κβ, a key transcription factor of the pro-inflammatory response. TLR-4 protein expression was determined by using flow cytometry. TLR-2 served as a control molecule. Low-grade inflammation was characterized by the measurement of interleukin-6 (IL-6) and C-reactive protein (CRP). Bacterial translocation was investigated by the measurement of the 16S rRNA subunit (16S rDNA) of intestinal microbiota in the blood plasma of the participants. We performed these analyses before (t1) and after (t2) cognitive-behavioral therapy (CBT) in MDD. The healthy control subjects were also assessed two times. We found significantly elevated expressions of all three markers (TLR-4 RNA and protein, NF-κβ RNA) and 16S rDNA in MDD at t1 relative to healthy control subjects. These markers showed a significant decrease during CBT (t1>t2 in MDD). We observed no between-group differences and changes in the case of TLR-2. Greater reduction of pro-inflammatory markers during CBT was associated with more pronounced clinical improvement. IL-6 and CRP displayed a moderately elevated level in MDD and did not change during CBT. In conclusion, TLR-4 signaling is up-regulated in newly diagnosed patients with MDD, which may be related to bacterial translocation or to the presence of various damage-associated molecular patterns. Clinical improvement during

  17. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  18. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4.

    Science.gov (United States)

    Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W

    2014-04-01

    Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Psychedelic N,N-Dimethyltryptamine and 5-Methoxy- N,N-Dimethyltryptamine Modulate Innate and Adaptive Inflammatory Responses through the Sigma-1 Receptor of Human Monocyte-Derived Dendritic Cells

    OpenAIRE

    Szabó, Attila; Kovács, Attila; Frecska, Ede; Rajnavölgyi, Éva

    2014-01-01

    The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dim...

  20. Involvement of 1,25D{sub 3}-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Cynthia L. [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Farach-Carson, Mary C.; Rohe, Ben [Department of Biological Sciences, University of Delaware, Newark, DE 19716 (United States); Nemere, Ilka [Department of Nutrition and Food Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT 84322 8700 (United States); Meckling, Kelly A., E-mail: kmecklin@uoguelph.ca [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2010-03-10

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.

  1. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  2. Role of paired Ig-like receptor-B in the humoral immune response

    Directory of Open Access Journals (Sweden)

    Toshiyuki Takai

    2004-01-01

    Full Text Available The Ig-like receptors provide positive and negative regulation of immune cells upon recognition of various ligands, thus enabling those cells to respond adequately to extrinsic stimuli. Murine paired Ig-like receptor (PIR-A and PIR-B, a typical receptor pair of the Ig-like receptor family, are expressed on a wide range of cells in the immune system, such as B cells, mast cells, macrophages and dendritic cells, mostly in a pair-wise fashion. The PIR-A requires the homodimeric Fc receptor common y chain for its efficient cell-surface expression and for the delivery of activation signaling. In contrast, PIR-B inhibits receptor-mediated activation signaling in vitro upon engagement with other activating-type receptors, such as the antigen receptor on B cells and the high-affinity Fc receptor for IgE on mast cells. Although the ligands for PIR-A and PIR-B remain unknown, recent studies on PIR-B-deficient mice have provided us with valuable insight into the physiological significance of PIR-B, particularly in its regulatory role in balancing the humoral immune response.

  3. The chicken c-erbA alpha-product induces expression of thyroid hormone-responsive genes in 3,5,3'-triiodothyronine receptor-deficient rat hepatoma cells

    DEFF Research Database (Denmark)

    Muñoz, A; Höppner, W; Sap, J

    1990-01-01

    To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon...... nuclear expression of the cTR-alpha protein the cells become responsive to thyroid hormone, as detected by expression of a number of genes (malic enzyme, phosphoenolpyruvate carboxykinase, and Na+/K(+)-ATPase) reported to be indirectly induced by the hormone in vivo. In addition, our data show that the c......-erbA product directly activates the Moloney murine leukemia virus promoter in a ligand-dependent manner. The data show that the chicken c-erbA-alpha protein can modulate the expression of rat genes under either direct or indirect control by thyroid hormone....

  4. Gene variation in IL-7 receptor (IL-7R)α affects IL-7R response in CD4+ T cells in HIV-infected individuals

    DEFF Research Database (Denmark)

    Hartling, Hans Jakob; Ryder, Lars P.; Ullum, Henrik

    2017-01-01

    Optimal CD4+ T cell recovery after initiating combination antiretroviral treatment (cART) in HIV infection reduces risk of morbidity and mortality. T-allele homozygosity (‘TT’) in the single nucleotide polymorphism, rs6897932(C/T), in the IL-7 receptor α (IL-7RA) is associated with faster CD4+ T...... cell recovery after cART initiation compared to C-allele homozygosity in rs6897932 (‘CC’). However, underlying mechanisms are unknown. We aimed to examine potential mechanisms explaining the association between rs6897932 and CD4+ T cell recovery. Ten ‘TT’ and 10 ‘CC’ HIV-infected individuals matched...... on gender, age, and nadir and current CD4+ T cell counts were included in a cross-sectional study. ‘TT’ individuals had higher proportion of CD4+ T cells expressing pSTAT5 compared to ‘CC’ individuals after stimulating with IL-7, especially when co-stimulated with soluble IL7-RA (sIL-7RA). Furthermore, ‘TT...

  5. NMDA Receptors Contribute to Retrograde Synaptic Transmission from Ganglion Cell Photoreceptors to Dopaminergic Amacrine Cells

    Directory of Open Access Journals (Sweden)

    Lei-Lei Liu

    2017-09-01

    Full Text Available Recently, a line of evidence has demonstrated that the vertebrate retina possesses a novel retrograde signaling pathway. In this pathway, phototransduction is initiated by the photopigment melanopsin, which is expressed in a small population of retinal ganglion cells. These ganglion cell photoreceptors then signal to dopaminergic amacrine cells (DACs through glutamatergic synapses, influencing visual light adaptation. We have previously demonstrated that in Mg2+-containing solution, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA receptors mediate this glutamatergic transmission. Here, we demonstrate that removing extracellular Mg2+ enhances melanopsin-based DAC light responses at membrane potentials more negative than −40 mV. Melanopsin-based responses in Mg2+-free solution were profoundly suppressed by the selective N-methyl-D-aspartate (NMDA receptor antagonist D-AP5. In addition, application of NMDA to the retina produced excitatory inward currents in DACs. These data strongly suggest that DACs express functional NMDA receptors. We further found that in the presence of Mg2+, D-AP5 reduced the peak amplitude of melanopsin-based DAC responses by ~70% when the cells were held at their resting membrane potential (−50 mV, indicating that NMDA receptors are likely to contribute to retrograde signal transmission to DACs under physiological conditions. Moreover, our data show that melanopsin-based NMDA-receptor-mediated responses in DACs are suppressed by antagonists specific to either the NR2A or NR2B receptor subtype. Immunohistochemical results show that NR2A and NR2B subunits are expressed on DAC somata and processes. These results suggest that DACs express functional NMDA receptors containing both NR2A and NR2B subunits. Collectively, our data reveal that, along with AMPA receptors, NR2A- and NR2B-containing NMDA receptors mediate retrograde signal transmission from ganglion cell photoreceptors to DACs.

  6. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12.

    OpenAIRE

    Hamerman, Jessica A; Tchao, Nadia K; Lowell, Clifford A; Lanier, Lewis L

    2005-01-01

    DAP12 is a signaling adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) that pairs with receptors on myeloid cells and natural killer cells. We examine here the responses of mice lacking DAP12 to stimulation through Toll-like receptors (TLRs). Unexpectedly, DAP12-deficient macrophages produced higher concentrations of inflammatory cytokines in response to a variety of pathogenic stimuli. Additionally, macrophages deficient in spleen tyrosine kinase (Syk), which signal...

  7. Aberrant plasma IL-7 and soluble IL-7 receptor levels indicate impaired T-cell response to IL-7 in human tuberculosis.

    Directory of Open Access Journals (Sweden)

    Christian Lundtoft

    2017-06-01

    Full Text Available T-cell proliferation and generation of protective memory during chronic infections depend on Interleukin-7 (IL-7 availability and receptivity. Regulation of IL-7 receptor (IL-7R expression and signalling are key for IL-7-modulated T-cell functions. Aberrant expression of soluble (s and membrane-associated (m IL-7R molecules is associated with development of autoimmunity and immune failure in acquired immune deficiency syndrome (AIDS patients. Here we investigated the role of IL-7/IL-7R on T-cell immunity in human tuberculosis. We performed two independent case-control studies comparing tuberculosis patients and healthy contacts. This was combined with follow-up examinations for a subgroup of tuberculosis patients under therapy and recovery. Blood plasma and T cells were characterised for IL-7/sIL-7R and mIL-7R expression, respectively. IL-7-dependent T-cell functions were determined by analysing STAT5 phosphorylation, antigen-specific cytokine release and by analysing markers of T-cell exhaustion and inflammation. Tuberculosis patients had lower soluble IL-7R (p < 0.001 and higher IL-7 (p < 0.001 plasma concentrations as compared to healthy contacts. Both markers were largely independent and aberrant expression normalised during therapy and recovery. Furthermore, tuberculosis patients had lower levels of mIL-7R in T cells caused by post-transcriptional mechanisms. Functional in vitro tests indicated diminished IL-7-induced STAT5 phosphorylation and impaired IL-7-promoted cytokine release of Mycobacterium tuberculosis-specific CD4+ T cells from tuberculosis patients. Finally, we determined T-cell exhaustion markers PD-1 and SOCS3 and detected increased SOCS3 expression during therapy. Only moderate correlation of PD-1 and SOCS3 with IL-7 expression was observed. We conclude that diminished soluble IL-7R and increased IL-7 plasma concentrations, as well as decreased membrane-associated IL-7R expression in T cells, reflect impaired T-cell

  8. The thyroid hormone receptors modulate the skin response to retinoids.

    Directory of Open Access Journals (Sweden)

    Laura García-Serrano

    Full Text Available Retinoids play an important role in skin homeostasis and when administered topically cause skin hyperplasia, abnormal epidermal differentiation and inflammation. Thyroidal status in humans also influences skin morphology and function and we have recently shown that the thyroid hormone receptors (TRs are required for a normal proliferative response to 12-O-tetradecanolyphorbol-13-acetate (TPA in mice.We have compared the epidermal response of mice lacking the thyroid hormone receptor binding isoforms TRα1 and TRβ to retinoids and TPA. Reduced hyperplasia and a decreased number of proliferating cells in the basal layer in response to 9-cis-RA and TPA were found in the epidermis of TR-deficient mice. Nuclear levels of proteins important for cell proliferation were altered, and expression of keratins 5 and 6 was also reduced, concomitantly with the decreased number of epidermal cell layers. In control mice the retinoid (but not TPA induced parakeratosis and diminished expression of keratin 10 and loricrin, markers of early and terminal epidermal differentiation, respectively. This reduction was more accentuated in the TR deficient animals, whereas they did not present parakeratosis. Therefore, TRs modulate both the proliferative response to retinoids and their inhibitory effects on skin differentiation. Reduced proliferation, which was reversed upon thyroxine treatment, was also found in hypothyroid mice, demonstrating that thyroid hormone binding to TRs is required for the normal response to retinoids. In addition, the mRNA levels of the pro-inflammatory cytokines TNFα and IL-6 and the chemotactic proteins S1008A and S1008B were significantly elevated in the skin of TR knock-out mice after TPA or 9-cis-RA treatment and immune cell infiltration was also enhanced.Since retinoids are commonly used for the treatment of skin disorders, these results demonstrating that TRs regulate skin proliferation, differentiation and inflammation in response to

  9. Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Szabo, Attila; Kovacs, Attila; Frecska, Ede; Rajnavolgyi, Eva

    2014-01-01

    The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs) activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor.

  10. Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Attila Szabo

    Full Text Available The orphan receptor sigma-1 (sigmar-1 is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT, its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor.

  11. Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aromatase gene in a highly responsive glial cell system.

    Science.gov (United States)

    Le Page, Yann; Scholze, Martin; Kah, Olivier; Pakdel, Farzad

    2006-05-01

    The brain cytochrome P450 aromatase (Aro-B) in zebrafish is expressed in radial glial cells and is strongly stimulated by estrogens (E2); thus, it can be used in vivo as a biomarker of xenoestrogen effects on the central nervous system. By quantitative real-time polymerase chain reaction, we first confirmed that the expression of Aro-B gene is robustly stimulated in juvenile zebrafish exposed to several xenoestrogens. To investigate the impact of environmental estrogenic chemicals on distinct estrogen receptor (ER) activity, we developed a glial cell-based assay using Aro-B as the target gene. To this end, the ER-negative glial cell line U251-MG was transfected with the three zebrafish ER subtypes and the Aro-B promoter linked to a luciferase reporter gene. E2 treatment of U251-MG glial cells cotransfected with zebrafish ER-alpha and the Aro-B promoter-luciferase reporter resulted in a 60- to 80-fold stimulation of luciferase activity. The detection limit was xenoestrogens leads to an enhancement of the estrogenic potency, even when each single agent might be present at low effect concentrations. In conclusion, we demonstrate that our bioassay provides a fast, reliable, sensitive, and efficient test for evaluating estrogenic potency of endocrine disruptors on ER subtypes in a glial context.

  12. Active Hexose Correlated Compound (AHCC) promotes an intestinal immune response in BALB/c mice and in primary intestinal epithelial cell culture involving toll-like receptors TLR-2 and TLR-4.

    Science.gov (United States)

    Mallet, Jean-François; Graham, Émilie; Ritz, Barry W; Homma, Kohei; Matar, Chantal

    2016-02-01

    Active Hexose Correlated Compound (AHCC(®)) is a cultured mushroom extract that is commercially available and promoted for immune support. Available data suggest that AHCC supplementation affects immune cell populations and immune outcomes, including natural killer cell response to infection. The mechanism by which AHCC exerts its effects is not well understood. The present work aimed to characterize the immunomodulatory activity of AHCC in the gut and to study the effects of AHCC on toll-like receptor (TLR) signaling in intestinal epithelial cells (IECs). BALB/c mice were fed AHCC by gavage. In vivo activities were assessed by immunohistochemistry and cytokine production. The effects of AHCC on ex vivo primary cell culture from IECs were examined after challenge with LPS or E. coli alone or in the presence of anti-TLR-2 and TLR-4 blocking antibodies. Feeding AHCC resulted in increased IgA+ cells in the intestine and increased sIgA, IL-10, and IFN-γ in the intestinal fluid. In IECs, contact with AHCC increased IL-6 production but not to the pro-inflammatory level of positive controls, LPS and E. coli. Blocking TLR-2 and TLR-4 reduced the induction of IL-6 by AHCC, suggesting that these innate receptors are involved in generating the immune response of IECs to AHCC. AHCC may play a role in the orchestration of immune response and the maintenance of immune homeostasis in part by priming the TLR-2 and TLR-4 gate at the intestinal epithelium. Such a response is likely due to the recognition of non-pathogenic food-associated molecular patterns (FAMPs) such as those found associated with other mushroom or yeast-derived compounds.

  13. Toll-like receptor 4 polymorphism associated with the response to whole-cell pertussis vaccination in children from the KOALA study

    NARCIS (Netherlands)

    Banus, Sander; Bottema, Renske W. B.; Siezen, Christine L. E.; Vandebriel, Rob J.; Reimerink, Johan; Mommers, Monique; Koppelman, Gerard H.; Hoebee, Barbara; Thijs, Carel; Postma, Dirkje S.; Kimman, Tjeerd G.; Stelma, Foekje F.

    2007-01-01

    We examined the association between haplotype tagging single-nucleotide polymorphisms in TLR4 and the pertussis toxin-specific immunoglobulin G response after whole-cell pertussis (wP) vaccination in 515 1-year-old children from the KOALA study. A lower titer was associated with the minor allele of

  14. Stimulation of nAchRα7 Receptor Inhibits TNF Synthesis and Secretion in Response to LPS Treatment of Mast Cells by Targeting ERK1/2 and TACE Activation.

    Science.gov (United States)

    Guzmán-Mejía, F; López-Rubalcava, C; González-Espinosa, C

    2018-03-01

    The cholinergic anti-inflammatory pathway is recognized as one of the main mechanisms of neuromodulation of the immune system. Activation of the α7 nicotinic acetylcholine receptor (nAchRα7) suppresses cytokine synthesis in distinct immune cells but the molecular mechanisms behind this effect remain to be fully described. Mast cells (MCs) are essential players of allergic reactions and innate immunity responses related to chronic inflammation. Activation of TLR4 receptor in MCs leads to the rapid secretion of pre-synthesized TNF from intracellular pools and to the activation of NFκB, necessary for de novo synthesis of TNF and other cytokines. Here we report that the nAchRα7 receptor specific agonist GTS-21 inhibits TLR4-induced secretion of preformed TNF from MCs in vivo and in vitro. Utilizing bone marrow-derived mast cells (BMMCs) it was found that GTS-21 also diminished secretion of de novo synthesized TNF, TNF mRNA accumulation and IKK-dependent p65-NFκB phosphorylation in response to LPS. nAchRα7 triggering prevented TLR4-induced ERK1/2 phosphorylation, which resulted an essential step for TNF secretion due to the phosphorylation of the metallopeptidase responsible for TNF maturation (TACE). Main inhibitory actions of GTS-21 were prevented by AG490, an inhibitor of JAK-2 kinase. Our results show for the first time, that besides the prevention of NFκB-dependent transcription, inhibitory actions of nAchRα7 triggering include the blockade of pathways leading to exocytosis of granule-stored cytokines in MCs.

  15. Killer Cell Immunoglobulin-like Receptors and their Ligands

    Directory of Open Access Journals (Sweden)

    Tajik N.

    2010-09-01

    Full Text Available The Natural killer (NK cells are a subset of lymphocytes comprising around 10% of total lymphocytes in peripheral blood. Due to their role in the innate response, NK cells provide a ‘first line of defense’ against infectious agents and cancer and are also thought to play a role in autoimmunity. The killer cell immunoglobulin-like receptors (KIR are regulatory surface molecules, found on NK cells and on a subset of T lymphocytes. The genes for KIR are present on chromosome 19 in the leukocyte receptor complex and show a major difference for both the type and number of KIR genes present among different ethnic groups. They have been divided into two groups of 2D or 3D, depending on the number of external immunoglobulin domains. The presence of a long cytoplasmic tail with two immune tyrosine-based inhibitory motifs (ITIM allows the transduction of inhibitory signals and characterizes the inhibitory KIRs (2DL and 3DL, whereas the presence of short cytoplasmic tails corresponds to the activating KIR receptors (2DS and 3DS.These polymorphic receptors interact with specific motifs on human leukocyte antigen (HLA class I molecules, modulate NK cytolytic activity. Some KIRs are known to interact with HLA-C molecules of target cells, HLA-Bw4 molecules and HLA-A3/11. For some KIRs the corresponding ligands are still unknown.

  16. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  17. HIV exposed seronegative (HESN compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness.

    Directory of Open Access Journals (Sweden)

    Elise Jackson

    Full Text Available Previously, we showed that Killer Immunoglobulin-like Receptor (KIR3DS1 homozygotes (hmz are more frequent in HIV exposed seronegative (HESN than in recently HIV infected (HIV+ individuals. KIR3DS1 encodes an activating Natural Killer (NK cell receptor (NKR. The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.

  18. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness.

    Science.gov (United States)

    Jackson, Elise; Zhang, Cindy Xinyu; Kiani, Zahra; Lisovsky, Irene; Tallon, Benjamin; Del Corpo, Alexa; Gilbert, Louise; Bruneau, Julie; Thomas, Réjean; Côté, Pierre; Trottier, Benoit; LeBlanc, Roger; Rouleau, Danielle; Tremblay, Cécile; Tsoukas, Christos M; Routy, Jean-Pierre; Ni, Xiaoyan; Mabanga, Tsoarello; Bernard, Nicole F

    2017-01-01

    Previously, we showed that Killer Immunoglobulin-like Receptor (KIR)3DS1 homozygotes (hmz) are more frequent in HIV exposed seronegative (HESN) than in recently HIV infected (HIV+) individuals. KIR3DS1 encodes an activating Natural Killer (NK) cell receptor (NKR). The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.

  19. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  20. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner.

    Directory of Open Access Journals (Sweden)

    Samit Chatterjee

    2011-11-01

    Full Text Available Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG has been used as a tuberculosis (TB vaccine since its development in 1921. BCG induces robust T helper 1 (Th1 immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6, expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1 exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1. However, TLR-2 knockout (TLR-2⁻/⁻ animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a in dendritic cells (DCs, whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.

  1. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  2. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Expression and role of Fc- and complement-receptors on human dendritic cells.

    Science.gov (United States)

    Bajtay, Zsuzsa; Csomor, Eszter; Sándor, Noémi; Erdei, Anna

    2006-04-15

    Dendritic cells (DCs) are professional antigen presenting cells, which take up pathogens/foreign structures in peripheral tissues, then migrate to secondary lymphoid organs where they initiate adaptive immune responses by activating naive T-cells. In the early phase of antigen uptake pattern recognition receptors (including mannose-, scavenger- and toll-like receptors) that recognize pathogen-associated molecular patterns play an important role. Later receptors binding opsonized antigen are also involved in phagocytosis. These cell membrane molecules include various Fc-receptors, recognizing different isotypes of antibodies and various complement-receptors, such as CR3, CR4 and the C1q-binding complex of calreticulin and CD91. Here we aim to summarize how these immunecomplex binding receptors are involved in the initiation of DC maturation, and how they influence antigen presentation as well as some additional functions of these cells.

  4. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.

  5. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors

    Science.gov (United States)

    Harris, Daniel T.; Kranz, David M.

    2016-01-01

    The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both. PMID:26705086

  6. T cell antigen receptor activation and actin cytoskeleton remodeling

    Science.gov (United States)

    Kumari, Sudha; Curado, Silvia; Mayya, Viveka

    2013-01-01

    T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to formation of an “immunological synapse” [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2, 3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. PMID:23680625

  7. Glucocorticoid Receptors and the Pattern of Steroid Response in ...

    African Journals Online (AJOL)

    CD3+) expression of glucocorticoid receptors (GCR) and the response to glucocorticoid treatment in children with idiopathic nephrotic syndrome (NS). The aim of the current study is to determine whether steroid responsiveness is dependent on ...

  8. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  9. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    Science.gov (United States)

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  10. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  11. Elementary Steps in T Cell Receptor Triggering

    OpenAIRE

    Dushek, Omer

    2012-01-01

    The mechanism by which antigen binding to the T cell antigen receptor (TCR) generates intracellular signaling, a process termed TCR triggering, is incompletely understood. A large body of experimental evidence has implicated multiple biophysical/biochemical effects and multiple molecules in the process of TCR triggering, which likely reflect the uniquely demanding role of the TCR in recognizing diverse antigenic ligands. In this perspective, I propose that breaking down the process of TCR tri...

  12. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  13. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  14. Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells

    NARCIS (Netherlands)

    Heijink, Irene H; Vellenga, Edo; Borger, Peter; Postma, Dirkje S; Monchy, Jan G R de; Kauffman, Henk F

    1 The adenylyl cyclase (AC)/cyclic adenosine monophosphate (cAMP) system is known to negatively regulate transcriptional activity of T cells, thereby possibly modulating T-cell-mediated responses at the sites of inflammation. Effects of cAMP have been widely studied in freshly isolated T cells and

  15. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-04-03

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  16. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  17. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  18. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir

    2009-01-01

    Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably...... in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor...

  19. Cell response to surgery.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    OBJECTIVES: To describe the profound alterations in host immunity that are produced by major surgery as demonstrated by experimental and clinical studies, and to evaluate the benefits of therapeutic strategies aimed at attenuating perioperative immune dysfunction. DATA SOURCES: A review of the English-language literature was conducted, incorporating searches of the MEDLINE, EMBASE, and Cochrane collaboration databases to identify laboratory and clinical studies investigating the cellular response to surgery. STUDY SELECTION: Original articles and case reports describing immune dysfunction secondary to surgical trauma were included. DATA EXTRACTION: The results were compiled to show outcomes of different studies and were compared. DATA SYNTHESIS: Current evidence indicates that the early systemic inflammatory response syndrome observed after major surgery that is characterized by proinflammatory cytokine release, microcirculatory disturbance, and cell-mediated immune dysfunction is followed by a compensatory anti-inflammatory response syndrome, which predisposes the patient to opportunistic infection, multiple organ dysfunction syndrome, and death. Because there are currently no effective treatment options for multiple organ dysfunction syndrome, measures to prevent its onset should be initiated at an early stage. Accumulating experimental evidence suggests that targeted therapeutic strategies involving immunomodulatory agents such as interferon gamma, granulocyte colony-stimulating factor, the prostaglandin E(2) antagonist, indomethacin, and pentoxifylline may be used for the treatment of systemic inflammatory response syndrome to prevent the onset of multiple organ dysfunction syndrome. CONCLUSIONS: Surgical trauma produces profound immunological dysfunction. Therapeutic strategies directed at restoring immune homeostasis should aim to redress the physiological proinflammatory-anti-inflammatory cell imbalance associated with major surgery.

  20. The beta subunit of the type I Fcepsilon receptor is a target for peptides inhibiting IgE-mediated secretory response of mast cells.

    Science.gov (United States)

    Andrásfalvy, Márton; Péterfy, Hajna; Tóth, Gábor; Matkó, János; Abramson, Jakub; Kerekes, Krisztina; Vámosi, György; Pecht, Israel; Erdei, Anna

    2005-09-01

    Peptides originally derived from complement component C3a were earlier shown to inhibit the type I FcepsilonR (FcepsilonRI)-mediated degranulation of mucosal type mast cells. In the present study, we show that C3a7, a peptide with a natural sequence, and its modified derivative, C3a9, are powerful inhibitors of the above response of both serosal and mucosal type mastocytes. We demonstrate that these peptides inhibit FcepsilonRI-induced membrane proximal events, suppress phosphorylation of the FcepsilonRI beta subunit, the protein tyrosine kinase Lyn, as well as the transient rise in free cytosolic Ca2+ level. The late phase of cellular response was also inhibited, as demonstrated by the reduced TNF-alpha secretion. Experiments using two independent methods provided evidence that the interaction site of complement-derived peptides is the FcepsilonRI beta-chain. This was further supported by fluorescence confocal microscopic colocalization and resonance energy transfer measurements. Taken together, these results suggest the presence of distinct "activating" and "inhibitory" motifs in the C3a sequence. Response to both is in balance under physiologic conditions. Furthermore, present data predict that such inhibitory peptides may serve as potent agents for future therapeutic intervention.

  1. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) has a range of extra-pancreatic effects, including renal. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of this study...... investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of 125I-GLP-1, 125I-exendin-4 and 125I-exendin 9-39 was observed in the renal vasculature including afferent arterioles. Infusion of GLP-1 increased BP, RBF and urinary flow...... was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1...

  2. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  3. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  4. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria,

  5. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  6. Methods for quantifying T cell receptor binding affinities and thermodynamics

    Science.gov (United States)

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  7. Natural killer cells and their receptors in multiple sclerosis.

    Science.gov (United States)

    Kaur, Gurman; Trowsdale, John; Fugger, Lars

    2013-09-01

    The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomyelitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with polymorphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing immune response, in relation to multiple sclerosis.

  8. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells.

    Science.gov (United States)

    Hemmi, S; Böhni, R; Stark, G; Di Marco, F; Aguet, M

    1994-03-11

    Expression of the human interferon gamma receptor (IFN-gamma R) in mouse cells is not sufficient to confer biological responsiveness to human IFN-gamma and vice versa. An additional species-specific component is required for signal transduction. We identified this cofactor by expression cloning in simian COS cells stably transfected with the nonfunctional murine IFN-gamma R and a IFN-gamma-inducible reporter construct encoding the human Tac antigen (interleukin-2 receptor alpha chain, CD25). A cDNA clone was obtained that, upon stable transfection, rendered human HEp-2 cells expressing the murine IFN-gamma R fully responsive to murine IFN-gamma. This cDNA encodes a novel 332 amino acid type I transmembrane protein that belongs to the IFN receptor family and that we designate IFN-gamma R beta chain.

  9. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  10. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells.

    Science.gov (United States)

    Tan, Y; Chiow, K H; Huang, D; Wong, S H

    2010-04-01

    Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.

  11. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Víctor M Campa

    Full Text Available The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  12. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    International Nuclear Information System (INIS)

    Min, Kyung-Won; Zhang, Xiaobo; Imchen, Temjenmongla; Baek, Seung Joon

    2012-01-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  13. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    Science.gov (United States)

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors

  14. The effect of montelukast (MK-0476), a cysteinyl leukotriene receptor antagonist, on allergen-induced airway responses and sputum cell counts in asthma

    NARCIS (Netherlands)

    Diamant, Z.; Grootendorst, D. C.; Veselic-Charvat, M.; Timmers, M. C.; de Smet, M.; Leff, J. A.; Seidenberg, B. C.; Zwinderman, A. H.; Peszek, I.; Sterk, P. J.

    1999-01-01

    Cysteinyl leukotrienes are capable of inducing chemotaxis of eosinophils in vitro and within the airways of animals and humans in vivo. We hypothesized that montelukast (MK-0476), a potent cysLT1 receptor antagonist, would protect against allergen-induced early (EAR) and late (LAR) asthmatic

  15. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans

    NARCIS (Netherlands)

    Avery, Danielle T.; Deenick, Elissa K.; Ma, Cindy S.; Suryani, Santi; Simpson, Nicholas; Chew, Gary Y.; Chan, Tyani D.; Palendira, Umamainthan; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Choo, Sharon; Bleasel, Karl E.; Peake, Jane; King, Cecile; French, Martyn A.; Engelhard, Dan; Al-Hajjar, Sami; Al-Muhsen, Saleh; Magdorf, Klaus; Roesler, Joachim; Arkwright, Peter D.; Hissaria, Pravin; Riminton, D. Sean; Wong, Melanie; Brink, Robert; Fulcher, David A.; Casanova, Jean-Laurent; Cook, Matthew C.; Tangye, Stuart G.

    2010-01-01

    Engagement of cytokine receptors by specific ligands activate Janus kinase-signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a

  16. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  17. Monoclonal T-cell receptors: new reagents for cancer therapy.

    Science.gov (United States)

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells.

  18. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  19. Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction.

    Science.gov (United States)

    Forward, Nicholas A; Furlong, Suzanne J; Yang, Yongjun; Lin, Tong-Jun; Hoskin, David W

    2009-09-01

    Mast cells promote both innate and acquired immune responses, but little is known about the effect of mast cells on T regulatory (T(reg)) cell function. In this study, we show for the first time that the capacity of murine CD4(+)CD25(+) T(reg) cells to suppress in vitro proliferation by CD4(+)CD25(-) T responder (T(resp)) cells in response to anti-CD3/anti-CD28 mAb-coated beads was reduced in the presence of syngeneic bone marrow-derived mast cells (BMMC) activated by FcepsilonR cross-linking. Activated BMMC culture supernatants or exogenous histamine also inhibited T(reg) cell suppressor function while the histamine H1 receptor-specific antagonist loratadine, but not the H2 receptor-specific antagonist famotidine, restored T(reg) cell suppressor function in the presence of activated BMMC or activated BMMC culture supernatants. Moreover, treatment of T(reg) cells with loratadine, but not famotidine, rescued T(reg) cell suppressor function in the presence of exogenous histamine. In addition, the H1 receptor-specific agonist 2-pyridylethylamine dihydrochloride inhibited T(reg) cell suppressor function to an extent that was comparable to histamine, whereas the H2 receptor-specific agonist amthamine dihydrobromide was without effect. Both T(reg) cells and T(resp) cells expressed H1 receptors. Exposure to histamine caused T(reg) cells to express lower levels of CD25 and the T(reg) cell-specific transcription factor Foxp3. Taken together, these data indicate that BMMC-elaborated histamine inhibited T(reg) cell suppressor function by signaling through the H1 receptor. We suggest that histamine released as a result of mast cell activation by microbial products might cause a transient decrease in T(reg) cell suppressor function, thereby enhancing the development of protective immunity.

  20. Cell Receptor-Basement Membrane Interactions in Health and Disease: a Kidney-Centric View

    Science.gov (United States)

    Borza, Corina M.; Chen, Xiwu; Zent, Roy; Pozzi, Ambra

    2016-01-01

    Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published work on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease. PMID:26610916

  1. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors.

    Science.gov (United States)

    Chen, Jin; Chaurio, Ricardo A; Maueröder, Christian; Derer, Anja; Rauh, Manfred; Kost, Andriy; Liu, Yi; Mo, Xianming; Hueber, Axel; Bilyy, Rostyslav; Herrmann, Martin; Zhao, Yi; Muñoz, Luis E

    2017-01-01

    Many antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells. Cultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS) in the presence of dead and dying cells, their supernatants (SNs), or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo . The stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment. Inosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  2. Endothelial Cell Response to Fusobacterium nucleatum.

    Science.gov (United States)

    Mendes, Reila Tainá; Nguyen, Daniel; Stephens, Danielle; Pamuk, Ferda; Fernandes, Daniel; Van Dyke, Thomas E; Kantarci, Alpdogan

    2016-07-01

    Vascular response is an essential aspect of an effective immune response to periodontal disease pathogens, as new blood vessel formation contributes to wound healing and inflammation. Gaining a greater understanding of the factors that affect vascular response may then contribute to future breakthroughs in dental medicine. In this study, we have characterized the endothelial cell response to the common bacterium Fusobacterium nucleatum, an important bridging species that facilitates the activity of late colonizers of the dental biofilm. Endothelial cells were infected with Fusobacterium nucleatum (strain 25586) for periods of 4, 12, 24, or 48 h. Cell proliferation and tube formation were analyzed, and expression of adhesion molecules (CD31 and CD34) and vascular endothelial growth factor (VEGF) receptors 1 and 2 was measured by fluorescence-activated cell sorter (FACS) analysis. Data indicate that F. nucleatum impaired endothelial cell proliferation and tube formation. The findings suggest that the modified endothelial cell response acts as a mechanism promoting the pathogenic progression of periodontal diseases and may potentially suggest the involvement of periodontopathogens in systemic diseases associated with periodontal inflammation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Hormonal receptors and response to treatment of breast cancer

    International Nuclear Information System (INIS)

    Loven, D.; Rakowsky, E.; Stein, J.A.

    1981-01-01

    Response to several types of endocrine therapy or chemotherapy was evaluated in 60 patients with breast cancer. Estrogen and progesterone receptors were determined by radioimmunoassay. Response to endocrine therapy was significantly higher (P<0.01) among estrogen receptor (ER)-positive cases than among ER-negative cases. The response to chemotherapy did not differ significantly between the two groups. The results of this small series support the conclusion that determination of ER is valuable in planning endocrine treatment of the breast cancer patient, whereas response to chemotherapy does not correlate with ER levels. (author)

  4. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    International Nuclear Information System (INIS)

    Jurek, Aleksandra; Genander, Maria; Kundu, Parag; Catchpole, Timothy; He, Xiao; Strååt, Klas; Sabelström, Hanna; Xu, Nan-Jie; Pettersson, Sven; Henkemeyer, Mark; Frisén, Jonas

    2016-01-01

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  5. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Aleksandra; Genander, Maria [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kundu, Parag [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Catchpole, Timothy [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); He, Xiao; Strååt, Klas; Sabelström, Hanna [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Xu, Nan-Jie [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Pettersson, Sven [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); The National Cancer Centre, Singapore General Hospital (Singapore); Henkemeyer, Mark [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Frisén, Jonas, E-mail: jonas.frisen@ki.se [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden)

    2016-10-15

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  6. Cytomegalovirus evasion of natural killer cell responses.

    Science.gov (United States)

    Farrell, H E; Degli-Esposti, M A; Davis-Poynter, N J

    1999-04-01

    Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.

  7. Protease-activated receptor-2 turnover stimulated independently of receptor activation in porcine coronary endothelial cells

    Science.gov (United States)

    Hamilton, Justin R; Chow, Jean M; Cocks, Thomas M

    1999-01-01

    Protease-activated receptors (PARs) are activated by an irreversible proteolytic mechanism which renders cleaved receptors unresponsive to subsequent challenges with activating enzymes. Non-specific proteolysis of PARs downstream of the activation site also prevents subsequent enzymic activation. Therefore, we investigated the effects of non-activating amino-terminal proteolysis with the bacterial protease thermolysin on PAR-mediated relaxation of porcine coronary artery ring preparations contracted with the thromboxane A2 mimetic U46619 (1–10 nM). Treatment of contracted artery ring segments with thermolysin (0.01–1 u ml−1, 20 min) caused no response, but abolished endothelium-dependent relaxations induced by the enzymic activators of PAR-1 and PAR-2, thrombin (0.01–0.3 u ml−1) and trypsin (0.003–0.1 u ml−1) respectively. The same treatment, however, did not affect similar responses to the proteolysis-independent PAR-1 and PAR-2 activating peptides, SFLLRN-NH2 and SLIGRL-NH2 respectively (0.1–10 μM). The inhibition of responsiveness to trypsin after thermolysin treatment recovered in a time-dependent manner, with maximal recovery (77.3±8.0% of time controls) occurring 150 min after thermolysin treatment. No recovery of responsiveness to thrombin after thermolysin treatment was observed within this time, however, the thrombin response returned to control levels after 20 h. The recovery of responsiveness to trypsin was inhibited by the translation inhibitor cycloheximide (100 μM; 17.3±4.7%) and the protein trafficking inhibitor brefeldin A (10 μM; 12.1±4.8%) but was unaffected by the transcription inhibitor actinomycin D (2 μM; 65.1±3.6%), which did, however, abolish upregulation of B1-kinin receptors in this preparation. In conclusion, our findings indicate that activation-independent amino-terminal proteolysis of PARs stimulates selective recovery of endothelial cell PAR-2 responsiveness, which appears to be

  8. Presence of Rheumatoid Factor during Chronic HCV Infection Is Associated with Expansion of Mature Activated Memory B-Cells that Are Hypo-Responsive to B-Cell Receptor Stimulation and Persist during the Early Stage of IFN Free Therapy.

    Directory of Open Access Journals (Sweden)

    Elane Reyes-Avilés

    Full Text Available Approximately half of those with chronic hepatitis C virus (HCV infection have circulating rheumatoid factor (RF, and a portion of these individuals develop cryoglobulinemic vasculitis. B cell phenotype/function in relation to RF in serum has been unclear. We examined B cell subset distribution, activation state (CD86, cell cycle state (Ki67, and ex-vivo response to BCR, TLR9 and TLR7/8 stimulation, in chronic HCV-infected donors with or without RF, and uninfected donors. Mature-activated B-cells of HCV-infected donors had lower CD86 expression compared to uninfected donors, and in the presence of RF they also showed reduced CD86 expression in response to BCR and TLR9 stimulation. Additionally, mature activated memory B cells of HCV RF+ donors less commonly expressed Ki67+ than HCV RF- donors, and did not proliferate as well in response to BCR stimulation. Proportions of mature-activated B cells were enhanced, while naïve B-cells were lower in the peripheral blood of HCV-RF+ compared to RF- and uninfected donors. None of these parameters normalize by week 8 of IFN free direct acting antiviral (DAA therapy in HCV RF+ donors, while in RF- donors, mature activated B cell proportions did normalize. These data indicate that while chronic HCV infection alone results in a lower state of activation in mature activated memory B cells, the presence of RF in serum is associated with a more pronounced state of unresponsiveness and an overrepresentation of these B cells in the blood. This phenotype persists at least during the early time window after removal of HCV from the host.

  9. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  10. BAFF controls neural cell survival through BAFF receptor.

    Directory of Open Access Journals (Sweden)

    Satoru Tada

    Full Text Available Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS. However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell-activating factor (BAFF and its receptor (BAFF-R are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.

  11. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  12. Gene expression of muscarinic, tachykinin and purinergic receptors in porcine bladder: comparison with cultured cells

    Directory of Open Access Journals (Sweden)

    Forough eBahadory

    2013-11-01

    Full Text Available Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5, tachykinin (NK1/NK2 and purinergic (P2X1/P2Y6 receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compared the molecular expression pattern between the fresh tissue layers and their cultured cell counterparts. We also examined responses to agonists for these receptors in cultured cells. Urothelial, suburothelial (myofibroblasts and smooth muscle cells isolated from pig bladder were cultured (10-14 days and identified by marker antibodies. Gene (mRNA expression level was demonstrated by real-time PCR. The receptor expression pattern was very similar between suburothelium and detrusor, and higher than urothelium. The gene expression of all receptors decreased in culture compared with the fresh tissue, although the reduction in cultured urothelial cells appeared less significant compared to suburothelial and detrusor cells. Cultured myofibroblasts and detrusor cells did not contract in response to the agonists acetylcholine, neurokinin A and β,γ-MeATP, up to concentrations of 0.1 and 1 mM. The significant reduction of M3, NK2 and P2X1 receptors under culture conditions may be associated with the unresponsiveness of cultured suburothelial and detrusor cells to their respective agonists. These results suggest that under culture conditions, bladder cells lose the receptors that are involved in contraction, as this function is no longer required. The study provides further evidence that cultured cells do not necessarily mimic the actions exerted by intact tissues.

  13. Desensitization of parathyroid hormone receptors on cultured bone cells

    International Nuclear Information System (INIS)

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D.

    1990-01-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. [Nle8,Nle18,Tyr34]bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with [125I]PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself

  14. Desensitization of parathyroid hormone receptors on cultured bone cells

    Energy Technology Data Exchange (ETDEWEB)

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D. (Univ. of Hong Kong (Hong Kong))

    1990-12-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. (Nle8,Nle18,Tyr34)bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with (125I)PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself.

  15. Olfactory Receptor Response to the Cockroach Sexual Attractant.

    Science.gov (United States)

    Boeckh, J; Priesner, E; Schneider, D; Jacobson, M

    1963-08-23

    The recently isolated sex attractant of the female American cockroach elicits an electical response in the antennae of males, females, and mymphs of this species. These electroantennograms are known to be summated receptor (generator) potentials of many olfactory sensillae stimulated simultaneously. Many other odorous substances also elicit such responses in the cockroach antenna.

  16. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    Directory of Open Access Journals (Sweden)

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  17. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. The bradykinin B2 receptor in the early immune response against Listeria infection

    NARCIS (Netherlands)

    Kaman, W.E.; Wolterink, A.F.W.M.; Bader, M.; Boele, L.C.L.; Kleij, D. van der

    2009-01-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B2 (B2R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B2R (B2R-/-

  19. Variations in Cellular Responses of Mouse T Cells to Adenosine-5′-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage

    Directory of Open Access Journals (Sweden)

    Hanaa Safya

    2018-02-01

    Full Text Available A previous report has shown that regulatory T cells (Treg were markedly more sensitive to adenosine-5′-triphosphate (ATP than conventional T cells (Tconv. Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS. In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the

  20. Variations in Cellular Responses of Mouse T Cells to Adenosine-5′-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage

    Science.gov (United States)

    Safya, Hanaa; Mellouk, Amine; Legrand, Julie; Le Gall, Sylvain M.; Benbijja, Mohcine; Kanellopoulos-Langevin, Colette; Kanellopoulos, Jean M.; Bobé, Pierre

    2018-01-01

    A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5′-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different

  1. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage.

    Science.gov (United States)

    Safya, Hanaa; Mellouk, Amine; Legrand, Julie; Le Gall, Sylvain M; Benbijja, Mohcine; Kanellopoulos-Langevin, Colette; Kanellopoulos, Jean M; Bobé, Pierre

    2018-01-01

    A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5'-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RB low Tconvs, but not CD45RB high Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RB low Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RB high CD44 low to effector/memory CD45RB low CD44 high stage. Maximum levels of upregulation are reached on recently activated CD69 + naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69 + CD45RB high CD44 low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RB high CD44 low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RB low Tconvs, CD45RB low Foxp3 + Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary

  2. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  3. A Role for MEK-Interacting Protein 1 (MP1) in Hormone Responsiveness of Estrogen Receptor-Positive Breast Cancer Cells

    National Research Council Canada - National Science Library

    Conrad, Susan E

    2008-01-01

    The goals of this research are to test the hypothesis that the small scaffold protein MP1 is required for ER function and proliferation of ER- positive breast cancer cells and to characterize the ER/MP1 complex...

  4. Metabotropic glutamate receptors in glial cells

    NARCIS (Netherlands)

    D'Antoni, Simona; Berretta, Antonio; Bonaccorso, Carmela Maria; Bruno, Valeria; Aronica, Eleonora; Nicoletti, Ferdinando; Catania, Maria Vincenza

    2008-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in

  5. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  6. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; Tavernini, Michele M; Doyle, Jason; Fedorak, Richard N

    2006-08-01

    Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous

  7. C-type lectin receptors in the control of T helper cell differentiation

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2016-01-01

    Pathogen recognition by C-type lectin receptors (CLRs) expressed by dendritic cells is important not only for antigen presentation, but also for the induction of appropriate adaptive immune responses via T helper (TH) cell differentiation. CLRs act either by themselves or in cooperation with other

  8. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    . Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...

  9. Coevolution of paired receptors in Xenopus carcinoembryonic antigen-related cell adhesion molecule families suggests appropriation as pathogen receptors.

    Science.gov (United States)

    Zimmermann, Wolfgang; Kammerer, Robert

    2016-11-16

    In mammals, CEACAM1 and closely related members represent paired receptors with similar extracellular ligand-binding regions and cytoplasmic domains with opposing functions. Human CEACAM1 and CEACAM3 which have inhibitory ITIM/ITSM and activating ITAM-like motifs, respectively, in their cytoplasmic regions are such paired receptors. Various bacterial pathogens bind to CEACAM1 on epithelial and immune cells facilitating both entry into the host and down-regulation of the immune response whereas interaction with granulocyte-specific CEACAM3 leads to their uptake and destruction. It is unclear whether paired CEACAM receptors also exist in other vertebrate clades. We identified more than 80 ceacam genes in Xenopus tropicalis and X. laevis. They consist of two subgroups containing one or two putative paired receptor pairs each. Analysis of genomic sequences of paired receptors provide evidence that their highly similar ligand binding domains were adjusted by recent gene conversion events. In contrast, selection for diversification is observed among inhibitory receptor orthologs of the two frogs which split some 60 million years ago. The allotetraploid X. laevis arose later by hybridization of two closely related species. Interestingly, despite the conservation of the genomic landscape surrounding the homeologous ceacam loci only one locus resembles the one found in X. tropicalis. From the second X. laevis locus more than 80 % of the ceacam genes were lost including 5 of the 6 paired receptor genes. This suggests that once the gene for one of the paired receptors is lost the remaining gene cluster degrades rapidly probably due to lack of selection pressure exerted by pathogens. The presence of paired receptors and selection for diversification suggests that also in amphibians CEACAM1-related inhibitory proteins are or were used as pathogen receptors.

  10. Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks.

    Science.gov (United States)

    He, Ying; Yu, Zhonghao; Ge, Dongya; Wang-Sattler, Rui; Thiesen, Hans-Jürgen; Xie, Lu; Li, Yixue

    2012-09-01

    Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.

  11. Expression of Toll-Like Receptor 2 by Dendritic Cells Is Essential for the DnaJ-ΔA146Ply-Mediated Th1 Immune Response against Streptococcus pneumoniae.

    Science.gov (United States)

    Wang, Xiaofang; Yuan, Taixian; Yuan, Jun; Su, Yufeng; Sun, Xiaoyu; Wu, Jingwen; Zhang, Hong; Min, Xun; Zhang, Xuemei; Yin, Yibing

    2018-03-01

    The fusion protein DnaJ-ΔA146Ply could induce cross-protective immunity against pneumococcal infection via mucosal and subcutaneous immunization in mice in the absence of additional adjuvants. DnaJ and Ply are both Toll-like receptor 4 (TLR4) but not TLR2 ligands. However, we found that TLR2 -/- mice immunized subcutaneously with DnaJ-ΔA146Ply showed significantly lower survival rates and higher bacterial loads in nasal washes than did wild-type (WT) mice after being challenged with pneumococcal strain D39 or 19F. The gamma interferon (IFN-γ) level in splenocytes decreased in TLR2 -/- mice, indicating that Th1 immunity elicited by DnaJ-ΔA146Ply was impaired in these mice. We explored the mechanism of protective immunity conferred by DnaJ-ΔA146Ply and the role of TLR2 in this process. DnaJ-ΔA146Ply effectively promoted dendritic cell (DC) maturation via TLR4 but not the TLR2 signaling pathway. In a DnaJ-ΔA146Ply-treated DC and naive CD4 + T cell coculture system, the deficiency of TLR2 in DCs resulted in a significant decline of IFN-γ production and Th1 subset differentiation. The same effect was observed in adoptive-transfer experiments. In addition, TLR2 -/- DCs showed remarkably lower levels of the Th1-polarizing cytokine IL-12p70 than did WT DCs, suggesting that TLR2 was indispensable for DnaJ-ΔA146Ply-induced IL-12 production and Th1 proliferation. Thus, our findings illustrate that dendritic cell expression of TLR2 is essential for optimal Th1 immune response against pneumococci in mice immunized subcutaneously with DnaJ-ΔA146Ply. Copyright © 2018 American Society for Microbiology.

  12. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  13. B cell activating factor (BAFF) and BAFF receptors: fakes and facts.

    Science.gov (United States)

    Ferraccioli, G; Gremese, E

    2017-12-01

    Analysis of B cell activating factor (BAFF) receptors before and after B cell depletion therapy (BCDT) might offer a clue to the understanding of whether some B cell subsets may represent useful biomarkers of biological and clinical responses. Among the BAFF receptors in a cohort of rheumatoid arthritis (RA) patients, the AA have shown, by fluorescence activated cell sorter (FACS) analysis of median fluorescence intensity (MFI), that transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA) do not change, whereas the most important, BAFF receptor 3 (BR3), appears to be decreased before as well as after BCDT in all B cell subsets but not in plasmablasts, the most important subset, depleted by BCDT. © 2017 British Society for Immunology.

  14. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  15. CD161 receptor participates in both impairing NK cell cytotoxicity and the response to glycans and vimentin in patients with rheumatoid arthritis

    Czech Academy of Sciences Publication Activity Database

    Richter, Jan; Benson, Veronika; Grobárová, Valeria; Svoboda, Jan; Vencovský, J.; Svobodová, R.; Fišerová, Anna

    2010-01-01

    Roč. 136, č. 1 (2010), s. 139-147 ISSN 1521-6616 R&D Projects: GA ČR GA310/06/0477; GA ČR GD310/08/H077; GA MZd NR9106; GA AV ČR IAA500200620 Institutional research plan: CEZ:AV0Z50200510 Keywords : Rheumatoid arthritis * NK cells * CD161 Subject RIV: EC - Immunology Impact factor: 3.932, year: 2010

  16. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  17. Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324.

    Science.gov (United States)

    Santhosh, K T; Sikarwar, A S; Hinton, M; Chelikani, P; Dakshinamurti, S

    2014-02-01

    Dysregulation of the thromboxane A₂ (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. Vasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. The Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. In hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity. © 2013 The British Pharmacological Society.

  18. The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Jansen Sandra

    2011-02-01

    Full Text Available Abstract Background Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure mediates activation of the immune response in bacterial infection of the central nervous system (CNS. The chemotactic G-protein-coupled receptor (GPCR formyl-peptide-receptor like-1 (FPRL1 plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD. Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear. Methods Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide expression after infection with bacterial supernatants of Streptococcus pneumoniae (SP and Neisseria meningitides (NM. Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2 phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene expression and signal transduction were determined. Results We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between

  19. Inducible expression of enhanced green fluorescent protein by interleukin-1α, interleukin-1β and Toll-like receptor 2 promoters in goat mammary epithelial cells in response to bacterial challenges.

    Science.gov (United States)

    Ru, Kun; Su, Feng; Zheng, Yuemao; Zhang, Yijun; Luo, Yan; Guo, Zekun; He, Xiaoli; Liu, Xin; Zhang, Jingcheng; Liu, Jun; Zhang, Yong

    2015-01-01

    The development of a bacteria-inducible expression system has several advantages compared with persistent expression of anti-bacterial proteins in milk to prevent and treat mastitis. The present study determined whether mastitis responsive promoters could regulate enhanced green fluorescent protein (EGFP) expression in goat mammary epithelial cells (GMECs) in response to challenges with Escherichia coli, Staphylococcus aureus or Streptococcus agalactiae. The level of expression of interleukin (IL)-1α was significantly increased in GMECs challenged with E. coli, S. aureus or S. agalactiae compared with untreated GMECs. IL-1β was induced by E. coli and S. aureus, while Toll-like receptor 2 (TLR2) was induced by E. coli only. GMECs were transfected with IL-1α, IL-1β and TLR2 promoter-EGFP reporter gene lentiviral expression vectors and the levels of expression of EGFP were measured by flow cytometry and Western blot analysis after bacterial challenge. EGFP expression driven by the IL-1α and IL-1β promoters was higher in GMECs challenged with E. coli, S. aureus or S. agalactiae than in untreated GMECs. There were no differences in EGFP expression driven by the TLR2 promoter between GMECs challenged with S. aureus or S. agalactiae and untreated GMECs, but EGFP expression was significantly increased in GMECs challenged with E. coli. Overall, these results indicate that the promoters of some bacteria-inducible genes can regulate EGFP expression in GMECs in response to bacterial challenges. This bacteria-inducible expression strategy could be used for production of mastitis resistant animals by regulating the expression of anti-bacterial proteins in the mammary gland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Monocyte-derived dendritic cells from late gestation cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion.

    Science.gov (United States)

    Pomeroy, Brianna; Sipka, Anja; Klaessig, Suzanne; Schukken, Ynte

    2015-09-15

    During late gestation the bovine immune system is less capable of eliciting inflammatory responses and eliminating invading pathogens. The maternal immune system is directed toward tolerance in order to prevent fetal rejection due to recognition of paternal antigens. In humans and mice, dendritic cell (DC) populations maintain a tolerogenic phenotype essential in the generation and preservation of maternal immune tolerance throughout pregnancy. However, the primary mechanisms which facilitate maternal immune tolerance involved in bovine gestation remain poorly understood. In order to determine if DC phenotype and function were regulated toward tolerance during bovine gestation, we compared in vitro generated monocyte-derived DC (mo-DC) from monocytes isolated from cows in late gestation (LG) to those from non-pregnant (NP) cows in their ability to mature following stimulation with UV irradiated Escherichia coli. Our results show mo-DC from LG cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion in comparison to those from NP cows. Specifically, mo-DC from LG cows were unable to upregulate MHC II and maintained high expression of CD14, both indicative of an immature phenotype following E. coli-stimulation. Only mo-DC from LG showed significant increase in IL-10 production and had a significantly lower ratio of production of the Th1-polarizing cytokine IL-12 to regulatory cytokine IL-10 following E. coli stimulation compared to mo-DC from NP cows. Our findings demonstrate mo-DC from LG cows have a stifled capacity to develop a mature phenotype and drive pro-inflammatory Th1-type responses to E. coli stimulation. Results from this study provide insight into DC immune modulation in bovine pregnancy and elucidate host factors which may contribute to the heightened susceptibility to infection in late gestation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection

    Directory of Open Access Journals (Sweden)

    Katherine A. Fitzgerald

    2011-06-01

    Full Text Available The innate immune response to viral pathogens is critical in order to mobilize protective immunity. Cells of the innate immune system detect viral infection largely through germline-encoded pattern recognition receptors (PRRs present either on the cell surface or within distinct intracellular compartments. These include the Toll-like receptors (TLRs, the retinoic acid-inducble gene I-like receptors (RLRs, the nucleotide oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain proteins and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of these receptors, the predominant viral activators are nucleic acids. The presence of viral sensing PRRs in multiple cellular compartments allows innate cells to recognize and quickly respond to a broad range of viruses, which replicate in different cellular compartments. Here, we review the role of PRRs and associated signaling pathways in detecting viral pathogens in order to evoke production of interferons and cytokines. By highlighting recent progress in these areas, we hope to convey a greater understanding of how viruses activate PRR signaling and how this interaction shapes the anti-viral immune response.

  2. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium.

    OpenAIRE

    Chitambar, C R; Seligman, P A

    1986-01-01

    We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytoto...

  3. Netupitant and palonosetron trigger NK1 receptor internalization in NG108-15 cells.

    Science.gov (United States)

    Thomas, Ajit G; Stathis, Marigo; Rojas, Camilo; Slusher, Barbara S

    2014-08-01

    Current therapy for chemotherapy-induced nausea and vomiting includes the use of both 5-HT3 and NK1 receptor antagonists. Acute emesis has largely been alleviated with the use of 5-HT3 receptor antagonists, while an improvement in preventing delayed emesis has been achieved with NK1 receptor antagonists. Delayed emesis, however, remains a problem with a significant portion of cancer patients receiving highly emetogenic chemotherapy. Like other drugs in its class, palonosetron, a 5-HT3 receptor antagonist, has shown efficacy against acute emesis. However, palonosetron has also shown consistent improvement in the suppression of delayed emesis. Since both 5-HT3 and NK1 receptor antagonists are often simultaneously administered to patients, the question remains if palonosetron's effect on delayed emesis would remain distinct when co-administered with an NK1 receptor antagonist. Recent mechanistic studies using NG108-15 cells have shown that palonosetron and netupitant, an NK1 receptor antagonist currently in phase 3 clinical trials, exhibited synergistic effects when inhibiting the substance P response. The present studies showed that both netupitant and palonosetron-induced NK1 receptor internalization in NG108-15 cells and that when used together receptor internalization was additive. Palonosetron-induced NK1 receptor internalization was dependent on the presence of the 5-HT3 receptor. Results provide a possible explanation for palonosetron's enhancement of the inhibition of the SP response and suggest that the effect of palonosetron and NK1 receptor antagonists on prevention of delayed emesis could be additive.

  4. Pathogen sensing pathways in human embryonic stem cell derived-endothelial cells: role of NOD1 receptors.

    Directory of Open Access Journals (Sweden)

    Daniel M Reed

    Full Text Available Human embryonic stem cell-derived endothelial cells (hESC-EC, as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR Toll-like receptor (TLR-4 and nucleotide-binding oligomerisation domain-containing protein (NOD-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC. HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC, and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.

  5. Regulation of C3a receptor signaling in human mast cells by G protein coupled receptor kinases.

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    Full Text Available The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced C3aR phosphorylation. However, the roles of these GRKs on the regulation of C3aR signaling and mediator release in human mast cells remain unknown.We utilized lentivirus short hairpin (shRNA to stably knockdown the expression of GRK2, GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and LAD2, that endogenously express C3aR. Silencing GRK2 or GRK3 expression caused a more sustained Ca(2+ mobilization, attenuated C3aR desensitization, and enhanced degranulation as well as ERK1/2 phosphorylation when compared to shRNA control cells. By contrast, GRK5 or GRK6 knockdown had no effect on C3aR desensitization, but caused a significant decrease in C3a-induced mast cell degranulation. Interestingly, GRK5 or GRK6 knockdown rendered mast cells more responsive to C3a for ERK1/2 phosphorylation.This study demonstrates that GRK2 and GRK3 are involved in C3aR desensitization. Furthermore, it reveals the novel finding that GRK5 and GRK6 promote C3a-induced mast cell degranulation but inhibit ERK1/2 phosphorylation via C3aR desensitization-independent mechanisms. These findings thus reveal a new level of complexity for C3aR regulation by GRKs in human mast cells.

  6. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  7. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    gap formation in HUVECs. We are currently investigating the mechanism underlying 5-HT4 receptor-induced actin cytoskeleton changes in the endothelial cells. These data suggest that by activating 5-HT4 receptor, serotonin could be involved in regulation of actin cytoskeleton dynamics in the endothelial......39 5-HYDROXYTRYPTAMINE 4 RECEPTOR IN THE ENDOTHELIAL CELLS. J. Profirovic, I. Vardya, T. Voyno-Yasenetskaya, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL. Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter that regulates multiple events...... in the central nervous system (CNS). We have recently demonstrated that 5-HT4 receptor couples to G13 protein to induce RhoA-dependent gene transcription, neurite retraction, and neuronal cell rounding (Ponimaskin et al, 2002). Although multiple studies were focused on the function of the 5-HT4 receptor...

  8. Internalisation of gonadotrophin-receptor complex in ovarian luteal cells

    International Nuclear Information System (INIS)

    Conn, P.M.; Conti, M.; Harwood, J.P.; Dufau, M.L.; Catt, K.J.

    1978-01-01

    Following evidence that certain protein hormones can enter target cells the present investigation was undertaken which shows that gonadotrophin-induced receptor loss may occur by a process of internalisation of the hormone-receptor complex following the initial interaction of gonadotrophin with the cell surface. Localisation studies were carried out in 33-d old female rats previously treated with pregnant mare serum gonadotrophin and human chorionic gonadotrophin (hCG) to induce ovarian luteinisation. Animals were injected with 125 I-hCG to label the ovarian receptors for luteinising hormone in vivo. Microscope autoradiographs demonstrating distribution of 125 I-hCG in ovaries at various times following injection are shown. The combined results from the autoradiographs and from solubilisation experiments were used to determine the location and nature of the hCG-receptor complex following occupancy and loss of receptors from the plasma membrane of luteinised ovarian cells. (U.K.)

  9. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    Science.gov (United States)

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  11. Current perspectives on natural killer cell education and tolerance: emerging roles for inhibitory receptors

    Directory of Open Access Journals (Sweden)

    Thomas LM

    2015-03-01

    Full Text Available L Michael Thomas Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA Abstract: Natural killer (NK cells are regulated through the coordinated functions of activating and inhibitory receptors. These receptors can act during the initial engagement of an NK cell with a target cell, or in subsequent NK cell engagements to maintain tolerance. Notably, each individual possesses a sizable minority-population of NK cells that are devoid of inhibitory receptors that recognize the surrounding MHC class I (ie, self-MHC. Since these NK cells cannot perform conventional inhibition, they are rendered less responsive through the process of NK cell education (also known as licensing in order to reduce the likelihood of auto-reactivity. This review will delineate current views on NK cell education, clarify various misconceptions about NK cell education, and, lastly, discuss the relevance of NK cell education in anti-cancer therapies. Keywords: natural killer cell education, natural killer cell inhibitory receptors, immunotherapy, cancer

  12. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  13. Potentiating action of propofol at GABAA receptors of retinal bipolar cells

    DEFF Research Database (Denmark)

    Yue, Lan; Xie, An; Bruzik, Karol S

    2011-01-01

    Purpose. Propofol (2,6-diisopropyl phenol), a widely used systemic anesthetic, is known to potentiate GABA(A) receptor activity in a number of CNS neurons and to produce changes in electroretinographically recorded responses of the retina. However, little is known about propofol's effects...... on specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. Methods. Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol...

  14. Strategies for B-cell receptor repertoire analysis in Primary Immunodeficiencies:From severe combined immunodeficiency to common variable immunodeficiency

    Directory of Open Access Journals (Sweden)

    Hanna eIJspeert

    2015-04-01

    Full Text Available The antigen receptor repertoires of B and T cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective we describe strategies and considerations for analysis of the naive and antigen selected B-cell repertoires in primary immunodeficiency (PID patients with a focus on severe combined immunodeficiency (SCID and common variable immunodeficiency (CVID.

  15. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection.

    Science.gov (United States)

    Chen, Rong-Fu; Lee, Chun-Yi

    2014-01-01

    Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.

  16. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    Science.gov (United States)

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  17. Regulation of Mu Opioid Receptor Expression in Developing T Cells

    OpenAIRE

    Zhang, Lily; Belkowski, Judith Sliker; Briscoe, Tammi; Rogers, Thomas J.

    2012-01-01

    We have previously reported that functionally active μ-opioid receptors (MOR) are constitutively expressed at relatively low levels by developing T cells in the thymus. However, very little is known about the regulation of MOR expression by immature T cells. In this report, we first attempted to determine the effect of T cell receptor-induced T cell activation on the expression of MOR. We activated T cells with either the combination of anti-CD3 and CD28, or with superantigen, and observed a ...

  18. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  19. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells.

    Science.gov (United States)

    Yoon, Hyun-Min; Jang, Kyung-Jun; Han, Min Seok; Jeong, Jin-Woo; Kim, Gi Young; Lee, Jai-Heon; Choi, Yung Hyun

    2013-03-01

    Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE(2) and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia.

  20. Antigen-affinity controls pregerminal centser B cell selection by promoting Mcl-1 induction through BAFF receptor signaling

    NARCIS (Netherlands)

    Wensveen, Felix M.; Slinger, Erik; van Attekum, Martijn H. A.; Brink, Robert; Eldering, Eric

    2016-01-01

    Upon antigen encounter, the responsive B cell pool undergoes stringent selection which eliminates cells with low B cell receptor (BCR) affinity. Already before formation of the germinal center, activated B cells of low-affinity are negatively selected in a process that is molecularly not well

  1. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  2. [The origin and possible role of microvesicles in olfactory receptor cells].

    Science.gov (United States)

    Bakhtin, E K

    1975-08-01

    Microvesicles and spherical particles have been described in the bulbs of receptor olfactory cells of Acipenser ruthenus. Two pathways of the origin of the above vesicles have been followed. These structures derive at the stage of differentiation from non-ciliary to ciliary cell type. The first of the pathways involves the autolysis of microfibril bundles produced during the regression of microvilli. The other one includes micropinocytosis induced on the basis of regressing microvilli. Taking into account the genesis of the microvesicles of the receptor cell bulb, it is concluded that they cannot contain a mediator able to modify membrane ion permeability in response to the specific stimulus of the odorant.

  3. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1......-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed...

  4. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  5. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    Science.gov (United States)

    Piochon, Claire; Levenes, Carole; Ohtsuki, Gen; Hansel, Christian

    2010-01-01

    A classic view in cerebellar physiology holds that Purkinje cells do not express functional N-methyl-D-aspartate (NMDA) receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at about 2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-APV. A blockade of LTD, but not LTP, was also observed when the non-competitive NMDA channel blocker MK-801 was added to the patch-pipette saline, suggesting that postsynaptically expressed NMDA receptors are required for LTD induction. Using confocal calcium imaging, we show that CF-evoked calcium transients in dendritic spines are reduced in the presence of D-APV. This observation confirms that NMDA receptor signaling occurs at CF synapses, and suggests that NMDA receptor-mediated calcium transients at the CF input site might contribute to LTD induction. Finally, we performed dendritic patch-clamp recordings from rat Purkinje cells. Dendritically recorded CF responses were reduced when D-APV was bath-applied. Together, these data suggest that the late developmental expression of postsynaptic NMDA receptors at CF synapses onto Purkinje cells is associated with a switch towards an NMDA receptor-dependent LTD induction mechanism. PMID:21068337

  6. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  7. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    Science.gov (United States)

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  8. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986...... but not on fibronectin. Synthetic peptide GRGDS corresponding to the fibronectin cell-binding domain inhibited haptotaxis on fibronectin but not on laminin. Both types of anti-laminin receptor antisera inhibited haptotaxis on laminin but not on fibronectin. Using immunohistochemistry, invading human carcinoma cells...

  9. A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3.

    Science.gov (United States)

    Moreno, Paola; Mantey, Samuel A; Lee, Suk H; Ramos-Álvarez, Irene; Moody, Terry W; Jensen, Robert T

    2018-03-01

    Human bombesin receptors, GRPR and NMBR, are two of the most frequently overexpressed G-protein-coupled-receptors by lung-cancers. Recently, GRPR/NMBR are receiving considerable attention because they act as growth factor receptors often in an autocrine manner in different lung-cancers, affect tumor angiogenesis, their inhibition increases the cytotoxic potency of tyrosine-kinase inhibitors reducing lung-cancer cellular resistance/survival and their overexpression can be used for sensitive tumor localization as well as to target cytotoxic agents to the cancer. The orphan BRS-3-receptor, because of homology is classified as a bombesin receptor but has received little attention, despite the fact that it is also reported in a number of studies in lung-cancer cells and has growth effects in these cells. To address its potential importance, in this study, we examined the frequency/relative quantitative expression of human BRS-3 compared to GRPR/NMBR and the effects of its activation on cell-signaling/growth in 13 different human lung-cancer cell-lines. Our results showed that BRS-3 receptor is expressed in 92% of the cell-lines and that it is functional in these cells, because its activation stimulates phospholipase-C with breakdown of phosphoinositides and changes in cytosolic calcium, stimulates ERK/MAPK and stimulates cell growth by EGFR transactivation in some, but not all, the lung-cancer cell-lines. These results suggest that human BRS-3, similar to GRPR/NMBR, is frequently ectopically-expressed by lung-cancer cells in which, it is functional, affecting cell signaling/growth. These results suggest that similar to GRPR/NMBR, BRS-3 should receive increased attention as possible approach for the development of novel treatments and/or diagnosis in lung-cancer. Published by Elsevier Inc.

  10. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2008-12-23

    Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. After perception of a positional cue, the SCM signaling pathway is proposed to preferentially repress WEREWOLF (WER) transcription factor expression in H cells and thereby bias the outcome of mutual lateral inhibition acting between H and N cells. However, the molecular mechanism responsible for this preferential SCM signaling is unknown. Here, we analyze the distribution of the SCM receptor and the biological effect of altering its accumulation pattern. We find that SCM expression and accumulation in the epidermal cell layer is necessary and sufficient to direct the cell-type pattern. Further, SCM preferentially accumulates in H cells, and this accumulation pattern is dependent on the downstream transcription factors. Thus, SCM participates in an autoregulatory feedback loop, enabling cells engaged in SCM signaling to maintain high levels of SCM receptor, which provides a simple mechanism for reinforcing a bias in receptor-mediated signaling to ensure robust pattern formation.

  11. Atypical B cell receptor signaling: straddling immune diseases and cancer.

    Science.gov (United States)

    Faris, Mary

    2013-08-01

    The B-cell receptor (BCR) signaling pathway plays an essential role in the survival, proliferation, differentiation and trafficking of lymphocytic. Recent findings associate aberrant BCR signaling with specific disease pathologies, including B-cell malignancies and autoimmune disorders. Inhibition of the BCR signaling pathway may therefore provide promising new strategies for the treatment of B-cell diseases. This special issue of International Reviews of Immunology focuses on atypical B-cell receptor signaling, its role in immune diseases and cancer, and its implications for potential therapeutic intervention.

  12. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    International Nuclear Information System (INIS)

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with 3 H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m 3 reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m 2 and/or m 4 receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI

  13. Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells.

    Science.gov (United States)

    Bystrova, Marina F; Romanov, Roman A; Rogachevskaja, Olga A; Churbanov, Gleb D; Kolesnikov, Stanislav S

    2010-03-15

    Three types of morphologically and functionally distinct taste cells operate in the mammalian taste bud. We demonstrate here the expression of two G-protein-coupled receptors from the family C, CASR and GPRC6A, in the taste tissue and identify transcripts for both receptors in type I cells, no transcripts in type II cells and only CASR transcripts in type III cells, by using the SMART-PCR RNA amplification method at the level of individual taste cells. Type I taste cells responded to calcimimetic NPS R-568, a stereoselective CASR probe, with Ca(2+) transients, whereas type I and type II cells were not specifically responsive. Consistent with these findings, certain amino acids stimulated PLC-dependent Ca(2+) signaling in type III cells, but not in type I and type II cells, showing the following order of efficacies: Phe~Glu>Arg. Thus, CASR is coupled to Ca(2+) mobilization solely in type III cells. CASR was cloned from the circumvallate papilla into a pIRES2-EGFP plasmid and heterologously expressed in HEK-293 cells. The transfection with CASR enabled HEK-293 cells to generate Ca(2+) transients in response to the amino acids, of which, Phe was most potent. This observation and some other facts favor CASR as the predominant receptor subtype endowing type III cells with the ability to detect amino acids. Altogether, our results indicate that type III cells can serve a novel chemosensory function by expressing the polymodal receptor CASR. A role for CASR and GPRC6A in physiology of taste cells of the type I remains to be unveiled.

  14. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  15. Estrogen receptor and progesterone receptor synthesis and degradation in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Nardulli, A.M.

    1987-01-01

    It was the intent of this study to determine the turnover of the estrogen receptor (ER) and progesterone receptors (PR) in rat uterine and human breast cancer cells, respectively, and to examine the effect of estrogen and progestin on PR levels. The rates of synthesis and degradation of ER were determined in rat uterine cells in vitro and in vivo. The affinity labeling antiestrogen, (/sup 3/H)tamoxifen aziridine, was used in pulse chase experiments to show that the 65,000 molecular weight ER has a half-life of 3-4h in primary cultures of rat uterine cells in vitro and in the intact rat uterus in vivo. Density shift analyses using dense (/sup 15/N, /sup 13/C, /sup 2/H) amino acid incorporation corroborate the rapid turnover of ER in rat uterine cell cultures. The regulation of PR by progestins in T47D human breast cancer cells was examined using density shift-dense amino acid incorporation. When T47D cells, which normally maintain high PR levels, are exposed to progestin (R5020), PR levels decline. Receptor half-life, which is 21h in control cells, is reduced to 6h when cells are exposed to 20 nM (/sup 3/H)R5020. In addition, PR synthesis rate declines exponentially following R5020 exposure. The reduction in receptor level is thus due to dramatic increases in PR degradation as well as marked decreases in PR synthesis.

  16. Toll-Like Receptor 5 Signaling in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sabine M. Ivison

    2010-01-01

    Full Text Available Background. Bacterial flagellin triggers inflammation in mammalian cells via Toll-like receptor (TLR 5. Release of the chemokine IL-8 in response to flagellin involves NF-κB, p38 MAP kinase, and phosphatidylinositol 3-kinase (PI3K. However, PI3K has been reported to be either pro- or anti-inflammatory in different model systems. We hypothesized that this could be due to different activities of the p110α and β isoforms of PI3K. Results. PI3K and Akt were rapidly activated in Caco-2 colon carcinoma cells by flagellin. Using a plasmid-based shRNA delivery system and novel p110 isoform-specific inhibitors, we found that flagellin-induced IL-8 production was dependent on both p110α and p110β. However in the mouse, inhibition of p110β but not p110α reduced the increase of serum IL-6 levels induced by intraperitoneal injection of flagellin. Conclusions. These data demonstrate that the p110α and β isoforms of class IA PI3K are both required for the proinflammatory response to flagellin.

  17. Racial differences in B cell receptor signaling pathway activation.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Mathi, Kavita; Pos, Zoltan; Wang, Ena; Hawtin, Rachael E; Marincola, Francesco M; Cesano, Alessandra

    2012-06-06

    Single-cell network profiling (SCNP) is a multi-parametric flow cytometry-based approach that simultaneously measures basal and modulated intracellular signaling activity in multiple cell subpopulations. Previously, SCNP analysis of a broad panel of immune signaling pathways in cell subsets within PBMCs from 60 healthy donors identified a race-associated difference in B cell anti-IgD-induced PI3K pathway activity. The present study extended this analysis to a broader range of signaling pathway components downstream of the B cell receptor (BCR) in European Americans and African Americans using a subset of donors from the previously analyzed cohort of 60 healthy donors. Seven BCR signaling nodes (a node is defined as a paired modulator and intracellular readout) were measured at multiple time points by SCNP in PBMCs from 10 healthy donors [5 African Americans (36-51 yrs), 5 European Americans (36-56 yrs), all males]. Analysis of BCR signaling activity in European American and African American PBMC samples revealed that, compared to the European American donors, B cells from African Americans had lower anti-IgD induced phosphorylation of multiple BCR pathway components, including the membrane proximal proteins Syk and SFK as well as proteins in the PI3K pathway (S6 and Akt), the MAPK pathways (Erk and p38), and the NF-κB pathway (NF-κB). In addition to differences in the magnitude of anti-IgD-induced pathway activation, racial differences in BCR signaling kinetic profiles were observed. Further, the frequency of IgD+ B cells differed by race and strongly correlated with BCR pathway activation. Thus, the race-related difference in BCR pathway activation appears to be attributable at least in part to a race-associated difference in IgD+ B cell frequencies. SCNP analysis enabled the identification of statistically significant race-associated differences in BCR pathway activation within PBMC samples from healthy donors. Understanding race-associated contrasts in immune

  18. Racial differences in B cell receptor signaling pathway activation

    Directory of Open Access Journals (Sweden)

    Longo Diane M

    2012-06-01

    Full Text Available Abstract Background Single-cell network profiling (SCNP is a multi-parametric flow cytometry-based approach that simultaneously measures basal and modulated intracellular signaling activity in multiple cell subpopulations. Previously, SCNP analysis of a broad panel of immune signaling pathways in cell subsets within PBMCs from 60 healthy donors identified a race-associated difference in B cell anti-IgD-induced PI3K pathway activity. Methods The present study extended this analysis to a broader range of signaling pathway components downstream of the B cell receptor (BCR in European Americans and African Americans using a subset of donors from the previously analyzed cohort of 60 healthy donors. Seven BCR signaling nodes (a node is defined as a paired modulator and intracellular readout were measured at multiple time points by SCNP in PBMCs from 10 healthy donors [5 African Americans (36-51 yrs, 5 European Americans (36-56 yrs, all males]. Results Analysis of BCR signaling activity in European American and African American PBMC samples revealed that, compared to the European American donors, B cells from African Americans had lower anti-IgD induced phosphorylation of multiple BCR pathway components, including the membrane proximal proteins Syk and SFK as well as proteins in the PI3K pathway (S6 and Akt, the MAPK pathways (Erk and p38, and the NF-κB pathway (NF-κB. In addition to differences in the magnitude of anti-IgD-induced pathway activation, racial differences in BCR signaling kinetic profiles were observed. Further, the frequency of IgD+ B cells differed by race and strongly correlated with BCR pathway activation. Thus, the race-related difference in BCR pathway activation appears to be attributable at least in part to a race-associated difference in IgD+ B cell frequencies. Conclusions SCNP analysis enabled the identification of statistically significant race-associated differences in BCR pathway activation within PBMC samples from

  19. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  20. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons.

    Science.gov (United States)

    Takagi, Norio; Besshoh, Shintaro; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2012-01-01

    The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.

  1. Humanin Inhibits Neuronal Cell Death by Interacting with a Cytokine Receptor Complex or Complexes Involving CNTF Receptor α/WSX-1/gp130

    Science.gov (United States)

    Hashimoto, Yuichi; Kurita, Megumi; Aiso, Sadakazu; Nishimoto, Ikuo

    2009-01-01

    Humanin (HN) inhibits neuronal death induced by various Alzheimer's disease (AD)-related insults via an unknown receptor on cell membranes. Our earlier study indicated that the activation of STAT3 was essential for HN-induced neuroprotection, suggesting that the HN receptor may belong to the cytokine receptor family. In this study, a series of loss-of-function tests indicated that gp130, the common subunit of receptors belonging to the IL-6 receptor family, was essential for HN-induced neuroprotection. Overexpression of ciliary neurotrophic factor receptor α (CNTFR) and/or the IL-27 receptor subunit, WSX-1, but not that of any other tested gp130-related receptor subunit, up-regulated HN binding to neuronal cells, whereas siRNA-mediated knockdown of endogenous CNTFR and/or WSX-1 reduced it. These results suggest that both CNTFR and WSX-1 may be also involved in HN binding to cells. Consistent with these results, loss-of-functions of CNTFR or WSX-1 in neuronal cells nullified their responsiveness to HN-mediated protection. In vitro–reconstituted binding assays showed that HN, but not the other control peptide, induced the hetero-oligomerization of CNTFR, WSX-1, and gp130. Together, these results indicate that HN protects neurons by binding to a complex or complexes involving CNTFR/WSX-1/gp130. PMID:19386761

  2. The Interleukin-17 Receptor B Subunit Is Essential for the Th2 Response to Helicobacter pylori, but Not for Control of Bacterial Burden

    OpenAIRE

    Horvath, Dennis J.; Radin, Jana N.; Cho, Sung Hoon; Washington, M. Kay; Algood, Holly M. Scott

    2013-01-01

    Helicobacter pylori infection leads to an inflammatory response in 100% of infected individuals. The inflammatory cells which are recruited to the gastric mucosa during infection produce several pro- and anti-inflammatory cytokines including several cytokines in the interleukin-17 family. The anti-inflammatory cytokine, interleukin 25 (IL-25, also known as IL-17E), signals through a receptor, which is a heterotrimeric receptor comprised of two IL-17 receptor A subunits and an IL-17 receptor B...

  3. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Sekiguchi, Toshio; Nagata, Sayaka; Jiang, Danfeng; Hayashi, Hidetaka; Murakami, Manabu; Hattori, Yuichi; Kitamura, Kazuo; Kato, Johji

    2016-01-01

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM 1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM 1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM 1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [ 125 I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β 2 -adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM 1 receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  4. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Sekiguchi, Toshio [Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, 927-0553 (Japan); Nagata, Sayaka [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Jiang, Danfeng; Hayashi, Hidetaka [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki, 036-8562 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 (Japan); Kitamura, Kazuo [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan)

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  5. Identifying specificity groups in the T cell receptor repertoire.

    Science.gov (United States)

    Glanville, Jacob; Huang, Huang; Nau, Allison; Hatton, Olivia; Wagar, Lisa E; Rubelt, Florian; Ji, Xuhuai; Han, Arnold; Krams, Sheri M; Pettus, Christina; Haas, Nikhil; Arlehamn, Cecilia S Lindestam; Sette, Alessandro; Boyd, Scott D; Scriba, Thomas J; Martinez, Olivia M; Davis, Mark M

    2017-07-06

    T cell receptor (TCR) sequences are very diverse, with many more possible sequence combinations than T cells in any one individual. Here we define the minimal requirements for TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved motifs and global similarity of complementarity-determining region 3 (CDR3) sequences. We show that GLIPH can reliably group TCRs of common specificity from different donors, and that conserved CDR3 motifs help to define the TCR clusters that are often contact points with the antigenic peptides. As an independent validation, we analysed 5,711 TCRβ chain sequences from reactive CD4 T cells from 22 individuals with latent Mycobacterium tuberculosis infection. We found 141 TCR specificity groups, including 16 distinct groups containing TCRs from multiple individuals. These TCR groups typically shared HLA alleles, allowing prediction of the likely HLA restriction, and a large number of M. tuberculosis T cell epitopes enabled us to identify pMHC ligands for all five of the groups tested. Mutagenesis and de novo TCR design confirmed that the GLIPH-identified motifs were critical and sufficient for shared-antigen recognition. Thus the GLIPH algorithm can analyse large numbers of TCR sequences and define TCR specificity groups shared by TCRs and individuals, which should greatly accelerate the analysis of T cell responses and expedite the identification of specific ligands.

  6. Human mast cell activation through Fc receptors and Toll-like receptors

    Directory of Open Access Journals (Sweden)

    Yoshimichi Okayama

    2004-01-01

    Full Text Available Mast cells express high-affinity IgE receptors (FcεRI on their surface and can be activated to secrete a variety of biologically active mediators by cross-linking of receptor-bound IgE. Recent studies in animal models indicate that mouse mast cells may play a protective role in host defense against bacteria through the production of tumor necrosis factor-α, mainly as a result of Toll-like receptor (TLR 4- or CD48-mediated activation. Moreover, several recent observations in animal models have indicated that mast cells may also play a pivotal role in coordinating the early phases of autoimmune diseases, particularly those involving auto-antibodies. We recently identified functional TLR4 and FcγRI on human mast cells, in which their expression had been upregulated by interferon-γ. We compared each of the receptor-mediated gene expression profiles with the FcεRI-mediated gene expression profile using high-density oligonucleotide probe arrays and discovered that human mast cells may modulate the immune system in a receptor-specific manner.

  7. Functional pharmacology of cloned heterodimeric GABA-B receptors expressed in mammalian cells

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1999-01-01

    1. In this study we report a new assay of heterodimeric gamma-amino-butanoic acid subtype B (GABAB) receptors where either GABABR1a or GABABR1b are co-expressed with GABABR2 and the chimeric G-protein Galphaq-z5 in tsA cells. In this manner we obtained a robust response to GABAB agonists measured...

  8. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    Science.gov (United States)

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  9. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Todd M Brusko

    2010-07-01

    Full Text Available Therapies directed at augmenting regulatory T cell (Treg activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff activity as determined by tumor cell growth and luciferase reporter-based imaging.These results support the

  10. Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission.

    Science.gov (United States)

    Fan, Huahao; Qiao, Luhua; Kang, Kyung-Don; Fan, Junfen; Wei, Wensheng; Luo, Guangxiang

    2017-07-01

    Hepatitis C virus (HCV) requires multiple receptors for its attachment to and entry into cells. Our previous studies found that human syndecan-1 (SDC-1), SDC-2, and T cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) are HCV attachment receptors. Other cell surface molecules, such as CD81, Claudin-1 (CLDN1), Occludin (OCLN), SR-BI, and low-density lipoprotein receptor (LDLR), function mainly at postattachment steps and are considered postattachment receptors. The underlying molecular mechanisms of different receptors in HCV cell-free and cell-to-cell transmission remain elusive. In the present study, we used a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technology, gene-specific small interfering RNAs, and a newly developed luciferase-based reporter system to quantitatively determine the importance of individual receptors in HCV cell-free and cell-to-cell transmission. Knockouts of SDC-1 and SDC-2 resulted in remarkable reductions of HCV infection and cell attachment, whereas SDC-3 and SDC-4 knockouts did not affect HCV infection. Defective HCV attachment to SDC-1 and/or SDC-2 knockout cells was completely restored by SDC-1 and SDC-2 but not SDC-4 expression. Knockout of the attachment receptors SDC-1, SDC-2, and TIM-1 also modestly decreased HCV cell-to-cell transmission. In contrast, silencing and knockout of the postattachment receptors CD81, CLDN1, OCLN, SR-BI, and LDLR greatly impaired both HCV cell-free and cell-to-cell transmission. Additionally, apolipoprotein E was found to be important for HCV cell-to-cell spread, but very-low-density lipoprotein (VLDL)-containing mouse serum did not affect HCV cell-to-cell transmission, although it inhibited cell-free infection. These findings demonstrate that attachment receptors are essential for initial HCV binding and that postattachment receptors are important for both HCV cell-free and cell-to-cell transmission. IMPORTANCE The importance and underlying molecular mechanisms

  11. Short-term desensitization of the histamine H1 receptor in human HeLa cells : involvement of protein kinase C dependent and independent pathways

    NARCIS (Netherlands)

    Smit, M J; Bloemers, S M; Leurs, R; Tertoolen, L G; Bast, A; de Laat, S W; Timmerman, H

    1992-01-01

    1. In this study we have investigated the effects of short-term exposure of cells to histamine on the subsequent H1 receptor responsiveness in HeLa cells, using Ca2+ fluorescence microscopy and video digital imaging. 2. In HeLa cells, histamine (100 microM) induces an immediate H1 receptor-mediated

  12. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  13. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Cui, Juan; Miner, Brooke M; Eldredge, Joanna B; Warrenfeltz, Susanne W; Dam, Phuongan; Xu, Ying; Puett, David

    2011-01-01

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  14. The role of purinergic receptors in stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Constanze Kaebisch

    2015-01-01

    Full Text Available A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.

  15. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2001-01-01

    Regulation of T-cell receptor (TCR) cell surface expression levels is probably an important mechanism by which T-cell responsiveness is controlled. Previously, two distinct pathways for TCR downregulation have been described. One is dependent on protein kinase C (PKC) and the leucine-based recept...

  16. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells

    Science.gov (United States)

    Gong, Ping; Madak-Erdogan, Zeynep; Flaws, Jodi A.; Shapiro, David J.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2018-01-01

    Botanical estrogen (BE) dietary supplements are consumed by women as substitutes for loss of endogenous estrogens at menopause. To examine the roles of estrogen receptor α (ERα) and aryl hydrocarbon receptor (AhR) and their crosstalk in the actions of BEs, we studied gene regulation and proliferation responses to four widely used BEs, genistein, daidzein, and S-equol from soy, and liquiritigen from licorice root in breast cancer and liver cells. BEs and estradiol (E2), acting through ERα, stimulated proliferation, ERα chromatin binding and target-gene expression. BEs but not E2, acting through AhR, bound to xenobiotic response element-containing chromatin sites and enhanced AhR target-gene expression (CYP1A1, CYP1B1). While E2 and TCDD acted quite selectively through their respective receptors, BEs acted via both receptors, with their AhR activity moderated by negative crosstalk through ERα. Both ERα and AhR should be considered as mediators of the biology and pharmacology of BEs. PMID:27543265

  17. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis.

    Science.gov (United States)

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-03-03

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy.

  18. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa.

    Science.gov (United States)

    Samuelsson, Patrik; Hang, Long; Wullt, Björn; Irjala, Heikki; Svanborg, Catharina

    2004-06-01

    Mucosal pathogens trigger a local innate host response by activating epithelial cells. Bacterial adherence and Toll-like receptor 4 (TLR4) signaling have been implicated as key events in this process. This study addressed the molecular basis of the epithelial response to gram-negative infection in the human urinary tract. Mucosal biopsies were obtained from kidneys, ureters, and bladders of patients undergoing urinary tract surgery, and epithelial TLR4 and CD14 expression was examined by immunohistochemistry. TLR4 was detected in epithelial cells lining the entire urinary tract and in the renal tubular epithelium. CD14, in contrast, was completely absent from the epithelial tissue. The response of the epithelial cells to infection was studied by in vitro challenge of the biopsies with uropathogenic Escherichia coli bacteria. A rapid cytokine response was observed, with production of interleukin-1beta (IL-1beta), IL-6, and IL-8 but not of IL-4 or gamma interferon. Adhering, P- or type 1-fimbriated E. coli activated IL-6 and IL-8 production more efficiently than the nonfimbriated control, as shown by cellular staining and analysis of secreted cytokines. The results demonstrate that human uroepithelial cells possess the molecular machinery needed to respond to uropathogenic E. coli. This includes recognition receptors for fimbriae and TLR4 for transmembrane signaling. We speculate that the lack of membrane-bound CD14 allows the epithelium to regulate its sensitivity to lipopolysaccharide and to discriminate between more-virulent and less-virulent strains.

  19. Toll-like receptor 7 controls the anti-retroviral germinal center response.

    Directory of Open Access Journals (Sweden)

    Edward P Browne

    2011-10-01

    Full Text Available The development of vaccines that can enhance immunity to viral pathogens is an important goal. However, the innate molecular pathways that regulate the strength and quality of the immune response remain largely uncharacterized. To define the role of Toll-like receptor (TLR signaling in control of a model retroviral pathogen, Friend virus (FV, I generated mice in which the TLR signaling adapter Myd88 was selectively deleted in dendritic cell (DC or in B cell lineages. Deletion of Myd88 in DCs had little effect on immune control of FV, while B cell specific deletion of Myd88 caused a dramatic increase in viral infectious centers and a significantly reduced antibody response, indicating that B cell-intrinsic TLR signaling plays a crucial role, while TLR signaling in DCs is less important. I then identified the single-stranded RNA sensing protein TLR7 as being required for antibody-mediated control of FV by analyzing mice deficient in TLR7. Remarkably, B cells in infected TLR7-deficient mice upregulated CD69 and CD86 early in infection, but failed to develop into germinal center B cells. CD4 T cell responses were also attenuated in the absence of TLR7, but CD8 responses were TLR7 independent, suggesting the existence of additional pathways for detection of retroviral particles. Together these results demonstrate that the vertebrate immune system detects retroviruses in vivo via TLR7 and that this pathway regulates a key checkpoint controlling development of germinal center B cells.

  20. System-wide Analysis of the T Cell Response

    Directory of Open Access Journals (Sweden)

    Ruxandra Covacu

    2016-03-01

    Full Text Available The T cell receptor (TCR controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses.

  1. Death Receptor-Mediated Cell Death and Proinflammatory Signaling in Nonalcoholic SteatohepatitisSummary

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide. A subset of patients develop an inflammatory disease, nonalcoholic steatohepatitis (NASH, characterized by steatosis, hepatocellular death, macrophage and neutrophil accumulation, and varying stages of fibrosis. Hepatocyte cell death triggers the cellular inflammatory response, therefore reducing cell death may be salutary in the steatohepatitis disease process. Recently, a better understanding of hepatocyte apoptosis in NASH has been obtained and new information regarding other cell death modes such as necroptosis and pyroptosis has been reported. Hepatocyte lipotoxicity is often triggered by death receptors. In addition to causing apoptosis, death receptors have been shown to mediate proinflammatory signaling, suggesting that apoptosis in this context is not an immunologically silent process. Here, we review recent developments in our understanding of hepatocyte cell death by death receptors and its mechanistic link to inflammation in NASH. We emphasize how proapoptotic signaling by death receptors may induce the release of proinflammatory extracellular vesicles, thereby recruiting and activating macrophages and promoting the steatohepatitis process. Potential therapeutic strategies are discussed based on this evolving information. Keywords: Apoptosis, Caspase Inhibitor, Cell Death, Death Receptors, Exosomes, Extracellular Vesicles, Fibrosis, Inflammation, Inflammasome, Microvesicles, Necroptosis, Pyroptosis

  2. Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    Science.gov (United States)

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-05-01

    Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1 + cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to BCR-ABL kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; P chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor γ transcriptional activity. Copyright© Ferrata Storti Foundation.

  3. NMDA Receptors in Glial Cells: Pending Questions

    Czech Academy of Sciences Publication Activity Database

    Džamba, Dávid; Honsa, Pavel; Anděrová, Miroslava

    2013-01-01

    Roč. 11, č. 3 (2013), s. 250-262 ISSN 1570-159X R&D Projects: GA ČR GA309/08/1381; GA ČR(CZ) GBP304/12/G069 Grant - others:GA UK(CZ) 604212 Institutional support: RVO:68378041 Keywords : astrocytes * ischemia * NMDA receptors Subject RIV: FH - Neurology Impact factor: 2.347, year: 2013

  4. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    OpenAIRE

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  6. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  7. Potentiation and tolerance of toll-like receptor priming in human endothelial cells

    Science.gov (United States)

    KOCH, STEPHEN R.; LAMB, FRED S.; HELLMAN, JUDITH; SHERWOOD, EDWARD R.; STARK, RYAN J.

    2016-01-01

    Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells and neonatal dermal microvascular (HMVECs) endothelial cells. Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to human umbilical vein endothelial cells. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming also induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response. PMID:27567430

  8. Aberrant Expression of Functional BAFF-System Receptors by Malignant B-Cell Precursors Impacts Leukemia Cell Survival

    Science.gov (United States)

    Maia, Sara; Pelletier, Marc; Ding, Jixin; Hsu, Yen-Ming; Sallan, Stephen E.; Rao, Sambasiva P.; Nadler, Lee M.; Cardoso, Angelo A.

    2011-01-01

    Despite exhibiting oncogenic events, patient's leukemia cells are responsive and dependent on signals from their malignant bone marrow (BM) microenvironment, which modulate their survival, cell cycle progression, trafficking and resistance to chemotherapy. Identification of the signaling pathways mediating this leukemia/microenvironment interplay is critical for the development of novel molecular targeted therapies. We observed that primary leukemia B-cell precursors aberrantly express receptors of the BAFF-system, BAFF-R, BCMA, and TACI. These receptors are functional as their ligation triggers activation of NF-κB, MAPK/JNK, and Akt signaling. Leukemia cells express surface BAFF and APRIL ligands, and soluble BAFF is significantly higher in leukemia patients in comparison to age-matched controls. Interestingly, leukemia cells also express surface APRIL, which seems to be encoded by APRIL-δ, a novel isoform that lacks the furin convertase domain. Importantly, we observed BM microenvironmental cells express the ligands BAFF and APRIL, including surface and secreted BAFF by BM endothelial cells. Functional studies showed that signals through BAFF-system receptors impact the survival and basal proliferation of leukemia B-cell precursors, and support the involvement of both homotypic and heterotypic mechanisms. This study shows an unforeseen role for the BAFF-system in the biology of precursor B-cell leukemia, and suggests that the target disruption of BAFF signals may constitute a valid strategy for the treatment of this cancer. PMID:21687682

  9. Aberrant expression of functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival.

    Directory of Open Access Journals (Sweden)

    Sara Maia

    Full Text Available Despite exhibiting oncogenic events, patient's leukemia cells are responsive and dependent on signals from their malignant bone marrow (BM microenvironment, which modulate their survival, cell cycle progression, trafficking and resistance to chemotherapy. Identification of the signaling pathways mediating this leukemia/microenvironment interplay is critical for the development of novel molecular targeted therapies.We observed that primary leukemia B-cell precursors aberrantly express receptors of the BAFF-system, BAFF-R, BCMA, and TACI. These receptors are functional as their ligation triggers activation of NF-κB, MAPK/JNK, and Akt signaling. Leukemia cells express surface BAFF and APRIL ligands, and soluble BAFF is significantly higher in leukemia patients in comparison to age-matched controls. Interestingly, leukemia cells also express surface APRIL, which seems to be encoded by APRIL-δ, a novel isoform that lacks the furin convertase domain. Importantly, we observed BM microenvironmental cells express the ligands BAFF and APRIL, including surface and secreted BAFF by BM endothelial cells. Functional studies showed that signals through BAFF-system receptors impact the survival and basal proliferation of leukemia B-cell precursors, and support the involvement of both homotypic and heterotypic mechanisms.This study shows an unforeseen role for the BAFF-system in the biology of precursor B-cell leukemia, and suggests that the target disruption of BAFF signals may constitute a valid strategy for the treatment of this cancer.

  10. Comparison of different methods for detecting epidermal growth factor receptor mutations in peripheral blood and tumor tissue of non-small cell lung cancer as a predictor of response to gefitinib

    Directory of Open Access Journals (Sweden)

    Xu F

    2012-12-01

    Full Text Available Fei Xu,1,* Jingxun Wu,2,* Cong Xue,1,* Yuanyuan Zhao,1 Wei Jiang,3 Liping Lin,4 Xuan Wu,5 Yachao Lu,6 Hua Bai,7 Jiasen Xu,8 Guanshan Zhu,6 Li Zhang11State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China; 2Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China; 3Department of Medical Oncology, Cancer Hospital of Guangxi Medical University and Guangxi Autonomous Regional Cancer Hospital, Nanning, Guangxi, People's Republic of China; 4Department of Oncology and Hemotology, Panyu Central Hospital, Guangzhou, Guangdong, People's Republic of China; 5Department of Chemotherapy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China; 6Innovation Center China, AstraZeneca Global R&D, Shanghai, People's Republic of China; 7Department of Thoracic Medical Oncology, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, People's Republic of China; 8SurExam Bio-Tech Co, Ltd, Science City, Guangzhou, People's Republic of China *These authors contributed equally to this workBackground: Previous studies have reported that epidermal growth factor receptor (EGFR mutation in tumor tissue and peripheral blood can predict the response to EGFR tyrosine kinase inhibitor (TKI in non-small cell lung cancer (NSCLC. However, the heterogeneity of the sample sources makes it difficult to evaluate the detecting methodologies. The goal of this study is to compare different methods for analyzing EGFR mutation in blood and tumor tissue.Materials and methods: Fifty-one advanced NSCLC patients treated with gefitinib were included in the study. The EGFR mutation status of each patients' blood was analyzed by denaturing high-performance liquid chromatography (DHPLC, mutant-enriched liquidchip (ME-Liquidchip, and Scorpion

  11. Burn Enhances Toll-Like Receptor Induced Responses by Circulating Leukocytes

    Science.gov (United States)

    2012-04-30

    induced alterations in toll-like receptor- mediated responses by bronchoalveolar lavage cells. Cytokine 2011; 55: 396-401. [14] Huber NL, Bailey SR...Materials and methods Animals C57BL/6 male mice (18 to 22 gm; 8 to 10 wk, Charles River Laboratories, Wilmington, MA) Int J Clin Exp Med...responses by circulating leukocytes is unknown. To study this, C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1-7 days

  12. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ...

  13. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  14. Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients

    Directory of Open Access Journals (Sweden)

    Mariann Kremlitzka

    2016-01-01

    Full Text Available Complement receptors (CRs play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35 is a potent inhibitor of the B cell receptor- (BCR- induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs. Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients.

  15. Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients.

    Science.gov (United States)

    Kremlitzka, Mariann; Mácsik-Valent, Bernadett; Polgár, Anna; Kiss, Emese; Poór, Gyula; Erdei, Anna

    2016-01-01

    Complement receptors (CRs) play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35) is a potent inhibitor of the B cell receptor- (BCR-) induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs). Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE) patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients.

  16. Mast cell degranulation following adenosine A3 receptor activation in rats.

    Science.gov (United States)

    Fozard, J R; Pfannkuche, H J; Schuurman, H J

    1996-03-18

    The present studies were carried out to provide further evidence for the hypothesis that the hypotensive response to adenosine A3 receptor activation in the anaesthetized rat involves mediator release from mast cells. Male Sprague-Dawley rats were anaesthetized and given just supramaximal hypotensive doses of either the non-selective A3 receptor agonist, N6(-2)-(4-aminophenyl)ethyladenosine (APNEA: 100 micrograms/kg, preceded by the A1/A2 receptor antagonist, 8-p-(sulphophenyl)theophylline, to "isolate' the A3 receptor-mediated component of the response), the mast cell degranulating agent, compound 48/80 (300 micrograms/kg) or the vehicle for APNEA, intravenously. Blood was withdrawn from a carotid artery between 2 and 10 min after the injection and plasma and serum histamine concentrations measured. Samples of connective tissue (surrounding the abdominal musculature), thymus, mesenteric lymph node, kidney, skin and diaphragm were removed for histological analysis. The plasma and serum histamine concentrations were markedly and significantly higher in the APNEA- or compound 48/80-treated animals compared to vehicle-treated controls. Consistent with this, a substantially greater proportion of mast cells was seen to be undergoing degranulation in all tissues removed from animals treated with APNEA or compound 48/80 compared to those from rats treated with vehicle. Thus, adenosine A3 receptor activation results in rapid mast cell degranulation in the anaesthetized rat. The data provide further evidence of a key role for the mast cell in adenosine A3 receptor-mediated hypotension in this species.

  17. Effect of outer hair cell piezoelectricity on high-frequency receptor potentials.

    Science.gov (United States)

    Spector, Alexander A; Brownell, William E; Popel, Aleksander S

    2003-01-01

    The low-pass voltage response of outer hair cells predicted by conventional equivalent circuit analysis would preclude the active force production at high frequencies. We have found that the band pass characteristics can be improved by introducing the piezoelectric properties of the cell wall. In contrast to the conventional analysis, the receptor potential does not tend to zero and at any frequency is greater than a limiting value. In addition, the phase shift between the transduction current and receptor potential tends to zero. The piezoelectric properties cause an additional, strain-dependent, displacement current in the cell wall. The wall strain is estimated on the basis of a model of the cell deformation in the organ of Corti. The limiting value of the receptor potential depends on the ratio of a parameter determined by the piezoelectric coefficients and the strain to the membrane capacitance. In short cells, we have found that for the low-frequency value of about 2-3 mV and the strain level of 0.1% the receptor potential can reach 0.4 mV throughout the whole frequency range. In long cells, we have found that the effect of the piezoelectric properties is much weaker. These results are consistent with major features of the cochlear amplifier.

  18. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  19. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    Directory of Open Access Journals (Sweden)

    Mariagrazia Valentini

    2014-01-01

    Full Text Available A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs, pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.

  20. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    Science.gov (United States)

    Valentini, Mariagrazia; Piermattei, Alessia; Di Sante, Gabriele; Delogu, Giovanni; Ria, Francesco

    2014-01-01

    A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota. PMID:25147831

  1. Interleukin-21 induces proliferation and modulates receptor expression and effector function in canine natural killer cells.

    Science.gov (United States)

    Shin, Dong-Jun; Lee, Soo-Hyeon; Park, Ji-Yun; Kim, Ju-Sun; Lee, Je-Jung; Suh, Guk-Hyun; Lee, Youn-Kyung; Cho, Duck; Kim, Sang-Ki

    2015-05-15

    Interleukin (IL)-21 is an important modulator of natural killer (NK) cell function. However, little is known about IL-21 function in canine NK cells because the phenotype of these cells remains undefined. In this study, we selectively expanded non-B and non-T large granular NK lymphocytes (CD3(-)CD21(-)CD5(-)CD4(-)TCRαβ(-)TCRγδ(-)) ex vivo from the peripheral blood mononuclear cells (PBMCs) of healthy dogs using a combination of IL-2, IL-15, and IL-21 in the presence of 100 Gy-irradiated K562 cells. We investigated the effects of varying the duration and timing of IL-21 treatment on stimulation of proliferation, expression of NK-related receptors, anti-tumor activity and production of interferon (IFN)-γ. The expanded NK cells in each treatment group became enlarged and highly granular after 21 days in culture. NK cells proliferated rapidly in response to activation by IL-21 for 3 weeks, and IL-21 was able to induce changes in the mRNA expression of NK cell-related receptors and enhance the effector function of NK cells in perforin- and granzyme-B-dependent manners. The duration, frequency and timing of IL-21 stimulation during culture affected the rate of proliferation, patterns of receptor expression, cytokine production, and anti-tumor activity. The optimal conditions for maximizing the IL-21-induced proliferation and effector function of NK cells in the presence of IL-2 and IL-15 were seen in cells treated with IL-21 for the first 7 days of culture but without any further IL-21 stimulation other than an additional 2-day treatment prior to harvesting on day 21. The results of this study suggest that synergistic interactions of IL-21 with IL-2 and IL-15 play an important role in the proliferation, receptor expression, and effector function of canine NK cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity.

    Science.gov (United States)

    Engelsdorf, Timo; Hamann, Thorsten

    2014-10-01

    Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases. This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany

  3. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor receptor response to neural cell adhesion molecule activation

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Lundfald, Line; Ditlevsen, Dorte K

    2004-01-01

    Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells....... Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein...... ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM...

  4. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  5. Activation of a Temporal Memory in Purkinje Cells by the mGluR7 Receptor

    Directory of Open Access Journals (Sweden)

    Fredrik Johansson

    2015-12-01

    Full Text Available Cerebellar Purkinje cells can learn to respond to a conditioned stimulus with an adaptively timed pause in firing. This response was usually ascribed to long-term depression of parallel fiber to Purkinje cell synapses but has recently been shown to be due to a previously unknown form of learning involving an intrinsic cellular timing mechanism. Here, we investigate how these responses are elicited. They are resistant to blockade of GABAergic inhibition, suggesting that they are caused by glutamate release rather than by a changed balance between GABA and glutamate. We show that the responses are abolished by antagonists of the mGlu7 receptor but not significantly affected by other glutamate antagonists. These results support the existence of a distinct learning mechanism, different from changes in synaptic strength. They also demonstrate in vivo post-synaptic inhibition mediated by glutamate and show that the mGlu7 receptor is involved in activating intrinsic temporal memory.

  6. B cell activating factor (BAFF) selects IL-10-B cells over IL-10+B cells during inflammatory responses.

    Science.gov (United States)

    Ma, Ning; Zhang, Yu; Liu, Qilin; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Yu, Dandan; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Ma, Yuanfang; Shen, Beifen; Li, Yan; Xiao, He; Wang, Renxi

    2017-05-01

    B cell activating factor (BAFF) regulates B cell maturation, survival, function, and plays a critical pathogenic role in autoimmune diseases. It remains unclear how BAFF affects IL-10 - B cells versus regulatory B cells (Bregs) in inflammatory responses. In this study, we found that IL-10-expressing Bregs decreased in lupus-prone MRL/lpr mice and experimental allergic encephalomyelitis (EAE) mice. On blockade of the effects of BAFF with TACI-IgG, IL-10 + Bregs were upregulated in MRL/lpr and EAE mice. In addition, BAFF expanded IL-10 + B cells over IL-10 - B cells under noninflammatory conditions in vitro, whereas it expanded IL-10 - B cells over IL-10 + B cells during inflammatory responses, such as stimulation with autoantigen and LPS. Finally, the selection of IL-10 - B cells over IL-10 + B cells by BAFF was dependent on BAFF receptors (BAFFR, TACI, and BCMA) that were upregulated by inflammatory responses. This study suggests that BAFF selects IL-10 - B cells over IL-10 + regulatory B cells via BAFF receptors in inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  8. Glutamate receptor properties of human mesencephalic neural progenitor cells: NMDA enhances dopaminergic neurogenesis in vitro.

    Science.gov (United States)

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Schaarschmidt, Grit; Härtig, Wolfgang; Schwarz, Sigrid C; Schwarz, Johannes

    2009-10-01

    Human midbrain-derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson's disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole-cell patch-clamp recordings, l-glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration-response plots of differentiated NPCs yielded an EC(50) of 2.2 microM for glutamate and an EC(50) of 36 microM for NMDA. Glutamate-induced currents were markedly inhibited by memantine in contrast to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggesting a higher density of functional NMDA than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptors. NMDA-evoked currents and calcium signals were blocked by the NR2B-subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage-gated calcium channels by verapamil abolished AMPA-induced calcium responses but only partially reduced NMDA-evoked transients suggesting the expression of calcium-impermeable, GluR2-containing AMPA receptors. Quantitative real-time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 microM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase-immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.

  9. HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells.

    Science.gov (United States)

    Zhen, Anjie; Kamata, Masakazu; Rezek, Valerie; Rick, Jonathan; Levin, Bernard; Kasparian, Saro; Chen, Irvin Sy; Yang, Otto O; Zack, Jerome A; Kitchen, Scott G

    2015-08-01

    The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities.

  10. Indomethacin activates protein kinase C and potentiates α7 ACh receptor responses.

    Science.gov (United States)

    Kanno, Takeshi; Yaguchi, Takahiro; Nagata, Tetsu; Nishizaki, Tomoyuki

    2012-01-01

    We have earlier found that indomethacin activates CaMKII, as a novel action distinct from COX inhibition. To explore further indomethacin actions, the present study focused upon PKC and examined the effect of indomethacin on α7 ACh receptor responses and hippocampal synaptic transmission through PKC. We recorded currents through α7 ACh receptors expressed in Xenopus oocytes, quantified PKC activity in the in situ and cell-free PKC assay, and monitored field excitatory postsynaptic potentials (fEPSPs) and miniature excitatory postsynaptic currents (mEPSCs) from the CA1 region of rat hippocampal slices. Indomethacin potentiated α7 ACh receptor currents in a bell-shaped concentration (100 nM-1 mM)-dependent manner, and the potentiating effect was inhibited by the PKC inhibitor GF109203X. Indomethacin activated PKC in a concentration (1-100 μM)-dependent manner for cultured rat hippocampal neurons. Additionally, indomethacin (100 μM) significantly activated PKC-ε under the cell-free conditions. Indomethacin (100 μM) induced a transient huge increase in the fEPSP slope followed by persistent increase, and the former effect was attenuated by the α7 ACh receptor antagonist α-bungarotoxin or GF109203X. Indomethacin (100 μM) also increased the rate of nicotine-evoked mEPSCs, and the effect was prevented by α-bungarotoxin or GF109203X. The results of the present study show that indomethacin activates PKC, possibly PKC-e in the brain, thereby potentiating α7 ACh receptor responses to stimulate presynaptic glutamate release, which in part contributes to facilitation of hippocampal transmission. This extends our knowledge about diverse indomethacin actions. Copyright © 2012 S. Karger AG, Basel.

  11. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells.

    Science.gov (United States)

    Novaro, Virginia; Roskelley, Calvin D; Bissell, Mina J

    2003-07-15

    The expression level and functional activity of estrogen receptor alpha is an important determinant of breast physiology and breast cancer treatment. However, it has been difficult to identify the signals that regulate estrogen receptor because cultured mammary epithelial cells generally do not respond to estrogenic signals. Here, we use a combination of two- and three-dimensional culture systems to dissect the extracellular signals that control endogenous estrogen receptor alpha. Its expression was greatly reduced when primary mammary epithelial cells were placed on tissue culture plastic; however, the presence of a reconstituted basement membrane in combination with lactogenic hormones partially prevented this decrease. Estrogen receptor alpha expression in primary mammary fibroblasts was not altered by these culture conditions, indicating that its regulation is cell type specific. Moreover, estrogen receptor-dependent reporter gene expression, as well as estrogen receptor alpha levels, were increased threefold in a functionally normal mammary epithelial cell line when reconstituted basement membrane was added to the medium. This regulatory effect of reconstituted basement membrane was reproduced by two of its components, collagen-IV and laminin-1, and it was blocked by antibodies against alpha2, alpha6 and beta1 integrin subunits. Our results indicate that integrin-mediated response to specific basement membrane components, rather than cell rounding or cell growth arrest induced by reconstituted basement membrane, is critical in the regulation of estrogen receptor alpha expression and function in mammary epithelial cells.

  13. Collagen-IV and laminin-1 regulate estrogen receptor α expression and function in mouse mammary epithelial cells

    Science.gov (United States)

    Novaro, Virginia; Roskelley, Calvin D.; Bissell, Mina J.

    2010-01-01

    Summary The expression level and functional activity of estrogen receptor α is an important determinant of breast physiology and breast cancer treatment. However, it has been difficult to identify the signals that regulate estrogen receptor because cultured mammary epithelial cells generally do not respond to estrogenic signals. Here, we use a combination of two- and three-dimensional culture systems to dissect the extracellular signals that control endogenous estrogen receptor α. Its expression was greatly reduced when primary mammary epithelial cells were placed on tissue culture plastic; however, the presence of a reconstituted basement membrane in combination with lactogenic hormones partially prevented this decrease. Estrogen receptor α expression in primary mammary fibroblasts was not altered by these culture conditions, indicating that its regulation is cell type specific. Moreover, estrogen receptor-dependent reporter gene expression, as well as estrogen receptor α levels, were increased threefold in a functionally normal mammary epithelial cell line when reconstituted basement membrane was added to the medium. This regulatory effect of reconstituted basement membrane was reproduced by two of its components, collagen-IV and laminin-1, and it was blocked by antibodies against α2, α6 and β1 integrin subunits. Our results indicate that integrin-mediated response to specific basement membrane components, rather than cell rounding or cell growth arrest induced by reconstituted basement membrane, is critical in the regulation of estrogen receptor α expression and function in mammary epithelial cells. PMID:12808020

  14. SYK inhibition thwarts the BAFF - B-cell receptor crosstalk and thereby antagonizes Mcl-1 in chronic lymphocytic leukemia.

    Science.gov (United States)

    Paiva, Cody; Rowland, Taylor A; Sreekantham, Bhargava; Godbersen, Claire; Best, Scott R; Kaur, Prabhjot; Loriaux, Marc M; Spurgeon, Stephen E F; Danilova, Olga V; Danilov, Alexey V

    2017-11-01

    Although small molecule inhibitors of B-cell receptor-associated kinases have revolutionized therapy in chronic lymphocytic leukemia (CLL), responses are incomplete. Pro-survival signaling emanating from the microenvironment may foster therapeutic resistance of the malignant B cells resident in the protective lymphoid niches. B-cell activating factor (BAFF) is critical to the survival of both healthy and neoplastic B cells. However, the pro-survival pathways triggered by BAFF have not been fully characterized. Here we show that BAFF elicited resistance to spontaneous and drug-induced apoptosis in stromal co-cultures, induced activation of both canonical and non-canonical NFκB signaling pathways, and triggered B-cell receptor signaling in CLL cells, independently of IGHV mutational status. SYK, a proximal kinase in the B-cell receptor signaling cascade, acted via STAT3 to bolster transcription of the anti-apoptotic protein Mcl-1, thereby contributing to apoptosis resistance in BAFF-stimulated cells. SYK inhibitor entospletinib downregulated Mcl-1, abrogating BAFF-mediated cell survival. BAFF-B-cell receptor crosstalk in neoplastic B cells was mediated by SYK interaction with TRAF2/TRAF3 complex. Thus, SYK inhibition is a promising therapeutic strategy uniquely poised to antagonize crosstalk between BAFF and B-cell receptor, thereby disrupting the pro-survival microenvironment signaling in chronic lymphocytic leukemia. Copyright© Ferrata Storti Foundation.

  15. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  16. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  17. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  18. Chemokine Receptor Expression Identifies Pre–T Helper (Th)1, Pre–Th2, and Nonpolarized Cells among Human CD4+ Central Memory T Cells

    Science.gov (United States)

    Rivino, Laura; Messi, Mara; Jarrossay, David; Lanzavecchia, Antonio; Sallusto, Federica; Geginat, Jens

    2004-01-01

    We previously reported that central–memory T cells (TCM cells), which express lymph node homing receptors CCR7 and CD62L, are largely devoid of effector functions but acquire characteristics of effector–memory T cells (TEM cells) (i.e., CCR7− T helper [Th]1 or Th2 cells) after stimulation with T cell receptor agonists or homeostatic cytokines. Here we show that three chemokine receptors identify functional subsets within the human CD4+ TCM cell pool. TCM cells expressing CXCR3 secreted low amounts of interferon γ, whereas CCR4+ TCM cells produced some interleukin (IL)-4, but not IL-5. In response to IL-7 and IL-15, CXCR3+ TCM and CCR4+ TCM cells invariably generated fully differentiated CCR7− Th1 and Th2 cells, respectively, suggesting that they represent pre-Th1 and pre-Th2 cells. Conversely, CXCR5+ TCM cells lacking CXCR3 and CCR4 remained nonpolarized and retained CCR7 and CD62L expression upon cytokine-driven expansion. Unlike naive cells, all memory subsets had a low T cell receptor rearrangement excision circle content, spontaneously incorporated bromodeoxyuridine ex vivo, and contained cells specific for tetanus toxoid. Conversely, recall responses to cytomegalovirus and vaccinia virus were largely restricted to CXCR3+ TCM and TEM cells. We conclude that antigen-specific memory T cells are distributed between TEM cells and different subsets of TCM cells. Our results also explain how the quality of primary T cell responses could be maintained by TCM cells in the absence of antigen. PMID:15381728

  19. Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a ...

    African Journals Online (AJOL)

    Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a marker to differentiate septic from aseptic meningitis in children: comparison with procalcitonin and ... Procalcitonin (PCT) was suggested by many researchers as a sensitive marker for early diagnosis of septic meningitis but with varying discriminative power.

  20. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian; Enevold, Christian; Wang, Tao

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs...

  1. Regulation of HIV receptor expression in cervical epithelial cells by ...

    African Journals Online (AJOL)

    Background. Sexually transmitted infections (STIs) caused by the Gram-negative bacteria Chlamydia trachomatis and Neisseria gonorrhoeae are associated with an increased risk of HIV acquisition in South African women. HIV infection involves binding of the virus to CD4+ receptors on host cells and subsequent binding to ...

  2. Endothelial protein C receptor in renal tubular epithelial cells and ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... nuclear factor-kappa B (NF-KB). This will result in the inhibition of the expression of cell surface adhesion molecules and the reduction in the synthesis and release of inflammatory cytokine, inhibiting neutrophil activation and extravasation in damaged tissue parts. Endothelial protein C receptor (EPCR) was ...

  3. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  4. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  5. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  6. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  7. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  8. Cannabinoid Receptor 2 (CB2 Plays a Role in the Generation of Germinal Center and Memory B Cells, but Not in the Production of Antigen-Specific IgG and IgM, in Response to T-dependent Antigens.

    Directory of Open Access Journals (Sweden)

    Sreemanti Basu

    Full Text Available The cannabinoid receptor 2 (CB2 has been reported to modulate B cell functions including migration, proliferation and isotype class switching. Since these processes are required for the generation of the germinal center (GC and antigen-specific plasma and memory cells following immunization with a T-dependent antigen, CB2 has the capacity to alter the quality and magnitude of T-dependent immune responses. To address this question, we immunized WT and CB2(-/- mice with the T-dependent antigen 4-hydroxy-3-nitrophenylacetyl (NP-chicken-gamma-globulin (CGG and measured GC B cell formation and the generation of antigen-specific B cells and serum immunoglobulin (Ig. While there was a significant reduction in the number of splenic GC B cells in CB2(-/- mice early in the response there was no detectable difference in the number of NP-specific IgM and IgG1 plasma cells. There was also no difference in NP-specific IgM and class switched IgG1 in the serum. In addition, we found no defect in the homing of plasma cells to the bone marrow (BM and affinity maturation, although memory B cell cells in the spleen were reduced in CB2(-/- mice. CB2-deficient mice also generated similar levels of antigen-specific IgM and IgG in the serum as WT following immunization with sheep red blood cells (sRBC. This study demonstrates that although CB2 plays a role in promoting GC and memory B cell formation/maintenance in the spleen, it is dispensable on all immune cell types required for the generation of antigen-specific IgM and IgG in T-dependent immune responses.

  9. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells.

    Directory of Open Access Journals (Sweden)

    Claudio eElgueta

    2015-02-01

    Full Text Available Abstract Acetylcholine (ACh is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline, suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs and intracellular Ca2+ stores. Inhibition of acetyl-cholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram, suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.

  10. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high....... e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point...... to a new, unique approach enabling to eliminate non-cycling uterine leiomyosarcoma cells providing that they over-express the AT2 receptor....

  11. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR and NKG2D

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2006-01-01

    Full Text Available Human natural killer (NK lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis. Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity.

  12. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  13. Differential Effects of β-Blockers, Angiotensin II Receptor Blockers, and a Novel AT2R Agonist NP-6A4 on Stress Response of Nutrient-Starved Cardiovascular Cells.

    Directory of Open Access Journals (Sweden)

    Abuzar Mahmood

    Full Text Available In order to determine differences in cardiovascular cell response during nutrient stress to different cardiovascular protective drugs, we investigated cell responses of serum starved mouse cardiomyocyte HL-1 cells and primary cultures of human coronary artery vascular smooth muscles (hCAVSMCs to treatment with β-blockers (atenolol, metoprolol, carvedilol, nebivolol, 3 μM each, AT1R blocker losartan (1 μM and AT2R agonists (CGP42112A and novel agonist NP-6A4, 300 nM each. Treatment with nebivolol, carvedilol, metoprolol and atenolol suppressed Cell Index (CI of serum-starved HL-1 cells (≤17%, ≤8%, ≤15% and ≤15% respectively as measured by the Xcelligence Real-Time Cell Analyzer (RTCA. Conversely, CI was increased by Ang II (≥9.6%, CGP42112A (≥14%, and NP-6A4 (≥25% respectively and this effect was blocked by AT2R antagonist PD123319, but not by AT1R antagonist losartan. Thus, the CI signature for each drug could be unique. MTS cell proliferation assay showed that NP-6A4, but not other drugs, increased viability (≥20% of HL-1 and hCAVSMCs. Wheat Germ Agglutinin (WGA staining showed that nebivolol was most effective in reducing cell sizes of HL-1 and hCAVSMCs. Myeloid Cell Leukemia 1 (MCL-1 is a protein critical for cardiovascular cell survival and implicated in cell adhesion. β-blockers significantly suppressed and NP-6A4 increased MCL-1 expression in HL-1 and hCAVSMCs as determined by immunofluorescence. Thus, reduction in cell size and/or MCL-1 expression might underlie β-blocker-induced reduction in CI of HL-1. Conversely, increase in cell viability and MCL-1 expression by NP-6A4 through AT2R could have resulted in NP-6A4 mediated increase in CI of HL-1. These data show for the first time that activation of the AT2R-MCL-1 axis by NP-6A4 in nutrient-stressed mouse and human cardiovascular cells (mouse HL-1 cells and primary cultures of hCAVSMCs might underlie improved survival of cells treated by NP-6A4 compared to other

  14. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Ciprian Tomuleasa

    2018-02-01

    Full Text Available Chimeric antigen receptor (CAR T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.

  15. Induction of non-responsiveness in human allergen-specific type 2 T helper cells.

    Science.gov (United States)

    Yssel, H; Fasler, S; Lamb, J; de Vries, J E

    1994-12-01

    Activation of allergen-reactive human T helper (Th)2 cells in the absence of professional antigen-presenting cells, induces non-responsiveness or anergy in these cells in vitro. This induction of anergy is accompanied by phenotypic modulation and altered cytokine production. Furthermore, peptide-treated Th2 cells fail to provide B-cell help for IgE synthesis. Recent studies indicate that impaired signal transduction via the T-cell receptor may account for the lack of responsiveness to antigenic stimulation. Here, we review present knowledge on the cell biology of non-responsive or anergic Th2 cells.

  16. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  17. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  18. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  19. Chitinase 3-like 1 Regulates Cellular and Tissue Responses via IL-13 Receptor α2

    Directory of Open Access Journals (Sweden)

    Chuan Hua He

    2013-08-01

    Full Text Available Members of the 18 glycosyl hydrolase (GH 18 gene family have been conserved over species and time and are dysregulated in inflammatory, infectious, remodeling, and neoplastic disorders. This is particularly striking for the prototypic chitinase-like protein chitinase 3-like 1 (Chi3l1, which plays a critical role in antipathogen responses where it augments bacterial killing while stimulating disease tolerance by controlling cell death, inflammation, and remodeling. However, receptors that mediate the effects of GH 18 moieties have not been defined. Here, we demonstrate that Chi3l1 binds to interleukin-13 receptor α2 (IL-13Rα2 and that Chi3l1, IL-13Rα2, and IL-13 are in a multimeric complex. We also demonstrate that Chi3l1 activates macrophage mitogen-activated protein kinase, protein kinase B/AKT, and Wnt/β-catenin signaling and regulates oxidant injury, apoptosis, pyroptosis, inflammasome activation, antibacterial responses, melanoma metastasis, and TGF-β1 production via IL-13Rα2-dependent mechanisms. Thus, IL-13Rα2 is a GH 18 receptor that plays a critical role in Chi3l1 effector responses.

  20. The chicken c-erbA alpha-product induces expression of thyroid hormone-responsive genes in 3,5,3'-triiodothyronine receptor-deficient rat hepatoma cells

    DEFF Research Database (Denmark)

    Muñoz, A; Höppner, W; Sap, J

    1990-01-01

    nuclear expression of the cTR-alpha protein the cells become responsive to thyroid hormone, as detected by expression of a number of genes (malic enzyme, phosphoenolpyruvate carboxykinase, and Na+/K(+)-ATPase) reported to be indirectly induced by the hormone in vivo. In addition, our data show that the c...

  1. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Joanna Bandoła

    2017-08-01

    Full Text Available Plasmacytoid dendritic cells (pDCs regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR by the antigen-presenting pDCs, mediated by toll-like receptor (TLR 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  2. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  3. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function.

    Science.gov (United States)

    Parrish-Novak, J; Dillon, S R; Nelson, A; Hammond, A; Sprecher, C; Gross, J A; Johnston, J; Madden, K; Xu, W; West, J; Schrader, S; Burkhead, S; Heipel, M; Brandt, C; Kuijper, J L; Kramer, J; Conklin, D; Presnell, S R; Berry, J; Shiota, F; Bort, S; Hambly, K; Mudri, S; Clegg, C; Moore, M; Grant, F J; Lofton-Day, C; Gilbert, T; Rayond, F; Ching, A; Yao, L; Smith, D; Webster, P; Whitmore, T; Maurer, M; Kaushansky, K; Holly, R D; Foster, D

    2000-11-02

    Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

  4. Rosiglitazone inhibits HMC-1 cell migration and adhesion through a peroxisome proliferator-activated receptor gamma-dependent mechanism.

    Science.gov (United States)

    Zhang, Guqin; Yang, Jiong; Li, Ping; Cao, Jie; Nie, Hanxiang

    2014-02-01

    Mast cells play an important role in a variety of inflammatory diseases, particularly asthma and atopy. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the large nuclear hormone receptor transcription factor superfamily, and has been recently implicated in the anti-inflammatory response. To investigate a possible role for PPARγ in human mast cells, we studied the effects of a PPARγ ligand, rosiglitazone (RG), on stem cell factor (SCF)-induced migration and fibronectin-induced adhesion in human mast cell-1(HMC-1) cells. It was found that HMC-1 cells expressed PPARγ mRNA. RG inhibited SCF-induced HMC-1 cell migration and fibronectin-induced HMC-1 cell adhesion, the selective PPARγ antagonist GW9662 prevented the inhibitory effect of RG on HMC-1 cells. In conclusion, RG inhibits the migration and adhesion of HMC-1 cells by a PPARγ-dependent mechanism.

  5. Strategies for B-cell receptor repertoire analysis in primary immunodeficiencies: From severe combined immunodeficiency to common variable immunodeficiency

    NARCIS (Netherlands)

    H. IJspeert (Hanna); M. Wentink (Marjolein); D. van Zessen (David); G.J.A. Driessen (Gertjan); V.A.S.H. Dalm (Virgil); M.P. van Hagen (Martin); I. Pico-Knijnenburg (Ingrid); E.J. Simons (Erik J.); J.J.M. van Dongen (Jacques); A. Stubbs (Andrew); M. van der Burg (Mirjam)

    2015-01-01

    textabstractThe antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen

  6. The Inflammation Response to DEHP through PPARγ in Endometrial Cells

    Directory of Open Access Journals (Sweden)

    Qiansheng Huang

    2016-03-01

    Full Text Available Epidemiological studies have shown the possible link between phthalates and endometrium-related gynecological diseases, however the molecular mechanism(s behind this is/are still unclear. In the study, both primary cultured endometrial cells and an endometrial adenocarcinoma cell line (Ishikawa were recruited to investigate the effects of di-(2-ethylhexyl phthalate (DEHP at human-relevant concentrations. The results showed that DEHP did not affect the viability of either type of cell, which showed different responses to inflammation. Primary cultured cells showed stronger inflammatory reactions than the Ishikawa cell line. The expression of inflammatory factors was induced both at the mRNA and protein levels, however the inflammation did not induce the progress of epithelial-mesenchymal transition (EMT as the protein levels of EMT markers were not affected after exposure to either cell type. Further study showed that the mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ wereup-regulated after exposure. In all, our study showed that human-relevant concentrations of DEHP could elicit the inflammatory response in primary cultured endometrial cells rather than in Ishikawa cell line. PPARγ may act as the mediating receptor in the inflammation reaction.

  7. Receptor control in mesenchymal stem cell engineering

    Science.gov (United States)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  8. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines.

    Science.gov (United States)

    Hillger, Julia M; Schoop, Jeffison; Boomsma, Dorret I; Slagboom, P Eline; IJzerman, Adriaan P; Heitman, Laura H

    2015-12-15

    Deciphering how genetic variation in drug targets such as G protein-coupled receptors (GPCRs) affects drug response is essential for precision medicine. GPCR signaling is traditionally investigated in artificial cell lines which do not provide sufficient physiological context. Patient-derived cell lines such as lymphoblastoid cell lines (LCLs) could represent the ideal cellular model system. Here we describe a novel label-free, whole-cell biosensor method for characterizing GPCR-mediated drug responses in LCLs. Generally, such biosensor technology is deemed only compatible with adherent cell lines. We optimized and applied the methodology to study cellular adhesion properties as well as GPCR drug responses in LCLs, which are suspension cells. Coating the detector surface with the extracellular matrix protein fibronectin resulted in cell adherence and allowed detection of cellular responses. A prototypical GPCR present on these cells, i.e. the cannabinoid receptor 2 (CB2), was selected for pharmacological characterization. Receptor activation with the agonist JWH133, blockade by antagonist AM630 as well as downstream signaling inhibition by PTX could be monitored sensitively and receptor-specifically. Potencies and effects were comparable between LCLs of two genetically unrelated individuals, providing the proof-of-principle that this biosensor technology can be applied to LCLs, despite their suspension cell nature, in order to serve as an in vitro model system for the evaluation of individual genetic influences on GPCR-mediated drug responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  10. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  11. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  12. Role of cholinergic receptors in melanophore responses of amphibians.

    Science.gov (United States)

    Ali, A S; Peter, J; Ali, S A

    1995-01-01

    Responses of isolated skin melanophores of Rana tigerina and Bufo melanostictus to cholinergic drugs were studied using the Mean Melanophore Size Index assay to explore the nature and role of cellular receptors in melanophore regulation activity. Acetylcholine (Ach) in a concentration of 10(-7) to 6.4 x 10(-6) g/ml caused dispersion of the skin melanophores of R. tigerina and B. melanostictus. These effects were blocked by both atropine and hyoscine in a concentration of 8 x 10(-6) g/ml each. Eserine augmented the melanophore dispersal effects of Ach. This potentiation of the dispersal effect of Ach by eserine was also antagonised by hyoscine. Carbachol another specific cholinergic agonist significantly caused dispersion of the melanophores of both the amphibian species. The effects were also blocked by atropine and hyoscine. These data indicate that cholinergic receptors of muscarinic type are present on the melanophores of R. tigerina and B. melanostictus which mediate dispersion of integumental melanophores leading to darkening of the skin.

  13. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    Science.gov (United States)

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  14. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin.

    Science.gov (United States)

    Williams, Diana L; Baskin, Denis G; Schwartz, Michael W

    2009-11-01

    Leptin is thought to reduce food intake, in part, by increasing sensitivity to satiation signals, including CCK. Leptin action in both forebrain and hindbrain reduces food intake, and forebrain leptin action augments both the anorexic and neuronal activation responses to CCK. Here, we asked whether leptin signaling in hindbrain also enhances these responses to CCK. We found that food intake was strongly inhibited at 30 min after a combination of 4th-intracerebroventricular (4th-icv) leptin injection and intraperitoneal CCK administration, whereas neither hormone affected intake during this period when given alone. Leptin injections targeted directly at the dorsal vagal complex (DVC) similarly enhanced the anorexic response to intraperitoneal CCK. Intra-DVC leptin injection also robustly increased the number of neurons positive for phospho-STAT3 staining in the area surrounding the site of injection, confirming local leptin receptor activation. Conversely, the anorexic response to 4th-icv leptin was completely blocked by IP devazepide, a CCKA-R antagonist, suggesting that hindbrain leptin reduces intake via a mechanism requiring endogenous CCK signaling. We then asked whether hindbrain leptin treatment enhances the dorsomedial hindbrain, hypothalamus, or amygdala c-Fos responses to IP CCK. We found that, in contrast to the effects of forebrain leptin administration, 4th-icv leptin injection had no effect on CCK-induced c-Fos in any structures examined. We conclude that leptin signaling in either forebrain or hindbrain areas can enhance the response to satiation signals and that multiple distinct neural circuits likely contribute to this interaction.

  15. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic

  16. The vitamin D receptor turns off chronically activated T cells.

    Science.gov (United States)

    Cantorna, Margherita T; Waddell, Amanda

    2014-05-01

    T cell proliferation and T helper (TH ) cells that make IL-17 (TH 17 cells) and IFN-γ (TH 1 cells) have been shown to be inhibited by 1,25(OH)2 D3 . Previous work has shown that immune-mediated diseases, where TH 1 and TH 17 cells are pathogenic, are ameliorated with 1,25(OH)2 D3 treatment. Paradoxically, infectious diseases that require TH 1 and TH 17 responses for host resistance are unaffected by 1,25(OH)2 D3 treatment. Resting T cells are not responsive to vitamin D because they do not express the vitamin D receptor (VDR) until late after activation. T cells activated following an infection help clear the infection, and since the antigen is eliminated, vitamin D is not needed to dampen the immune response. Conversely, in immune-mediated disease, there is chronic T cell activation, and in this scenario, vitamin D and 1,25(OH)2 D3 are critical for inhibiting T cell proliferation and cytokine production. Vitamin D is a late regulator of T cell function and acts to turn off T cells. This paper will review these data. © 2014 New York Academy of Sciences.

  17. PTH regulates β2-adrenergic receptor expression in osteoblast-like MC3T3-E1 cells.

    Science.gov (United States)

    Moriya, Shuichi; Hayata, Tadayoshi; Notomi, Takuya; Aryal, Smriti; Nakamaoto, Testuya; Izu, Yayoi; Kawasaki, Makiri; Yamada, Takayuki; Shirakawa, Jumpei; Kaneko, Kazuo; Ezura, Yoichi; Noda, Masaki

    2015-01-01

    As the aged population is soaring, prevalence of osteoporosis is increasing. However, the molecular basis underlying the regulation of bone mass is still incompletely understood. Sympathetic tone acts via beta2 adrenergic receptors in bone and regulates the mass of bone which is the target organ of parathyroid hormone (PTH). However, whether beta2 adrenergic receptor is regulated by PTH in bone cells is not known. We therefore investigated the effects of PTH on beta2 adrenergic receptor gene expression in osteoblast-like MC3T3-E1 cells. PTH treatment immediately suppressed the expression levels of beta2 adrenergic receptor mRNA. This PTH effect was dose-dependent starting as low as 1 nM. PTH action on beta2 adrenergic receptor gene expression was inhibited by a transcriptional inhibitor, DRB, but not by a protein synthesis inhibitor, cycloheximide suggesting direct transcription control. Knockdown of beta2 adrenergic receptor promoted PTH-induced expression of c-fos, an immediate early response gene. With respect to molecular basis for this phenomenon, knockdown of beta2 adrenergic receptor enhanced PTH-induced transcriptional activity of cyclic AMP response element-luciferase construct in osteoblasts. Knockdown of beta2 adrenergic receptors also enhanced forskolin-induced luciferase expression, revealing that adenylate cyclase activity is influenced by beta2 adrenergic receptor. As for phosphorylation of transcription factor, knockdown of beta2 adrenergic receptor enhanced PTH-induced phosphorylation of cyclic AMP response element binding protein (CREB). These data reveal that beta2 adrenergic receptor is one of the targets of PTH and acts as a suppressor of PTH action in osteoblasts. © 2014 Wiley Periodicals, Inc.

  18. An equine infectious anemia virus variant superinfects cells through novel receptor interactions.

    Science.gov (United States)

    Brindley, Melinda A; Zhang, Baoshan; Montelaro, Ronald C; Maury, Wendy

    2008-10-01

    Wild-type strains of equine infectious anemia virus (EIAV) prevent superinfection of previously infected cells. A variant strain of virus that spontaneously arose during passage, EIAV(vMA-1c), can circumvent this mechanism in some cells, such as equine dermis (ED) cells, but not in others, such as equine endothelial cells. EIAV(vMA-1c) superinfection of ED cells results in a buildup of unintegrated viral DNA and rapid killing of the cell monolayer. Here, we examined the mechanism of resistance that is used by EIAV to prevent superinfection and explored the means by which EIAV(vMA-1c) overcomes this restriction. We found that the cellular receptor used by EIAV, equine lentivirus receptor 1 (ELR1), remains on the surface of cells chronically infected with EIAV, suggesting that wild-type EIAV interferes with superinfection by masking ELR1. The addition of soluble wild-type SU protein to the medium during infection blocked infection by wild-type strains of virus, implicating SU as the viral protein responsible for interfering with virion entry into previously infected cells. Additionally, interference of wild-type EIAV binding to ELR1 by the addition of either anti-ELR1 antibodies or the ELR1 ectodomain prevented entry of the wild-type strains of EIAV into two permissive cell populations. Many of these same interference treatments prevented EIAV(vMA-1c) infection of endothelial cells but only modestly affected the ability of EIAV(vMA-1c) to enter and kill previously infected ED cells. These findings indicate that EIAV(vMA-1c) retains the ability to use ELR1 for entry and suggest that this virus can interact with an additional, unidentified receptor to superinfect ED cells.

  19. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  20. Biophysical and pharmacological characterization of α6-containing nicotinic acetylcholine receptors expressed in HEK293 cells.

    Science.gov (United States)

    Rasmussen, Andreas H; Strøbæk, Dorte; Dyhring, Tino; Jensen, Marianne L; Peters, Dan; Grunnet, Morten; Timmermann, Daniel B; Ahring, Philip K

    2014-01-13

    Nicotinic acetylcholine receptors (nAChR's) containing the α6 subunit (α6) are putative drug targets of relevance to Parkinson's disease and nicotine addiction. However, heterologous expression of α6 receptors has proven challenging which has stifled drug discovery efforts. Here, we investigate potential new avenues for achieving functional α6 receptor expression. Combinations of chimeric and mutated α6, β2 and β3 subunits were co-expressed in the human HEK293 cell line and receptor expression was assessed using Ca(2+)-imaging (FLIPR™) and whole-cell patch-clamp electrophysiology. Transient transfections of a chimeric α6/α3 subunit construct in combination with β2 and β3(V9'S) gave rise to significant acetylcholine-evoked whole-cell currents. Increasing the β3(V9'S):β2:α6/α3 cDNA ratio, resulted in a significantly higher fraction of cells with robust current levels. Using an excess of wild-type β3, significant functional expression of α6/α3β2β3 was also demonstrated. Comparing the acetylcholine concentration-response relationship of α6/α3β2β3(V9'S) to that of α6/α3β2β3 revealed the β3 point mutation to result in decreased current decay rate and increased ACh agonist potency. Ca(2+)-imaging experiments showed preservation of basic α6 receptor pharmacology. Our results establish that α6/α3β2β3(V9'S) replicate several basic features of native α6 receptors but also highlight several caveats associated with using this construct and may therefore provide guidance for future drug hunting efforts. © 2013 Published by Elsevier B.V.

  1. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2011-01-01

    Full Text Available We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  2. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Science.gov (United States)

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  3. Lysophosphatidic acid mediates pleiotropic responses in skeletal muscle cells

    International Nuclear Information System (INIS)

    Jean-Baptiste, Gael; Yang Zhao; Khoury, Chamel; Greenwood, Michael T.

    2005-01-01

    Lysophosphatidic acid (LPA) is a potent modulator of growth, cell survival, and apoptosis. Although all four LPA receptors are expressed in skeletal muscle, very little is known regarding the role they play in this tissue. We used RT-PCR to demonstrate that cultured skeletal muscle C2C12 cells endogenously express multiple LPA receptor subtypes. The demonstration that LPA mediates the activation of ERK1/2 MAP kinase and Akt/PKB in C2C12 cells is consistent with the widely observed mitogenic properties of LPA. In spite of these observations, LPA did not induce proliferation in C2C12 cells. Paradoxically, we found that prolonged treatment of C2C12 cells with LPA led to caspase 3 and PARP cleavage as well as the activation of stress-associated MAP kinases JNK and p38. In spite of these typically pro-apoptotic responses, LPA did not induce cell death. Blocking ERK1/2 and Akt/PKB activation with specific pharmacological inhibitors, nevertheless, stimulated LPA-mediated apoptosis. Taken together, these results suggest that both mitogenic and apoptotic responses serve to counterbalance the effects of LPA in cultured C2C12 cells

  4. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    International Nuclear Information System (INIS)

    Choi, Sunga; Lim, Mi-Hee; Kim, Ki Mo; Jeon, Byeong Hwa; Song, Won O.; Kim, Tae Woong

    2011-01-01

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: ► We studied the mechanism which cordycepin-induced cell death association with estrogen receptor (ER) in

  5. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunga [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of); Kim, Ki Mo [Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), 305811, Daejeon (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of)

    2011-12-15

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: Black-Right-Pointing-Pointer We studied the mechanism which cordycepin-induced cell death association with

  6. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  7. Homologous desensitization of human histamine H₃ receptors expressed in CHO-K1 cells.

    Science.gov (United States)

    Osorio-Espinoza, Angélica; Escamilla-Sánchez, Juan; Aquino-Jarquin, Guillermo; Arias-Montaño, José-Antonio

    2014-02-01

    Histamine H₃ receptors (H₃Rs) modulate the function of the nervous system at the pre- and post-synaptic levels. In this work we aimed to determine whether, as other G protein-coupled receptors (GPCRs), H₃Rs desensitize in response to agonist exposure. By using CHO-K1 cells stably transfected with the human H₃R (hH3R) we show that functional responses (inhibition of forskolin-induced cAMP accumulation in intact cells and stimulation of [(35)S]-GTPγS binding to cell membranes) were markedly reduced after agonist exposure. For cAMP accumulation assays the effect was significant at 60 min with a maximum at 90 min. Agonist exposure resulted in decreased binding sites for the radioligand [(3)H]-N-methyl-histamine ([(3)H]-NMHA) to intact cells and modified the sub-cellular distribution of H₃Rs, as detected by sucrose density gradients and [(3)H]-NMHA binding to cell membranes, suggesting receptor internalization. The reduction in the inhibition of forskolin-stimulated cAMP formation observed after agonist pre-incubation was prevented by incubation in hypertonic medium or in ice-cold medium. Agonist-induced loss in binding sites was also prevented by hypertonic medium or incubation at 4 °C, but not by filipin III, indicating clathrin-dependent endocytosis. Immunodetection showed that CHO-K1 cells express GPCR kinases (GRKs) 2/3, and both the GRK general inhibitor ZnCl₂ and a small interfering RNA against GRK-2 reduced receptor desensitization. Taken together these results indicate that hH₃Rs experience homologous desensitization upon prolonged exposure to agonists, and that this process involves the action of GRK-2 and internalization via clathrin-coated vesicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass.

    Science.gov (United States)

    Franklin, Zara J; Tsakmaki, Anastasia; Fonseca Pedro, Patricia; King, Aileen J; Huang, Guo Cai; Amjad, Sakeena; Persaud, Shanta J; Bewick, Gavin A

    2018-03-01

    Two unmet therapeutic strategies for diabetes treatment are prevention of beta-cell death and stimulation of beta-cell replication. Our aim was to characterize the role of neuropeptide Y receptors in the control of beta-cell mass. We used endogenous and selective agonists of the NPY receptor system to explore its role in the prevention of beta-cell apoptosis and proliferation in islets isolated from both mouse and human donors. We further explored the intra-cellular signalling cascades involved, using chemical inhibitors of key signalling pathways. As proof of principle we designed a long-acting analogue of [Leu 31 Pro 34 ]-NPY, an agonist of the islet-expressed Y receptors, to determine if targeting this system could preserve beta-cell mass in vivo. Our data reveal that NPY Y1, 4 and 5 receptor activation engages a generalized and powerful anti-apoptotic pathway that protects mouse and human islets from damage. These anti-apoptotic effects were dependent on stimulating a Gαi-PLC-PKC signalling cascade, which prevented cytokine-induced NFkB signalling. NPY receptor activation functionally protected islets by restoring glucose responsiveness following chemically induced injury in both species. NPY receptor activation attenuated beta-cell apoptosis, preserved functional beta-cell mass and attenuated the hyperglycaemic phenotype in a low-dose streptozotocin model of diabetes. Taken together, our observations identify the islet Y receptors as promising targets for the preservation of beta-cell mass. As such, targeting these receptors could help to maintain beta-cell mass in both type 1 and type 2 diabetes, and may also be useful for improving islet transplantation outcomes. © 2017 John Wiley & Sons Ltd.

  9. Vasopressin V1A receptor mediates cell proliferation through GRK2-EGFR-ERK1/2 pathway in A7r5 cells.

    Science.gov (United States)

    Zhang, Lingling; Wang, Xiaojun; Cao, Hong; Chen, Yunxuan; Chen, Xianfan; Zhao, Xi; Xu, Feifei; Wang, Yifan; Woo, Anthony Yiu-Ho; Zhu, Weizhong

    2016-12-05

    Abnormal proliferation and hypertrophy of vascular smooth muscle (VSMC), as the main structural component of the vasculature, is an important pathological mechanism of hypertension. Recently, increased levels of arginine vasopressin (AVP) and copeptin, the C-terminal fragment of provasopressin, have been shown to correlate with the development of preeclampsia. AVP targets on the G q -coupled vasopressin V 1A receptor and the G s -coupled V 2 receptor in VSMC and the kidneys to regulate vascular tone and water homeostasis. However, the role of the vasopressin receptor on VSM cell proliferation during vascular remodeling is unclear. Here, we studied the effects of AVP on the proliferation of the rat VSMC-derived A7r5 cells. AVP, in a time- and concentration-dependent manner, promoted A7r5 cell proliferation as indicated by the induction of proliferating cell nuclear antigen expression, methylthiazolyldiphenyl-tetrazolium reduction and incorporation of 5'-bromodeoxyuridine into cellular DNA. These effects, coupled with the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2 ), were blocked by a V 1A receptor antagonist SR45059 but not by a V 2 receptor antagonist lixivaptan. Although acute activation of V 1A receptor induced ERK 1/2 phosphorylation via a protein kinase C-dependent pathway, this effect was not involved in cell proliferation. Cell proliferation and ERK 1/2 phosphorylation in response to prolonged stimulation with AVP were abolished by inhibition of G protein-coupled receptor kinase 2 (GRK2) and epidermal growth factor receptor (EGFR) using specific inhibitors or small hairpin RNA knock-down. These results suggest that activation of V 1A , but not V 2 receptor, produces a cell proliferative signal in A7r5 cells via a GRK2/EGFR/ERK 1/2 -dependent mechanism. Copyright © 2016. Published by Elsevier B.V.

  10. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  11. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Monica Marzagalli

    Full Text Available Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth.Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552. In BLM (NRAS-mutant cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists.Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a

  12. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  13. The Effects of Histamine H3 Receptors on Contractile Responses on Rat Gastric Fundus

    OpenAIRE

    Aşkın Hekimoğlu; Ramazan Çiçek

    2006-01-01

    The aim of this study is to determine the effects of histamine receptors on the gastrointestinal system smooth muscle contractions and the role of histamine H3 receptors on these effects. İsolated rat gastric fundus preparations were hanged on isolated organ bath and histamine receptor agonist and anthagonists were added to the bath solution and the electrical field stimulation-induced contractile responses were evaluated. In our study groups after blocking one of the histamine receptor...

  14. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE.

    Science.gov (United States)

    Nakano, Nahoko; Fukuhara-Takaki, Kaori; Jono, Tadashi; Nakajou, Keisuke; Eto, Nobuaki; Horiuchi, Seikoh; Takeya, Motohiro; Nagai, Ryoji

    2006-05-01

    Cellular interactions with advanced glycation end products (AGE)-modified proteins are known to induce several biological responses, not only endocytic uptake and degradation, but also the induction of cytokines and growth factors, combined responses that may be linked to the development of diabetic vascular complications. In this study we demonstrate that A549 cells, a human pulmonary epithelial cell line, possess a specific binding site for AGE-modified bovine serum albumin (AGE-BSA) (K(d) = 27.8 nM), and additionally for EN-RAGE (extracellular newly identified RAGE binding protein) (K(d) = 118 nM). Western blot and RT-PCR analysis showed that RAGE (receptor for AGE) is highly expressed on A549 cells, while the expression of other known AGE-receptors such as galectin-3 and SR-A (class A scavenger receptor), are below the level of detection. The binding of (125)I-AGE-BSA to these cells is inhibited by unlabeled AGE-BSA, but not by EN-RAGE. In contrast, the binding of (125)I-EN-RAGE is significantly inhibited by unlabeled EN-RAGE and soluble RAGE, but not by AGE-BSA. Our results indicate that A549 cells possess at least two binding sites, one specific for EN-RAGE and the other specific for AGE-BSA. The latter receptor on A549 cells is distinct from the scavenger receptor family and RAGE.

  15. Renal cells activate the platelet receptor CLEC-2 through podoplanin

    Science.gov (United States)

    Christou, Charita M.; Pearce, Andrew C.; Watson, Aleksandra A.; Mistry, Anita R.; Pollitt, Alice Y.; Fenton-May, Angharad E.; Johnson, Louise A.; Jackson, David G.; Watson, Steve P.; O'Callaghan, Chris A.

    2009-01-01

    We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin, rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing human immunodeficiency virus type 1 (HIV-1). This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of this study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to 293T cells in which the HIV can be grown. Further, 293T cells activate both platelets and CLEC-2-transfected DT-40 B cells. The transmembrane protein podoplanin was identified on 293T cells and demonstrated to mediate both binding of 293T cells to CLEC-2 and 293T cell activation of CLEC-2-transfected DT-40 B cells. Podoplanin is expressed on renal cells (podocytes). Further, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5 ± 3.7μM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells. PMID:18215137

  16. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K; McCall, Charles E

    2012-04-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.

  17. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  18. An accelerated rabies vaccine schedule based on toll-like receptor 3 (TLR3) agonist PIKA adjuvant augments rabies virus specific antibody and T cell response in healthy adult volunteers.

    Science.gov (United States)

    Wijaya, Limin; Tham, Christine Y L; Chan, Yvonne F Z; Wong, Abigail W L; Li, L T; Wang, Lin-Fa; Bertoletti, Antonio; Low, Jenny G

    2017-02-22

    Rabies is a fatal disease where post-exposure prophylaxis (PEP) is crucial in preventing infection. However, deaths even after appropriate PEP, have been reported. The PIKA Rabies vaccine adjuvant is a TLR3 agonist that activates B and T cells leading to a robust immune response. We conducted a phase I, open label, randomized study in healthy adults to assess the safety and immunogenicity of the PIKA Rabies vaccine and an accelerated vaccine regimen. Thirty-seven subjects were randomized into 3 groups: control vaccine classic regimen, PIKA vaccine classic regimen and PIKA vaccine accelerated regimen. Subjects were followed up for safety, rabies virus neutralizing antibodies (RVNA) and T cell responses. Both the control and PIKA Rabies vaccine were well tolerated. All adverse events (AEs) were mild and self-limiting. Seventy-five percent of subjects in the PIKA accelerated regimen achieved a RVNA titer ⩾0.5IU/mL on day 7, compared to 53.9% in the PIKA classic regimen (p=0.411) and 16.7% in control vaccine classic regimen (p=0.012). The PIKA rabies vaccine elicited multi-specific rabies CD4 mediated T cell response already detectable ex vivo at day 7 after vaccination and that was maintained at day 42. The investigational PIKA rabies vaccine was well tolerated and more immunogenic than the commercially available vaccine in healthy adults. Clinical trial registry: The study was registered with clinicaltrials.gov NCT02657161. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  20. Bisphosphonates target B cells to enhance humoral immune responses

    Science.gov (United States)

    Tonti, Elena; Jiménez de Oya, Nereida; Galliverti, Gabriele; Moseman, E. Ashley; Di Lucia, Pietro; Amabile, Angelo; Sammicheli, Stefano; De Giovanni, Marco; Sironi, Laura; Chevrier, Nicolas; Sitia, Giovanni; Gennari, Luigi; Guidotti, Luca G.; von Andrian, Ulrich H.; Iannacone, Matteo

    2013-01-01

    Summary Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4+ and γδ T cells, neutrophils or dendritic cells and their effect does not rely on local macrophage depletion nor does it depend upon Toll-like receptor signaling or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as a novel class of adjuvants that boost humoral immune responses. PMID:24120862

  1. Bisphosphonates Target B Cells to Enhance Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Elena Tonti

    2013-10-01

    Full Text Available Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens, and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4+ and γδ T cells, neutrophils, or dendritic cells, and their effect does not rely on local macrophage depletion, Toll-like receptor signaling, or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as an additional class of adjuvants that boost humoral immune responses.

  2. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  3. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Margolskee, Robert F; Kinnamon, Sue C; Ogura, Tatsuya

    2003-01-01

    The sense of taste plays a critical role in the life and nutritional status of organisms. During the last decade, several molecules involved in taste detection and transduction have been identified, providing a better understanding of the molecular physiology of taste receptor cells. However, a comprehensive catalogue of the taste receptor cell signaling machinery is still unavailable. We have recently described the occurrence of calcium signaling mechanisms in taste receptor cells via apparent store-operated channels and identified Trpm5, a novel candidate taste transduction element belonging to the mammalian family of transient receptor potential channels. Trpm5 is expressed in a tissue-restricted manner, with high levels in gustatory tissue. In taste cells, Trpm5 is co-expressed with taste-signaling molecules such as alpha-gustducin, Ggamma(13), phospholipase C beta(2) and inositol 1,4,5-trisphosphate receptor type III. Biophysical studies of Trpm5 heterologously expressed in Xenopus oocytes and mammalian CHO-K1 cells indicate that it functions as a store-operated channel that mediates capacitative calcium entry. The role of store-operated channels and Trpm5 in capacitative calcium entry in taste receptor cells in response to bitter compounds is discussed.

  4. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  5. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Directory of Open Access Journals (Sweden)

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  6. Ultraviolet responses of Gorlin syndrome primary skin cells.

    Science.gov (United States)

    Brellier, F; Valin, A; Chevallier-Lagente, O; Gorry, P; Avril, M-F; Magnaldo, T

    2008-08-01

    Gorlin syndrome, or naevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant disorder associated with mutations in the PTCH1 gene, which encodes the receptor of SONIC HEDGEHOG. In addition to developmental abnormalities, patients with NBCCS are prone to basal cell carcinoma (BCC), the most frequent type of nonmelanoma skin cancer in humans. As ultraviolet (UV) exposure plays a prominent role in the development of sporadic BCC, we aimed to determine whether primary NBCCS skin cells exhibit differential responses to UV exposure compared with wild-type (WT) skin cells. Primary fibroblast and keratinocyte strains were isolated from nonlesional skin biopsies of 10 patients with characteristic NBCCS traits. After identification of PTCH1 mutations, capacities of NBCCS cells to repair UV-induced DNA lesions and to survive after UV irradiation, as well as p53 responses, were compared with those of WT skin cells. The c1763insG PTCH1 mutation is described for the first time. DNA repair and cell survival analyses following UV irradiation revealed no obvious differences between responses of NBCCS and WT fibroblasts and keratinocytes. However, p53 accumulation after UV irradiation was abnormally persistent in all NBCCS primary keratinocyte strains compared with WT keratinocytes. Our observations that NBCCS cells harbour normal DNA repair and survival capacities following UV irradiation better explain that BCC proneness of patients with NBCCS does not solely concern body areas exposed to sunlight and suggest rather that it might be due to cell cycle alterations.

  7. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  8. Differential association of gene content polymorphisms of killer cell immunoglobulin-like receptors with placental malaria in HIV- and HIV+ mothers

    NARCIS (Netherlands)

    Omosun, Yusuf O.; Blackstock, Anna J.; Gatei, Wangeci; Hightower, Allen; van Eijk, Anne Maria; Ayisi, John; Otieno, Juliana; Lal, Renu B.; Steketee, Richard; Nahlen, Bernard; ter Kuile, Feiko O.; Slutsker, Laurence; Shi, Ya Ping

    2012-01-01

    Pregnant women have abundant natural killer (NK) cells in their placenta, and NK cell function is regulated by polymorphisms of killer cell immunoglobulin-like receptors (KIRs). Previous studies report different roles of NK cells in the immune responses to placental malaria (PM) and human

  9. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  10. Human trabecular meshwork cells express functional serotonin-2A (5HT2A) receptors: role in IOP reduction.

    Science.gov (United States)

    Sharif, Najam A; Kelly, Curtis R; McLaughlin, Marsha

    2006-09-01

    To apply a multidisciplinary approach to the identification and pharmacological characterization of the serotonin (5HT) receptors that mediate functional responses in human trabecular meshwork (h-TM) cells. To correlate in vitro findings with intraocular pressure (IOP) changes in conscious ocular hypertensive cynomolgus monkeys. Documented methods were used, including reverse transcription-polymerase chain reaction (RT-PCR), phosphoinositide (PI) turnover, and intracellular Ca2+ ([Ca2+]i) mobilization. IOP was measured using standard applanation pneumatonometry. h-TM cells expressed robust mRNA signals for 5HT2A and 5HT2B receptors. 5HT and its analogues stimulated PI turnover and [Ca2+]i mobilization in h-TM cells from multiple donors (20/24 donors' TM cells responded). The agonist potencies (EC50) of compounds in mobilizing [Ca2+]i were (nM): 5-methoxy tryptamine, 8 +/- 4; (R)-DOI, 18 +/- 6; alpha-methyl-5HT, 22 +/- 3; 5HT, 40 +/- 7; 5-methoxy-dimethyl tryptamine, 64 +/- 27; and BW-723C86, 1213 +/- 210. These effects were potently blocked by the 5HT2A-receptor-selective antagonist, M-100907 (Ki = 1 +/- 0.3 nM), but weakly by antagonists of 5HT2B and 5HT2C receptors. Only 5HT2 receptor agonists such as (R)-DOI (300 microg lowered IOP 34.4% from baseline of 38.2 mm Hg; P 5HT2B receptor mRNAs were detected in h-TM cells. The receptors that coupled to PI hydrolysis and [Ca2+]i mobilization in h-TM cells were the 5HT2A receptor subtype, which also significantly lowered IOP in a primate model. These receptors may mediate the ocular hypotensive actions of 5HT2A agonists.

  11. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes.

    Science.gov (United States)

    Marino, Maria; Pellegrini, Marco; La Rosa, Piergiorgio; Acconcia, Filippo

    2012-08-01

    17β-Estradiol (E2) binding induces rapid modification in the conformation of its cognate receptors (i.e., ERα and ERβ). These allosteric changes allow the association of ERs with cell specific transcriptional cofactors, thus determining cellular contexts specific variations in gene expression. In addition, E2-ER complexes could also interact with membrane and cytosolic signal molecules triggering extra-nuclear signalling pathways. The synergy between these mechanisms is necessary for E2-induced pleiotropic actions in target tissues. Besides E2, the ER ligand binding domains can accommodate many other natural and synthetic ligands. Several of these compounds act as agonist or antagonist of ER transcriptional activity due to their ability to modify the interactions between ERs and transcriptional co-regulators. However, the ability of natural or manmade ER ligands to affect the extra-nuclear interactions of the ERs has been rarely evaluated. Here, the ability of two diet-derived flavonoids (i.e., naringenin and quercetin) and of the synthetic food-contaminant bisphenol A to modulate specifically ER extra-nuclear signalling pathways will be reported. All the tested compounds bind to both ER subtypes even if lesser than E2 activating divergent signal transduction pathways. In fact, in the presence of ERα, both naringenin and quercetin decouple ERα activities by specifically interfering with ERα membrane initiating signals. On the other hand, bisphenol A, but not flavonoids, maintains ERβ at the membrane thus impairing the activation of the downstream kinases. As a whole, extra-nuclear ER signals are highly susceptible to different ligands that, by unbalancing E2-induced cell functions drive cells to different functional endpoints. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of stimulation of muscarinic acetylcholine receptors in medial septum on some immune responses in rats.

    Science.gov (United States)

    Dutta, Goutam; Ghosh, Tusharkanti

    2016-04-21

    Though the immunomodulatory role of medial septum (MS) has been indicated, but the contribution of the muscarinic acetylcholine (mAch) receptors presented in the internal network of the neurons of MS in this regard is not known. The aim of the present study is to assess the contribution of mAch receptors of MS on some immunological parameters. Different immunological parameters i.e. phagocytic activity of peripheral leukocytes, adhesibility and cytotoxicity of splenic mononuclear cells (MNC), delayed type of hypersensitivity (DTH) responses, Total Count (TC) and Differential Count (DC) of WBC with serum corticosterone (CORT) concentration have been measured after stimulation and blocking of mAch receptors of MS in rats. Ach or atropine has been micro infused into MS of separate groups of rats for stimulating or blocking of the mAch receptors respectively. In Ach or atropine microinfused rats, the TC of WBC remained unaltered in the present study. The percentage of neutrophil has increased and the percentage of lymphocyte has decreased in Ach microinfused rats, but these parameters remain unaltered in atropine microinfused rats. The observed immunological parameters have increased after microinfusion of 0.60μM and 0.12μM of Ach and serum CORT concentration has decreased in those animals. These immunological parameters have decreased and serum CORT has increased after microinfusion of atropine (2 and 4mM) in MS of rats. It appears that the Ach receptors in MS can modulate the observed immunological parameters, and serum CORT plays an important role for these immune changes. Copyright © 2016. Published by Elsevier Ireland Ltd.

  13. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  14. Chimeric antigen receptor engineered stem cells: a novel HIV therapy.

    Science.gov (United States)

    Zhen, Anjie; Carrillo, Mayra A; Kitchen, Scott G

    2017-03-01

    Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity.

  15. Modulation of desensitization at glutamate receptors in isolated crucian carp horizontal cells by concanavalin A, cyclothiazide, aniracetam and PEPA.

    Science.gov (United States)

    Shen, Y; Lu, T; Yang, X L

    1999-03-01

    In horizontal cells freshly dissociated from crucian carp (Carassius auratus) retina, we examined the effects of modulators of glutamate receptor desensitization, concanavalin A, cyclothiazide, aniracetam and 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetam ide (PEPA), on responses to rapid application of glutamate and kainate, using whole-cell voltage-clamp techniques. Incubation of concanavalin A suppressed the peak response but weakly potentiated the equilibrium response of horizontal cells to glutamate. Cyclothiazide blocked glutamate-induced desensitization in a dose-dependent manner, which resulted in a steady increase of the equilibrium current. The concentration of cyclothiazide causing a half-maximal potentiation for the equilibrium response was 85 microM. Furthermore, cyclothiazide shifted the dose-response relationship of the equilibrium current to the right, but slightly suppressed the kainate-induced sustained current. These effects of concanavalin A and cyclothiazide are consistent with the supposition that glutamate receptors of carp horizontal cells may be an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-preferring subtype. In order to further characterize the AMPA receptors of horizontal cells, modulation by aniracetam and PEPA of glutamate- and kainate-induced currents was studied. Aniracetam, a preferential modulator of flop variants of AMPA receptors, considerably blocked desensitization of glutamate-induced currents, but only slightly potentiated kainate-induced currents. It was further found that PEPA, a flop-preferring allosteric modulator of AMPA receptor desensitization, slightly suppressed the peak current, while it dramatically potentiated the equilibrium current induced by glutamate in a dose-dependent manner. PEPA was much potent than aniracetam at these receptors and showed the effect on glutamate-induced desensitization even at a concentration as low as 3 microM. PEPA also potentiated non

  16. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Science.gov (United States)

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  17. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Rohtesh S. Mehta

    2018-02-01

    Full Text Available Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clin