WorldWideScience

Sample records for cell receptor profiles

  1. Mother and child T cell receptor repertoires: deep profiling study

    Directory of Open Access Journals (Sweden)

    Ekaterina V Putintseva

    2013-12-01

    Full Text Available The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells (HSC and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T-cell receptor (TCR repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5х105–2х106 TCR beta clonotypes per individual. We performed comparative analysis of these TCR repertoires with the aim of revealing characteristic features that distinguish related mother-child pairs, such as relative TRBV segment usage frequency and relative overlap of TCR beta CDR3 repertoires. We show that thymic selection essentially and similarly shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, with minor effect from inherited differences. The achieved depth of TCR profiling also allowed us to test the hypothesis that mature T cells transferred across the placenta during pregnancy can expand and persist as functional microchimeric clones in their new host, using characteristic TCR beta CDR3 variants as clonal identifiers.

  2. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    Directory of Open Access Journals (Sweden)

    Clark J

    2002-11-01

    Full Text Available Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor. The other ligands studied were agonists at δ opioid receptors and demonstrated IC50 values of 0.1 nM to 2 μM, maximal inhibition of 39–77% and receptor binding affinities of 0.5 to 243 nM. The rank order of efficacy of the ligands tested was metazocine = xorphanol ≥ fentanyl = SKF 10047 = etorphine = hydromorphone = butorphanol = lofentanil > WIN 44,441 = Nalbuphine = cyclazocine ≥ met-enkephalin >> morphine = dezocine. For the first time these data describe and compare the function and relative efficacy of several ligands at δ opioid receptors. Conclusions The data produced from this study can lead to elucidation of the complete activation profiles of several opioid ligands, leading to clarification of the mechanisms involved in physiological effects of these ligands at δ opioid receptors. Furthermore, these data can be used as a basis for novel use of existing opioid ligands based on their pharmacology at δ opioid receptors.

  3. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  4. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous-cell carcinoma.

    Science.gov (United States)

    Syed, Nazia; Barbhuiya, Mustafa A; Pinto, Sneha M; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T S Keshava; Kumar, M Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh; Gowda, Harsha

    2015-01-01

    Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.

  5. A Cell Model for Conditional Profiling of Androgen-Receptor-Interacting Proteins

    Directory of Open Access Journals (Sweden)

    K. A. Mooslehner

    2012-01-01

    Full Text Available Partial androgen insensitivity syndrome (PAIS is associated with impaired male genital development and can be transmitted through mutations in the androgen receptor (AR. The aim of this study is to develop a cell model suitable for studying the impact AR mutations might have on AR interacting proteins. For this purpose, male genital development relevant mouse cell lines were genetically modified to express a tagged version of wild-type AR, allowing copurification of multiprotein complexes under native conditions followed by mass spectrometry. We report 57 known wild-type AR-interacting proteins identified in cells grown under proliferating and 65 under nonproliferating conditions. Of those, 47 were common to both samples suggesting different AR protein complex components in proliferating and proliferation-inhibited cells from the mouse proximal caput epididymus. These preliminary results now allow future studies to focus on replacing wild-type AR with mutant AR to uncover differences in protein interactions caused by AR mutations involved in PAIS.

  6. Expression profile of Eph receptors and ephrin ligands in healthy human B lymphocytes and chronic lymphocytic leukemia B-cells.

    Science.gov (United States)

    Alonso-C, Luis M; Trinidad, Eva M A; de Garcillan, Beatriz; Ballesteros, Monica; Castellanos, Milagros; Cotillo, Ignacio; Muñoz, Juan J; Zapata, Agustin G

    2009-03-01

    Increasing information relates some Eph receptors and their ligands, ephrins (EFN), with the immune system. Herein, we found that normal B-cells from peripheral blood (PB) and lymph nodes (LN) showed a differential expression of certain Eph/EFN members, some of them being modulated upon in vitro stimulation including EFNA1, EFNA4, EphB6 and EphA10. In contrast, PB CLL B-cells showed a more heterogeneous Eph/EFN profile than their normal PB B-cell counterparts, expressing Eph/EFN members frequently found within the LN and activated B-cells, specially EFNA4, EphB6 and EphA10. Two of them, EphB6 and EFNA4 were further related with the clinical course of CLL patients. EphB6 expression correlated with a high content of ZAP-70 mRNA and a poor prognosis. High serum levels of a soluble EFNA4 isoform positively correlated with increasing peripheral blood lymphocyte counts and lymphadenopathy. These findings suggest that Eph/EFN might be relevant in normal B-cell biology and could represent new potential prognostic markers and therapeutic targets for CLL. PMID:18819711

  7. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  8. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Science.gov (United States)

    Duriez, Marion; Quillay, Héloïse; Madec, Yoann; El Costa, Hicham; Cannou, Claude; Marlin, Romain; de Truchis, Claire; Rahmati, Mona; Barré-Sinoussi, Françoise; Nugeyre, Marie-Thérèse; Menu, Elisabeth

    2014-01-01

    Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface. PMID:25071732

  9. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology.

    Directory of Open Access Journals (Sweden)

    Yanlin Wang

    Full Text Available Alzheimer's disease (AD is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP leading to the generation of β-amyloid (Aβ peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for Aβ generation, and endocytic dysfunction has been linked to increased Aβ production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating Aβ metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ∼ 500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating Aβ production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in Aβ toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins

  10. Data on alteration of hormone and growth factor receptor profiles over progressive passages of breast cancer cell lines representing different clinical subtypes.

    Science.gov (United States)

    Nair, Madhumathy G; Desai, Krisha; Prabhu, Jyothi S; Hari, P S; Remacle, Jose; Sridhar, T S

    2016-09-01

    Human breast cancers are a highly heterogeneous group of tumours consisting of several molecular subtypes with a variable profile of hormone, growth factor receptors and cytokeratins [1]. Here, the data shows immunofluorescence profiling of four different cell lines belonging to distinct clinical subtypes of breast cancer. Post revival, the cell lines were passaged in culture and immunophenotyping was done for ER, HER-2, AR and EGFR. Data for the markers from early passage (5th) through passages as late as 25 for the different cell lines is presented. PMID:27508248

  11. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP.

    Directory of Open Access Journals (Sweden)

    David B Rosen

    Full Text Available BACKGROUND: Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3 in cytogenetically normal acute myeloid leukemia (AML has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative. METHODOLOGY/PRINCIPAL FINDINGS: Using single cell network profiling (SCNP, cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L, including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling

  12. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  13. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia.

    Science.gov (United States)

    Shivanna, Binoy; Maity, Suman; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E; Belmont, John; Coarfa, Cristian; Moorthy, Bhagavatula

    2016-07-01

    Exposure to hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. We observed that aryl hydrocarbon receptor (AhR) signaling protects newborn mice and primary fetal human pulmonary microvascular endothelial cells (HPMECs) against hyperoxic injury. Additionally, a recent genome-wide transcriptome study in a newborn mouse model of BPD identified AhR as a key regulator of hyperoxia-induced gene dysregulation. Whether the AhR similarly deregulates genes in HPMEC is unknown. Therefore, the objective of this study was to characterize transcriptome level gene expression profile in AhR-sufficient and -deficient HPMEC exposed to normoxic and hyperoxic conditions. Global gene expression profiling was performed using Illumina microarray platform and selected genes were validated by real-time RT-PCR. AhR gene expression and hyperoxia independently affected the expression of 540 and 593 genes, respectively. Two-way ANOVA further identified 85 genes that were affected by an interaction between AhR expression and exposure to hyperoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology, and Reactome pathway analysis identified cell proliferation, immune function, cytokine signaling, and organ development as the major pathways affected in AhR-deficient cells. The biological processes that were significantly enriched by hyperoxia included metabolic process, stress response, signal transduction, cell cycle, and immune regulation. Cell cycle was the predominant pathway affected by the combined effect of AhR knockdown and hyperoxia. Functional analysis of cell cycle showed that AhR-deficient cells had decreased proliferation compared with AhR-sufficient cells. These findings suggest that AhR modulates hyperoxic lung injury by regulating the genes that are necessary for cell proliferation and inflammation. PMID:27103661

  14. Cord blood Vα24-Vβ11 natural killer T cells display a Th2-chemokine receptor profile and cytokine responses.

    Directory of Open Access Journals (Sweden)

    Susanne Harner

    Full Text Available BACKGROUND: The fetal immune system is characterized by a Th2 bias but it is unclear how the Th2 predominance is established. Natural killer T (NKT cells are a rare subset of T cells with immune regulatory functions and are already activated in utero. To test the hypothesis that NKT cells are part of the regulatory network that sets the fetal Th2 predominance, percentages of Vα24(+Vβ11(+ NKT cells expressing Th1/Th2-related chemokine receptors (CKR were assessed in cord blood. Furthermore, IL-4 and IFN-γ secreting NKT cells were quantified within the single CKR(+ subsets. RESULTS: Cord blood NKT cells expressed the Th2-related CCR4 and CCR8 at significantly higher frequencies compared to peripheral blood NKT cells from adults, while CXCR3(+ and CCR5(+ cord blood NKT cells (Th1-related were present at lower percentages. Within CD4(negCD8(neg (DN NKT cells, the frequency of IL-4 producing NKT cells was significantly higher in cord blood, while frequencies of IFN-γ secreting DN NKT cells tended to be lower. A further subanalysis showed that the higher percentage of IL-4 secreting DN NKT cells was restricted to CCR3(+, CCR4(+, CCR5(+, CCR6(+, CCR7(+, CCR8(+ and CXCR4(+ DN subsets in cord blood. This resulted in significantly decreased IFN-γ /IL-4 ratios of CCR3(+, CCR6(+ and CCR8(+ cord blood DN NKT cells. Sequencing of VA24AJ18 T cell receptor (TCR transcripts in sorted cord blood Vα24Vβ11 cells confirmed the invariant TCR alpha-chain ruling out the possibility that these cells represent an unusual subset of conventional T cells. CONCLUSIONS: Despite the heterogeneity of cord blood NKT cells, we observed a clear Th2-bias at the phenotypic and functional level which was mainly found in the DN subset. Therefore, we speculate that NKT cells are important for the initiation and control of the fetal Th2 environment which is needed to maintain tolerance towards self-antigens as well as non-inherited maternal antigens.

  15. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels.

    Directory of Open Access Journals (Sweden)

    Marc B Bigler

    Full Text Available Acute stress drives a 'high-alert' response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans.3,4-methylenedioxymethamphetamine (MDMA, methylphenidate (MPH, or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells.MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment.The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.

  16. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition.

    Directory of Open Access Journals (Sweden)

    Sujata Halder

    Full Text Available The recognition of sialic acids by two strains of minute virus of mice (MVM, MVMp (prototype and MVMi (immunosuppressive, is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM. Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3'SIA-LN and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X identified in a previous glycan microarray screen.

  17. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells

    NARCIS (Netherlands)

    Lehmann, D.; Spanholtz, J.; Osl, M.; Tordoir, M.; Lipnik, K.; Bilban, M.; Schlechta, B.; Dolstra, H.; Hofer, E.

    2012-01-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT

  18. Profile of killer cell immunoglobulin-like receptor and its human leucocyte antigen ligands in dengue-infected patients from Western India.

    Science.gov (United States)

    Alagarasu, K; Bachal, R V; Shah, P S; Cecilia, D

    2015-12-01

    Killer cell immunoglobulin-like receptors (KIRs) regulate the activation of natural killer cells (NKs). Qualitative and quantitative differences in the type and the number of KIRs expressed on NK cells affect its activation which would influence the outcome of the disease. In this study, 114 hospitalized cases of dengue [82 dengue fever (DF) and 32 dengue haemorrhagic fever (DHF) cases] and 104 healthy controls (HC) without no known history of hospitalization for dengue-like illness were investigated for their KIR gene profile to find out the association of KIR genes with dengue disease severity. KIR gene profile was investigated using duplex sequence-specific priming polymerase chain reaction-based typing system. The results revealed a higher frequency of KIR3DL1 gene [P = 0.0225; odds ratio (OR) 4.1 95% confidence interval (CI) 1.1-14.8] and lower frequency of KIR3DS1/3DS1 genotype [P = 0.0225; OR 0.24 95% CI (0.068-0.88)] in DF cases compared to HC. Immunoglobulin-like receptor gene frequencies were not different between DHF and DF or HC. The results suggest that KIR3DL1/KIR3DS1 locus might be associated with the risk of developing DF. PMID:26385514

  19. Preparing unbiased T cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling

    Directory of Open Access Journals (Sweden)

    Ilgar Z Mamedov

    2013-12-01

    Full Text Available High-throughput sequencing has the power to reveal the nature of adaptive immunity as represented by the full complexity of T cell receptor (TCR and antibody (IG repertoires, but is at present severely compromised by the quantitative bias, bottlenecks, and accumulated errors that inevitably occur in the course of library preparation and sequencing. Here we report an optimized protocol for the unbiased preparation of TCR and IG cDNA libraries for high-throughput sequencing, starting from thousands or millions of live cells in an investigated sample. Critical points to control are revealed, along with tips that allow researchers to minimize quantitative bias, accumulated errors, and cross-sample contamination at each stage, and to enhance the subsequent bioinformatic analysis. The protocol is simple, reliable, and can be performed in 1–2 days.

  20. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-α-positive human cells

    International Nuclear Information System (INIS)

    Bisphenol-A (BPA) shows proliferative actions in uterus and mammary glands and may influence the development of male and female reproductive tracts in utero or during early postnatal life. Because of its ability to function as an estrogen receptor (ER) agonist, BPA has the potential to disrupt normal endocrine signaling through regulation of ER target genes. Some genes are regulated by both estradiol (E2) and BPA, but those exclusive to either agent have not been described. Using a yeast strain incorporating a vitellogenin A2 ERE-LacZ reporter gene into the genome, we found that BPA induced expression of the reporter in colonies transformed with the ERα expression plasmid, illustrating BPA-mediated regulation within a chromatin context. Additionally, a reporter gene transiently transfected into the endometrial cancer (Ishikawa) cell line also showed BPA activity, although at 100-fold less potency than E2. To compare global gene expression in response to BPA and E2, we used a variant of the MCF-7 breast cancer cell line stably expressing HA-tagged ERα. Cultures were treated for 3 h with an ethanol vehicle, E2 (10-8 M), or BPA (10-6 M), followed by isolation of RNA and microarray analysis with the human U95A probe array (Affymetrix, Santa Clara, CA, USA). More than 300 genes were changed 2-fold or more by either or both agents, with roughly half being up-regulated and half down-regulated. A number of growth- and development-related genes, such as HOXC1 and C6, Wnt5A, Frizzled, TGFβ-2, and STAT inhibitor 2, were found to be affected exclusively by BPA. We used quantitative real-time PCR to verify regulation of the HOXC6 gene, which showed decreased expression of approximately 2.5-fold by BPA. These results reveal novel effects by BPA and E2, raising interesting possibilities regarding the role of endocrine disruptors in sexual development

  1. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    Science.gov (United States)

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues. PMID:21839626

  2. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck;

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  3. Expression Profile of Human Fc Receptor-Like 1, 2, and 4 Molecules in Peripheral Blood Mononuclear Cells of Patients with Hashimoto's Thyroiditis and Graves' Disease.

    Science.gov (United States)

    Rostamzadeh, D; Dabbaghmanesh, M H; Shabani, M; Hosseini, A; Amirghofran, Z

    2015-08-01

    Recently identified Fc receptor-like (FCRL) molecules are new members of the immunoglobulin superfamily dominantly expressed by B cells. Although FCRL expression patterns have been studied in normal and malignant cells, their biological functions and roles remain to be clearly identified in humans. Research has particularly focused on FCRL gene polymorphisms in autoimmune diseases, however, their involvement in the pathogenesis of autoimmune diseases is an interesting field for investigation. In the present study, we have investigated the gene expression profiles of FCRL1, 2, and 4 in 2 common thyroid diseases, Hashimoto's thyroiditis (HT) and Graves' disease (GD). FCRL1, 2, and 4 expressions were determined in peripheral blood samples of 55 HT patients, 40 GD patients and equal numbers of normal subjects by quantitative real-time PCR. Our results showed downregulation of FCRL1 and upregulation of FCRL2 transcripts in both HT and GD groups compared to healthy counterparts. Overexpression of FCRL4 was observed only in GD patients compared to controls. A significant correlation was observed between all FCRL gene expression levels in HT patients. Only FCRL2 and 4 had a correlation in GD patients. In addition, FCRL1, 2, and 4 gene expressions showed no correlations with the level of anti-thyroid peroxidase antibody (anti-TPO) or anti-thyroglobulin (anti-Tg) antibody from patients' sera. In conclusion, expressions of activating or inhibitory FCRL1, 2, and 4 showed significant alterations in HT and GD patients compared to healthy subjects. PMID:25738996

  4. Quantum dot multiplexing for the profiling of cellular receptors

    Science.gov (United States)

    Lee-Montiel, Felipe T.; Li, Peter; Imoukhuede, P. I.

    2015-11-01

    The profiling of cellular heterogeneity has wide-reaching importance for our understanding of how cells function and react to their environments in healthy and diseased states. Our ability to interpret and model cell behavior has been limited by the difficulties of measuring cell differences, for example, comparing tumor and non-tumor cells, particularly at the individual cell level. This demonstrates a clear need for a generalizable approach to profile fluorophore sites on cells or molecular assemblies on beads. Here, a multiplex immunoassay for simultaneous detection of five different angiogenic markers was developed. We targeted angiogenic receptors in the vascular endothelial growth factor family (VEGFR1, VEGFR2 and VEGFR3) and Neuropilin (NRP) family (NRP1 and NRP2), using multicolor quantum dots (Qdots). Copper-free click based chemistry was used to conjugate the monoclonal antibodies with 525, 565, 605, 655 and 705 nm CdSe/ZnS Qdots. We tested and performed colocalization analysis of our nanoprobes using the Pearson correlation coefficient statistical analysis. Human umbilical vein endothelial cells (HUVEC) were tested. The ability to easily monitor the molecular indicators of angiogenesis that are a precursor to cancer in a fast and cost effective system is an important step towards personalized nanomedicine.The profiling of cellular heterogeneity has wide-reaching importance for our understanding of how cells function and react to their environments in healthy and diseased states. Our ability to interpret and model cell behavior has been limited by the difficulties of measuring cell differences, for example, comparing tumor and non-tumor cells, particularly at the individual cell level. This demonstrates a clear need for a generalizable approach to profile fluorophore sites on cells or molecular assemblies on beads. Here, a multiplex immunoassay for simultaneous detection of five different angiogenic markers was developed. We targeted angiogenic receptors

  5. Expression profiling of receptor tyrosine kinases in high-grade neuroendocrine carcinoma of the lung: a comparative analysis with adenocarcinoma and squamous cell carcinoma

    OpenAIRE

    MATSUMURA, YUKI; Umemura, Shigeki; Ishii, Genichiro; Tsuta, Koji; Matsumoto, Shingo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Ohe, Yuichiro; Suzuki, Hiroyuki; Ochiai, Atsushi; Goto, Koichi; Nagai, Kanji; Tsuchihara, Katsuya

    2015-01-01

    Background As the comprehensive genomic analysis of small cell lung cancer (SCLC) progresses, novel treatments for this disease need to be explored. With attention to the direct connection between the receptor tyrosine kinases (RTKs) of tumor cells and the pharmacological effects of specific inhibitors, we systematically assessed the RTK expressions of high-grade neuroendocrine carcinomas of the lung [HGNECs, including SCLC and large cell neuroendocrine carcinoma (LCNEC)]. Patients and method...

  6. The importance of molecular profiling in predicting response to epidermal growth factor receptor family inhibitors in non-small-cell lung cancer: focus on clinical trial results.

    Science.gov (United States)

    Tsao, Anne S; Papadimitrakopoulou, Vassiliki

    2013-07-01

    In recent years, the epidermal growth factor receptor (EGFR) family has become a key focus of non-small-cell lung cancer biology and targeted therapies, such as the reversible EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Initially, response to these agents was associated with certain demographic and clinical characteristics; subsequently, it was discovered that these subgroups were more likely to harbor specific mutations in the EGFR gene that enhanced tumor response. However, the presence of these mutations does not equate to therapeutic success. Other aspects of EGFR family signaling, including other types of EGFR mutations, EGFR protein expression, EGFR gene amplification, mediators of downstream signaling, and other receptors with similar downstream pathways may all play a role in response or resistance to treatment. The identification of these and other molecular determinants is driving the development of novel therapies designed to achieve improved clinical outcomes in patients.

  7. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Science.gov (United States)

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  8. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  9. Functional Profiling of 2-Aminopyrimidine Histamine H4 Receptor Modulators.

    Science.gov (United States)

    Tichenor, Mark S; Thurmond, Robin L; Venable, Jennifer D; Savall, Brad M

    2015-09-24

    Histamine is an important endogenous signaling molecule that is involved in a number of physiological processes including allergic reactions, gastric acid secretion, neurotransmitter release, and inflammation. The biological effects of histamine are mediated by four histamine receptors with distinct functions and distribution profiles (H1-H4). The most recently discovered histamine receptor (H4) has emerged as a promising drug target for treating inflammatory diseases. A detailed understanding of the role of the H4 receptor in human disease remains elusive, in part because low sequence similarity between the human and rodent H4 receptors complicates the translation of preclinical pharmacology to humans. This review provides an overview of H4 drug discovery programs that have studied cross-species structure-activity relationships, with a focus on the functional profiling of the 2-aminopyrimidine chemotype that has advanced to the clinic for allergy, atopic dermatitis, asthma, and rheumatoid arthritis. PMID:25993395

  10. Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia.

    Science.gov (United States)

    Maura, Francesco; Cutrona, Giovanna; Mosca, Laura; Matis, Serena; Lionetti, Marta; Fabris, Sonia; Agnelli, Luca; Colombo, Monica; Massucco, Carlotta; Ferracin, Manuela; Zagatti, Barbara; Reverberi, Daniele; Gentile, Massimo; Recchia, Anna Grazia; Bossio, Sabrina; Rossi, Davide; Gaidano, Gianluca; Molica, Stefano; Cortelezzi, Agostino; Di Raimondo, Francesco; Negrini, Massimo; Tassone, Pierfrancesco; Morabito, Fortunato; Ferrarini, Manlio; Neri, Antonino

    2015-01-01

    In this study we investigated specific biological and clinical features associated with chronic lymphocytic leukemia (CLL) patients carrying stereotyped BCR subset #4 (IGHV4-34) among a prospective cohort of 462 CLL/MBL patients in early stage (Binet A). All subset #4 patients (n = 16) were characterized by the IGHV mutated gene configuration, and absence of unfavorable cytogenetic lesions, NOTCH1 or SF3B1 mutations. Gene and miRNA expression profiling evidenced that the leukemic cells of subset #4 cases showed significant downregulation of WDFY4, MF2A and upregulation of PDGFA, FGFR1 and TFEC gene transcripts, as well as the upregulation of miR-497 and miR-29c. The transfection of miR-497 mimic in primary leukemic CLL cells induced a downregulation of BCL2, a known validated target of this miRNA. Our data identify biological characteristics associated with subset #4 patients, providing further evidence for the putative role of BCR in shaping the features of the tumor cells in CLL. PMID:25860243

  11. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  12. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Directory of Open Access Journals (Sweden)

    Marta Słoniecka

    Full Text Available Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP and neurokinin A (NKA, and of the neurotransmitters acetylcholine (ACh, catecholamines (adrenaline, noradrenaline and dopamine, and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R, dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT, M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that

  13. Pharmacological profiles of the metabotropic glutamate receptor ligands.

    Science.gov (United States)

    Naples, M A; Hampson, D R

    2001-01-01

    Metabotropic glutamate receptors (mGluRs) are a family of G-protein coupled receptors that are expressed in the central and peripheral nervous systems. The purpose of this study was to compare the ligand binding selectivity profiles of the mGluR agonist [(3)H]L-AP4 and the novel radiolabeled phenylglycine antagonist [(3)H]CPPG at all eight rat mGluR subtypes expressed in transfected human embryonic kidney cells. At a concentration of 30 nM [(3)H]L-AP4, no specific binding was detected in membranes expressing the group I receptors mGluR1a or mGluR5a, or in membranes expressing the group II mGluRs, mGluR2 and mGluR3. Among the group III mGluRs, specific [(3)H]L-AP4 binding was detected in cells expressing mGluR4a and mGluR8a but not in cells expressing mGluR6 or mGluR7a. The binding of [(3)H]CPPG showed an exceptional pattern of selectivity amongst the mGluR subtypes; at a concentration of 20 nM [(3)H]CPPG, a high level of specific binding was seen in membranes containing mGluR8a but not in any of the other mGluR subtypes. The affinity constant (K(D)) calculated for [(3)H]CPPG binding to mGluR8a was 183 nM. In competition experiments, the phosphono-substituted phenylglycine congeners including MPPG, (RS)-PPG, and unlabeled CPPG were the most potent inhibitors of [(3)H]CPPG binding while non-phosphonated compounds such as L-glutamate and MCPG were substantially less potent. These results demonstrate that [(3)H]L-AP4 and [(3)H]CPPG can be used as probes to selectively label group III mGluRs and that CPPG and related phenylglycine derivatives are useful for studying differences in the ligand recognition sites of highly homologous mGluRs. PMID:11114395

  14. Profiling Carbohydrate-Receptor Interaction with Recombinant Innate Immunity Receptor-Fc Fusion Proteins*

    OpenAIRE

    Hsu, Tsui-Ling; Cheng, Shih-Chin; Yang, Wen-Bin; Chin, See-Wen; Bo-hua CHEN; Huang, Ming-Ting; Hsieh, Shie-Liang; Wong, Chi-Huey

    2009-01-01

    The recognition of bacteria, viruses, fungi, and other microbes is controlled by host immune cells, which are equipped with many innate immunity receptors, such as Toll-like receptors, C-type lectin receptors, and immunoglobulin-like receptors. Our studies indicate that the immune modulating properties of many herbal drugs, for instance, the medicinal fungus Reishi (Ganoderma lucidum) and Cordyceps sinensis, could be attributed to their polysaccharide components. These polysaccharides specifi...

  15. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  16. Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Baykus, H.; Talsma, E.F.; Punt, A.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    Cruciferous vegetables and citrus fruits are reported to possess health-beneficial properties, but also have been shown to contain natural aryl hydrocarbon receptor (AhR) agonists (NAhRAs). Binding to the AhR is widely assumed to activate the main pathway by which dioxins, like 2,3,7,8-tetrachlorodi

  17. Involvement of Ghrelin-Growth Hormone Secretagogue Receptor System in Pathoclinical Profiles of Digestive System Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Weigang WANG; Wencai QIU; Youben FAN; Jun ZHAO; Yu WANG; Qi ZHENG

    2007-01-01

    Ghrelin receptor has been shown to be expressed along the human gastrointestinal tract.Recent studies showed that ghrelin and a synthetic ghrelin receptor agonist improved weight gain and lean body mass retention in a rat model of cancer cachexia by acting on ghrelin receptor, that is, growth hormone secretagogue receptor (GHS-R). This study aims to explore the expression and the distribution of ghrelin receptor in human gastrointestinal tract cancers and to investigate the possible involvement of the ghrelin-GHS-R system in human digestive cancers. Surgical human digestive cancer specimens were obtained from various portions of the gastrointestinal tract from different patients. The expression of ghrelin receptor in these tissues was detected by tissue microarray technique. Our results showed that ghrelin receptor was expressed in cancers throughout the gastrointestinal tract, mainly in the cytoplasm of mucosal layer cells.Its expression level possibly correlated with organ type, histological grade, tumor-nodes-metastases stage,and nutrition status (weight loss) of the patients. For the first time, we identified the distribution of ghrelin receptor in digestive system cancers. Our results implied that the ghrelin-GHS-R system might be involved in the pathoclinical profiles of digestive cancers.

  18. Estrogen receptor-mediated effects of isoflavone supplementation were not observed in whole-genome gene expression profiles of peripheral blood mononuclear cells in postmenopausal, equol-producing women.

    Science.gov (United States)

    van der Velpen, Vera; Geelen, Anouk; Schouten, Evert G; Hollman, Peter C; Afman, Lydia A; van 't Veer, Pieter

    2013-06-01

    Isoflavones (genistein, daidzein, and glycitein) are suggested to have benefits as well as risks for human health. Approximately one-third of the Western population is able to metabolize daidzein into the more potent metabolite equol. Having little endogenous estradiol, equol-producing postmenopausal women who use isoflavone supplements to relieve their menopausal symptoms could potentially be at high risk of adverse effects of isoflavone supplementation. The current trial aimed to study the effects of intake of an isoflavone supplement rich in daidzein compared with placebo on whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) in equol-producing, postmenopausal women. Thirty participants received an isoflavone supplement or a placebo for 8 wk each in a double-blind, randomized cross-over design. The isoflavone supplement was rich in daidzein (60%) and provided 94 mg isoflavones (aglycone equivalents) daily. Gene expression in PBMCs was significantly changed (P isoflavone intervention compared with placebo. Gene set enrichment analysis revealed downregulated clusters of gene sets involved in inflammation, oxidative phosphorylation, and cell cycle. The expression of estrogen receptor (ER) target genes and gene sets related to ER signaling were not significantly altered, which may be explained by the low ERα and ERβ expression in PBMCs. The observed downregulated gene sets point toward potential beneficial effects of isoflavone supplementation with respect to prevention of cancer and cardiovascular disease. However, whether ER-related effects of isoflavones are beneficial or harmful should be studied in tissues that express ERs. PMID:23616509

  19. Anamorelin HCl (ONO-7643), a novel ghrelin receptor agonist, for the treatment of cancer anorexia-cachexia syndrome: preclinical profile

    OpenAIRE

    Pietra, Claudio; Takeda, Yasuhiro; Tazawa-Ogata, Naoko; Minami, Masashi; Yuanfeng, Xia; Duus, Elizabeth Manning; Northrup, Robert

    2014-01-01

    Background Anamorelin HCl (ANAM) is a novel, orally active, ghrelin receptor agonist in clinical development for the treatment of cancer cachexia. We report in vitro and in vivo studies evaluating the preclinical pharmacologic profile of ANAM. Methods Fluorescent imaging plate reader and binding assays in HEK293 and baby hamster kidney cells determined the agonist and antagonist activity of ANAM, and its affinity for the ghrelin receptor. Rat pituitary cells were incubated with ANAM to evalua...

  20. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  1. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  2. Orally applied doxazosin disturbed testosterone homeostasis and changed the transcriptional profile of steroidogenic machinery, cAMP/cGMP signalling and adrenergic receptors in Leydig cells of adult rats.

    Science.gov (United States)

    Stojkov, N J; Janjic, M M; Kostic, T S; Andric, S A

    2013-03-01

    Doxazosin (Doxa) is an α1-selective adrenergic receptor (ADR) antagonist widely used, alone or in combination, to treat high blood pressure, benign prostatic hyperplasia symptoms, and recently has been suggested as a potential drug for prostate cancer prevention/treatment. This study was designed to evaluate the effect of in vivo Doxa po-application, in clinically relevant dose, on: (i) steroidogenic machinery homeostasis; (ii) cAMP/cGMP signalling; (iii) transcription profile of ADR in Leydig cells of adult rats. The results showed that po-application of Doxa for once (1×Doxa), or for two (2×Doxa) or 10 (10×Doxa) consecutive days significantly disturbed steroidogenic machinery homeostasis in Leydig cells. Doxa po-application significantly decreased circulating luteinizing hormone and androgens levels. The level of androgens in testicular interstitial fluid and that extracted from testes obtained from 1×Doxa/2×Doxa rats decreased, although it remained unchanged in 10×Doxa rats. Similarly, the ex vivo basal androgen production followed in testes isolated from 1×Doxa/2×Doxa rats decreased, while remained unchanged in 10×Doxa rats. Differently, ex vivo testosterone production and steroidogenic capacity of Leydig cells isolated from 1×Doxa/2×Doxa rats was stimulated, while 10×Doxa had opposite effect. In the same cells, cAMP content/release showed similar stimulatory effect, but back to control level in Leydig cells of 10×Doxa. 1×Doxa/2×Doxa decreased transcripts for cAMP specific phosphodiesterases Pde7b/Pde8b, whereas 10×Doxa increased Pde4d. All types of treatment reduced the expression of genes encoding protein kinase A (PRKA) regulatory subunit (Prkar2b), whereas only 10×Doxa stimulated catalytic subunit (Prkaca). Doxa application more affected cGMP signalling: stimulated transcription of constitutive nitric oxide synthases (Nos1, Nos3) in time-dependent manner, whereas reduced inducible Nos2. 10×Doxa increased guanylyl cyclase 1 transcript and

  3. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  4. Mast Cell and Immune Inhibitory Receptors

    Institute of Scientific and Technical Information of China (English)

    Lixin Li; Zhengbin Yao

    2004-01-01

    Modulation by balancing activating and inhibitory receptors constitutes an important mechanism for regulating immune responses. Cells that are activated following ligation of receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs) can be negatively regulated by other receptors bearing immunoreceptor tyrosine-based inhibition motifs (ITIMs). Human mast cells (MCs) are the major effector cells of type I hypersensitivity and important participants in a number of disease processes. Antigen-mediated aggregation of IgE bound to its high-affinity receptor on MCs initiates a complex series of biochemical events leading to MC activation. With great detailed description and analysis of several inhibitory receptors on human MCs, a central paradigm of negative regulation of human MC activation by these receptors has emerged. Cellular & Molecular Immunology. 2004;1(6):408-415.

  5. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    Science.gov (United States)

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.

  6. Gene expression profiling bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    Science.gov (United States)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  7. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    OpenAIRE

    MARUYAMA, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2006-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells select...

  8. Profiling of embryonic stem cell differentiation.

    Science.gov (United States)

    Shiraki, Nobuaki; Ogaki, Soichiro; Kume, Shoen

    2014-01-01

    Embryonic stem (ES) cells have been shown to recapitulate normal developmental stages. They are therefore a highly useful tool in the study of developmental biology. Profiling of ES cell-derived cells has yielded important information about the characteristics of differentiated cells, and allowed the identification of novel marker genes and pathways of differentiation. In this review, we focus on recent results from profiling studies of mouse embryos, human islets, and human ES cell-derived differentiated cells from several research groups. Global gene expression data from mouse embryos have been used to identify novel genes or pathways involved in the developmental process, and to search for transcription factors that regulate direct reprogramming. We introduce gene expression databases of human pancreas cells (Beta Cell Gene Atlas, EuroDia database), and summarize profiling studies of islet- or human ES cell-derived pancreatic cells, with a focus on gene expression, microRNAs, epigenetics, and protein expression. Then, we describe our gene expression profile analyses and our search for novel endoderm, or pancreatic, progenitor marker genes. We differentiated mouse ES cells into mesendoderm, definitive endoderm (DE), mesoderm, ectoderm, and Pdx1-expressing pancreatic lineages, and performed DNA microarray analyses. Genes specifically expressed in DE, and/or in Pdx1-expressing cells, were extracted and their expression patterns in normal embryonic development were studied by in situ hybridization. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos, and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 mouse embryos. Akr1c19, Aebp2, Pbxip1, and Creb3l1 were all novel, and none has been described as being expressed, either in the DE, or in the pancreas. By introducing the profiling results of ES cell-derived cells, the benefits of using ES cells to study early embryonic development will be discussed.

  9. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  10. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore...... to examine whether human bladder tumor cells express VDR. Tumor biopsies were obtained from 26 patients with TCC. Expression of VDR was examined by immunohistochemical experiments. All tumors expressed VDR. Biopsies from advanced disease contained more VDR positive cells than low stage disease (p ....05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  11. Measuring receptor recycling in polarized MDCK cells.

    Science.gov (United States)

    Gallo, Luciana; Apodaca, Gerard

    2015-01-01

    Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.

  12. Profiling epidermal growth factor receptor and heregulin receptor 3 heteromerization using receptor tyrosine kinase heteromer investigation technology.

    Directory of Open Access Journals (Sweden)

    Mohammed Akli Ayoub

    Full Text Available Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs. The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET. Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT that has recently been published as the G protein-coupled receptor (GPCR Heteromer Identification Technology (GPCR-HIT. We now demonstrate the utility of this approach for investigating RTK heteromerization by examining the functional interaction between the epidermal growth factor (EGF receptor (EGFR; also known as erbB1/HER1 and heregulin (HRG receptor 3 (HER3; also known as erbB3 in live HEK293FT cells using recruitment of growth factor receptor-bound protein 2 (Grb2 to the activated receptors. We found that EGFR and HER3 heteromerize specifically as demonstrated by HRG inducing a BRET signal between EGFR/Rluc8 and Grb2/Venus only when HER3 was co-expressed. Similarly, EGF stimulation promoted a specific BRET signal between HER3/Rluc8 and Grb2/Venus only when EGFR was co-expressed. Both EGF and HRG effects on Grb2 interaction are dose-dependent, and specifically blocked by EGFR inhibitor AG-1478. Furthermore, truncation of HER3 to remove the putative Grb2 binding sites appears to abolish EGF-induced Grb2 recruitment to the EGFR-HER3 heteromer. Our results support the concept that EGFR interacts with Grb2 in both constitutive and EGF-dependent manners and this interaction is independent of HER3 co-expression. In contrast, HER3-Grb2 interaction requires the heteromerization between EGFR and HER3. These findings clearly indicate the importance of EGFR-HER3 heteromerization in HER3-mediated Grb2-dependent signaling pathways and supports the central role of HER3 in the diversity and regulation of HER

  13. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  14. Chemokine receptor expression by inflammatory T cells in EAE

    Directory of Open Access Journals (Sweden)

    Jyothi Thyagabhavan Mony

    2014-07-01

    Full Text Available Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS. The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS. The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4+ T cells that produce the cytokine IL-17 (Th17 cells. Th17 cells and interferon-gamma (IFNγ-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE. We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4+ T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 7.7% of CD4+ T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8+ T cells. CD8+ T cells expressed CXCR3, which was also expressed by CD4+ T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6+ and CXCR3+ CD4+ T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8+ T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4+ T cells expressed CCR6 within infiltrates. CD4-negative CCR6+ cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4+ and CD8+ T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  15. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor, Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    Directory of Open Access Journals (Sweden)

    Rebecca Louise Harris

    2012-01-01

    Full Text Available Background. The asialoglycoprotein receptor (ASGPR is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2, encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR, expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

  16. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  17. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    Science.gov (United States)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  18. Transcription profiles of non-immortalized breast cancer cell lines

    International Nuclear Information System (INIS)

    Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

  19. Profiling Signaling Polarity in Chemotactic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingchun; Ding, Shi-Jian; Wang, Wei; Jacobs, Jon M.; Qian, Weijun; Moore, Ronald J.; Yang, Feng; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2007-05-15

    While directional movement requires morphological polarization characterized by formation of a leading pseudopodium at the front and a trailing rear at the back, little is known about how protein networks are spatially integrated to regulate this process. Here, we utilize a unique pseudopodial purification system and quantitative proteomics and phosphoproteomics to map the spatial relationship of 3509 proteins and 228 distinct sites of phosphorylation in polarized cells. Networks of signaling proteins, metabolic pathways, actin regulatory proteins, and kinase-substrate cascades were found to partition to different poles of the cell including components of the Ras/ERK pathway. Also, several novel proteins were found to be differentially phosphorylated at the front or rear of polarized cells and to localize to distinct subcellular structures. Our findings provide insight into the spatial organization of signaling networks that control cell movement and provide a comprehensive profile of proteins and their sites of phosphorylation that control cell polarization.

  20. Molecular profiles of progesterone receptor loss in human breast tumors

    NARCIS (Netherlands)

    C.J. Creighton; C. Kent Osborne; M.J. van de Vijver; J.A. Foekens; J.G. Klijn; H.M. Horlings; D. Nuyten; Y. Wang; Y. Zhang; G.C. Chamness; S.G. Hilsenbeck; A.V. Lee; R. Schiff

    2009-01-01

    Background Patient prognosis and response to endocrine therapy in breast cancer correlate with protein expression of both estrogen receptor (ER) and progesterone receptor (PR), with poorer outcome in patients with ER+/PR- compared to ER+/PR+ tumors. Methods To better understand the underlying biolog

  1. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    Science.gov (United States)

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  2. Expression profiles and function of Toll-like receptors in human corneal epithelia

    Institute of Scientific and Technical Information of China (English)

    WU Xin-yi; GAO Jian-lu; REN Mei-yu

    2007-01-01

    Background Toll-like receptors play an important role in the human immune system. This study was conducted to investigate the expression profiles and function of Toll-like receptor (TLR)1-9 in human corneal epithelium.Methods The expression of TLR1-9 mRNA in 20 human donor corneal epithelia samples abraded during photorefractive keratotomy (PRK) and cultivated telomerase-immortalized human corneal epithelial cells (THCEs) was examined by semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. Human peripheral blood mononuclear cells (PBMCs) were used as positive controls. The expression of the TLR2 and TLR4 proteins was detected by Western analysis. ELISA was used to detect IL-8 secretion from THCEs challenged with ligands for TLR3 and TLR4 with and without antibody blockade.Results The expression of TLR1-9 at the mRNA level was detected in the epithelia of 20 patients and in THCE.Significant differences among individuals were observed. One patient was found to lack of the expression of TLR3, 4, 6 and 8, whereas another did not express TLR5. The expression of TLR2 and TLR4 protein was detected in human corneal epithelial cells. As THCE cells express TLR1-9, cells were challenged with lipopolysaccharides (LPS) and poly I:C to determine whether TLR4 and TLR3 were functional. The results showed that secretion of IL-8 by cells stimulated with LPS and Poly I:C was 7 to 10 fold greater than secretion by unchallenged cells. Blocking TLR4 with an anti-TLR4 antibody significantly inhibited the LPS-induced IL-8 production by THCE (P<0.05).Conclusion Human corneal epithelial cells express multiple TLRs and are able to recognize LPS and poly I:C. Different expression profiles among individuals suggest that differences in the susceptibilities and sensitivities to bacterial and viral infection in human populations relate to different patterns of TLR expression.

  3. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    OpenAIRE

    Tara L. Walker; Rupert W. Overall; Steffen Vogler; Alex M. Sykes; Susann Ruhwald; Daniela Lasse; Muhammad Ichwan; Klaus Fabel; Gerd Kempermann

    2016-01-01

    Summary Here, we show that the lysophosphatidic acid receptor 1 (LPA1) is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative pre...

  4. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  5. Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2.

    Directory of Open Access Journals (Sweden)

    D Malfacini

    Full Text Available Nociceptin/orphanin FQ (N/OFQ controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP. Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells. In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified.

  6. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  7. Evidence for an androgen receptor in porcine Leydig cells

    International Nuclear Information System (INIS)

    Cytosol and nuclear androgen receptor concentrations were measured in freshly prepared and cultured Leydig cells of immature pig testis with exchange assays using (3H)methyltrienolone as labelled ligand. Androgen receptors in Leydig cells had high affinity for (3H)methyltrienolone and sterios binding specificity typical of an androgen receptor. The mean receptor concentrations were 76 fmol/mg protein and 210 fmol/mg DNA for cytosol and nuclei, respectively. In sucrose gradients, cytosol androgen receptors sedimented in the 4 S region. The cells maintained androgen receptors under culture conditions. Exposure of cultured cells to (3H)methyltrienolone (10 nmol/l) resulted in accumulation of androgen receptors in the nuclei with maximal uptake by 1 h. We conclude that methyltrienolone binding sites with characteristics of androgen receptors were idenfified in both cytosol and nuclei of porcine Leydig cells. (author)

  8. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    OpenAIRE

    CORRÊA, NATÁSSIA C.R.; Kuasne, Hellen; Faria, Jerusa A. Q. A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; Nonogaki, Suely; Rocha, Rafael M.; Silva, Gerluza Aparecida Borges; Gobbi, Helenice; Silvia R Rogatto; Alfredo M. Goes; Gomes, Dawidson A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using ...

  9. Profiling Epidermal Growth Factor Receptor and Heregulin Receptor 3 Heteromerization Using Receptor Tyrosine Kinase Heteromer Investigation Technology

    OpenAIRE

    Mohammed Akli Ayoub; Heng B See; Seeber, Ruth M.; Armstrong, Stephen P.; Pfleger, Kevin D.G.

    2013-01-01

    Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs). The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET). Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT) that has recently been published as the G p...

  10. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine

    DEFF Research Database (Denmark)

    Kristensen, K; Christensen, C B; Christrup, Lona Louring

    1995-01-01

    The binding affinities of racemic methadone and its optical isomers R-methadone and S-methadone were evaluated for the opioid receptors mu1, mu2, delta and kappa, in comparison with that of morphine. The analgesic R-methadone had a 10-fold higher affinity for mu1 receptors than S-methadone (IC50 3...... receptors. This result suggests that S-methadone does not essentially contribute to opioid effect of racemic methadone. R-methadone has a receptor binding profile which resembles that of morphine....

  11. Expression of P2 receptors in human B cells and Epstein-Barr virus-transformed lymphoblastoid cell lines

    Directory of Open Access Journals (Sweden)

    Kim Jun Woo

    2006-09-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV infection immortalizes primary B cells in vitro and generates lymphoblastoid cell lines (LCLs, which are used for several purposes in immunological and genetic studies. Purinergic receptors, consisting of P2X and P2Y, are activated by extracellular nucleotides in most tissues and exert various physiological effects. In B cells, especially EBV-induced LCLs, their expression and function have not been well studied. We investigated the expression of P2 receptors on primary human B cells and LCLs using the quantitative reverse transcriptase-polymerase chain reaction (RT-PCR method for revealing the gene expression profile of the P2 receptor subtypes and their changes during transformation. Results The mRNA transcripts of most P2 receptors were detected in primary B cells; the expression of P2X3 and P2X7 receptors was the lowest of all the P2 receptors. By contrast, LCLs expressed several dominant P2 receptors – P2X4, P2X5, and P2Y11 – in amounts similar to those seen in B cells infected with EBV for 2 weeks. The amount of most P2 subtypes in LCLs or EBV-infected B cells was lower than in normal B cells. However, the amount of P2X7 receptor expressed in LCLs was higher. Protein expression was studied using Western blotting to confirm the mRNA findings for P2X1, P2X4, P2X7, P2Y1, and P2Y11 receptors. ATP increased the intracellular free Ca2+ concentration ([Ca2+]i by enhancing the Ca2+ influx in both B cells and LCLs in a dose-dependent manner. Conclusion These findings describe P2 receptor expression profiles and the effects of purinergic stimuli on B cells and suggest some plasticity in the expression of the P2 receptor phenotype. This may help explain the nature and effect of P2 receptors on B cells and their role in altering the characteristics of LCLs.

  12. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    Science.gov (United States)

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  13. Comparison of Global versus Epidermal Growth Factor Receptor Pathway Profiling for Prediction of Lapatinib Sensitivity in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Dmytro M. Havaleshko

    2009-11-01

    Full Text Available Chemotherapy for metastatic bladder cancer is rarely curative. The recently developed small molecule, lapatinib, a dual epidermal growth factor receptor (EGFR/human epidermal growth factor receptor-2 receptor tyrosine kinase inhibitor, might improve this situation. Recent findings suggest that identifying which patients are likely to benefit from targeted therapies is beneficial, although controversy remains regarding what types of evaluation might yield optimal candidate biomarkers of sensitivity. Here, we address this issue by developing and comparing lapatinib sensitivity prediction models for human bladder cancer cells. After empirically determining in vitro sensitivities (drug concentration necessary to cause a 50% growth inhibition of a panel of 39 such lines to lapatinib treatment, we developed prediction models based on profiling the baseline transcriptome, the phosphorylation status of EGFR pathway signaling targets, or a combination of both data sets. We observed that models derived from microarray gene expression data showed better prediction performance (93%–98% accuracy compared with models derived from EGFR pathway profiling of 23 selected phosphoproteins known to be involved in EGFR-driven signaling (54%–61% accuracy or from a subset of the microarray data for transcripts in the EGFR pathway (86% accuracy. Combining microarray data and phosphoprotein profiling provided a combination model with 98% accuracy. Our findings suggest that transcriptome-wide profiling for biomarkers of lapatinib sensitivity in cancer cells provides models with excellent predictive performance and may be effectively combined with EGFR pathway phosphoprotein profiling data. These results have significant implications for the use of such tools in personalizing the approach to cancers treated with EGFR-directed targeted therapies.

  14. Effect of the FSH receptor single nucleotide polymorphisms (FSHR 307/680) on the follicular fluid hormone profile and the granulosa cell gene expression in human small antral follicles

    DEFF Research Database (Denmark)

    Borgbo, T; Jeppesen, J V; Lindgren, I;

    2015-01-01

    follicular fluid samples and the gene expression levels of 85 GC samples were correlated to the genotype of both FSHR polymorphisms. The following parameters were evaluated: follicle diameter, levels of Anti-Müllerian hormone (AMH), progesterone, estradiol, testosterone and androstenedione and gene......The most pronounced effects of FSH signalling are potentially displayed in the follicle fluid, which acts as a reservoir for FSH-induced granulosa cell (GC) secreted hormones. This study investigates the effects of two common polymorphisms of FSHR, FSHR 307 (rs6165) and FSHR 680 (rs6166......), by evaluating the hormone and gene expression profiles of human small antral follicles collected under physiological conditions in connection with fertility preservation. In total 69 women at various time during the menstrual cycle were included in this study. The intrafollicular hormone content of 179...

  15. Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors

    DEFF Research Database (Denmark)

    Zhao, Chun-Mei; Kodama, Yosuke; Flatberg, Arnar;

    2014-01-01

    The stomach produces acid, which may play an important role in the regulation of bone homeostasis. The aim of this study was to reveal signaling pathways in the gastric mucosa that involve the acid secretion and possibly the bone metabolism in CCK1 and/or CCK2 receptor knockout (KO) mice. Gastric...... acid secretion was impaired and the ECL cell signaling pathway was inhibited in CCK2 receptor KO mice but not in CCK1 receptor KO mice. However, in CCK1+2 receptor double KO mice the acid secretion in response to pylorus ligation-induced vagal stimulation and the ECL cell pathway were partially...

  16. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  17. Biological characterization of PM226, a chromenoisoxazole, as a selective CB2 receptor agonist with neuroprotective profile.

    Science.gov (United States)

    Gómez-Cañas, M; Morales, P; García-Toscano, L; Navarrete, C; Muñoz, E; Jagerovic, N; Fernández-Ruiz, J; García-Arencibia, M; Pazos, M R

    2016-08-01

    Cannabinoids have emerged as promising neuroprotective agents due to their capability to activate specific targets, which are involved in the control of neuronal homeostasis and survival. Specifically, those ligands that selectively target and activate the CB2 receptor may be useful for their anti-inflammatory and neuroprotective properties in various neurological disorders, with the advantage of being devoid of psychotropic effects associated with the activation of CB1 receptors. The aim of this work has been to investigate the neuroprotective properties of 7-(1,1-dimethylheptyl)-4,4-dimethyl-9-methoxychromeno[3,4-d]isoxazole (PM226), a compound derived from a series of chromeno-isoxazoles and -pyrazoles, which seems to have a promising profile related to the CB2 receptor. The compound binds selectively to this receptor with an affinity in the nanomolar range (Ki=12.8±2.4nM). It has negligible affinity for the CB1 receptor (Ki>40000nM) and no activity at the GPR55. PM226 was also evaluated in GTPγS binding assays specific to the CB2 receptor showing agonist activity (EC50=38.67±6.70nM). In silico analysis of PM226 indicated that it has a good pharmacokinetic profile and a predicted ability to cross the blood-brain barrier. Next, PM226 was investigated in an in vitro model to explore its anti-inflammatory/neuroprotective properties. Conditioned media were collected from LPS-stimulated cultures of BV2 microglial cell line in the absence or presence of different doses of PM226, and then media were added to cultured M213-2O neuronal cells to record their influence on cell viability evaluated using MTT assays. As expected, cell viability was significantly reduced by the exposure to these conditioned media, while the addition of PM226 attenuated this reduction in a dose-dependent manner. This effect was reversed by co-incubating with the CB2 antagonist SR144528, thus confirming the involvement of CB2 receptors, whereas the addition of PM226 to neuronal cultures

  18. Distribution of natural killer cell receptors in HIV infected individuals

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong-jun; SHANG Hong; ZHANG Zi-ning; DIAO Ying-ying; GENG Wen-qing; DAI Di; LIU Jing; WANG Ya-nan; ZHANG Min; HAN Xiao-xu

    2007-01-01

    @@ Natural killer (NK) cells are bone marrow derived,large granular lymphocytes, comprising approximately 10% to 20% of the mononuclear cell fraction in normal peripheral blood. They form a part of the first line defense mechanism against tumoural and viral spreading.1-4 Unlike T and B cells, NK cells do not require gene rearrangement for assembly of their receptor genes; rather, NK cells discriminate potential target cells based on the levels of self major histocompatibility complex (MHC) class Ⅰ expression on such cells.5,6 There are two kinds of NK cell receptors.2,7,8 Inhibitory receptors recognize MHC class Ⅰ molecules and deliver a downregulatory signal that inactivates the lyric machinery of NK cells. Stimulatory receptors expressed by NK cells deliver an activation signal.

  19. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  20. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster.

    Science.gov (United States)

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Proost, Paul; Vanden Broeck, Jozef

    2015-06-01

    Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage. PMID:25064813

  1. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  2. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  3. Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines.

    Science.gov (United States)

    Fox, Brian P; Tabone, Christopher J; Kandpal, Raj P

    2006-04-21

    The family of Eph and ephrin receptors is involved in a variety of functions in normal cells, and the alterations in their expression profiles have been observed in several cancers. We have compared the transcripts for Eph receptors and ephrin ligands in cell lines established from normal prostate epithelium and several carcinoma cell lines isolated from prostate tumors of varying degree of metastasis. These cell lines included NPTX, CTPX, LNCaP, DU145, PC-3, and PC-3ML. The cell lines displayed characteristic pattern of expression for specific Eph receptors and ephrin ligands, thus allowing identification of Eph receptor signatures for a particular cell line. The sensitivity of these transcripts to genome methylation is also investigated by treating the cells with 5-aza-2'-deoxycytidine. The comparison of expression profiles revealed that normal prostate and primary prostate tumor cell lines differ in the expression of EphA3, EphB3, and ephrin A3 that are over-expressed in normal prostate. Furthermore, the transcript levels for EphA1 decrease progressively from normal prostate to primary prostate tumor cell line and metastatic tumor cells. A converse relationship was observed for ephrin B2. The treatment of cells with 5-aza-2'-deoxycytidine revealed the sensitivity of EphA3, EphA10, EphB3, and EphB6 to methylation status of genomic DNA. The utility of methylation specific PCR to identify prostate tumor cells and the importance of specific Eph receptors and ephrin ligands in initiation and progression of prostate tumor are discussed. PMID:16516143

  4. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen;

    2015-01-01

    densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  5. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  6. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    Science.gov (United States)

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  7. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y;

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine....... The intracellular domains of the two receptors differ in structure, suggesting that they mediate different activities. Their extracellular domains, however, are structurally related. Both contain cysteine-rich repeats which are homologous to repeated structures found in the extracellular domains of the nerve growth...... factor receptor and the CDw40 protein. Truncated soluble forms of the two receptors, corresponding to these cysteine-rich repeated structures, have been detected in human urine and were later found to be present also in the serum. The serum levels of those soluble TNF receptors increase dramatically...

  8. Tumor necrosis factor receptor superfamily costimulation couples T cell receptor signal strength to thymic regulatory T cell differentiation

    OpenAIRE

    Mahmud, Shawn A.; Manlove, Luke S.; Schmitz, Heather M.; Xing, Yan; Wang, Yanyan; Owen, David L.; Schenkel, Jason M.; Boomer, Jonathan S; Jonathan M Green; Yagita, Hideo; Chi, Hongbo; Hogquist, Kristin A.; Farrar, Michael A.

    2014-01-01

    Regulatory T (Treg) cells express tumor necrosis factor receptor superfamily (TNFRSF) members, but their role in thymic Treg development is undefined. We demonstrate that Treg progenitors highly express the TNFRSF members GITR, OX40, and TNFR2. Expression of these receptors correlates directly with T cell receptor (TCR) signal strength, and requires CD28 and the kinase TAK1. Neutralizing TNFSF ligands markedly reduced Treg development. Conversely, TNFRSF agonists enhanced Treg differentiation...

  9. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Ignatius Irudayam, Joseph; Contreras, Deisy; Spurka, Lindsay; Ren, Songyang; Kanagavel, Vidhya; Ramaiah, Arunachalam; Annamalai, Alagappan; French, Samuel W; Klein, Andrew S; Funari, Vincent; Arumugaswami, Vaithilingaraja

    2015-12-01

    Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation. PMID:26702414

  10. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph Ignatius Irudayam

    2015-12-01

    Full Text Available Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5, hepatoblast (day 15 and hepatocyte-like cells (day 21 were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21 had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.

  11. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    Science.gov (United States)

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties. PMID:27216487

  12. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    Science.gov (United States)

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  13. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  14. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  15. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    LI WenTing; SUN HuaLin; XU ZengLu; DING Fei; GU XiaoSong

    2009-01-01

    During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morpho-logical changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and in-duced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We ana-lyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  16. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality.

    Science.gov (United States)

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W; Böttcher, Sebastian; van Dongen, Jacques J M; Orfao, Alberto; Almeida, Julia

    2015-12-15

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.

  17. Nod-like receptors have a grip on stem cells.

    Science.gov (United States)

    Fritz, Jörg H

    2014-06-11

    Two reports in this issue of Cell Host & Microbe establish that Nod-like receptor proteins NOD1 and NOD2 regulate stem cell function. Burberry et al. (2014) demonstrate that NOD1 and NOD2 synergize with TLRs to mobilize hematopoietic stem cells. Nigro et al. (2014) report that NOD2 provides cytoprotection to intestinal stem cells. PMID:24922568

  18. Octreotide scintigraphy localizes somatostatin receptor-positive islet cell carcinomas

    International Nuclear Information System (INIS)

    Tyr-3-octreotide is a synthetic derivative of somatostatin and a somatostatin-receptor analogue. The iodine-123-labelled compound localizes somatostatin-receptor-positive tumours. In this paper two patients are reported in whom somatostatin receptors were demonstrated in vitro. In a 60-year-old female with an islet cell carcinoma of the pancreas, multiple liver metastases and previously uncrecognized bone metastases in the right acetabulum could be diagnosed as the reason for a persistent hypoglycaemia. In a 60-year-old male an islet cell carcinoma of the pancreas was localized with 123I-Tyr-3-octreotide. The somatostatin receptors were demonstrated in vitro and the tumour was successfully treated with somatostatin. These studies demonstrate that 123I-Tyr-3-octreotide offers the possibility of localizing somatostatin-receptor-positive tumours and their metastases. Moreover the method makes it possible to determine the receptor status of a tumour in vivo. (orig.)

  19. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  20. Identification and Profiling of Novel α1A-Adrenoceptor-CXC Chemokine Receptor 2 Heteromer*

    OpenAIRE

    Mustafa, Sanam; Heng B See; Seeber, Ruth M.; Armstrong, Stephen P.; White, Carl W; Ventura, Sabatino; Ayoub, Mohammed Akli; Pfleger, Kevin D.G.

    2012-01-01

    We have provided the first evidence for specific heteromerization between the α1A-adrenoceptor (α1AAR) and CXC chemokine receptor 2 (CXCR2) in live cells. α1AAR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified no...

  1. Documentation of angiotensin II receptors in glomerular epithelial cells

    Science.gov (United States)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  2. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    OpenAIRE

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2010-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transect...

  3. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450.

    Science.gov (United States)

    Chaki, Shigeyuki; Nakazato, Atsuro; Kennis, Ludo; Nakamura, Masato; Mackie, Claire; Sugiura, Masayuki; Vinken, Petra; Ashton, David; Langlois, Xavier; Steckler, Thomas

    2004-02-01

    1-[8-(2,4-dichlorophenyl)-2-methylquinolin-4-yl]-1,2,3,6-tetrahydropyridine-4-carboxamide benzenesulfonate (R278995/CRA0450) is a newly synthesized corticotropin-releasing factor subtype 1 (CRF(1)) receptor antagonist. In the present study, in vitro and in vivo pharmacological profiles of R278995/CRA0450 were investigated. R278995/CRA0450 showed high affinity for recombinant and native CRF(1) receptors without having affinity for the CRF(2) receptor. R278995/CRA0450 attenuated CRF-induced cyclic AMP formation in AtT-20 cells and CRF-induced forepaw treading in gerbils, indicating that R278995/CRA0450 is an antagonist of the CRF(1) receptor. In addition to CRF(1) receptor antagonism, R278995/CRA0450 showed high affinity for the sigma(1) receptor, and attenuated (+)-SKF10,047-induced head-weaving behavior, suggesting sigma(1) receptor antagonism. R278995/CRA0450 showed dose-dependent in vivo occupancy when assessed by ex vivo receptor binding, indicating good brain penetration. R278995/CRA0450 did not alter spontaneous anxiety when tested in the rat elevated plus maze (up to 3 mg/kg, p.o.) or lick suppression test (up to 10 mg/kg, i.p.). However, potent anxiolytic-like properties were observed in rats subjected to swim stress prior to testing on the elevated plus-maze, indicating activity primarily in tests taxing stress-induced anxiety. R278995/CRA0450 was inactive in mouse tail suspension, rat forced swim and rat differential-reinforcement-of-low-rate 72-s (DRL72), while it showed dose-dependent antidepressant-like effects in the rat learned helplessness paradigm and the olfactory bulbectomy model, demonstrating activity in a subset of animal models of depression associated with subchronic stress exposure. No or only mild effects were seen in tests of locomotor activity, motor coordination and sedation. These results indicate that R278995/CRA0450 is an orally active CRF(1) and sigma(1) receptor antagonist with potent anxiolytic-like and antidepressant

  4. Computational Modeling of T Cell Receptor Complexes.

    Science.gov (United States)

    Riley, Timothy P; Singh, Nishant K; Pierce, Brian G; Weng, Zhiping; Baker, Brian M

    2016-01-01

    T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition. PMID:27094300

  5. T-cell receptors in ectothermic vertebrates.

    Science.gov (United States)

    Charlemagne, J; Fellah, J S; De Guerra, A; Kerfourn, F; Partula, S

    1998-12-01

    The structure and expression of genes encoding molecules homologous to mammalian T-cell receptors (TCR) have been recently studied in ectothermic vertebrate species representative of chondrychthians, teleosts, and amphibians. The overall TCR chain structure is well conserved in phylogeny: TCR beta- and TCR alpha-like chains were detected in all the species analyzed; TCR gamma- and TCR delta-like chains were also present in a chondrychthian species. The diversity potential of the variable (V) and joining (J) segments is rather large and, as in mammals, conserved diversity (D) segments are associated to the TCR beta and TCR delta chains. An important level of junctional diversity occurred at the V-(D)-J junctions, with the potential addition of N- and P-nucleotides. Thus, the conservation of the structure and of the potential of diversity of TCR molecules have been under a permanent selective pressure during vertebrate evolution. The structure of MHC class I and class II molecules was also well conserved in jawed vertebrates. TCR and MHC molecules are strongly functionally linked and play a determinant role in the initiation and the regulation of the specific immune responses; thus, it is not surprising that their structures have been reciprocally frozen during evolution. PMID:9914905

  6. Role of leptin receptors in granulosa cells during ovulation.

    Science.gov (United States)

    Dupuis, Lisa; Schuermann, Yasmin; Cohen, Tamara; Siddappa, Dayananda; Kalaiselvanraja, Anitha; Pansera, Melissa; Bordignon, Vilceu; Duggavathi, Raj

    2014-02-01

    Leptin is an important hormone influencing reproductive function. However, the mechanisms underpinning the role of leptin in the regulation of reproduction remain to be completely deciphered. In this study, our objective is to understand the mechanisms regulating the expression of leptin receptor (Lepr) and its role in ovarian granulosa cells during ovulation. First, granulosa cells were collected from superovulated mice to profile mRNA expression of Lepr isoforms (LeprA and LeprB) throughout follicular development. Expression of LeprA and LeprB was dramatically induced in the granulosa cells of ovulating follicles at 4 h after human chorionic gonadotropin (hCG) treatment. Relative abundance of both mRNA and protein of CCAAT/enhancer-binding protein β (Cebpβ) increased in granulosa cells from 1 to 7 h post-hCG. Furthermore, chromatin immunoprecipitation assay confirmed the recruitment of Cebpβ to Lepr promoter. Thus, hCG-induced transcription of Lepr appears to be regulated by Cebpβ, which led us to hypothesise that Lepr may play a role during ovulation. To test this hypothesis, we used a recently developed pegylated superactive mouse leptin antagonist (PEG-SMLA) to inhibit Lepr signalling during ovulation. I.p. administration of PEG-SMLA (10 μg/g) to superovulated mice reduced ovulation rate by 65% compared with control treatment. Although the maturation stage of the ovulated oocytes remained unaltered, ovulation genes Ptgs2 and Has2 were downregulated in PEG-SMLA-treated mice compared with control mice. These results demonstrate that Lepr is dramatically induced in the granulosa cells of ovulating follicles and this induction of Lepr expression requires the transcription factor Cebpβ. Lepr plays a critical role in the process of ovulation by regulating, at least in part, the expression of the important genes involved in the preovulatory maturation of follicles.

  7. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  8. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125I-[Tyr11]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/106 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125I-[Tyr11]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein Ni to inhibit adenylate cyclase

  9. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    central nervous system (CNS). We have recently demonstrated that 5-HT4 receptor couples to G13 protein to induce RhoA-dependent gene transcription, neurite retraction, and neuronal cell rounding (Ponimaskin et al, 2002). Although multiple studies were focused on the function of the 5-HT4 receptor in the...

  10. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  11. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    Science.gov (United States)

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  12. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  13. 506 Basal T Cell Subpopulations of Normal Humans Vary by Stress Hormone Receptor Polymorphisms

    OpenAIRE

    Rehm, Kristina; Xiang, Lianbin; Marshall, Gailen

    2012-01-01

    Background Psychological stress has been correlated with allergy and asthma activity although there are clearly individual differences in the responses to the same stressor. These individual differences could be influenced by stress hormone receptor binding affinity, which could be altered by single nucleotide polymorphisms (SNPs). Methods We categorized differences in immunoregulatory profiles from peripheral blood mononuclear cells (PBMC) of 207 normal volunteers according to various glucoc...

  14. Gene Expression Profiling of the Paracrine Effects of Uterine Natural Killer Cells on Human Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Xin Gong

    2014-01-01

    Full Text Available The endometrium contains a population of immune cells that undergo changes during implantation and pregnancy. The majority of these cells are uterine natural killer (uNK cells; however, it is unclear how these cells interact with endometrial epithelial cells. Therefore, we investigated the paracrine effects of the uNK cell-secretion medium on the gene expression profile of endometrial epithelial cells in vitro through microarray analysis. Our results, which were verified by qRT-PCR and western blot, revealed that soluble factors from uNK cells alter the gene expression profiles of epithelial cells. The upregulated genes included interleukin-15 (IL-15 and interleukin-15 receptor alpha (IL-15RA, which result in a loop that stimulates uNK cell proliferation. In addition, vascular endothelial growth factor C (VEGF-C and chemokine (C-X-C motif ligand 10 (CXCL-10 were also determined to be upregulated in epithelial cells, which suggests that uNK cells work synergistically with epithelial cells to support implantation and pregnancy. In addition, oriental herbal medicines have been used to treat infertility since ancient times; however, we failed to find that Zi Dan Yin can regulate these endometrial paracrine effects.

  15. Functional significance of erythropoietin receptor on tumor cells

    Institute of Scientific and Technical Information of China (English)

    Kodetthoor B Udupa

    2006-01-01

    Erythropoietin (Epo) is the regulator of red blood cell formation. Its receptor (EpoR) is now found in many cells and tissues of the body. EpoR is also shown to occur in tumor cells and Epo enhances the proliferation of these cells through cell signaling. EpoR antagonist can reduce the growth of the tumor in vivo. In view of our current knowledge of Epo, its recombinant forms and receptor,use of Epo in cancer patients to enhance the recovery of hematocrit after chemotherapy treatment has to be carefully evaluated.

  16. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models

    Science.gov (United States)

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology.

  17. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    OpenAIRE

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipi...

  18. DNA profiles generated from minute amounts of single cells

    OpenAIRE

    Wenäll, Lovisa

    2011-01-01

    The genetic code in our cells is built up by deoxyribonucleic acid (DNA) with a sequence that is individual and unique to each person. A cell’s origin can be decided by comparing an established DNA profile with a known profile. The most publicly known application is in the forensic field and its use for identification and for establishing a connection between perpetrators and victims or crime scenes. DNA profiling is also commonly used for kinship investigations. The information embedded in t...

  19. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tara L. Walker

    2016-04-01

    Full Text Available Here, we show that the lysophosphatidic acid receptor 1 (LPA1 is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways.

  20. Regulation of C3a Receptor Signaling in Human Mast Cells by G Protein Coupled Receptor Kinases

    OpenAIRE

    Qiang Guo; Hariharan Subramanian; Kshitij Gupta; Hydar Ali

    2011-01-01

    BACKGROUND: The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced...

  1. Human Y-79 retinoblastoma cells exhibit specific insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Saviolakis, G.A.; Kyritsis, A.P.; Chader, G.J.

    1986-07-01

    The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of (/sup 125/I) insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.

  2. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2014-10-01

    Full Text Available G protein-coupled receptors (GPCRs are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors

  3. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  4. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  5. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  6. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  7. A comparison between protein profiles of B cell subpopulations and mantle cell lymphoma cells

    Directory of Open Access Journals (Sweden)

    Lehtiö Janne

    2009-11-01

    Full Text Available Abstract Background B-cell lymphomas are thought to reflect different stages of B-cell maturation. Based on cytogenetics and molecular markers, mantle cell lymphoma (MCL is presumed to derive predominantly from naïve, pre-germinal centre (pre-GC B lymphocytes. The aim of this study was to develop a method to investigate the similarity between MCL cells and different B-cell compartments on a protein expression level. Methods Subpopulations of B cells representing the germinal centre (GC, the pre-GC mantle zone and the post-GC marginal zone were isolated from tonsils using automated magnetic cell sorting (AutoMACS of cells based on their expression of CD27 and IgD. Protein profiling of the B cell subsets, of cell lines representing different lymphomas and of primary MCL samples was performed using top-down proteomics profiling by surface-enhanced laser detection/ionization time-of-flight mass spectrometry (SELDI-TOF-MS. Results Quantitative MS data of significant protein peaks (p-value Conclusion AutoMACS sorting generates sufficient purity to enable a comparison between protein profiles of B cell subpopulations and malignant B lymphocytes applying SELDI-TOF-MS. Further validation with an increased number of patient samples and identification of differentially expressed proteins would enable a search for possible treatment targets that are expressed during the early development of MCL.

  8. δ-OPIOID RECEPTOR ADAPTATION IN NEUROBLASTOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    D-M,Chuang; M.Belchers; J.Barg; J.Rowinski; G.Clark; C.A.Gloeckner; A.Ho; X-M.Gao; C.J.Coscia

    1993-01-01

    The mechanisms underlying tolerance and dependence arising from chronic opioid exposure are poorly understood. However, the development of neuroblastoma and neurohybrid cell culturea, has provided a simplified model for the atudy of opioid receptor adaptation. Using neuroblastoma NG108-15 cells,

  9. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  10. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    Science.gov (United States)

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

  11. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    Science.gov (United States)

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation. PMID:9551939

  12. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A;

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated......To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affinity...... the importance of receptor cross-linking density in determining TCR signaling. Moreover, it was found that the functional two-dimensional affinity of TCR ligands was affected by the chemical composition of the ligand-presenting surface. This makes it possible that cell-bound TCR ligands, despite their low...

  13. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

    Science.gov (United States)

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Martinez, Harryl D; Jasavala, Rohini J; Hinkson, Izumi V; Fermin, Damian; Eng, Jimmy K; Nesvizhskii, Alexey I; Wright, Michael E

    2015-08-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

  14. Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals

    Directory of Open Access Journals (Sweden)

    Wu Kaili

    2002-06-01

    Full Text Available Abstract Background Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes associated with this viral activator. Results Utilizing uninfected, HIV-1 latently infected cells, and Tat expressing cells, we observed that most of the cellular host genes in Tat expressing cells were down-regulated. The down-regulation in Tat expressing cells is most apparent on cellular receptors that have intrinsic receptor tyrosine kinase (RTK activity and signal transduction members that mediate RTK function, including Ras-Raf-MEK pathway. Co-activators of transcription, such as p300/CBP and SRC-1, which mediate gene expression related to hormone receptor genes, were also found to be down-regulated. Down-regulation of receptors may allow latent HIV-1 infected cells to either hide from the immune system or avoid extracellular differentiation signals. Some of the genes that were up-regulated included co-receptors for HIV-1 entry, translation machinery, and cell cycle regulatory proteins. Conclusions We have demonstrated, through a microarray approach, that HIV-1 Tat is able to regulate many cellular genes that are involved in cell signaling, translation and ultimately control the host proliferative and differentiation signals.

  15. Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells

    OpenAIRE

    Jeong-Ho Park; Jae Young Kwon

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can p...

  16. Structure-Based, Rational Design of T Cell Receptors

    OpenAIRE

    Zoete, V; Irving, M.; Ferber, M.; Cuendet, M. A.; Michielin, O

    2013-01-01

    Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding...

  17. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  18. Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2015-05-01

    Full Text Available The mammalian adult small intestinal epithelium is a rapidly self-renewing tissue that is maintained by a pool of cycling stem cells intermingled with Paneth cells at the base of crypts. These crypt base stem cells exclusively express Lgr5 and require Wnt3 or, in its absence, Wnt2b. However, the Frizzled (Fzd receptor that transmits these Wnt signals is unknown. We determined the expression profile of Fzd receptors in Lgr5+ stem cells, their immediate daughter cells, and Paneth cells. Here we show Fzd7 is enriched in Lgr5+ stem cells and binds Wnt3 and Wnt2b. Conditional deletion of the Fzd7 gene in adult intestinal epithelium leads to stem cell loss in vivo and organoid death in vitro. Crypts of conventional Fzd7 knockout mice show decreased basal Wnt signaling and impaired capacity to regenerate the epithelium following deleterious insult. These observations indicate that Fzd7 is required for robust Wnt-dependent processes in Lgr5+ intestinal stem cells.

  19. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  20. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  1. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A; Kerninon, Christophe; Jarjour, Andrew A; Lewis, Hilary J; Jones, Clare A; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K; ffrench-Constant, Charles; Franklin, Robin J M

    2015-12-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR-VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  2. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D' Avis, J.C.; Wartofsky, L. (Walter Reed Army Medical Center, Washington, DC (USA))

    1991-03-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding (125I) ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound (125I)ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized (125I)ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity.

  3. Tumor cell marker PVRL4 (nectin 4 is an epithelial cell receptor for measles virus.

    Directory of Open Access Journals (Sweden)

    Ryan S Noyce

    2011-08-01

    Full Text Available Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4 rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a

  4. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors.

    Directory of Open Access Journals (Sweden)

    Lenka Plzakova

    Full Text Available Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell-pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria's internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.

  5. Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands

    Science.gov (United States)

    Moulos, Panagiotis; Samiotaki, Martina; Panayotou, George; Dedos, Skarlatos G.

    2016-01-01

    The cells of prothoracic glands (PG) are the main site of synthesis and secretion of ecdysteroids, the biochemical products of cholesterol conversion to steroids that shape the morphogenic development of insects. Despite the availability of genome sequences from several insect species and the extensive knowledge of certain signalling pathways that underpin ecdysteroidogenesis, the spectrum of signalling molecules and ecdysteroidogenic cascades is still not fully comprehensive. To fill this gap and obtain the complete list of cell membrane receptors expressed in PG cells, we used combinatory bioinformatic, proteomic and transcriptomic analysis and quantitative PCR to annotate and determine the expression profiles of genes identified as putative cell membrane receptors of the model insect species, Bombyx mori, and subsequently enrich the repertoire of signalling pathways that are present in its PG cells. The genome annotation dataset we report here highlights modules and pathways that may be directly involved in ecdysteroidogenesis and aims to disseminate data and assist other researchers in the discovery of the role of such receptors and their ligands. PMID:27576083

  6. Vaccination against Experimental Allergic Encephalomyelitis with T Cell Receptor Peptides

    Science.gov (United States)

    Howell, Mark D.; Winters, Steven T.; Olee, Tsaiwei; Powell, Henry C.; Carlo, Dennis J.; Brostoff, Steven W.

    1989-11-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system mediated by CD4+ T cells reactive with myelin basic protein (MBP). Rats were rendered resistant to the induction of EAE by vaccination with synthetic peptides corresponding to idiotypic determinants of the β chain VDJ region and Jα regions of the T cell receptor (TCR) that are conserved among encephalitogenic T cells. These findings demonstrate the utility of TCR peptide vaccination for modulating the activity of autoreactive T cells and represent a general therapeutic approach for T cell--mediated pathogenesis.

  7. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  8. Development of a 3D Tissue Culture-Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases.

    Science.gov (United States)

    Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S

    2016-10-01

    3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.

  9. OVCAR-3 spheroid-derived cells display distinct metabolic profiles.

    Directory of Open Access Journals (Sweden)

    Kathleen A Vermeersch

    Full Text Available Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells.To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines.These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines.Overall, we demonstrate for the first time that metabolism

  10. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  11. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  12. CellMontage: similar expression profile search server.

    Science.gov (United States)

    Fujibuchi, Wataru; Kiseleva, Larisa; Taniguchi, Takeaki; Harada, Hajime; Horton, Paul

    2007-11-15

    The establishment and rapid expansion of microarray databases has created a need for new search tools. Here we present CellMontage, the first server for expression profile similarity search over a large database-69 000 microarray experiments derived from NCBI's; GEO site. CellMontage provides a novel, content-based search engine for accessing gene expression data. Microarray experiments with similar overall expression to a user-provided expression profile (e.g. microarray experiment) are computed and displayed-usually within 20 s. The core search engine software is downloadable from the site. PMID:17895274

  13. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  14. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi

    2011-11-01

    Full Text Available Abstract Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1 antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA and expression analysis (qPCR. Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor. Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

  15. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling

    International Nuclear Information System (INIS)

    The androgen receptor (AR) plays a central role in the oncogenesis of different tumors, as is the case in prostate cancer. In triple negative breast cancer (TNBC) a gene expression classification has described different subgroups including a luminal androgen subtype. The AR can be controlled by several mechanisms like the activation of membrane tyrosine kinases and downstream signaling pathways. However little is known in TNBC about how the AR is modulated by these mechanisms and the potential therapeutic strategists to inhibit its expression. We used human samples to evaluate the expression of AR by western-blot and phospho-proteomic kinase arrays that recognize membrane tyrosine kinase receptors and downstream mediators. Western-blots in human cell lines were carried out to analyze the expression and activation of individual proteins. Drugs against these kinases in different conditions were used to measure the expression of the androgen receptor. PCR experiments were performed to assess changes in the AR gene after therapeutic modulation of these pathways. AR is present in a subset of TNBC and its expression correlates with activated membrane receptor kinases-EGFR and PDGFRβ in human samples and cell lines. Inhibition of the PI3K/mTOR pathway in TNBC cell lines decreased notably the expression of the AR. Concomitant administration of the anti-androgen bicalutamide with the EGFR, PDGFRβ and Erk1/2 inhibitors, decreased the amount of AR compared to each agent given alone, and had an additive anti-proliferative effect. Administration of dihydrotestosterone augmented the expression of AR that was not modified by the inhibition of the PI3K/mTOR or Erk1/2 pathways. AR expression was posttranscriptionally regulated by PI3K or Erk1/2 inhibition. Our results describe the expression of the AR in TNBC as a druggable target and further suggest the combination of bicalutamide with inhibitors of EGFR, PDGFRβ or Erk1/2 for future development

  16. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta.

    Science.gov (United States)

    Zhang, Xiufeng; He, Yan; Cao, Xiaolong; Gunaratna, Ramesh T; Chen, Yun-ru; Blissard, Gary; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect. PMID:25701384

  17. Expression Profile and Tissue-Specific Distribution of the Receptor-Interacting Protein 3 in BALB/c Mice.

    Science.gov (United States)

    Wang, Qingnan; Yu, Meng; Zhang, Kaizhao; Liu, Jianxin; Tao, Pan; Ge, Shikun; Ning, Zhangyong

    2016-08-01

    RIP3, a member of receptor-interacting protein family, is serine/threonine kinase that contributes to necrosis and promotes systematic inflammation. However, detailed information of the expression pattern and tissue distribution in BALB/c mice, a commonly used laboratory animal model, is still unavailable. Here, we provided the basic data of expression profile and histologic distribution of RIP3 in tissues of BALB/c mice. Rip3 mRNA expression levels and tissue distribution were detected by real-time quantitative PCR and immunohistochemical detection, respectively. Rip3 mRNA expression showed the highest level in the spleen and duodenum, while with the lowest level in brain. Immunohistochemical detection revealed this protein located in different type cells in different tissues. What's more, the obvious positive staining in nuclear was detected in liver cells and neurons in cerebral cortex of the brain, while cells in other organs, including heart, spleen, lung, kidney, stomach, duodenum and trachea, showed strong positive mainly in cytoplasm. The results will help us to further understand the site-specific functions of RIP3 in necrosis and inflammatory responses. PMID:26969469

  18. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  19. Redirecting T Cell Specificity Using T Cell Receptor Messenger RNA Electroporation.

    Science.gov (United States)

    Koh, Sarene; Shimasaki, Noriko; Bertoletti, Antonio

    2016-01-01

    Autologous T lymphocytes genetically modified to express T cell receptors or chimeric antigen receptors have shown great promise in the treatment of several cancers, including melanoma and leukemia. In addition to tumor-associated antigens and tumor-specific neoantigens, tumors expressing viral peptides can also be recognized by specific T cells and are attractive targets for cell therapy. Hepatocellular carcinoma cells often have hepatitis B virus DNA integration and can be targeted by hepatitis B virus-specific T cells. Here, we describe a method to engineer hepatitis B virus-specific T cell receptors in primary human T lymphocytes based on electroporation of hepatitis B virus T cell receptor messenger RNA. This method can be extended to a large scale therapeutic T cell production following current good manufacturing practice compliance and is applicable to the redirection of T lymphocytes with T cell receptors of other virus specificities such as Epstein-Barr virus, cytomegalovirus, and chimeric receptors specific for other antigens expressed on cancer cells. PMID:27236807

  20. Continuous requirement for the T cell receptor for regulatory T cell function

    OpenAIRE

    Levine, Andrew G; Arvey, Aaron; Jin, Wei; Rudensky, Alexander Y.

    2014-01-01

    Foxp3+ regulatory T cells (Treg cells) maintain immunological tolerance and their deficiency results in fatal multi-organ autoimmunity. Although heightened T cell receptor (TCR) signaling is critical for the differentiation of Treg cells, the role of TCR signaling in Treg cell function remains largely unknown. Here we demonstrate inducible ablation of the TCR results in Treg cell dysfunction which cannot be attributed to impaired Foxp3 expression, decreased expression of Treg cell signature g...

  1. DNA profiling and characterization of animal cell lines.

    Science.gov (United States)

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines. PMID:24297409

  2. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  3. Gene expression profile changes in NB4 cells induced by realgar

    Institute of Scientific and Technical Information of China (English)

    王怀宇; 刘陕西; 吕晓虹; 赵晓艾; 陈思宇; 李信民

    2003-01-01

    Objectives To compare the gene expression profiles of acute promyelocytic leukemia cell line NB4 before and after 12 hours of realgar treatment using cDNA microarray.Methods Two cDNA probes were prepared through reverse transcription from mRNA of both untreated and realgar treated NB4 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes individually, hybridized with cDNA microarray representing 1003 different human genes, and scanned for fluorescent intensity. The genes were screened through the analysis of the difference in two gene expression profiles. Results The analysis of gene expression profiles indicates that 9 genes were up-regulated and 37 genes were down-regulated. Among the 9 up-regulated genes, 2 genes were involved in a proteasome degradation pathway. Some genes related to protein synthesis, signal transduction and cell receptors were down-regulated. Conclusion PSMC2 and PSMD1 genes may play an important role in the apoptosis and partial differentiation of NB4 cells.

  4. Localization of muscarinic acetylcholine receptor in plant guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  5. Dynamic monitoring of cell mechanical properties using profile microindentation

    Science.gov (United States)

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-02-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D.

  6. Global Characterization of Differential Gene Expression Profiles in Mouse Vγ1+ and Vγ4+ γδ T Cells

    OpenAIRE

    Peng Dong; Siya Zhang; Menghua Cai; Ning Kang; Yu Hu; Lianxian Cui; Jianmin Zhang; Wei He

    2014-01-01

    Peripheral γδ T cells in mice are classified into two major subpopulations, Vγ1+ and Vγ4+, based on the composition of T cell receptors. However, their intrinsic differences remain unclear. In this study, we analyzed gene expression profiles of the two subsets using Illumina HiSeq 2000 Sequencer. We identified 1995 transcripts related to the activation of Vγ1+ γδ T cells, and 2158 transcripts related to the activation of Vγ4+ γδ T cells. We identified 24 transcripts differentially expressed b...

  7. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  8. Good Operations Practice Supervisor Profiles in Cell-Centric Manufacturing

    OpenAIRE

    Tiwari, Ashutosh; Sackett, P.; Rehman, Shahwar; Linton, Howard

    2008-01-01

    Abstract The selection and implementation of good operations practice cannot be undertaken in isolation; it must consider the enterprise context. The aim of this paper is to describe a robust process for the development of specific environment good operations practice role profiles for supervisors, and illustrate this through a case study within a complex cell-centric manufacturing environment. The approach identifies the activities undertaken by a cell leader and team leader in ...

  9. Protein Profile of Exosomes from Trabecular Meshwork Cells

    OpenAIRE

    Stamer, WD; Hoffman, EA; Luther, JM; Hachey, DL; Schey, KL

    2011-01-01

    To better understand the role of exosomes in the trabecular meshwork (TM), the site of intraocular pressure control, the exosome proteome from primary cultures of human TM cell monolayers was analyzed. Exosomes were purified from urine and conditioned media from primary cultures of human TM cell monolayers and subjected to two dimensional HPLC separation and MS/MS analyses using the MudPIT strategy. Spectra were searched against a human protein database using Sequest. Protein profiles were co...

  10. Hematological profile of sickle cell disease from South Gujarat, India

    OpenAIRE

    Sanjeev Shyam Rao; Jagdish Prasad Goyal; SV Raghunath; Shah, Vijay B

    2012-01-01

    The aim of this study was to determine hematological profile of sickle cell disease (SCD) from Surat, South Gujarat, India. This prospective cross-sectional study was conducted in the Department of Pediatrics and Sickle Cell Anemia Laboratory, Faculty of Pathology, Government Medical College, Surat, India, between July 2009 and December 2010. Patients included in this study were in their steady state for a long period of time without any symptoms related to SCD or other diseases which could a...

  11. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  12. The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells

    Science.gov (United States)

    Leisi, Remo; Von Nordheim, Marcus; Ros, Carlos; Kempf, Christoph

    2016-01-01

    Parvovirus B19 (B19V) is a small non-enveloped virus and known as the causative agent for the mild childhood disease erythema infectiosum. B19V has an extraordinary narrow tissue tropism, showing only productive infection in erythroid precursor cells in the bone marrow. We recently found that the viral protein 1 unique region (VP1u) contains an N-terminal receptor-binding domain (RBD), which mediates the uptake of the virus into cells of the erythroid lineage. To further investigate the role of the RBD in connection with a B19V-unrelated capsid, we chemically coupled the VP1u of B19V to the bacteriophage MS2 capsid and tested the internalization capacity of the bioconjugate on permissive cells. In comparison, we studied the cellular uptake and infection of B19V along the erythroid differentiation. The results showed that the MS2-VP1u bioconjugate mimicked the specific internalization of the native B19V into erythroid precursor cells, which further coincides with the restricted infection profile. The successful mimicry of B19V uptake demonstrates that the RBD in the VP1u is sufficient for the endocytosis of the viral capsid. Furthermore, the recombinant VP1u competed with B19V uptake into permissive cells, thus excluding a significant alternative uptake mechanism by other receptors. Strikingly, the VP1u receptor appeared to be expressed only on erythropoietin-dependent erythroid differentiation stages that also provide the necessary intracellular factors for a productive infection. Taken together, these findings suggest that the VP1u binds to a yet-unknown erythroid-specific cellular receptor and thus restricts the virus entry to permissive cells. PMID:27690083

  13. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Monica Marzagalli

    Full Text Available Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth.Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552. In BLM (NRAS-mutant cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists.Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a

  14. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    Science.gov (United States)

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity. PMID:19822186

  15. Expression profiles of prion and doppel proteins and of their receptors in mouse splenocytes.

    Science.gov (United States)

    Cordier-Dirikoc, Sevda; Zsürger, Nicole; Cazareth, Julie; Ménard, Baptiste; Chabry, Joëlle

    2008-08-01

    Doppel (Dpl) shares common structural features with the prion protein (PrP) whose pathologic isoform is considered as the causative agent of prion diseases. Although their physiological functions in the immune system remain largely unknown, we demonstrated that substantial amounts of PrP and Dpl are expressed by spleen cells notably B lymphocytes, granulocytes and DC, but not T lymphocytes and NK. To characterize trans-interacting partners of PrP and Dpl on mouse splenocytes, fluorescent PrP and Dpl tetramers were produced and used as tracers. Both tetramers specifically bind to B lymphocytes, dendritic cells, macrophages and granulocytes and in a lesser extend to T lymphocytes. No binding was observed on NK, follicular dendritic cells and mesenchymal spleen cells. The activation of intracellular transduction signals (i.e. intracellular calcium concentration and activation of the MAP kinase pathway) suggested that PrP and Dpl tetramers bind to functional receptors on B cells. None of the previously described PrP partners account for the binding sites characterized here. Our study suggests a possible role for PrP and Dpl in the cell-cell interactions in the immune system. PMID:18604867

  16. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression.

    Directory of Open Access Journals (Sweden)

    Stéphanie Bertrand

    2007-11-01

    Full Text Available Nuclear receptors (NRs are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily.

  17. Expression profiling of pattern recognition receptors and selected cytokines in miniature dachshunds with inflammatory colorectal polyps.

    Science.gov (United States)

    Igarashi, Hirotaka; Ohno, Koichi; Maeda, Shingo; Kanemoto, Hideyuki; Fukushima, Kenjiro; Uchida, Kazuyuki; Tsujimoto, Hajime

    2014-05-15

    Inflammatory colorectal polyps (ICRPs) are commonly seen in miniature dachshund (MD) dogs; typically, multiple polyps form with severe neutrophil infiltration. ICRP is thought to be a novel form of inflammatory bowel disease (IBD), but its etiology has not been investigated. The innate immune system is implicated in the pathogenesis of both human and canine IBD. Therefore, the aim of the current study was to evaluate the messenger RNA (mRNA) expression profiles of pattern recognition receptors (PRRs) and cytokines in ICRPs. Polyp tissues were collected by colonoscopic biopsies from 24 MDs with ICRPs. Non-polypoid colonic mucosa was collected from all MDs with ICRPs and 21 clinically healthy beagles (as the controls). The expression levels of the mRNAs encoding toll-like receptors (TLRs) 1-10; nucleotide-binding oligomerization domain (NOD)-like receptors NOD1 and NOD2; and cytokines IL-1β, IL-6, IL-8/CXCL8, and TNF-α were evaluated by quantitative real-time RT-PCR. Three of the 10 well-known candidate reference genes were selected as housekeeper genes based on analyses from the GeNorm, NormFinder, and BestKeeper programs. Levels of TLR1, TLR2, TLR4, TLR6, TLR7, TLR8, TLR9, TLR10, NOD2, and all cytokines were significantly upregulated in the polyps relative to those in the controls. There was significant decrease in the expression levels of TLR3 and NOD1 in the polyp tissues compared to the non-polypoid colonic mucosa obtained from MDs with ICRPs. All upregulated PRR mRNAs were positively correlated with all proinflammatory cytokine mRNAs. This study demonstrated the dysregulation of PRRs and proinflammatory cytokines in ICRPs of MDs, which may play an important role in the pathogenesis of this disease.

  18. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  19. Influence of rimonabant treatment on peripheral blood mononuclear cells; flow cytometry analysis and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Stefan Almestrand

    2015-06-01

    Full Text Available The cannabinoid receptor type 1 (CB1 antagonist rimonabant has been used as treatment for obesity. In addition, anti-proliferative effects on mitogen-activated leukocytes have been demonstrated in vitro. We have previously shown that rimonabant (SR141716A induces cell death in ex vivo isolated malignant lymphomas with high expression of CB1 receptors. Since CB1 targeting may be part of a future lymphoma therapy, it was of interest to investigate possible effects on peripheral blood mononuclear cells (PBMC in patients treated with rimonabant. We therefore evaluated leukocyte subsets by 6 color flow cytometry in eight patients before and at treatment with rimonabant for 4 weeks. Whole-transcript gene expression profiling in PBMC before and at 4 weeks of rimonabant treatment was done using Affymetrix Human Gene 1.0 ST Arrays. Our data show no significant changes of monocytes, B cells, total T cells or T cell subsets in PBMC during treatment with rimonabant. There was a small but significant increase in CD3–, CD16+ and/or CD56+ cells after rimonabant therapy. Gene expression analysis detected significant changes in expression of genes associated with innate immunity, cell death and metabolism. The present study shows that normal monocytes and leukocyte subsets in blood remain rather constant during rimonabant treatment. This is in contrast to the induction of cell death previously observed in CB1 expressing lymphoma cells in response to treatment with rimonabant in vitro. These differential effects observed on normal and malignant lymphoid cells warrant investigation of CB1 targeting as a potential lymphoma treatment.

  20. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use

    International Nuclear Information System (INIS)

    Using cell lines transfected with somatostatin receptor subtypes sst1, sst2, sst3, sst4 and sst5, we have evaluated the in vitro binding characteristics of labelled (indium, yttrium, gallium) and unlabelled DOTA-[Tyr3]-octreotide, DOTA-octreotide, DOTA-lanreotide, DOTA-vapreotide, DTPA-[Tyr3]-octreotate and DOTA-[Tyr3]-octreotate. Small structural modifications, chelator substitution or metal replacement were shown to considerably affect the binding affinity. A marked improvement of sst2 affinity was found for Ga-DOTA-[Tyr3]-octreotide (IC50 2.5 nM) compared with the Y-labelled compound and Octreoscan. An excellent binding affinity for sst2 in the same range was also found for In-DTPA-[Tyr3]-octreotate (IC50 1.3 nM) and for Y-DOTA-[Tyr3]-octreotate (IC50 1.6 nM). Remarkably, Ga-DOTA-[Tyr3]-octreotate bound at sst2 with a considerably higher affinity (IC50 0.2 nM). An up to 30-fold improvement in sst3 affinity was observed for unlabelled or Y-labelled DOTA-octreotide compared with their Tyr3-containing analogue, suggesting that replacement of Tyr3 by Phe is crucial for high sst3 affinity. Substitution in the octreotide molecule of the DTPA by DOTA improved the sst3 binding affinity 14-fold. Whereas Y-DOTA-lanreotide had only low affinity for sst3 and sst4, it had the highest affinity for sst5 among the tested compounds (IC50 16 nM). Increased binding affinity for sst3 and sst5 was observed for DOTA-[Tyr3]-octreotide, DOTA-lanreotide and DOTA-vapreotide when they were labelled with yttrium. These marked changes in subtype affinity profiles are due not only to the different chemical structures but also to the different charges and hydrophilicity of these compounds. Interestingly, even the coordination geometry of the radiometal complex remote from the pharmacophoric amino acids has a significant influence on affinity profiles as shown with Y-DOTA versus Ga-DOTA in either [Tyr3]-octreotide or [Tyr3]-octreotate. Such changes in sst affinity profiles must be identified

  1. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  2. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r...eceptors involved in recruitment of inflammatory cells. Authors Ben-Baruch A, Mic

  3. An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity.

    Science.gov (United States)

    Moore, Nicole L; Buchanan, Grant; Harris, Jonathan M; Selth, Luke A; Bianco-Miotto, Tina; Hanson, Adrienne R; Birrell, Stephen N; Butler, Lisa M; Hickey, Theresa E; Tilley, Wayne D

    2012-08-01

    Recent evidence indicates that the estrogen receptor-α-negative, androgen receptor (AR)-positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5α-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDA-MB-453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. PMID:22719059

  4. Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors

    Science.gov (United States)

    Phillips, J. C.

    2013-03-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein conformational functionality is often dominated by long-range hydrophobic or hydrophilic interactions which both drive protein compaction and mediate protein-protein interactions. Superfamily transmembrane G-protein-coupled receptors (GPCRs) are the largest family of proteins in the human genome; their amino acid sequences form the largest database for protein-membrane interactions. While there are now structural data on the heptad transmembrane structures of representatives of several heptad families, here we show how fresh insights into global and some local chemical trends in GPCR properties can be obtained accurately from sequences alone, especially by algebraically separating the extracellular and cytoplasmic loops from transmembrane segments. The global mediation of long-range water-protein interactions occurs in conjunction with modulation of these interactions by roughened interfaces. Hydropathic roughening profiles are defined here solely in terms of amino acid sequences, and knowledge of protein coordinates is not required. Roughening profiles both for GPCR and some simpler protein families display accurate and transparent connections to protein functionality, and identify natural length scales for protein functionality.

  5. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R;

    1983-01-01

    an undetectable or sharply reduced number of EGF receptors. The EGF receptor number and receptor affinity of epidermal basal cells freshly isolated from rats of increasing age has also been determined. We find that receptor affinity remains unchanged (3.3 nM) but that basal cell surface receptor number decreases...... markedly with age. This decrease in receptor number is similar in trend to the known drop in basal cell [3H]thymidine labelling index which occurs over the same time period. The data suggest that the distribution of EGF receptors and EGF cell surface receptor number in skin are important in the spatial...... receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...

  6. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    David eSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  7. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    Science.gov (United States)

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  8. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  9. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  10. Distribution of somatostatin receptors in RINm5F insulinoma cells

    International Nuclear Information System (INIS)

    Previous studies with heterogeneous populations of pancreatic cells have provided evidence for the presence of somatostatin (SRIF) receptors in cytosol and secretion vesicles, as well as the plasma membrane. To examine the distribution of SRIF receptors between soluble and membrane fractions in a homogeneous pancreatic islet cell population, we have used the clonal RINm5F insulinoma cell line. These cells contain specific, high affinity binding sites for [125I-Try11]SRIF on the cell surface, and occupancy of these sites by SRIF and SRIF analogs correlates with inhibition of insulin secretion. Stable, steady state binding was achieved using both intact cells and membranes by performing binding incubations with [25I-Tyr11]SRIF at 22 C. Half-maximal inhibition of [125I-Tyr11]SRIF binding occurred with 0.21 +/- 0.11 nM SRIF in membranes and 0.35 +/- 0.30 nM SRIF in cells. In contrast, the binding of [125I-Tyr11]SRIF to cytosolic macromolecules was not reduced by concentrations of SRIF as high as 100 nM, demonstrating that this binding was of much lower affinity. RINm5F membranes were further purified using a Percoll gradient to prepare a microsomal fraction, which was enriched in adenylate cyclase activity, and a secretory granule fraction, which was enriched in insulin. [125I-Tyr11]SRIF binding to the microsomal fraction (3.8 +/- 0.3 fmol/mg) was 3 times higher than to secretion granules (1.2 +/- 0.2 fmol/mg). Thus, high affinity SRIF binding sites were most abundant in microsomal membranes and were low or undetectable in secretory granules and cytosol. To determine whether translocation of SRIF receptors to the plasma membrane accompanied insulin secretion, we examined the effects of various insulin secretagogues on [125I-Tyr11]SRIF binding to intact cells

  11. Killer Immunoglobulin-Like Receptor Profiles Are not Associated with Risk of Amoxicillin-Clavulanate-Induced Liver Injury in Spanish Patients.

    Science.gov (United States)

    Stephens, Camilla; Moreno-Casares, Antonia; López-Nevot, Miguel-Ángel; García-Cortés, Miren; Medina-Cáliz, Inmaculada; Hallal, Hacibe; Soriano, German; Roman, Eva; Ruiz-Cabello, Francisco; Romero-Gomez, Manuel; Lucena, M Isabel; Andrade, Raúl J

    2016-01-01

    Natural killer cells are an integral part of the immune system and represent a large proportion of the lymphocyte population in the liver. The activity of these cells is regulated by various cell surface receptors, such as killer Ig-like receptors (KIR) that bind to human leukocyte antigen (HLA) class I ligands on the target cell. The composition of KIR receptors has been suggested to influence the development of specific diseases, in particularly autoimmune diseases, cancer and reproductive diseases. The role played in idiosyncratic drug-induced liver injury (DILI) is currently unknown. In this study, we examined KIR gene profiles and HLA class I polymorphisms in amoxicillin-clavulanate (AC) DILI patients in search for potential risk associations. One hundred and two AC DILI patients and 226 controls were genotyped for the presence or absence of 16 KIR loci, including the two pseudogenes 2DP1 and 3DP1. No significant differences were found in the distribution of individual KIRs between patients and controls, which were comparable to previously reported KIR data from ethnically similar cohorts. The 21.6 and 21.2% of the patients and controls, respectively, were homozygous haplotype A carriers, while 78.4 and 78.8%, respectively, contained at least one B haplotype (Bx). The genotypes translated into 27 (AC DILI) and 46 (controls) different gene profiles, with 19 being present in both groups. The most frequent Bx gene profile containing KIRs 2DS2, 2DL2, 2DL3, 2DP1, 2DL1, 3DL1, 2DS4, 3DL2, 3DL3, 2DL4, and 3PD1 was present in 16% of the DILI patients and 14% of the controls. The distribution of HLA class I epitopes did not differ significantly between AC DILI patients and controls. The most frequent receptor-ligand combinations in the DILI patients were 2DL3 + epitope C1 (67%) and 3DL1 + Bw4 motif (67%), while 2DL1 + epitope C2 (69%) and 3DL1 + Bw4 motif (69%) predominated in the controls. This is to our knowledge the first analysis of KIR receptor-HLA ligand

  12. Killer Immunoglobulin-Like Receptor Profiles Are not Associated with Risk of Amoxicillin-Clavulanate–Induced Liver Injury in Spanish Patients

    Science.gov (United States)

    Stephens, Camilla; Moreno-Casares, Antonia; López-Nevot, Miguel-Ángel; García-Cortés, Miren; Medina-Cáliz, Inmaculada; Hallal, Hacibe; Soriano, German; Roman, Eva; Ruiz-Cabello, Francisco; Romero-Gomez, Manuel; Lucena, M. Isabel; Andrade, Raúl J.

    2016-01-01

    Natural killer cells are an integral part of the immune system and represent a large proportion of the lymphocyte population in the liver. The activity of these cells is regulated by various cell surface receptors, such as killer Ig-like receptors (KIR) that bind to human leukocyte antigen (HLA) class I ligands on the target cell. The composition of KIR receptors has been suggested to influence the development of specific diseases, in particularly autoimmune diseases, cancer and reproductive diseases. The role played in idiosyncratic drug-induced liver injury (DILI) is currently unknown. In this study, we examined KIR gene profiles and HLA class I polymorphisms in amoxicillin-clavulanate (AC) DILI patients in search for potential risk associations. One hundred and two AC DILI patients and 226 controls were genotyped for the presence or absence of 16 KIR loci, including the two pseudogenes 2DP1 and 3DP1. No significant differences were found in the distribution of individual KIRs between patients and controls, which were comparable to previously reported KIR data from ethnically similar cohorts. The 21.6 and 21.2% of the patients and controls, respectively, were homozygous haplotype A carriers, while 78.4 and 78.8%, respectively, contained at least one B haplotype (Bx). The genotypes translated into 27 (AC DILI) and 46 (controls) different gene profiles, with 19 being present in both groups. The most frequent Bx gene profile containing KIRs 2DS2, 2DL2, 2DL3, 2DP1, 2DL1, 3DL1, 2DS4, 3DL2, 3DL3, 2DL4, and 3PD1 was present in 16% of the DILI patients and 14% of the controls. The distribution of HLA class I epitopes did not differ significantly between AC DILI patients and controls. The most frequent receptor-ligand combinations in the DILI patients were 2DL3 + epitope C1 (67%) and 3DL1 + Bw4 motif (67%), while 2DL1 + epitope C2 (69%) and 3DL1 + Bw4 motif (69%) predominated in the controls. This is to our knowledge the first analysis of KIR receptor-HLA ligand

  13. Killer Immunoglobulin-Like Receptor Profiles are not Associated with risk of Amoxicillin-Clavulanate-Induced Liver Injury in Spanish Patients

    Directory of Open Access Journals (Sweden)

    Camilla Stephens

    2016-08-01

    Full Text Available Natural killer cells are an integral part of the immune system and represent a large proportion of the lymphocyte population in the liver. The activity of these cells is regulated by various cell surface receptors, such as killer Ig-like receptors (KIR that bind to human leukocyte antigen (HLA class I ligands on the target cell. The composition of KIR receptors has been suggested to influence the development of specific diseases, in particularly autoimmune diseases, cancer and reproductive diseases. The role played in idiosyncratic drug-induced liver injury (DILI is currently unknown. In this study we examined KIR gene profiles and HLA class I polymorphisms in amoxicillin-clavulanate (AC DILI patients in search for potential risk associations. 102 AC DILI patients and 226 controls were genotyped for the presence or absence of 16 KIR loci, including the two pseudogenes 2DP1 and 3DP1. No significant differences were found in the distribution of individual KIRs between patients and controls, which were comparable to previously reported KIR data from ethnically similar cohorts. 21.6% and 21.2% of the patients and controls, respectively, were homozygous haplotype A carriers, while 78.4% and 78.8%, respectively, contained at least one B haplotype (Bx. The genotypes translated into 27 (AC DILI and 46 (controls different gene profiles, with 19 being present in both groups. The most frequent Bx gene profile containing 2DS2, 2DL2, 2DL3, 2DP1, 2DL1, 3DL1, 2DS4, 3DL2, 3DL3, 2DL4 and 3PD1 was present in 16% of the DILI patients and 14% of the controls. The distribution of HLA class I epitopes did not differ significantly between AC DILI patients and controls. The most frequent receptor-ligand combinations in the DILI patients were 2DL3 + epitope C1 (67% and 3DL1 + Bw4 motif (67%, while 2DL1 + epitope C2 (69% and 3DL1 + Bw4 motif (69% predominated in the controls. This is to our knowledge the first analysis of KIR receptor-HLA ligand associations in DILI

  14. MicroRNA expression profiles in avian haemopoietic cells

    Directory of Open Access Journals (Sweden)

    Yongxiu eYao

    2013-08-01

    Full Text Available MicroRNAs (miRNAs are small, abundant, non-coding RNAs that modulate gene expression by interfering with translation or stability of mRNA transcripts in a sequence-specific manner. A total of 734 precursor and 996 mature miRNAs have so far been identified in the chicken genome. A number of these miRNAs are expressed in a cell type-specific manner, and understanding their function requires detailed examination of their expression in different cell types. We carried out deep sequencing of small RNA populations isolated from stimulated or transformed avian haemopoietic cell lines to determine the changes in the expression profiles of these important regulatory molecules during these biological events. There were significant changes in the expression of a number of miRNAs, including miR-155, in chicken B cells stimulated with CD40 ligand. Similarly, avian leukosis virus (ALV-transformed DT40 cells also showed changes in miRNA expression in relation to the naïve cells. Embryonic stem cell line BP25 demonstrated a distinct cluster of upregulated miRNAs, many of which were shown previously to be involved in embryonic stem cell development. Finally, chicken macrophage cell line HD11 showed changes in miRNA profiles, some of which are thought to be related to the transformation by v-myc transduced by the virus. This work represents the first publication of a catalog of microRNA expression in a range of important avian cells and provides insights into the potential roles of miRNAs in the hematopoietic lineages of cells in a model non-mammalian species.

  15. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    Full Text Available BACKGROUND: The androgen receptor (AR plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. METHODOLOGY/PRINCIPAL FINDINGS: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR under different growth conditions (i.e. with or without androgens and at different concentration of androgens and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff even without the addition of androgens (i.e. in ethanol control, suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate cut off of 0.05. About 22.4% (638 of 2,849 can be mapped to within 2 kb of the transcription start site (TSS. Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629. In contrast, only about 2.9% (190/6,629 of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database, which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which

  16. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    Energy Technology Data Exchange (ETDEWEB)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1990-03-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C{sub 6} glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C{sub 6} glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion.

  17. Cellular, Molecular Consequences of Peroxisome Proliferator- Activated Receptor-δ Activation in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sara Vignati

    2006-10-01

    Full Text Available Peroxisome proliferator-activated receptor-δ (PPAR-δ is a ligand-activated transcription factor. In addition to its canonical role in lipid, glucose metabolism, PPAR-δ controls cell proliferation, death, differentiation in several tissues. Here we have examined the expression of PPAR-δ in ovarian tumors, the cellular, molecular consequences of its activation in ovarian cancer cells. PPAR-δ was expressed in a large number of epithelial ovarian tumors, cell lines. The PPAR-δ lig, ciglitazone inhibited the growth, clonogenic survival of ovarian cancer cells, inducing cell cycle arrest, cell death. Growth inhibition by ciglitazone was reversed by the PPAR-δ antagonist GW9662, indicating the involvement of PPAR-δ- dependent mechanisms. Microarray-based gene profiling revealed complex changes in the transcriptional program of ovarian cancer cells on treatment with ciglitazone, identified multiple pathways that may contribute to PPAR-δ ligands' antitumor activity. Genes upregulated by ciglitazone were predominantly associated with metabolic, differentiation, tumorsuppressor pathways, whereas downregulated genes were involved in cell proliferation, cell cycle, cell organization, steroid biosynthesis. Collectively, our data indicate that PPAR-δ activation by selective agonists is a valid strategy for ovarian cancer therapy, prevention, should be tested alone, in combination with other anticancer drugs.

  18. Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Charles F. Streckfus

    2012-01-01

    Full Text Available Purpose. The objective of this study was to compare the salivary protein profiles from individuals diagnosed with breast cancer that were either HER2/neu receptor positive or negative. Methods. Two pooled saliva specimens underwent proteomic analysis. One pooled specimen was from women diagnosed with stage IIa HER2/neu-receptor-positive breast cancer patients (n=10 and the other was from women diagnosed with stage IIa HER2/neu-receptor-negative cancer patients (n=10. The pooled samples were trypsinized and the peptides labeled with iTRAQ reagent. Specimens were analyzed using an LC-MS/MS mass spectrometer. Results. The results yielded approximately 71 differentially expressed proteins in the saliva specimens. There were 34 upregulated proteins and 37 downregulated proteins.

  19. P2Y receptors of MDCK cells: epithelial cell regulation by extracellular nucleotides.

    Science.gov (United States)

    Insel, P A; Ostrom, R S; Zambon, A C; Hughes, R J; Balboa, M A; Shehnaz, D; Gregorian, C; Torres, B; Firestein, B L; Xing, M; Post, S R

    2001-04-01

    1. Madin-Darby canine kidney (MDCK) cells, a well- differentiated renal epithelial cell line derived from distal tubule/collecting duct, respond to extracellular nucleotides by altering ion flux and the production of arachidonic acid-derived products, in particular prostaglandin E2 (PGE2). Our work has defined the receptors and signalling events involved in such responses. 2. We have found evidence for expression of at least three P2Y receptor subtypes (P2Y1, P2Y2 and P2Y11) in MDCK-D1 cells, a subclone from parental MDCK. 3. These receptors appear to couple to increases in calcium and protein kinase C activity, probably via a Gq/G11-mediated activation of phospholipase C. 4. In addition, P2Y receptor activation can promote a prominent increase in cAMP. This includes both a P2Y2 receptor-mediated cyclo-oxygenase (COX)-dependent component and another COX-independent component mediated by other P2Y receptors. 5. We have documented that changing media in which cells are grown releases ATP and, in turn, activates P2Y receptors. Such release of ATP contributes in a major way to basal cAMP levels in these cells. 6. The data indicate that MDCK cells are a useful model to define the regulation of epithelial cells by extracellular nucleotides. Of particular note, spontaneous or stretch-induced release of ATP and subsequent activation of one or more P2Y receptors contributes to establishing the basal activity of signalling pathways. PMID:11339212

  20. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Anissa Belkaid

    2016-05-01

    Full Text Available Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2. Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites.

  1. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N;

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either directly...... by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U......937 cell lysates, had the same amino termini as uPAR(2+3), generated by uPA in a purified system. In both cases cleavage had occurred at two positions in the hinge region connecting domain 1 and 2, between Arg83-Ala84 and Arg89-Ser90, respectively. The uPA-catalyzed cleavage of uPAR is a new negative...

  2. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    Science.gov (United States)

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  3. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Science.gov (United States)

    Park, Jeong-Ho; Kwon, Jae Young

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis. PMID:22194978

  4. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  5. Bronchoalveolar lavage cell profile in methotrexate induced pneumonitis

    OpenAIRE

    Schnabel, A.; Richter, C. (Cornelia); Bauerfeind, S.; Gross, W. L.

    1997-01-01

    BACKGROUND: Pneumonitis is a rare but potentially life threatening side effect of methotrexate treatment for rheumatoid arthritis which needs to be distinguished from interstitial lung disease due to rheumatoid arthritis. METHODS: To examine the value of bronchoalveolar lavage (BAL) in diagnosing methotrexate pneumonitis, the BAL cell profile of four patients with methotrexate pneumonitis was compared with findings in 16 patients with rheumatoid arthritis treated with methotrexate witho...

  6. Mass spectrometry imaging and profiling of single cells

    OpenAIRE

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical inves...

  7. Distribution, Arrangement and Interconnectedness of Cell Surface Receptor sites in the body of an Organism

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa

    2011-01-01

    Full Text Available Cell surface receptors have been identified as the sites of disease infectivity in living organisms in a previous study. Drugs used for the treatment or cure of infections have to eliminate infections through attacking infective organisms at the cell surface receptors to which the infective organisms are attached. Problem statement: The present study examines a wide sample of living things to get more information on the relationship of one cell surface receptor to other cell surface receptors in the body of an organism. Approach: The arrangement of cell surface receptors on the external covering of a few samples of fruits, leaves, stems, dry wood of a plant; wall gecko and some parts of the human body, were examined and photographed. Transverse and/or Longitudinal sections of soursop fruit and sycamore fruit were also examined and photographed. The five different coverings of the fleshy part of a coconut were also photographed. The photographs were studied to note the relationship of disease infection attached to cell surface receptors on the external surface of an organ to disease infection on the innermost covering of the same organ. Results: The results of the study showed that all living things had ubiquitous distribution of cell surface receptors which are usually observable with the unaided eye as dots or spots on the external covering of an organ, tissue or cell. The dots or receptor sites of cell surface receptors in the study are arranged in lines which were perpendicular, oblique, transverse or arranged in any other lineal geometrical form. The lineally arranged cell surface receptors were noted to be connected by grooves, channels or pipes which joined other receptor channels or intersected with them. Smaller cell surface receptor channels emptied into bigger channels or continued as small sized channels that ran side by side in a connective tissue bundle. These connective tissue bundles that carried many independent small-sized cell

  8. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  9. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  10. High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor

    OpenAIRE

    Suhr, Steven T.; Gil, Elad B.; Senut, Marie-Claude; GAGE, FRED H.

    1998-01-01

    Our studies of the Bombyx mori ecdysone receptor (BE) revealed that, unlike the Drosophila melanogaster ecdysone receptor (DE), treatment of BE with the ecdysone agonist tebufenozide stimulated high level transactivation in mammalian cells without adding an exogenous heterodimer partner. Gel mobility shift and transfection assays with both the ultraspiracle gene product (Usp) and retinoid X receptor heterodimer partners indicated that this property of BE stems from significantly augmented het...

  11. Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays

    International Nuclear Information System (INIS)

    Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hERα), and there has been no comprehensive analysis of their potency in a system allowing comparison between hERα and hERβ activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fish origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hERα and hERβ agonists (BP2 > THB > BP1) and displayed a stronger activation of hERβ compared with hERα, the opposite effect to that of estradiol (E2). Unlike E2, BPs were more active in rainbow trout ERα (rtERα) than in hERα assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ERβ versus ERα activation, support further investigation of their role as endocrine disrupters in humans and wildlife

  12. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  13. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel...

  14. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  15. Monoclonal T-cell receptors: new reagents for cancer therapy.

    Science.gov (United States)

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells. PMID:17637721

  16. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  17. Tumor-derived death receptor 6 modulates dendritic cell development.

    Science.gov (United States)

    DeRosa, David C; Ryan, Paul J; Okragly, Angela; Witcher, Derrick R; Benschop, Robert J

    2008-06-01

    Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

  18. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  19. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  20. How taste works: cells, receptors and gustatory perception.

    Science.gov (United States)

    Kikut-Ligaj, Dariusz; Trzcielińska-Lorych, Joanna

    2015-12-01

    The sensitivity of taste in mammals varies due to quantitative and qualitative differences in the structure of the taste perception organs. Gustatory perception is made possible by the peripheral chemosensory organs, i.e., the taste buds, which are distributed in the epithelium of the taste papillae of the palate, tongue, epiglottis, throat and larynx. Each taste bud consists of a community of ~100 cells that process and integrate taste information with metabolic needs. Mammalian taste buds are contained in circumvallate, fungiform and foliate papillae and react to sweet, salty, sour, bitter and umami stimuli. The sensitivity of the taste buds for individual taste stimuli varies extensively and depends on the type of papillae and the part of the oral cavity in which they are located. There are at least three different cell types found in mammalian taste buds: type I cells, receptor (type II) cells and presynaptic (type III) cells. This review focuses on the biophysiological mechanisms of action of the various taste stimuli in humans. Currently, the best-characterized proteins are the receptors (GPCR). In addition, the activation of bitter, sweet and umami tastes are relatively well known, but the activation of salty and sour tastes has yet to be clearly explained. PMID:26447485

  1. Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa M Y Ding

    Full Text Available The role of fibroblast growth factor-2 (FGF-2 in maintaining undifferentiated human embryonic stem cells (hESC was investigated using a targeted phosphoproteomics approach to specifically profile tyrosine phosphorylation events following FGF-2 stimulation. A cumulative total number of 735 unique tyrosine phosphorylation sites on 430 proteins were identified, by far the largest inventory to date for hESC. Early signaling events in FGF-2 stimulated hESC were quantitatively monitored using stable isotope dimethyl labeling, resulting in temporal tyrosine phosphorylation profiles of 316 unique phosphotyrosine peptides originating from 188 proteins. Apart from the rapid activation of all four FGF receptors, trans-activation of several other receptor tyrosine kinases (RTKs was observed as well as induced tyrosine phosphorylation of downstream proteins such as PI3-K, MAPK and several Src family members. Both PI3-K and MAPK have been linked to hESC maintenance through FGF-2 mediated signaling. The observed activation of the Src kinase family members by FGF-2 and loss of pluripotent marker expression post Src kinase inhibition may point to the regulation of cytoskeletal and actin depending processes to maintain undifferentiated hESC.

  2. Gene expression profiles in peripheral blood mononuclear cells of SARS patients

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Yu; Yun-Wen Hu; Xiao-Ying Liu; Wei Xiong; Zhi-Tong Zhou; Zheng-Hong Yuan

    2005-01-01

    AIM: To investigate the role of inflammatory and anti-viral genes in the pathogenesis of SARS.METHODS: cDNA microarrays were used to screen the gene expression profiles of peripheral blood mononuclear cells (PBMCs) in two SARS patients (one in the acute severe phase and the other in the convalescent phase)and a healthy donor. In addition, real-time qualitative PCR was also performed to verify the reproducibility of the microarray results. The data were further analyzed.RESULTS: Many inflammatory and anti-viral genes were differentially expressed in SARS patients. Compared to the healthy control or the convalescent case, plenty of pro-inflammatory cytokines such as IL-1, TNF-α, IL-8, and MAPK signaling pathway were significantly upregulated in the acute severe case. However, anti-inflammatory agents such as IL-4 receptor, IL-13 receptor, IL-1Ra,and TNF-α-induced proteins 3 and 6 also increased dramatically in the acute severe case. On the contrary, a lot of IFN-stimulated genes like PKR, GBP-1 and 2, CXCL-10and 11, and JAK/STAT signal pathway were downregulated in the acute severe case compared to the convalescent case.CONCLUSION: Gene expression in SARS patients mirrors a host state of inflammation and anti-viral immunity at the transcription level, and understanding of gene expression profiles may make contribution to further studies of the SARS pathogenesis.

  3. Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor.

    Science.gov (United States)

    Sheffield, Brandon S; Kos, Zuzana; Asleh-Aburaya, Karama; Wang, Xiu Qing; Leung, Samuel; Gao, Dongxia; Won, Jennifer; Chow, Christine; Rachamadugu, Rakesh; Stijleman, Inge; Wolber, Robert; Gilks, C Blake; Myles, Nickolas; Thomson, Tom; Hayes, Malcolm M; Bernard, Philip S; Nielsen, Torsten O; Chia, Stephen K L

    2016-02-01

    The estrogen receptor (ER) is a key predictive biomarker in the treatment of breast cancer. There is uncertainty regarding the use of hormonal therapy in the setting of weakly positive ER by immunohistochemistry (IHC). We report intrinsic subtype classification on a cohort of ER weakly positive early-stage breast cancers. Consecutive cases of breast cancer treated by primary surgical resection were retrospectively identified from 4 centers that engage in routine external proficiency testing for breast biomarkers. ER-negative (Allred 0 and 2) and ER weakly positive (Allred 3-5) cases were included. Gene expression profiling was performed using qRT-PCR. Intrinsic subtype prediction was made based upon the PAM50 gene expression signature. 148 cases were included in the series: 60 cases originally diagnosed as ER weakly positive and 88 ER negative. Of the cases originally assessed as ER weakly positive, only 6 (10 %) were confirmed to be of luminal subtype by gene expression profiling; the remaining 90 % of cases were classified as basal-like or HER2-enriched subtypes. This was not significantly different than the fraction of luminal cases identified in the IHC ER-negative cohort (5 (5 %) luminal, 83(95 %) non-luminal). Recurrence-free, and overall, survival rates were similar in both groups (p = 0.4 and 0.5, respectively) despite adjuvant hormonal therapy prescribed in the majority (59 %) of weakly positive ER cases. Weak ER expression by IHC is a poor correlate of luminal subtype in invasive breast cancer. In the setting of highly sensitive and robust IHC methodology, cutoffs for ER status determination and subsequent systemic therapy should be revisited. PMID:26846986

  4. The modulation of cell surface cAMP receptors from Dictyostelium disscoideum by ammonium sulfate

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1985-01-01

    Dictyostelium discoideum cells contain a heterogeneous population of cell surface cAMP receptors with components possessing different affinities (Kd between 15 and 450 nM) and different off-rates of the cAMP-receptor complex (t½ between 0.7 and 150 s). The association of cAMP to the receptor and the

  5. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G;

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  6. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K;

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...

  7. Altered Immune Profiles of Natural Killer Cells in Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Zhang, Qiong-Fang; Shao, Jian-Ying; Yin, Wen-Wei; Xia, Yang; Chen, Ling; Wang, Xing; Hu, Huai-Dong; Hu, Peng; Ren, Hong; Zhang, Da-Zhi

    2016-01-01

    Background Natural killer (NK) cells are the main effective component of the innate immune system that responds to chronic hepatitis B (CHB) infection. Although numerous studies have reported the immune profiles of NK cells in CHB patients, they are limited by inconsistent results. Thus, we performed a meta-analysis to characterize reliably the immune profiles of NK cells after CHB infection, specifically frequency, phenotype, and function. Methods A literature search of the computer databases MEDLINE, PUBMED, EMBASE, and Cochrane Center Register of Controlled Trails was performed and 19 studies were selected. The standard mean difference (SMD) and 95% confidence interval (CI) of each continuous variable was estimated with a fixed effects model when I2 NUCs) showed no statistical difference in NK frequency. The activating receptors were upregulated, whereas inhibitory receptors were comparable in the peripheral NK cells of CHB individuals and healthy controls. NK cells of CHB patients displayed higher cytotoxic potency as evidenced by CD107a protein levels and conserved potency to produce interferon-gamma (IFNγ), compared with their healthy counterparts. Conclusion Our results revealed that CHB patients had a lower frequency of NK cells compared with healthy individuals not treatable with antiviral NUC therapy. With an activating phenotype, NK cells in CHB patients showed better cytotoxic potency and conserved IFNγ production. PMID:27513564

  8. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    Science.gov (United States)

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. WilsonU.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  9. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    DEFF Research Database (Denmark)

    Corrêa, Natássia C R; Kuasne, Hellen; Faria, Jerusa A Q A;

    2013-01-01

    and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted...

  10. Pattern Recognition Receptors as modulators of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Olga eDelaRosa

    2012-07-01

    Full Text Available Mesenchymal stem cells (MSCs have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by pattern recognition receptors (PRRs, towards either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. PRRs, including Toll-like receptors (TLRs and NOD-like receptors (NLRs, have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g. Crohn´s disease, rheumatoid arthritis through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals produced upon injury. Interest in understanding the effects of PRR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter PRRs ligands at sites of injury, and it has been proven that the activation of PRRs in MSCs can modulate their function and therapeutic effect.

  11. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development.

    Directory of Open Access Journals (Sweden)

    Mark D Hayes

    Full Text Available The aryl hydrocarbon receptor (AhR has been shown to be required for optimal Thelper (Th 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc17 cells, has been examined. Lymph node Tc (CD8(+ and Th (CD4(+ cells were isolated by negative selection from naive AhR(+/- and AhR(-/- mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry expression for interferon (IFN-γ and for key Th17 cytokines. In AhR(+/- mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/- mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses.

  12. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development.

    Science.gov (United States)

    Hayes, Mark D; Ovcinnikovs, Vitalijs; Smith, Andrew G; Kimber, Ian; Dearman, Rebecca J

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8(+)) and Th (CD4(+)) cells were isolated by negative selection from naive AhR(+/-) and AhR(-/-) mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR(+/-) mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/-) mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  13. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy.

  14. Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells

    OpenAIRE

    Kallio, Anu; Guo, Tao; Lamminen, Elisa; Seppänen, Jani; Kangas, Lauri; Väänänen, H Kalervo; Härkönen, Pirkko

    2008-01-01

    Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells SWEDEN (Kallio, Anu) SWEDEN Received: 2007-12-01 Revised: 2008-03-12 Accepted: 2008-03-12

  15. Molecular-Interaction and Signaling Profiles of AM3677, a Novel Covalent Agonist Selective for the Cannabinoid 1 Receptor

    OpenAIRE

    David R Janero; Yaddanapudi, Suma; Zvonok, Nikolai; Subramanian, Kumar V.; Shukla, Vidyanand G.; Stahl, Edward; Zhou, Lei; Hurst, Dow; Wager-Miller, James; Bohn, Laura M.; Reggio, Patricia H.; Mackie, Ken; Makriyannis, Alexandros

    2015-01-01

    The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor’s ligand-int...

  16. Analysis of Chemokines and Receptors Expression Profile in the Myelin Mutant Taiep Rat

    Directory of Open Access Journals (Sweden)

    Guadalupe Soto-Rodriguez

    2015-01-01

    Full Text Available Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4, which might account for the demyelination in the taiep rat.

  17. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Monine, Michael [Los Alamos National Laboratory; Posner, Richard [TRANSLATION GENOMICS RESAEARCH INSTITUTE; Savage, Paul [BYU; Faeder, James [UNIV OF PITTSBURGH; Hlavacek, William S [UNM

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  18. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  19. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness.

    Science.gov (United States)

    Sellick, Christopher A; Croxford, Alexandra S; Maqsood, Arfa R; Stephens, Gill M; Westerhoff, Hans V; Goodacre, Royston; Dickson, Alan J

    2015-09-01

    Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. PMID:26198903

  20. Comparative Metabolic Flux Profiling of Melanoma Cell Lines

    Science.gov (United States)

    Scott, David A.; Richardson, Adam D.; Filipp, Fabian V.; Knutzen, Christine A.; Chiang, Gary G.; Ronai, Ze'ev A.; Osterman, Andrei L.; Smith, Jeffrey W.

    2011-01-01

    Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma. PMID:21998308

  1. M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.

    Science.gov (United States)

    Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike

    2013-01-01

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.

  2. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  3. Single-cell profiling approaches to probing tumor heterogeneity.

    Science.gov (United States)

    Khoo, Bee Luan; Chaudhuri, Parthiv Kant; Ramalingam, Naveen; Tan, Daniel Shao Weng; Lim, Chwee Teck; Warkiani, Majid Ebrahimi

    2016-07-15

    Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heterogeneity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment. PMID:26789729

  4. CLL cells respond to B-Cell receptor stimulation with a microRNA/mRNA signature associated with MYC activation and cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valerie Pede

    Full Text Available Chronic lymphocytic leukemia (CLL is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV mutation status are linked to the B-cell receptor (BCR complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation.

  5. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pan Zhongzong

    2009-01-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors. Methods Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1 was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B, and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression. Results Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα. Conclusion Our data indicate

  6. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    Science.gov (United States)

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  7. Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment

    OpenAIRE

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N.; Allen, John A.; Rogan, Sarah C.; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L.

    2009-01-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine2B (5-HT2B) receptor agonists. We have shown that activation of 5-HT2B receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscen...

  8. Bacteria and Toll-like receptor and cytokine mRNA expression profiles associated with canine arthritis.

    Science.gov (United States)

    Riggio, Marcello P; Lappin, David F; Bennett, David

    2014-08-15

    The major forms of inflammatory canine arthritis are immune-mediated arthritis (IMA) and septic arthritis (SA), although some cases of cruciate disease (CD) are associated with significant levels of synovitis. In this study, the bacteria associated with canine arthritis were identified and mRNA expression levels of Toll-like receptors (TLRs) and pro-inflammatory cytokines determined. Of the 40 synovial fluid samples analysed, bacteria were isolated from 12 samples by culture (2 CD, 10 SA) and detected in 4 samples (3 CD, 1 SA) using culture-independent methods. Statistically significant increases in TLR2, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12 mRNA expression were seen in all disease groups compared to normal controls. All disease groups had decreased mRNA expression of other TLRs compared to normal controls, but this did not reach statistical significance. Synovial fluid cell counts revealed that the highest number and proportion of mononuclear cells and neutrophils were found in the IMA and SA samples, respectively. Age had an effect on the TLR and cytokine mRNA expression profiles: TNF-α (p=0.043) and IL-12 (p=0.025) mRNA expression was increased and TLR4 mRNA expression was reduced (p=0.033) in dogs up to 4 years of age compared to older animals. In the 10 SA samples from which bacteria were isolated, statistically significant increases in TLR2, TLR7, TNF-α and IL-6 mRNA expression were observed. It is concluded that canine arthritis is associated with increased mRNA levels of pro-inflammatory cytokines, which could in some cases be mediated by bacteria through activation of TLR2.

  9. Odorant receptor (OR) gene choice is biased and non-clonal in two olfactory placode cell lines, and OR RNA is nuclear prior to differentiation of these lines

    OpenAIRE

    Pathak, N; Johnson, P; Getman, M.; Lane, R. P.

    2008-01-01

    We have investigated two clonal mouse olfactory placode (OP) cell lines as a model system for studying endogenous odorant receptor (OR) regulation. Both lines can be differentiated into bipolar neurons with transcriptional profiles consistent with mature sensory neurons. We show that single cells exhibit monogenic OR expression like sensory neurons in vivo. Monogenic OR expression is established in undifferentiated cells and persists through differentiation, but OR gene choice is not a clonal...

  10. Expression and function profiling of orphan nuclear receptors using bacterial artificial chromosome (BAC) transgenesis.

    OpenAIRE

    Nemoz-Gaillard, Eric; Tsai, Ming-Jer; Tsai, Sophia Y.

    2003-01-01

    The long term goal of the Nuclear Receptor Signaling Atlas (NURSA) resides in unraveling the physiological and pathological functions of nuclear receptors (NRs) at the molecular, biochemical and cellular levels. This multi-oriented task requires complementary approaches in order to determine the specific function(s) and precise expression and receptor activity patterns for each individual conventional or orphan receptor. To attain this objective, we have chose to turn to technologies recently...

  11. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder;

    2010-01-01

    will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...... their Ph-chromosome status. Interestingly, we found that the CML CD34(+)CD38(-)IL1RAP(+) cells were Ph(+), whereas CML CD34(+)CD38(-)IL1RAP(-) cells were almost exclusively Ph(-). By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph(+) and Ph(-) candidate CML...

  12. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...... increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR...

  13. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  14. Papillary hidradenoma: immunohistochemical analysis of steroid receptor profile with a focus on apocrine differentiation.

    OpenAIRE

    Offidani, A; Campanati, A

    1999-01-01

    AIM: To make a quantitative evaluation by image analysis of oestrogen receptors, progesterone receptors, and androgen receptors in papillary hidradenomas and anogenital sweat glands. METHODS: 20 papillary hidradenomas and the anogenital sweat glands detected in surgical specimens selected from 10 vulvectomies for squamous carcinoma, eight haemorrhoidectomies, and one anal polypectomy, all from female patients, were investigated by the avidinstreptavidin peroxidase testing system. RESULTS: 90%...

  15. Glycine receptors contribute to cytoprotection of glycine in myocardial cells

    Institute of Scientific and Technical Information of China (English)

    QI Ren-bin; ZHANG Jun-yan; LU Da-xiang; WANG Hua-dong; WANG Hai-hua; LI Chu-jie

    2007-01-01

    Background The classic glycine receptor (GlyR) in the central nervous system is a ligand-gated membrane-spanning ion channel. Recent studies have provided evidence for the existence of GlyR in endothelial cells, renal proximal tubular cells and most leukocytes. In contrast, no evidence for GlyR in myocardial cells has been found so far. Our recent researches have showed that glycine could protect myocardial cells from the damage induced by lipopolysaccharide (LPS). Further studies suggest that myocardial cells could contain GlyR or binding site of glycine.Methods In isolated rat heart damaged by LPS, the myocardial monophasic action potential (MAP), the heart rate (HR),the myocardial tension and the activities of lactate dehydrogenase (LDH) from the coronary effluent were determined.The concentration of intracellular free calcium ([Ca2+]i) was measured in cardiomyocytes injured by LPS and by hypoxia/reoxygenation (H/R), which excludes the possibility that reduced calcium influx because of LPS neutralized by glycine. Immunohistochemistry was used to detect the GlyR in myocardial tissue. GlyR and its subunit in the purified cultured cardiomyocytes were identified by Western blotting.Results Although significant improvement in the MAP/MAPD20, HR, and reduction in LDH release were observed in glycine + LPS hearts, myocardial tension did not recover. Further studies demonstrated that glycine could prevent rat mycordial cells from LPS and hypoxia/reoxygenation injury (no endotoxin) by attenuating calcium influx.Immunohistochemistry exhibited a positive green-fluorescence signaling along the cardiac muscle fibers. Western blotting shows that the purified cultured cardiomyocytes express GlyR β subunit, but GlyR α1 subunit could not be detected.Conclusions The results suggest that glycine receptor is expressed in cardiomyocytes and participates in cytoprotection from LPS and hypoxia/reoxygenation injury. Glycine could directly activate GlyR on the cardiomyocytes and

  16. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Directory of Open Access Journals (Sweden)

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  17. Genomic and immunohistochemical profiles of enteropathy-associated T-cell lymphoma in Japan.

    Science.gov (United States)

    Tomita, Sakura; Kikuti, Yara Y; Carreras, Joaquim; Kojima, Minoru; Ando, Kiyoshi; Takasaki, Hirotaka; Sakai, Rika; Takata, Katsuyoshi; Yoshino, Tadashi; Bea, Silvia; Campo, Elias; Nakamura, Naoya

    2015-10-01

    Enteropathy-associated T-cell lymphoma (EATL) is a rare primary T-cell lymphoma of the digestive tract. EATL is classified as either Type I, which is frequently associated with and thought to arise from celiac disease and is primarily observed in Northern Europe, and Type II, which occurs de novo and is distributed all over the world with predominance in Asia. The pathogenesis of EATL in Asia is unknown. We aimed to clarify the histological and genomic profiles of EATL in Japan in a homogeneous series of 20 cases. The cases were characterized by immunohistochemistry, high-resolution oligonucleotide microarray, and fluorescence in situ hybridization (FISH) at five different loci: 1q21.3 (CKS1B), 6q16.3 (HACE1), 7p22.3 (MAFK), 9q33.3 (PPP6C), and 9q34.3 (ASS1, CARD9) using formalin-fixed paraffin-embedded sections. The histological appearance of EATL ranged from medium- to large-sized cells in 13 cases (65%), small- to medium-sized cells in five cases (25%), and medium-sized in two cases (10%). The immunophenotype was CD2(+) (60%), CD3ɛ(+) (100%), CD4(+) (10%), CD7(+) (95%), CD8(+) (80%), CD56(+) (85%), TIA-1(+) (100%), Granzyme B(+) (25%), T-cell receptor (TCR)β(+) (10%), TCRγ(+) (35%), TCRγδ(+) (50%), and double negative for TCR (six cases, 30%). All cases were EBER(-). The genomic profile showed recurrent copy number gains of 1q32.3, 4p15.1, 5q34, 7q34, 8p11.23, 9q22.31, 9q33.2, 9q34.13, and 12p13.31, and losses of 7p14.1. FISH showed 15 patients (75%) with a gain of 9q34.3 with good correlation with array comparative genomic hybridization. EATL in Japan is characterized by non-monomorphic cells with a cytotoxic CD8(+) CD56(+) phenotype similar to EATL Type II. The genomic profile is comparable to EATL of Western countries, with more similarity to Type I (gain of 1q and 5q) rather than Type II (gain of 8q24, including MYC). The 9q34.3 gain was the most frequent change confirmed by FISH irrespective of the cell origin of αβ-T-cells and γδ-T-cells. PMID

  18. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  19. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes.

    Science.gov (United States)

    Zaugg, Janine; Eickmeier, Eva; Rueda, Diana C; Hering, Steffen; Hamburger, Matthias

    2011-04-01

    A petroleum ether extract of the traditional Chinese herbal drug Duhuo (roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan), showed significant activity in a functional two-microelectrode voltage clamp assay with Xenopus oocytes which expressed recombinant γ-aminobutyric acid type A (GABA(A)) receptors of the subtype α(1)β(2)γ(2S). HPLC-based activity profiling of the active extract revealed six compounds responsible for the GABA(A) receptor modulating activity. They were identified by microprobe NMR and high resolution mass spectrometry as columbianetin acetate (1), imperatorin (3), cnidilin (4), osthol (5), and columbianedin (6). In concentration-dependent experiments, osthol and cnidilin showed the highest potentiation of the GABA induced chloride current (273.6%±39.4% and 204.5%±33.2%, respectively at 300 μM). Bisabolangelone (2) only showed minor activity at the GABA(A) receptor. The example demonstrates that HPLC-based activity profiling is a simple and efficient method to rapidly identify GABA(A) receptor modulators in a bioactive plant extract. PMID:21147202

  20. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  1. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  2. Expression of EPO Receptor in Pancreatic Cells and Its Effect on Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hongxia SHUAI; Ji ZHANG; Yikai YU; Muxun ZHANG

    2008-01-01

    In order to explore the expression of erythropoietin receptor (EPOR) in pancreatic cell ine NIT-1 and its effect on cell apoptosis after binding with erythropoietin (EPO), NIT-1 cells were cultured and expanded. The expression of EPOR was detected using electrophoresis. NIT-1 apoptosis was induced by cytokines and their effects on cell apoptosis and cell insulin secretion were assayed after binding of EPO to EPOR. The results showed that EPOR was expressed in NIT-1 cells. Recom- binant human EPO (rHuEPO) had no effect on cell apoptosis but significantly inhibited apoptosis in- duced by cytokines, rHuEPO had no effect on cell insulin secretion but significantly improved insulin secretion inhibited by cytokines. From these findings, it was concluded that EPOR was expressed in NIT-1 cells and EPO could protect N1T-1 cells from apoptosis induced by cytokines.

  3. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  4. Gene expression profiling of chicken primordial germ cell ESTs

    Directory of Open Access Journals (Sweden)

    Lim Dajeong

    2006-08-01

    Full Text Available Abstract Background Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. Results We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. Conclusion Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages.

  5. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  6. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  7. T cell receptor-o deletion in human T cells

    OpenAIRE

    Verschuren, Martie

    1996-01-01

    textabstractThe immune system protects the body against pathogens such as bacteria, viruses, fungi, and parasites, when they pass the first line of body defence such as the skin or other epithelial and mucosal barriers. After penetration into the body, micro-organisms encounter the second line of defence. This concerns the so-called aspecitlc immune system, which consists of phagocytes, such as macrophages and granulocytes, complement factors, and natural killer cells. Generally, support by t...

  8. Global Analysis of Expression Profiles of Rice Receptor-Like Kinase Genes

    Institute of Scientific and Technical Information of China (English)

    Lin-Lin Gao; Hong-Wei Xue

    2012-01-01

    The receptor-like kinases (RLKs) play critical roles in plant development and response to stress stimuli.By perceiving or sensing the extracellular signals,RLK activates the downstream signaling pathway through phosphorylating the specific targets.Up to now,only a few RLKs have been functionally identified,which are even fewer in rice (Oryza sativa L.).We here report the systemic analysis of the expression profiles of rice RLK coding genes in different tissues,with the emphasis on seed development and in response to both abiotic stress and plant hormones.The results showed that most rice RLK genes are expressed in two or more tissues,of which the RLCK-RLKs have a higher,while WAK- and SD-RLKs have a lower,expression level in the vegetative tissues than other subfamily members.Interestingly,the constitutively highly expressed RLKs in rice and Arabidopsis are conserved,which is consistent with the previous hypothesis that RLKs existed before the differentiation of monocotyledon and dicotyledon plants.Nearly one-third of the detected rice RLKs are expressed during seed development,and the RLCK-RLK members possess a higher percentage during the endosperm development,suggesting a novel function of RLCK-RLK members in endosperm development.Further analysis revealed that many RLK genes expressed during seed development are also regulated by abiotic stresses (cold,salt,or drought) or hormones,indicating that RLKs may take part in the stress-related signaling pathways such as dehydration of endosperm.These results provide informative insights into the RLK studies and will be helpful to reveal the global regulatory network controlling rice seed development.

  9. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter;

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  10. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity.

    Science.gov (United States)

    Yang, Li; Qian, Xiaoling; Chen, Mingjiao; Fei, Qili; Meyers, Blake C; Liang, Wanqi; Zhang, Dabing

    2016-07-01

    In flowering plants, sequential formation of anther cell types is a highly ordered process that is essential for successful meiosis and sexual reproduction. Differentiation of meristematic cells and cell-cell communication are proposed to coordinate anther development. Among the proposed mechanisms of cell fate specification are cell surface-localized Leu-rich repeat receptor-like kinases (LRR-RLKs) and their putative ligands. Here, we present the genetic and biochemical evidence that a rice (Oryza sativa) LRR-RLK, MSP1 (MULTIPLE SPOROCYTE1), interacts with its ligand OsTDL1A (TPD1-like 1A), specifying the cell identity of anther wall layers and microsporocytes. An in vitro assay indicates that the 21-amino acid peptide of OsTDL1A has a physical interaction with the LRR domain of MSP1. The ostdl1a msp1 double mutant showed the defect in lacking middle layers and tapetal cells and having an increased number of microsporocytes similar to the ostdl1a or msp1 single mutant, indicating the same pathway of OsTDL1A-MSP1 in regulating anther development. Genome-wide expression profiles showed the altered expression of genes encoding transcription factors, particularly basic helix-loop-helix and basic leucine zipper domain transcription factors in ostdl1a and msp1 Among these reduced expressed genes, one putatively encodes a TGA (TGACGTCA cis-element-binding protein) factor OsTGA10, and another one encodes a plant-specific CC-type glutaredoxin OsGrx_I1. OsTGA10 was shown to interact with OsGrx_I1, suggesting that OsTDL1A-MSP1 signaling specifies anther cell fate directly or indirectly affecting redox status. Collectively, these data point to a central role of the OsTDL1A-MSP1 signaling pathway in specifying somatic cell identity and suppressing overproliferation of archesporial cells in rice. PMID:27208278

  11. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xia Zhang; Xiao-Yan Zhang; Zhen-Ming Zhang; Wei Lu; Ling Liu; Gang Li; Zhi-Ming Cai; Yao-Ting Gui; Chawnshang Chang

    2012-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility,yet detailed androgenlAR signals in Sertoli cells remain unclear.To identify AR target genes in Sertoli cells,we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice.Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones.To further nail down the difference within Sertoli cells,we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells.Interestingly,additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells.In the condition where maximal androgen response was demonstrated,we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone.Among these genes,603 androgen-/ AR-regulated genes,including 164 upregulated and 439 downregulated,were found in both S-AR-/y mice testis and TM4/AR cells.Using informatics analysis,the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis.Together,using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.

  12. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity1[OPEN

    Science.gov (United States)

    Yang, Li; Qian, Xiaoling; Chen, Mingjiao

    2016-01-01

    In flowering plants, sequential formation of anther cell types is a highly ordered process that is essential for successful meiosis and sexual reproduction. Differentiation of meristematic cells and cell-cell communication are proposed to coordinate anther development. Among the proposed mechanisms of cell fate specification are cell surface-localized Leu-rich repeat receptor-like kinases (LRR-RLKs) and their putative ligands. Here, we present the genetic and biochemical evidence that a rice (Oryza sativa) LRR-RLK, MSP1 (MULTIPLE SPOROCYTE1), interacts with its ligand OsTDL1A (TPD1-like 1A), specifying the cell identity of anther wall layers and microsporocytes. An in vitro assay indicates that the 21-amino acid peptide of OsTDL1A has a physical interaction with the LRR domain of MSP1. The ostdl1a msp1 double mutant showed the defect in lacking middle layers and tapetal cells and having an increased number of microsporocytes similar to the ostdl1a or msp1 single mutant, indicating the same pathway of OsTDL1A-MSP1 in regulating anther development. Genome-wide expression profiles showed the altered expression of genes encoding transcription factors, particularly basic helix-loop-helix and basic leucine zipper domain transcription factors in ostdl1a and msp1. Among these reduced expressed genes, one putatively encodes a TGA (TGACGTCA cis-element-binding protein) factor OsTGA10, and another one encodes a plant-specific CC-type glutaredoxin OsGrx_I1. OsTGA10 was shown to interact with OsGrx_I1, suggesting that OsTDL1A-MSP1 signaling specifies anther cell fate directly or indirectly affecting redox status. Collectively, these data point to a central role of the OsTDL1A-MSP1 signaling pathway in specifying somatic cell identity and suppressing overproliferation of archesporial cells in rice. PMID:27208278

  13. Requirements for Peptide-induced T Cell Receptor Downregulation on Naive CD8+ T Cells

    OpenAIRE

    Cai, Zeling; Kishimoto, Hidehiro; Brunmark, Anders; Jackson, Michael R.; Peterson, Per A.; Sprent, Jonathan

    1997-01-01

    The requirements for inducing downregulation of α/β T cell receptor (TCR) molecules on naive major histocompatibility complex class I–restricted T cells was investigated with 2C TCR transgenic mice and defined peptides as antigen. Confirming previous results, activation of 2C T cells in response to specific peptides required CD8 expression on the responder cells and was heavily dependent upon costimulation provided by either B7-1 or ICAM-1 on antigen-presenting cells (APC). These stringent re...

  14. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  15. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    OpenAIRE

    Piochon, Claire; Levenes, Carole; Ohtsuki, Gen; Hansel, Christian

    2010-01-01

    textabstractA classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. He...

  16. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells.

    Science.gov (United States)

    Wenner, Maria I; Maker, Garth L; Dawson, Linda F; Drummond, Peter D; Mullaney, Ian

    2016-08-01

    Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells. PMID:26408527

  17. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  18. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    Science.gov (United States)

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  19. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p < 0.05) increased expression of GRβ compared to UMUC-3, which also correlated with higher migration rates. Knockdown of GRβ in the T24 cells resulted in a decreased migration rate. Mutational analysis of the 3' untranslated region (UTR) of human GRβ revealed that miR144 might positively regulate expression. Indeed, overexpression of miR144 increased GRβ by 3.8 fold. In addition, miR144 and GRβ were upregulated during migration. We used a peptide nucleic acid conjugated to a cell penetrating-peptide (Sweet-P) to block the binding site for miR144 in the 3'UTR of GRβ. Sweet-P effectively prevented miR144 actions and decreased GRβ expression, as well as the migration of the T24 human bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease. PMID:27036026

  20. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wangstella5@163.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Yang, Qifeng, E-mail: qifengy@gmail.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson School of Medicine, Cancer Institute of New Jersey, NB (United States); Li, Xiaoyan, E-mail: xiaoyanli1219@gmail.com [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Moran, Meena S., E-mail: meena.moran@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  1. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    Science.gov (United States)

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL.

  2. HIV-1 Nef and Vpu Are Functionally Redundant Broad-Spectrum Modulators of Cell Surface Receptors, Including Tetraspanins

    Science.gov (United States)

    Haller, Claudia; Müller, Birthe; Fritz, Joëlle V.; Lamas-Murua, Miguel; Stolp, Bettina; Pujol, François M.; Keppler, Oliver T.

    2014-01-01

    ABSTRACT HIV-1 Nef and Vpu are thought to optimize virus replication in the infected host, at least in part via their ability to interfere with vesicular host cell trafficking. Despite the use of distinct molecular mechanisms, Nef and Vpu share specificity for some molecules such as CD4 and major histocompatibility complex class I (MHC-I), while disruption of intracellular transport of the host cell restriction factor CD317/tetherin represents a specialized activity of Vpu not exerted by HIV-1 Nef. To establish a profile of host cell receptors whose intracellular transport is affected by Nef, Vpu, or both, we comprehensively analyzed the effect of these accessory viral proteins on cell surface receptor levels on A3.01 T lymphocytes. Thirty-six out of 105 detectable receptors were significantly downregulated by HIV-1 Nef, revealing a previously unappreciated scope with which HIV-1 Nef remodels the cell surface of infected cells. Remarkably, the effects of HIV-1 Vpu on host cell receptor exposure largely matched those of HIV-1 Nef in breadth and specificity (32 of 105, all also targeted by Nef), even though the magnitude was generally less pronounced. Of particular note, cell surface exposure of all members of the tetraspanin (TSPAN) protein family analyzed was reduced by both Nef and Vpu, and the viral proteins triggered the enrichment of TSPANs in a perinuclear area of the cell. While Vpu displayed significant colocalization and physical association with TSPANs, interactions of Nef with TSPANs were less robust. TSPANs thus emerge as a major target of deregulation in host cell vesicular transport by HIV-1 Nef and Vpu. The conservation of this activity in two independent accessory proteins suggests its importance for the spread of HIV-1 in the infected host. IMPORTANCE In this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses

  3. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma

    Science.gov (United States)

    Sánchez-Prieto, Ricardo; Saada, Sofiane; Naves, Thomas; Guillaudeau, Angélique; Perraud, Aurélie; Sindou, Philippe; Lacroix, Aurélie; Descazeaud, Aurélien; Lalloué, Fabrice; Jauberteau, Marie-Odile

    2016-01-01

    p75NTR, a member of TNF receptor family, is the low affinity receptor common to several mature neurotrophins and the high affinity receptor for pro-neurotrophins. Brain-Derived Neurotrophic Factor (BDNF), a member of neurotrophin family has been described to play an important role in development and progression of several cancers, through its binding to a high affinity tyrosine kinase receptor B (TrkB) and/or p75NTR. However, the functions of these two receptors in renal cell carcinoma (RCC) have never been investigated. An overexpression of p75NTR, pro-BDNF, and to a lesser extent for TrkB and sortilin, was detected by immunohistochemistry in a cohort of 83 clear cell RCC tumors. p75NTR, mainly expressed in tumor tissues, was significantly associated with higher Fuhrman grade in multivariate analysis. In two derived-RCC lines, 786-O and ACHN cells, we demonstrated that pro-BDNF induced cell survival and migration, through p75NTR as provided by p75NTR RNA silencing or blocking anti-p75NTR antibody. This mechanism is independent of TrkB activation as demonstrated by k252a, a tyrosine kinase inhibitor for Trk neurotrophin receptors. Taken together, these data highlight for the first time an important role for p75NTR in renal cancer and indicate a putative novel target therapy in RCC. PMID:27120782

  4. Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation

    OpenAIRE

    Moody, Terry W.; Sancho, Veronica; Florio, Alessia di; Nuche-Berenguer, Bernardo; Mantey, Samuel; Jensen, Robert T.

    2011-01-01

    The effects of bombesin receptor subtype-3 (BRS-3) agonists were investigated on lung cancer cells. The BRS-3 agonist (DTyr6, βAla11, Phe13, Nle14)bombesin6-14 (BA1), but not gastrin releasing peptide (GRP) or neuromedin B (NMB) increased significantly the clonal growth of NCI-H1299 cells stably transfected with BRS-3 (NCI-H1299-BRS-3). Also, BA1 addition to NCI-H727 or NCI-H1299-BRS-3 cells caused Tyr1068 phosphorylation of the epidermal growth factor receptor (EGFR). Similarly, (DTyr6, R-Ap...

  5. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie;

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  6. Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases

    Science.gov (United States)

    ... to accelerate stem cell therapies for eye diseases Gene profiling technique to accelerate stem cell therapies for ... The method simultaneously measures the expression of multiple genes, allowing scientists to quickly characterize cells according to ...

  7. Differential gene expression profiling of human epidermal growth factor receptor 2-overexpressing mammary tumor

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Haining Peng; Yingli Zhong; Daiqiang Li; Mi Tang; Xiaofeng Ding; Jian Zhang

    2008-01-01

    Human epidermal growth factor receptor 2 (HER2) is highly expressed in approximately 30% of breast cancer patients,and substantial evidence supports the relationship between HER2 overexpression and poor overall survival. However,the biological function of HER2 signaltransduction pathways is not entirely clear. To investigate gene activation within the pathways, we screened differentially expressed genes in HER2-positive mouse mammary tumor using two-directional suppression subtractive hybridization combined with reverse dot-blotting analysis. Forty genes and expressed sequence tags related to transduction, cell proliferation/growth/apoptosis and secreted/extracellular matrix proteins were differentially expressed in HER2-positive mammary tumor tissue. Among these, 19 were already reported to be differentially expressed in mammary tumor, 11 were first identified to be differentially expressed in mammary tumor in this study but were already reported in other tumors, and 10 correlated with other cancers. These genes can facilitate the understanding of the role of HER2 signaling in breast cancer.

  8. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S;

    2001-01-01

    (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency......Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  9. Comprehensive qPCR profiling of gene expression in single neuronal cells

    OpenAIRE

    Citri, Ami; Pang, Zhiping P.; Sudhof, Thomas C.; Wernig, Marius; Malenka, Robert C.

    2011-01-01

    A major challenge in neuronal stem cell biology lies in characterization of lineage-specific reprogrammed human neuronal cells, a process that necessitates the use of an assay sensitive to the single-cell level. Single-cell gene profiling can provide definitive evidence regarding the conversion of one cell type into another at a high level of resolution. The protocol we describe employs Fluidigm Biomark dynamic arrays for high-throughput expression profiling from single neuronal cells, assayi...

  10. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R

    2004-10-01

    Full Text Available Abstract Background In order to optimize the potential benefits of neural stem cell (NSC transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs. Results RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF, brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in undifferentiated cells maintained for two days in culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40 – 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1 receptor is expressed in both neural (β-tubulin III positive and glial (GFAP positive progenitor cells. An examination of the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours. Conclusions The phenotypic characteristics of C17.2 cells suggest that they are

  11. Analysis of expression profiles of MAGE-A antigens in oral squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Reichert Torsten E

    2009-04-01

    Full Text Available Abstract Background The immunological response to solid tumours is insufficient. Therefore, tumour specific antigens have been explored to facilitate the activation of the immune system. The cancer/testis antigen class of MAGE-A antigens is a possible target for vaccination. Their differential expression profiles also modulate the course of the cancer disease and its response to antineoplastic drugs. Methods The expression profiles of MAGE-A2, -A3, -A4, -A6 and -A10 in five own oral squamous cell carcinoma cell lines were characterised by rt-PCR, qrt-PCR and immunocytochemistry with a global MAGE-A antibody (57B and compared with those of an adult keratinocyte cell line (NHEK. Results All tumour cell lines expressed MAGE-A antigens. The antigens were expressed in groups with different preferences. The predominant antigens expressed were MAGE-A2, -A3 and -A6. MAGE-A10 was not expressed in the cell lines tested. The MAGE-A gene products detected in the adult keratinocyte cell line NHEK were used as a reference. Conclusion MAGE-A antigens are expressed in oral squamous cell carcinomas. The expression profiles measured facilitate distinct examinations in forthcoming studies on responses to antineoplastic drugs or radiation therapy. MAGE-A antigens are still an interesting aim for immunotherapy.

  12. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma. PMID:26308584

  13. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG ‘spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  14. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  15. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion.

    Science.gov (United States)

    Yang, Xiaochen; Steinberg, Florian; Zhuang, Lei; Bessey, Ralph; Trueb, Beat

    2016-07-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  16. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    Science.gov (United States)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing

  17. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  18. Merkel cell carcinoma with an unusual immunohistochemical profile

    Directory of Open Access Journals (Sweden)

    L. Pilloni

    2009-12-01

    Full Text Available The clinical and morphological picture of Merkel cell carcinoma (MCC may be rather challenging; therefore, the immunohistochemical profile plays a relevant role in confirming the microscopic diagnosis. A panel of antibodies including cytokeratins 20, 7 and epithelial membrane antigen, and neuronspecific enolase is used in confirming the morphological diagnosis of MCC. The majority of MCCs express CK20 and are CK7-negative. Herein, we present a case of primary cutaneous neuroendocrine carcinoma with an atypical immunohistochemical pattern. A 83-years old woman presented with a painless plaque, red to violaceous in colour, located in the leg. The skin tumor was excided, formalin-fixed and paraffinembedded. Tissue sections were immunostained with a panel of antibodies routinely utilized in complex primary skin tumors for evidencing epithelial and neuroendocrine differentiation of tumor cells. The neuroendocrine differentiation of tumor cells was evidenced by their immunoreactivity for synaptophysin, chromograninA and neuron-specific enolase. Tumor cells also showed diffuse cytoplasmic staining for CK7. No immunoreactivity was detected for CK20 and thyroid transcription factor-1. Our data, together with previous rare reports of CK20-/CK7+ MCCs, lay stress on the importance of routinely utilizing a panel of antibodies in the differential diagnosis of complex primary carcinomas of the skin and may have important implications in expanding the differential diagnosis of skin tumors. In particular, caution should be taken in excluding the diagnosis of MCC only on the basis of the absence of reactivity of tumor cells for CK20, favouring the wrong diagnosis of less aggressive skin tumors.

  19. Individualized leukemia cell-population profiles in common B-cell acute lymphoblastic leukemia patients

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Yu; Jing-Tao Dong; Yong-Qian Jia; Neng-Gang Jiang; Ting-Ting Zeng; Hong Xu; Xian-Ming Mo

    2013-01-01

    Immunophenotype is critical for diagnosing common B-cell acute lymphoblastic leukemia (common ALL) and detecting minimal residual disease.We developed a protocol to explore the immunophenotypic profiles of common ALL based on the expression levels of the antigens associated with B lymphoid development,including IL-7Rα (CD127),cytoplasmic CD79a (cCD79a),CD19,VpreB (CD179a),and slgM,which are successive and essential for progression of B cells along their developmental pathway.Analysis of the immunophenotypes of 48 common ALL cases showed that the immunophenotypic patterns were highly heterogeneous,with the leukemic cell population differing from case to case.Through the comprehensive analysis of immunophenotypic patterns,the profiles of patient-specific composite leukemia cell populations could provide detailed information helpful for the diagnosis,therapeutic monitoring,and individualized therapies for common ALL.

  20. From drug response profiling to target addiction scoring in cancer cell models

    Directory of Open Access Journals (Sweden)

    Bhagwan Yadav

    2015-10-01

    Full Text Available Deconvoluting the molecular target signals behind observed drug response phenotypes is an important part of phenotype-based drug discovery and repurposing efforts. We demonstrate here how our network-based deconvolution approach, named target addiction score (TAS, provides insights into the functional importance of druggable protein targets in cell-based drug sensitivity testing experiments. Using cancer cell line profiling data sets, we constructed a functional classification across 107 cancer cell models, based on their common and unique target addiction signatures. The pan-cancer addiction correlations could not be explained by the tissue of origin, and only correlated in part with molecular and genomic signatures of the heterogeneous cancer cells. The TAS-based cancer cell classification was also shown to be robust to drug response data resampling, as well as predictive of the transcriptomic patterns in an independent set of cancer cells that shared similar addiction signatures with the 107 cancers. The critical protein targets identified by the integrated approach were also shown to have clinically relevant mutation frequencies in patients with various cancer subtypes, including not only well-established pan-cancer genes, such as PTEN tumor suppressor, but also a number of targets that are less frequently mutated in specific cancer types, including ABL1 oncoprotein in acute myeloid leukemia. An application to leukemia patient primary cell models demonstrated how the target deconvolution approach offers functional insights into patient-specific addiction patterns, such as those indicative of their receptor-type tyrosine-protein kinase FLT3 internal tandem duplication (FLT3-ITD status and co-addiction partners, which may lead to clinically actionable, personalized drug treatment developments. To promote its application to the future drug testing studies, we have made available an open-source implementation of the TAS calculation in the form

  1. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  2. Profile of Steroid Receptors and Increased Aromatase Immunoexpression in Canine Inflammatory Mammary Cancer as a Potential Therapeutic Target.

    Science.gov (United States)

    De Andrés, P J; Cáceres, S; Clemente, M; Pérez-Alenza, M D; Illera, J C; Peña, L

    2016-04-01

    Canine inflammatory mammary cancer (IMC) has been proposed as a model for the study of human inflammatory breast cancer (IBC). The aims of this study were to compare the immunohistochemical expression of aromatase (Arom) and several hormone receptors [estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR) and androgen receptor (AR)], in 21 IMC cases vs 19 non-IMC; and to study the possible effect of letrozole on canine IMC and human inflammatory breast cancer (IBC) in vitro using IPC-366 and SUM-149 cell lines. Significant elevations of the means of Arom Total Score (TS), ERβ TS and PR TS were found in the IMC group (p = 0.025, p = 0.038 and p = 0.037, respectively). Secondary IMC tumours expressed higher levels of Arom than primary IMC (p = 0.029). Non-IMC PR- tumours contained higher levels of Arom than non-IMC PR+ tumours (p = 0.007). After the addition of letrozole, the number of IMC and IBC cells dropped drastically. The overexpression of Arom found and the results obtained in vitro further support canine IMC as a model for the study of IBC and future approaches to the treatment of dogs with mammary cancer, and especially IMC, using Arom inhibitors. PMID:26899138

  3. Profile of Steroid Receptors and Increased Aromatase Immunoexpression in Canine Inflammatory Mammary Cancer as a Potential Therapeutic Target.

    Science.gov (United States)

    De Andrés, P J; Cáceres, S; Clemente, M; Pérez-Alenza, M D; Illera, J C; Peña, L

    2016-04-01

    Canine inflammatory mammary cancer (IMC) has been proposed as a model for the study of human inflammatory breast cancer (IBC). The aims of this study were to compare the immunohistochemical expression of aromatase (Arom) and several hormone receptors [estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR) and androgen receptor (AR)], in 21 IMC cases vs 19 non-IMC; and to study the possible effect of letrozole on canine IMC and human inflammatory breast cancer (IBC) in vitro using IPC-366 and SUM-149 cell lines. Significant elevations of the means of Arom Total Score (TS), ERβ TS and PR TS were found in the IMC group (p = 0.025, p = 0.038 and p = 0.037, respectively). Secondary IMC tumours expressed higher levels of Arom than primary IMC (p = 0.029). Non-IMC PR- tumours contained higher levels of Arom than non-IMC PR+ tumours (p = 0.007). After the addition of letrozole, the number of IMC and IBC cells dropped drastically. The overexpression of Arom found and the results obtained in vitro further support canine IMC as a model for the study of IBC and future approaches to the treatment of dogs with mammary cancer, and especially IMC, using Arom inhibitors.

  4. Gene expression profiles identify inflammatory signatures in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Anna Torri

    Full Text Available Dendritic cells (DCs constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples. Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.

  5. The extremely broad odorant response profile of mouse olfactory sensory neurons expressing the odorant receptor MOR256-17 includes trace amine-associated receptor ligands.

    Science.gov (United States)

    Tazir, Bassim; Khan, Mona; Mombaerts, Peter; Grosmaitre, Xavier

    2016-03-01

    The mouse olfactory system employs ~1100 G-protein-coupled odorant receptors (ORs). Each mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and the expressed OR determines the odorant response properties of the OSN. The broadest odorant response profile thus far demonstrated in native mouse OSNs is for OSNs that express the OR gene SR1 (also known as Olfr124 and MOR256-3). Here we showed that the odorant responsiveness of native mouse OSNs expressing the OR gene MOR256-17 (also known as Olfr15 and OR3) is even broader than that of OSNs expressing SR1. We investigated the electrophysiological properties of green fluorescent protein (GFP)+ OSNs in a MOR256-17-IRES-tauGFP gene-targeted mouse strain, in parallel with GFP+ OSNs in the SR1-IRES-tauGFP gene-targeted mouse strain that we previously reported. Of 35 single chemical compounds belonging to distinct structural classes, MOR256-17+ OSNs responded to 31 chemicals, compared with 10 for SR1+ OSNs. The 10 compounds that activated SR1+ OSNs also activated MOR256-17+ OSNs. Interestingly, MOR256-17+ OSNs were activated by three amines (cyclohexylamine, isopenthylamine, and phenylethylamine) that are typically viewed as ligands for chemosensory neurons in the main olfactory epithelium that express trace amine-associated receptor genes, a family of 15 genes encoding G-protein-coupled receptors unrelated in sequence to ORs. We did not observe differences in membrane properties, indicating that the differences in odorant response profiles between the two OSN populations were due to the expressed OR. MOR256-17+ OSNs appear to be at one extreme of odorant responsiveness among populations of OSNs expressing distinct OR genes in the mouse. PMID:26666691

  6. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-yun; MA Li; MENG Min-jie; YAO Xin-sheng; LIN Ying; WU Zhen-qiang; HE Xiao-wei; WANG Ju-fang; WANG Xiao-ning

    2007-01-01

    Background Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether the receptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkat human T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of T cell receptor (TCR) gene recombination.Methods TCR Dβ-Jβ signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVβ chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVβ chain was examined by the TCR GeneScan technique.Results RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dβ2-Jβ2 signal joints and ds RSS breaks associated with the Dβ25' and Dβ 23' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVβ chain did not change during cell proliferation.Conclusions RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire. However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  7. Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment.

    Directory of Open Access Journals (Sweden)

    Chia-Yang Li

    Full Text Available Cordyceps sinensis (CS has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs, in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS, or LPS plus CS (LPS/CS for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs, were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE genes of the three different treatments (CS, LPS, and LPS/CS, which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects

  8. The association of killer cell immunoglobulin like receptor gene polylmorphism with cytomegalovirus infection after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    吴小津

    2013-01-01

    Objective To explore the influence of the killer cell immunoglobulin like receptor(KIR)gene polymorphism on cytomegalovirus(CMV)infection and pathogenesis after hematopoietic stem cell transplantation(HSCT)

  9. The Na+/H+ Exchanger Regulatory Factor Stabilizes Epidermal Growth Factor Receptors at the Cell Surface

    OpenAIRE

    Lazar, Cheri S.; Cresson, Catherine M.; Lauffenburger, Douglas A.; Gill, Gordon N.

    2004-01-01

    Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control...

  10. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    OpenAIRE

    Yutaka Maruyama; Reiko Yasuda; Motonaka Kuroda; Yuzuru Eto

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi su...

  11. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    infectious lung injury, 96 proteins were differentially expressed. Gene ontology enrichment analysis showed that these proteins participate in biological processes involved in the development of lung injury after HSCT. These include acute phase response signaling, complement system, coagulation system, liver X receptor (LXR)/retinoid X receptor (RXR), and farsenoid X receptor (FXR)/RXR modulation. We identified 2 canonical pathways modulated by TNF-α, FXR/RXR activation, and IL2 signaling in macrophages. The proteins also mapped to blood coagulation, fibrinolysis, and wound healing-processes that participate in organ repair. Cell movement was identified as significantly over-represented by proteins with differential expression between IPS and infection. In conclusion, the BALF protein expression in IPS differed significantly from infectious lung injury in HSCT recipients. These differences provide insights into mechanisms that are activated in lung injury in HSCT recipients and suggest potential therapeutic targets to augment lung repair. PMID:27155584

  12. Evidence for estrogen receptor expression in germ cell and somatic cell subpopulations in the ovary of the newly hatched chicken.

    Science.gov (United States)

    Méndez, M C; Chávez, B; Echeverría, O; Vilchis, F; Vázquez Nin, G H; Pedernera, E

    1999-10-01

    Estrogens are involved in the gonadal morphogenesis of vertebrates, and almost all hormonal effects of 17beta-estradiol are mediated through specific receptors. At the time of sexual differentiation in the chicken, or even before, there is evidence of the presence of estrogen receptors and the secretion of 17beta-estradiol. However, no information is available regarding the cellular types that express the estrogen receptor in the immature chick ovary. The present study analyzes estrogen receptor expression in germ and somatic cells of the ovary in the newly hatched chicken. Highly purified cell subpopulations of germ and somatic cells were evaluated for specific 17beta-estradiol nuclear binding. In addition, the estrogen receptor was localized at the ultrastructural level by the immunogold technique. Finally, reverse transcription and polymerase chain reaction procedures detected a steady-state level of mRNA for the estrogen receptor. Somatic cells including typical steroidogenic cells showed specific 17beta-estradiol nuclear binding, displayed the estrogen receptor, and possessed estrogen receptor transcripts. The same result was observed in primary oocytes, together with the ultrastructural localization of estrogen receptor in extended chromatin filaments. Our experimental data support the hypothesis that estrogens are involved in the function of somatic and germ cells subpopulations in the immature chicken ovary. PMID:10555548

  13. The T cell receptor beta genes of Xenopus.

    Science.gov (United States)

    Chretien, I; Marcuz, A; Fellah, J; Charlemagne, J; Du Pasquier, L

    1997-03-01

    cDNA of the T cell receptor beta (TCRB) have been isolated from the anuran amphibian Xenopus and they show strong structural homology to TCRB sequences of other vertebrates. Ten BV families, two D segments, ten J segments, and a single C region have been defined so far. Each V family consists of one to two members per haploid genome. A unique feature of the Xenopus TCRB constant region is the lack of N-linked carbohydrate glycosylation sites. The recombination signal sequences suggest that the mechanism of rearrangements are identical to those of mammals. The locus is inherited in a diploid manner despite the pseudotetraploidy of the Xenopus laevis and X. gilli used in this study. PMID:9079820

  14. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire

    Science.gov (United States)

    Hou, Xianliang; Lu, Chong; Chen, Sisi; Xie, Qian; Cui, Guangying; Chen, Jianing; Chen, Zhi; Wu, Zhongwen; Ding, Yulong; Ye, Ping; Dai, Yong; Diao, Hongyan

    2016-01-01

    Abstract The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals. Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR. Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides. Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination. PMID:26962778

  15. A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics

    Directory of Open Access Journals (Sweden)

    Reginald L. McGee

    2015-02-01

    Full Text Available The kinase Syk is intricately involved in early signaling events in B cells and isrequired for proper response when antigens bind to B cell receptors (BCRs. Experimentsusing an analog-sensitive version of Syk (Syk-AQL have better elucidated its role, buthave not completely characterized its behavior. We present a computational model for BCRsignaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL.Following the use of sensitivity analysis to identify significant reaction parameters, we screenfor parameter vectors that produced graded responses to BCR stimulation as is observedexperimentally. We demonstrate qualitative agreement between the model and dose responsedata for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-KB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitiveto small reductions in kinase activity than Erkp activation, which is essentially unchanged.Since this profile of high Erkp and reduced NF-KB is consistent with anergy, this implies thatanergy is particularly sensitive to small changes in catalytic activity. Also, under a range offorward and reverse ligand binding rates, our model of Erkp and NF-KB activation displaysa dependence on a power law affinity: the ratio of the forward rate to a non-unit power of thereverse rate. This dependence implies that B cells may respond to certain details of bindingand unbinding rates for ligands rather than simple affinity alone.

  16. Pharmacological and expression profile of the prostaglandin I(2) receptor in the rat craniovascular system

    DEFF Research Database (Denmark)

    Myren, Maja; Olesen, Jes; Gupta, Saurabh

    2012-01-01

    Activation of the trigeminal nerve terminals around cerebral and meningeal arteries is thought to be an important patho-mechanism in migraine. Vasodilatation of the cranial arteries may also play a role in increasing nociception. Prostaglandin I(2) (PGI(2)) is capable of inducing a headache...... in healthy volunteers, a response that is likely to be mediated by the prostaglandin I(2) receptor (IP). This study investigates the functional and molecular characteristics of the IP receptor in the rat craniovascular system. In the closed cranial window model, iloprost, an IP receptor agonist, dilated...

  17. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Science.gov (United States)

    Geigerseder, Christof; Doepner, Richard FG; Thalhammer, Andrea; Krieger, Annette; Mayerhofer, Artur

    2004-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment. PMID:15040802

  18. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Directory of Open Access Journals (Sweden)

    Krieger Annette

    2004-03-01

    Full Text Available Abstract The neurotransmitter gamma-aminobutyric acid (GABA and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD, as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.

  19. Effect of glucocorticoid on epidermal growth factor receptor in human salivary gland adenocarcinoma cell line HSG.

    Science.gov (United States)

    Kyakumoto, S; Kurokawa, R; Ota, M

    1990-07-12

    Human salivary gland adenocarcinoma (HSG) cells treated with 10(-6) M triamcinolone acetonide for 48 h exhibited a 1.7- to 2.0-fold increase in [125I]human epidermal growth factor (hEGF) binding capacity as compared with untreated HSG cells. Scatchard analysis of [125I]EGF binding data revealed that the number of binding sites was 83,700 (+/- 29,200) receptors/cell in untreated cells and 160,500 (+/- 35,500) receptors/cell in treated cells. No substantial change in receptor affinity was detected. The dissociation constant of the EGF receptor was 0.78 (+/- 0.26).10(-9) M for untreated cells, whereas it was 0.93 (+/- 0.31).10(-9)M for treated cells. The triamcinolone acetonide-induced increase in [125I]EGF binding capacity was dose-dependent between 10(-9) and 10(-6)M, and maximal binding was observed at 10(-6)M. EGF receptors on HSG cells were affinity-labeled with [125I]EGF by use of the cross-linking reagent disuccinimidyl suberate (DSS). The cross-linked [125I]EGF was 3-4% of the total [125I]EGF bound to HSG cells. The affinity-labeled EGF receptor was detected as a specific 170 kDa band in the autoradiograph after SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Densitometric analysis revealed that triamcinolone acetonide amplified the intensity of this band 2.0-fold over that of the band of untreated cells. EGF receptor synthesis was also measured by immunoprecipitation of [3H]leucine-labeled EGF receptor protein with anti-hEGF receptor monoclonal antibody. Receptor synthesis was increased 1.7- to 1.8-fold when HSG cells were treated with 10(-8)-10(-6)M triamcinolone acetonide for 48 h. When the immunoprecipitated, [35S]methionine-pulse-labeled EGF receptor was analyzed by SDS-PAGE and fluorography, the newly synthesized EGF receptor was detected at the position of 170 kDa; and treatment of HSG cells with triamcinolone acetonide resulted in a 2.0-fold amplification of this 170 kDa band. There was no significant difference in turnover rate of EGF receptor

  20. Receptor crosstalk: haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model

    OpenAIRE

    Trincavelli, Maria Letizia; Cuboni, Serena; Catena Dell’Osso, Mario; Maggio, Roberto; Klotz, Karl-Norbert; Novi, Francesca; Panighini, Anna; Daniele, Simona; Martini, Claudia

    2010-01-01

    A2A adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A2A adenosine receptors are regulated by D2 dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A2A adenosine receptor functional responses caused by the chronic blockade/activation of D2 dop...

  1. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model.

    Science.gov (United States)

    Athanason, Mark G; Ratliff, Whitney A; Chaput, Dale; MarElia, Catherine B; Kuehl, Melanie N; Stevens, Stanley M; Burkhardt, Brant R

    2016-11-15

    PANcreatic-DERived factor (PANDER) is a member of a superfamily of FAM3 proteins modulating glycemic levels by metabolic regulation of the liver and pancreas. The precise PANDER-induced hepatic signaling mechanism is still being elucidated and has been very complex due to the pleiotropic nature of this novel hormone. Our PANDER transgenic (PANTG) mouse displays a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased, a phenomena observed in type 2 diabetes. To examine the complex PANDER-induced mechanism of SHIR, we utilized quantitative mass spectrometry-based proteomic analysis using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to reveal the global hepatic proteome differences within the PANTG under the metabolic states of fasting, fed and insulin-stimulated conditions. Proteomic analysis identified lipid metabolism as one of the top cellular functions differentially altered in all metabolic states. Differentially expressed proteins within the PANTG having a lipid metabolic role included ACC, ACLY, CD36, CYP7A1, FASN and SCD1. Central to the differentially expressed proteins involved in lipid metabolism was the predicted activation of the liver X receptor (LXR) pathway. Western analysis validated the increased hepatic expression of LXRα along with LXR-directed targets such as FASN and CYP7A1 within the PANTG liver. Furthermore, recombinant PANDER was capable of inducing LXR promoter activity in-vitro as determined by luciferase reporter assays. Taken together, PANDER strongly impacts hepatic lipid metabolism across metabolic states and may induce a SHIR phenotype via the LXR pathway. PMID:27394190

  2. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  3. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

    Science.gov (United States)

    Kim, Hye-In; Kim, Taelim; Kim, Ji-Eun; Lee, Jun; Heo, Jinyuk; Lee, Na-Rae; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.

  4. Urokinase receptor forms in serum from non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Almasi, Charlotte Elberling; Christensen, Ib Jarle; Høyer-Hansen, Gunilla;

    2011-01-01

    To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients.......To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients....

  5. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    NARCIS (Netherlands)

    C. Piochon (Claire); C. Levenes (Carole); G. Ohtsuki (Gen); C.R.W. Hansel (Christian)

    2010-01-01

    textabstractA classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has b

  6. Variant B Cell Receptor Isotype Functions Differ in Hairy Cell Leukemia with Mutated BRAF and IGHV Genes

    NARCIS (Netherlands)

    Weston-Bell, Nicola J.; Forconi, Francesco; Kluin-Nelemans, Hanneke C.; Sahota, Surinder S.

    2014-01-01

    A functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes

  7. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    International Nuclear Information System (INIS)

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer

  8. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Bolitho, Erin M. [Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA (Australia); Mutsaers, Steven E. [Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, University of Western Australia, Nedlands (Australia); Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Western Australian Institute for Medical Research, Nedlands (Australia); Dharmarajan, Arun M. [School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia)

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  9. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    We recently reported that Δ9-tetrahydrocannabinol (Δ9-THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ9-THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ9-THC in the presence of CB receptors, it was revealed that Δ9-THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ9-THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ9-THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  10. Alterations in kainate receptor and TRPM1 localization in bipolar cells after retinal photoreceptor degeneration

    Directory of Open Access Journals (Sweden)

    Jacqueline eGayet-Primo

    2015-12-01

    Full Text Available Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that macaque and mouse Off bipolar cells receive glutamatergic input primarily through kainate-type glutamate receptors. Here, we studied the impact of photoreceptor degeneration on glutamate receptor associated proteins in Off and On bipolar cells. We show that the kainate receptor subunit, GluK1, persists in remodeled Off bipolar cell dendrites of the rd10 mouse retina. However, the pattern of expression is altered and the intensity of staining is reduced compared to wild-type retina. The kainate receptor auxiliary subunit, Neto1, also remains in Off bipolar cell dendrites after complete photoreceptor degeneration. Similar preservation of kainate receptor subunits was evident in human retina in which photoreceptors had degenerated due to serous retinal detachment. In contrast, photoreceptor degeneration leads to loss of synaptic expression of TRPM1 in mouse and human On bipolar cells, but strong somatic expression remains. These findings demonstrate that Off bipolar cells retain dendritic glutamate receptors during retinal degeneration and could thus serve as a conduit for signal transmission from transplanted or optogenetically-restored photoreceptors.

  11. Distinct chemokine receptor and cytokine expression profile in secondary progressive MS

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2001-01-01

    Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS)....

  12. T cell receptor gamma and delta rearrangements in hematologic malignancies. Relationship to lymphoid differentiation.

    OpenAIRE

    Griesinger, F; Greenberg, J M; Kersey, J H

    1989-01-01

    We have studied recombinatorial events of the T cell receptor delta and gamma chain genes in hematopoietic malignancies and related these to normal stages of lymphoid differentiation. T cell receptor delta gene recombinatorial events were found in 91% of acute T cell lymphoblastic leukemia, 68% of non-T, non-B lymphoid precursor acute lymphoblastic leukemia (ALL) and 80% of mixed lineage acute leukemias. Mature B-lineage leukemias and acute nonlymphocytic leukemias retained the T-cell recepto...

  13. Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes

    OpenAIRE

    Lambrecht, G.; Feifel, R.; Wagner-Röder, M.; Strohmann, C.; Zilch, H.; Tacke, Reinhold; Waelbroeck, M.; Christophe, J; Boddeke, H.; Mutschler, E.

    2012-01-01

    In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the obs...

  14. The study of the androgen receptor profile and changes of level of serum testosterone in human prostatic cancer

    International Nuclear Information System (INIS)

    The androgen receptors in biopsy specimens of 22 cases of human prostatic cancer (PC) were studied by radioligand binding assay. The cytoplasmic androgen receptor (AcR) and nuclear androgen receptor (AnR) densities were 305.70 +- 461.68 and 363.04 +- 391.44 pmol/g protein respectively, both were significantly higher than those of 36 benign prostatic hypertrophy (BPH) and 9 normal prostate (NP). Among the prostatic cancers, the AnR/AcR ratios were significantly different between metastatic and primary cancers. This result suggested that there might be migration of AR from nucleus to cytosol in the process of metastasis. The serum testosterone studied by RIA method are significantly lower than that of BPH and NP. Thawmounted autoradiography demonstrated that AR were mainly located in epithelial cells of the glandular tissue of prostate

  15. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    Science.gov (United States)

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. PMID:25203448

  16. Modulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor

    International Nuclear Information System (INIS)

    In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells

  17. Octreotide scintigraphy localizes somatostatin receptor-positive islet cell carcinomas

    NARCIS (Netherlands)

    W. Becker (W.); J. Marienhagen (J.); R. Scheubel (R.); A. Saptogino (A.); W.H. Bakker (Willem); W.A.P. Breeman (Wouter); F. Wolf (F.)

    1991-01-01

    textabstractTyr-3-Octreotide is a synthetic derivative of somatostatin and a somatostatin-receptor analogue. The iodine-123-labelled compound localizes somatostatin-receptor-positive tumours. In this paper two patients are reported in whom somatostatin receptors were demonstrated in vitro. In a 60-y

  18. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  19. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  20. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  1. Identification of alpha beta and gamma delta T cell receptor-positive cells

    DEFF Research Database (Denmark)

    Geisler, C; Larsen, J K; Plesner, T

    1988-01-01

    distribution and function of these different T cells. In immunofluorescence studies gamma delta TCR+ cells have been identified as CD3+WT-31- or CD3+CD4-CD8- cells. However, this may not be the optimal procedure because gamma delta TCR+ cells are weakly WT-31+, and some are CD8+. The aim of this study......Two lineages of T lymphocytes bearing the CD3 antigen can be defined on the basis of the nature of the heterodimeric receptor chain (alpha beta or gamma delta T cell receptor (TCR) expressed. Precise identification of alpha beta and gamma delta TCR+ cells is essential when studying the tissue...... was to evaluate a panel of monoclonal antibodies (MoAb) directed against different chains of the TCR-T3 complex for a more precise identification of alpha beta+ and gamma delta TCR+ cells in flow cytometric studies. We found that the MoAb anti-Ti-gamma A and delta-TCS-1, recognizing the TCR-gamma and the TCR...

  2. The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Jansen Sandra

    2011-02-01

    Full Text Available Abstract Background Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure mediates activation of the immune response in bacterial infection of the central nervous system (CNS. The chemotactic G-protein-coupled receptor (GPCR formyl-peptide-receptor like-1 (FPRL1 plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD. Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear. Methods Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide expression after infection with bacterial supernatants of Streptococcus pneumoniae (SP and Neisseria meningitides (NM. Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2 phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene expression and signal transduction were determined. Results We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between

  3. Rat insulinoma cells express both a 115-kDa growth hormone receptor and a 95-kDa prolactin receptor structurally related to the hepatic receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    of both lactogen and somatogen receptor populations. Covalent cross-linking of 125I-hGH, 125I-rGH, and 125I-rPRL to the RIN cells identified a 115-kDa somatogen receptor protein that binds hGH and rGH but not rPRL and hPL, and a 95-kDa lactogen receptor protein that binds hGH, rPRL, and hPL but not r......GH. Antiserum directed against the 37.5- and 40.7-kDa GH-binding proteins of mouse hepatic tissue specifically recognized the 115-kDa protein cross-linked with 125I-hGH, whereas a monoclonal antibody raised against the hepatic 42-kDa rPRL receptor recognized the 95-kDa protein cross-linked with 125I...

  4. Coexpression of Kit and the receptors for erythropoietin, interleukin 6 and GM-CSF on hemopoietic cells

    NARCIS (Netherlands)

    M.O. de Jong (Marg); Y. Westerman (Yvonne); G. Wagemaker (Gerard); A.W. Wognum (Albert)

    1997-01-01

    textabstractThe detection of functional growth factor (GF) receptors on subpopulations of hemopoietic cells may provide a further dissection of immature cell subsets. Since little information is available about coexpression of different GF receptors at the level of sing

  5. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays

    NARCIS (Netherlands)

    Wang, J.; Bovee, T.F.H.; Bi, Y.; Bernhöft, S.; Schramm, K.W.

    2014-01-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated ac

  6. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors.

    Science.gov (United States)

    Mattsson, Anna; Kärrman, Anna; Pinto, Rui; Brunström, Björn

    2015-01-01

    Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting

  7. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA and Agonists to Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Anna Mattsson

    Full Text Available Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA, and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic

  8. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E;

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986...... in vivo exhibited a marked cytoplasmic immunoreactivity for the receptor antigen. Together these findings indicate a specific role for the laminin receptor in laminin-mediated migration and that the ligand binding of the laminin receptor is encompassed in the COOH-terminal end of the protein....

  9. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    Science.gov (United States)

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  10. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    Science.gov (United States)

    Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu

    2016-01-01

    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707

  11. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  12. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  13. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  14. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-04-01

    Full Text Available Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was to determine the extent of α7 mRNA and protein expression in the human lung. Methods Experiments were done using reverse transcription polymerase chain reaction (RT-PCR, a nuclease protection assay and western blotting using membrane proteins. Results We detected mRNA for the neuronal nicotinic acetylcholine receptor α7 receptor in seven small cell lung cancer (SCLC cell lines, in two pulmonary adenocarcinoma cell lines, in cultured normal human small airway epithelial cells (SAEC, one carcinoid cell line, three squamous cell lines and tissue samples from nine patients with various types of lung cancer. A nuclease protection assay showed prominent levels of α7 in the NCI-H82 SCLC cell line while α7 was not detected in SAEC, suggesting that α7 mRNA levels may be higher in SCLC compared to normal cells. Using a specific antibody to the α7 nicotinic receptor, protein expression of α7 was determined. All SCLC cell lines except NCI-H187 expressed protein for the α7 receptor. In the non-SCLC cells and normal cells that express the α7 nAChR mRNA, only in SAEC, A549 and NCI-H226 was expression of the α7 nicotinic receptor protein shown. When NCI-H69 SCLC cell line was exposed to 100 pm NNK, protein expression of the α7 receptor was increased at 60 and 150 min. Conclusion Expression of mRNA for the neuronal nicotinic acetylcholine receptor α7 seems to be ubiquitously expressed in all human lung cancer cell lines tested (except for NCI-H441 as well as normal

  15. Rapid quantification of live cell receptors using bioluminescence in a flow-based microfluidic device.

    Science.gov (United States)

    Ramji, Ramesh; Cheong, Cheong Fook; Hirata, Hiroaki; Rahman, Abdur Rub Abdur; Lim, Chwee Teck

    2015-02-25

    The number of receptors expressed by cells plays an important role in controlling cell signaling events, thus determining its behaviour, state and fate. Current methods of quantifying receptors on cells are either laborious or do not maintain the cells in their native form. Here, a method integrating highly sensitive bioluminescence, high precision microfluidics and small footprint of lensfree optics is developed to quantify cell surface receptors. This method is safe to use, less laborious, and faster than the conventional radiolabelling and near field scanning methods. It is also more sensitive than fluorescence based assays and is ideal for high throughput screening. In quantifying β(1) adrenergic receptors expressed on the surface of H9c2 cardiomyocytes, this method yields receptor numbers from 3.12 × 10(5) to 9.36 × 10(5) receptors/cell which are comparable with current methods. This can serve as a very good platform for rapid quantification of receptor numbers in ligand/drug binding and receptor characterization studies, which is an important part of pharmaceutical and biological research. PMID:25336403

  16. TGF—β receptors in mouse ES—5 cells and their differentiated derivatives

    Institute of Scientific and Technical Information of China (English)

    SHIWEIKANG; JUNWU; 等

    1995-01-01

    By radioreceptor binding studies with iodinated TGF-β1,it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd-130pM,but after the induction of differentiation by retinoic acid and dBcAMP,the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM.Furthermore,more direct evidence supporting the expression of TGF-β type I and type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type I and type Ⅱ receptors.Meanwhile,mRNA expression level of types I and Ⅱ receptors in R-ES-5 cells were higher than that in ES-5 cells.Down-regulation of TGF-β receptors with a significant decrease in the rate of cell proliferation in both cells,was found by employing a pretreatment with neutralizing antibody to TGF-β1.The possible role of receptors for TGF-β in cell differentiation is discussed here.

  17. Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitrugno Valentina

    2010-11-01

    Full Text Available Abstract Background Basal-like carcinoma are aggressive breast cancers that frequently carry p53 inactivating mutations, lack estrogen receptor-α (ERα and express the cancer stem cell markers CD133 and CD44. These tumors also over-express Interleukin 6 (IL-6, a pro-inflammatory cytokine that stimulates the growth of breast cancer stem/progenitor cells. Results Here we show that p53 deficiency in breast cancer cells induces a loss of methylation at IL-6 proximal promoter region, which is maintained by an IL-6 autocrine loop. IL-6 also elicits the loss of methylation at the CD133 promoter region 1 and of CD44 proximal promoter, enhancing CD133 and CD44 gene transcription. In parallel, IL-6 induces the methylation of estrogen receptor (ERα promoter and the loss of ERα mRNA expression. Finally, IL-6 induces the methylation of IL-6 distal promoter and of CD133 promoter region 2, which harbour putative repressor regions. Conclusion We conclude that IL-6, whose methylation-dependent autocrine loop is triggered by the inactivation of p53, induces an epigenetic reprogramming that drives breast carcinoma cells towards a basal-like/stem cell-like gene expression profile.

  18. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  19. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  20. Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Matthew J Tanner

    Full Text Available The androgen receptor (AR is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.

  1. The lack of gonadotrophin-releasing hormone (GnRH) receptor desensitisation in alphaT3-1 cells is not due to GnRH receptor reserve or phosphatidylinositol 4,5-bis-phosphate pool size.

    Science.gov (United States)

    Forrest-Owen, W; Willars, G B; Nahorski, S R; Assefa, D; Davidson, J S; Hislop, J; McArdle, C A

    1999-01-25

    The phospholipase C (PLC)-activating gonadotrophin-releasing hormone (GnRH) receptor is thought not to rapidly desensitise in alphaT3-1 cells. This extremely unusual characteristic raises the concern that it might be a feature of the cell type, rather than the receptor per se. Here we have used video imaging to establish whether the effects of endogenous PLC-activating G-protein coupled receptors (GPCRs) on Ca2+ ion concentration [Ca2+]i desensitise in these cells. Oxytocin, endothelin-1, methacholine, and UTP all caused [Ca2+]i increases which underwent rapid homologous desensitisation in that they were transient and responses to repeat stimuli were attenuated whereas subsequent responses to GnRH were not. To test whether receptor reserve obscures functional desensitisation of GnRH receptors, a photoaffinity antagonist (Pant-1), was used to effect a partial and irreversible receptor blockade. UV crosslinking in medium with 1000 nM Pant-1 reduced GnRH receptor number to 20 +/- 5% and reduced maximal buserelin-stimulated [3H]IP(X) accumulation to 57 +/- 5%, demonstrating removal of receptor reserve. In control alphaT3-1 cells the initial rate of GnRH-stimulated [3H]IP(X) accumulation was maintained for at least 5 min and GnRH caused a sustained increase in Ins(1,4,5)P3 mass (confirming the resistance of GnRH receptors to desensitisation) and Pant-1 pre-treatment reduced the magnitude of these responses without altering their temporal profiles. In alphaT3-1 cells stably transfected with recombinant human muscarinic receptors (alphaT3-1/M3), responses to methacholine were characteristic of desensitising GPCRs (transient Ins(1,4,5)P3 and curvilinear [3H]IP(X) responses) and were unaltered by Pant-1. To test the relevance of phospholipid pool size, alphaT3-1/M3 cells were pre-treated with GnRH or methacholine in medium with LiCl (to deplete PtdIns(4,5)P2 pools). These pre-treatments reduced subsequent responses to methacholine and GnRH comparably, indicating access to a

  2. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    OpenAIRE

    Tanya C. Burch; Rhim, Johng S.; Julius O Nyalwidhe

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mit...

  3. Ligand-receptor dissociated expression explains high TSLP without prognostic impact in human primary head and neck squamous cell carcinoma.

    Science.gov (United States)

    Guillot-Delost, Maude; Guilleré, Lia; Berger, Frédérique; Ventre, Aurore; Michea, Paula; Sirven, Philémon; Pattarini, Lucia; Scholer-Dahirel, Alix; Kebir, Fatima-Zahra; Huerre, Michel; Chouchane-Mlik, Olfa; Lappartient, Emmanuelle; Rodriguez, José; Jouffroy, Thomas; Klijanienko, Jerzy; Nicolas, André; Sastre-Garau, Xavier; Honorio, Sofia; Mosseri, Véronique; Le Peltier, Nelly; Sablin, Marie-Paule; Le Tourneau, Christophe; Tartour, Éric; Badoual, Cécile; Soumelis, Vassili

    2016-07-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin (IL)-7-like cytokine expressed by epithelial cells during allergic inflammation, and activating dendritic cells (DC). Its expression and functional role in cancer remain controversial. We conducted retrospective (n = 89), and prospective studies including patients with untreated primary head and neck squamous cell carcinoma (HNSCC). We found that TSLP was overexpressed by HNSCC tumor cells, and associated with a highly differentiated status. However, no significant difference in overall and recurrence-free survival was found between patients bearing a tumor with high and low TSLP levels, respectively. Surprisingly, there was no significant association between the levels of TSLP expression, and the number of tumor-infiltrating mature DCLAMP(+) DC. In order to explain the apparent lack of TSLP-induced DC activation, we performed phenotypic and functional experiments on freshly resected tumors. Tumor-infiltrating immune cells, including DC, did not express the TSLP receptor heterodimer (TSLPR chain, IL-7Ralpha chain). Furthermore, freshly sorted blood CD11c(+) DC from healthy donors cultured with tumor-conditioned supernatant exhibited an activated profile, but this was not affected by an anti-TSLP blocking antibody, suggesting a DC activation pathway independent of tumor-derived TSLP. Overall, our results demonstrate that TSLP is overexpressed in HNSCC but its function is hampered by the lack of TSLPR-expressing cells in the tumor microenvironment. Such a dissociated ligand-receptor expression may impact intercellular communication in other immune activation pathways, and tumor types. PMID:27622034

  4. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  5. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays (Communities of Practice)

    Science.gov (United States)

    Understanding potential health risks is a significant challenge for large numbers of diverse chemicals with poorly characterized exposures and mechanisms of toxicities. The present study analyzes chemical-target activity profiles of 976 chemicals (including failed pharmaceuticals...

  6. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays

    Science.gov (United States)

    Understanding potential health risks is a significant challenge for large numbers of diverse chemicals with poorly characterized exposures and mechanisms of toxicities. The present study analyzes chemical-target activity profiles of 976 chemicals (including failed pharmaceuticals...

  7. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Shuqiang Li

    Full Text Available Chronic lymphocytic leukemia (CLL is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70(+ and IgV(H unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL.

  8. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    Science.gov (United States)

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  9. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  10. Proteomic and phosphoproteomic analysis of signalling by adhesion and growth factor receptors in mammary epithelial cells

    OpenAIRE

    Paul, Nikki

    2014-01-01

    Cell adhesion and communication are essential for tissue morphogenesis and repair in healthy multicellular organisms. However, dysregulation of these processes can drive disease progression in conditions such as cancer. Selective cell adhesion to the extracellular matrix is mediated by integrins, a family of transmembrane receptors that compartmentalise signalling and organise the cytoskeleton. Adhesion receptors provide spatial cues to cells to allow them to respond to growth factor and cyto...

  11. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    OpenAIRE

    Schuller Hildegard M; Dhar Madhu; Plummer Howard K

    2005-01-01

    Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was t...

  12. Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells.

    OpenAIRE

    Battey, J F; Way, J M; Corjay, M H; Shapira, H; Kusano, K; Harkins, R.; Wu, J M; Slattery, T; Mann, E.; Feldman, R I

    1991-01-01

    The mammalian bombesin-like peptides gastrin-releasing peptide (GRP) and neuromedin B regulate numerous and varied cell physiologic processes in various cell types and have also been implicated as autocrine growth factors influencing the pathogenesis and progression of human small cell lung carcinomas. We report here the molecular characterization of the bombesin/GRP receptor. Structural analysis of cDNA clones isolated from Swiss 3T3 murine embryonal fibroblasts shows that the GRP receptor i...

  13. Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethyl sulfoxide.

    OpenAIRE

    Broudy, V C; Lin, N.; Egrie, J; de Haën, C; Weiss, T.; Papayannopoulou, T; Adamson, J W

    1988-01-01

    Erythropoietin, a glycoprotein that regulates erythropoiesis, initiates its biological effects by binding to a cell-surface receptor. Little is known about the structure of the erythropoietin receptor and the events that follow binding of erythropoietin to its receptor, in part because of the difficulty of obtaining sufficient quantities of cells that express the erythropoietin receptor. We used both iodinated and metabolically labeled erythropoietin to characterize the receptor on a variety ...

  14. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Science.gov (United States)

    Yin, Rong; Gu, Liang; Li, Min; Jiang, Cizhong; Cao, Tongcheng; Zhang, Xiaobai

    2014-01-01

    Bisphenol A (BPA) is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER)-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  15. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  16. Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

    OpenAIRE

    Lee, Yun-Jung; Won, Tae Joon; Hyung, Kyeong Eun; Lee, Mi Ji; Moon, Young-hye; Lee, Ik Hee; Go, Byung Sung; Hwang, Kwang Woo

    2014-01-01

    Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-...

  17. Muscarinic acetylcholine receptor down-regulation limits the extent of inhibition of cell cycle progression in Chinese hamster ovary cells.

    OpenAIRE

    Detjen, K.; Yang, J; Logsdon, C D

    1995-01-01

    Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in t...

  18. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  19. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    Science.gov (United States)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  20. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    Science.gov (United States)

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  1. DETERMINATION O F TOTAL CELL PROTEIN PROFILES OF Streptomyces SPECIES

    OpenAIRE

    Özdemir K; Berber İ; Öğün E; Atalan M

    2013-01-01

    Present study has been conducted for finding out the total protein profile of bacterial strain Streptomyces sps by sodium dodecyl sulphate polyacrylamide gelelectrophoresis. Total 139 isolates of Streptomyces have been isolated from the soil. Amongst all isolated strain, total 20 isolates were used for getting protein profile by SDS PAGE. Amongst all isolates, 20 isolates were selected for protein profiling and these were divided in two groups. Two strains of Streptomyces i.e. S. violaceus...

  2. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H Protein

    Directory of Open Access Journals (Sweden)

    Liang-Tzung Lin

    2016-09-01

    Full Text Available The hemagglutinin (H protein of measles virus (MeV interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46 as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150 and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles

  3. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells.

    Science.gov (United States)

    Cheng, Tain-Junn; Lin, Shu-Wen; Chen, Chih-Wei; Guo, How-Ran; Wang, Ying-Jang

    2016-10-25

    Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells. PMID:27622732

  4. Individualized leukemia cell-population profiles in common B-cell acute lymphoblastic leukemia patients

    OpenAIRE

    Xian-Ming Mo; Hong Xu; Ting-Ting Zeng; Neng-Gang Jiang; Yong-Qian Jia; Jing-Tao Dong; Jian-Hua Yu; Wen-Tong Meng

    2013-01-01

    Immunophenotype is critical for diagnosing common B-cell acute lymphoblastic leukemia (common ALL) and detecting minimal residual disease. We developed a protocol to explore the immunophenotypic profiles of common ALL based on the expression levels of the antigens associated with B lymphoid development, including IL-7R alpha (CD127), cytoplasmic CD79a (cCD79a), CD19, VpreB (CD179a), and sIgM, which are successive and essential for progression of B cells along their developmental pathway. Anal...

  5. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  6. Toll-Like Receptor-Dependent Immune Complex Activation of B Cells and Dendritic Cells.

    Science.gov (United States)

    Moody, Krishna L; Uccellini, Melissa B; Avalos, Ana M; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2016-01-01

    High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated the endosomal Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7. The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. As the endosomal TLR7 and TLR9 function optimally from intracellular acidic compartments, we developed a facile methodology to monitor the trafficking of defined DNA ICs by flow cytometry and confocal microscopy. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA and will help illuminate the role of IC trafficking in the response.

  7. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131

    OpenAIRE

    Simone Prandi; Marta Bromke; Sandra Hübner; Anja Voigt; Ulrich Boehm; Wolfgang Meyerhof; Maik Behrens

    2013-01-01

    The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r express...

  8. Distribution of killer cell immunoglobulin-like receptors genes in the Italian Caucasian population

    Directory of Open Access Journals (Sweden)

    Mariani M

    2006-10-01

    Full Text Available Abstract Background Killer cell immunoglobulin-like receptors (KIRs are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this study we report the genotypic structure of KIRs in 217 unrelated healthy Italian individuals from 22 immunogenetics laboratories, located in the northern, central and southern regions of Italy. Methods Two hundred and seventeen DNA samples were studied by a low resolution PCR-SSP kit designed to identify all KIR genes. Results All 17 KIR genes were observed in the population with different frequencies than other Caucasian and non-Caucasian populations; framework genes KIR3DL3, KIR3DP1, KIR2DL4 and KIR3DL2 were present in all individuals. Sixty-five different profiles were found in this Italian population study. Haplotype A remains the most prevalent and genotype 1, with a frequency of 28.5%, is the most commonly observed in the Italian population. Conclusion The Italian Caucasian population shows polymorphism of the KIR gene family like other Caucasian and non-Caucasian populations. Although 64 genotypes have been observed, genotype 1 remains the most frequent as already observed in other populations. Such knowledge of the KIR gene distribution in populations is very useful in the study of associations with diseases and in selection of donors for haploidentical bone marrow transplantation.

  9. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase.

    Science.gov (United States)

    Olivero, Martina; Dettori, Daniela; Arena, Sabrina; Zecchin, Davide; Lantelme, Erica; Di Renzo, Maria Flavia

    2014-08-15

    CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the mutation profile and CDT2 expression level. Cell death was associated to rereplication and to loss of CDT1 degradation. Conversely, CDT2 depletion did not affect non-transformed human cells, such as immortalized kidney, lung and breast cell lines, and primary cultures of endothelial cells and osteoblasts. The ectopic over-expression of an activated oncogene, such as the mutation-activated RAS or the amplified MET in non-transformed immortalized breast cell lines and primary human osteoblasts, respectively, made cells transformed in vitro, tumorigenic in vivo, and susceptible to CDT2 loss. The widespread effect of CDT2 depletion in different cancer cells suggests that CDT2 is not in a synthetic lethal interaction to a single specific pathway. CDT2 likely is a non-oncogene to which transformed cells become addicted because of their enhanced cellular stress, such as replicative stress and DNA damage.

  10. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  11. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    OpenAIRE

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A; Schleimer, Robert P.; Lu, Nick Z.

    2013-01-01

    Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.

  12. RELATIONSHIP BETWEEN SOMATOSTATIN RECEPTORS AND ACTIVATION OF HEPATIC STELLATE CELL

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 尤汉宁; 徐芹芳; 陆良勇

    2004-01-01

    Objective To investigate the relationship between expression of somatostatin receptors (SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation, and then SSTR1 ~5 mRNA levels in the differentiated first passage HSCs were detected by means of reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1 ~5 in normal as well as fibrotic liver was measured by immunohistochemical staining. Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs and normal rat liver. But SSTR1~3 mRNA appeared as HSCs became wholly activated, and SSTR1 ~3 could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc Conclusion The expression of SSTR1~3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  13. Relationship between somatostatin receptors and activation of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 陆良勇; 尤汉宁; 徐芹芳

    2004-01-01

    Background Somafostatin receptors (SSTRs) have been suggested to involve in mediating the effect of somatostatin on hepatic stellate cells (HSCs) in an activation-dependent way. We, therefore, try to investigate the relationship between expression of SSTRs and activation of rat HSCs.Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation.SSTR1-5 mRNA levels in the differentiated first passage HSCs were detected by means of a reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1-5 in normal as well as fibrotic livers was measured by immunohistochemical staining.Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs or normal rat liver. However, SSTR1-3 mRNA appeared as HSCs became wholly activated, and could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc.Conclusion The expression of SSTR1-3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  14. Expression of subtypes of somatostatin receptors in hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Sheng-Han Song; Xi-Sheng Leng; Tao Li; Zhi-Zhong Qin; Ji-Run Peng; Li Zhao; Yu-Hua Wei; Xin Yu

    2004-01-01

    AIM: To elucidate the mechanism by which somatostatin and its analogue exert the influence on liver fibrosis, and to investigate the mRNA expression of somatostatin receptors subtypes (SSTRs) and the distribution of somatostatin analogue octreotide in rat hepatic stellate cells (HSCs).METHODS: HSCs were isolated from Sprague Dawley (SD)rats byin situ perfusion and density gradient centrifugation.After several passages, the mRNA expression of 5 subtypes of SSTRs were assessed by reverse transcription-polymerase chain reaction (RT-PCR). HSCs were planted on coverslip and co-cultured with octreotide tagged by FITC. Then the distribution of FITC fluorescence was observed under laser scanning confocal microscope (LSCM) in 12-24 h.RESULTS: There were mRNA expression of SSTR2, SSTR3and SSTR5 but not SSTR1 and SSTR4 in SD rat HSCs. The mRNA expression level of SSTR2 was significantly higher than that of other subtypes (P<0.01). FITC fluorescence of octreotide was clearly observed on the surface and in the cytoplasm, but not in the nuclei of HSCs under LSCM.CONCLUSION: The effect exerted by somatostatin and its analogues on HSCs may mainly depend on the expression of SSTR2, SSTR3 and SSTR5. Octreotide can perfectly combine with HSCs, and thereby exerts its biological activity on regulating the characters of active HSCs. This provides a potential prevention and management against liver fibrosis.

  15. Androgen receptor heterogeneity and phosphorylation in human LNCaP cells

    International Nuclear Information System (INIS)

    Androgen receptor heterogeneity and phosphorylation were studied in the human LNCaP cell line. Fluorography after photoaffinity labeling as well as immunoblotting with a specific polyclonal antibody revealed that the human androgen receptor migrated as a closely spaced 110 kD doublet on SDS-polyacrylamide gels. A time-dependent change in the ratio between the two isoforms was not observed after R1881 treatment of intact cells. In nuclear extracts of LNCaP cells that were incubated with [32P]orthophosphate in the presence of 10 nM R1881, a 110 kD phosphorylated protein was demonstrated after immunopurification using a monoclonal antibody against the human androgen receptor. Only a very small amount of this phosphoprotein was detected in the nuclear fraction from cells not treated with R1881. These results indicate that the human androgen receptor in LNCaP cells can be phosphorylated

  16. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5AH......-T2-clone B was studied. The binding characteristics with regard to specificity for the native 22 kDa hGH, and the 20 kDa variant were similar to that reported on rat adipocytes. Normal rat islet cells showed a similar affinity for hGH. The RIN cells express GH receptors similar to the cloned liver...... receptor. It is hypothesized that defects in the receptor expression on the beta-cells may contribute to the susceptibility to develop diabetes....

  17. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  18. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  19. Androgen receptor accelerates premature senescence of human dermal papilla cells in association with DNA damage.

    Directory of Open Access Journals (Sweden)

    Yi-Chien Yang

    Full Text Available The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16(INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16(INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16(INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia.

  20. A novel system of polymorphic and diverse NK cell receptors in primates.

    Directory of Open Access Journals (Sweden)

    Anne Averdam

    2009-10-01

    Full Text Available There are two main classes of natural killer (NK cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR and the structurally unrelated killer cell lectin-like receptors (KLR. While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2 rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.

  1. A novel system of polymorphic and diverse NK cell receptors in primates.

    Science.gov (United States)

    Averdam, Anne; Petersen, Beatrix; Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-10-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  2. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  3. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  4. The Mannose Receptor Is Involved in the Phagocytosis of Mycobacteria-Induced Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Teresa Garcia-Aguilar

    2016-01-01

    Full Text Available Upon Mycobacterium tuberculosis infection, macrophages may undergo apoptosis, which has been considered an innate immune response. The pathways underlying the removal of dead cells in homeostatic apoptosis have been extensively studied, but little is known regarding how cells that undergo apoptotic death during mycobacterial infection are removed. This study shows that macrophages induced to undergo apoptosis with mycobacteria cell wall proteins are engulfed by J-774A.1 monocytic cells through the mannose receptor. This demonstration was achieved through assays in which phagocytosis was inhibited with a blocking anti-mannose receptor antibody and with mannose receptor competitor sugars. Moreover, elimination of the mannose receptor by a specific siRNA significantly diminished the expression of the mannose receptor and the phagocytosis of apoptotic cells. As shown by immunofluorescence, engulfed apoptotic bodies are initially located in Rab5-positive phagosomes, which mature to express the phagolysosome marker LAMP1. The phagocytosis of dead cells triggered an anti-inflammatory response with the production of TGF-β and IL-10 but not of the proinflammatory cytokines IL-12 and TNF-α. This study documents the previously unreported participation of the mannose receptor in the removal of apoptotic cells in the setting of tuberculosis (TB infection. The results challenge the idea that apoptotic cell phagocytosis in TB has an immunogenic effect.

  5. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies.

    Science.gov (United States)

    Carrillo-Reid, Luis; Hernández-López, Salvador; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José

    2011-10-19

    Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

  6. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zelmina Lubovac-Pilav

    Full Text Available Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12, this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc. and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.. Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  7. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, the

  8. A dual immunocytochemical assay for oestrogen and epidermal growth factor receptors in tumour cell lines

    NARCIS (Netherlands)

    A.K. Sharma (Anisha K.); J.H. Horgan; R.L. McClelland (Robyn); A.G. Douglas-Jones (A.); T. van Agthoven (Ton); L.C.J. Dorssers (Lambert); R.I. Nicholson (R.)

    1994-01-01

    textabstractA new dual immunocytochemical assay for oestrogen receptor (ER) and epidermal growth factor receptor (EGFR) has been developed. It has been tested in a variety of conditions using cell culture lines and the results correlate well with those obtained from single immunocytochemical assays.

  9. Genomics of signaling crosstalk of estrogen receptor alpha in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Peter Dudek

    Full Text Available BACKGROUND: The estrogen receptor alpha (ERalpha is a ligand-regulated transcription factor. However, a wide variety of other extracellular signals can activate ERalpha in the absence of estrogen. The impact of these alternate modes of activation on gene expression profiles has not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: We show that estrogen, growth factors and cAMP elicit surprisingly distinct ERalpha-dependent transcriptional responses in human MCF7 breast cancer cells. In response to growth factors and cAMP, ERalpha primarily activates and represses genes, respectively. The combined treatments with the anti-estrogen tamoxifen and cAMP or growth factors regulate yet other sets of genes. In many cases, tamoxifen is perverted to an agonist, potentially mimicking what is happening in certain tamoxifen-resistant breast tumors and emphasizing the importance of the cellular signaling environment. Using a computational analysis, we predicted that a Hox protein might be involved in mediating such combinatorial effects, and then confirmed it experimentally. Although both tamoxifen and cAMP block the proliferation of MCF7 cells, their combined application stimulates it, and this can be blocked with a dominant-negative Hox mutant. CONCLUSIONS/SIGNIFICANCE: The activating signal dictates both target gene selection and regulation by ERalpha, and this has consequences on global gene expression patterns that may be relevant to understanding the progression of ERalpha-dependent carcinomas.

  10. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa

    OpenAIRE

    Feugang, Jean M; Greene, Jonathan M; Sanchez-Rodríguez, Hector L; Stokes, John V; Crenshaw, Mark A; Willard, Scott T.; Ryan, Peter L.

    2015-01-01

    Background Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars. M...

  11. Targeted Biomarker Profiling of Matched Primary and Metastatic Estrogen Receptor Positive Breast Cancers

    OpenAIRE

    Schleifman, Erica B; Desai, Rupal; Spoerke, Jill M.; Xiao, Yuanyuan; Wong, Cheryl; Abbas, Ilma; O’Brien, Carol; Patel, Rajesh; Sumiyoshi, Teiko; Fu, Ling; Tam, Rachel N.; Koeppen, Hartmut; Wilson, Timothy R; Raja, Rajiv; Hampton, Garret M.

    2014-01-01

    Patients with newly diagnosed, early stage estrogen receptor positive (ER+) breast cancer often show disease free survival in excess of five years following surgery and systemic adjuvant therapy. An important question is whether diagnostic tumor tissue from the primary lesion offers an accurate molecular portrait of the cancer post recurrence and thus may be used for predictive diagnostic purposes for patients with relapsed, metastatic disease. As the class I phosphatidylinositol 3' kinase (P...

  12. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells.

    OpenAIRE

    Billestrup, N; Møldrup, A; Serup, P.; Mathews, L S; Norstedt, G; Nielsen, J H

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and t...

  13. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    International Nuclear Information System (INIS)

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  14. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, Stine Gry;

    2011-01-01

    RNA analysis (24 women). Expression of Androgen Receptor (AR) mRNA levels in granulosa cells, and of androstenedione and testosterone in FF, were correlated to the expression of FSH receptor (FSHR), LH receptor (LHR), CYP19 and anti-Müllerian Hormone-receptor2 (AMHR2) mRNA in the granulosa cells and to the FF...... with the expression of AMHR2, but did not correlate with any of the hormones in the FF. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the FF levels of androgen and FSHR expression...

  15. Reconstitution of the B cell antigen receptor signaling components in COS cells.

    Science.gov (United States)

    Saouaf, S J; Kut, S A; Fargnoli, J; Rowley, R B; Bolen, J B; Mahajan, S

    1995-11-10

    To elucidate interactions occurring between B cell protein tyrosine kinases and the signaling components of the B cell antigen receptor, we have co-transfected into COS cells individual tyrosine kinases together with chimeric cell surface receptors containing the cytoplasmic domains of Ig alpha or Ig beta. Of the tyrosine kinases transfected (Lyn, Blk, Hck, Syk, Fyn), only Blk was able to phosphorylate and subsequently associate with cotransfected Ig alpha and Ig beta chimeras in vivo. Association between Blk and the Ig alpha and Ig beta cytoplasmic domains was shown by mutational analyses to be the result of an SH2-phosphotyrosine interaction. We identified the tyrosine residues of the Ig alpha and Ig beta cytoplasmic domains was shown by mutational analyses to be the result of an SH2-phosphotyrosine interaction. We identified the tyrosine residues of the Ig alpha and Ig beta cytoplasmic domains phosphorylated by Blk. The enzymatic activity and membrane association of Blk were required for the observed phosphorylation of the Ig alpha and Ig beta chimeras. Sequences within the amino-terminal unique domain of Blk are responsible for recognition and subsequent phosphorylation of the Ig alpha chimera since transfer of the unique region of Blk to Fyn results in the chimeric kinase's ability to phosphorylate the cytoplasmic domain of Ig alpha. These findings indicate that the unique domain of Src family kinases may direct recognition of certain substrates leading to their phosphorylation. PMID:7592958

  16. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor.

    Science.gov (United States)

    Ahn, Kwang H; Mahmoud, Mariam M; Samala, Sushma; Lu, Dai; Kendall, Debra A

    2013-03-01

    Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.

  17. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  18. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  19. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  20. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  1. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    International Nuclear Information System (INIS)

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue

  2. The Pre-B Cell Receptor and Its Function during B Cell Development

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Gopesh Srivastava1; Liwei Lu

    2004-01-01

    The process of B cell development in the bone marrow occurs by the stepwise rearrangements of the V, D, and Jsegments of the Ig H and L chain gene loci. During early B cell genesis, productive IgH chain generearrangement leads to assembly of the pre-B cell receptor (pre-BCR), which acts as an important checkpointat the pro-B/preB transitional stage. The pre-BCR, transiently expressed by developing precursor B cells,comprises the Ig μH chain, surrogate light (SL) chains VpreB and λ5, as well as the signal-transducing heterodimer Igα/Igβ. Signaling through the pre-BCR regulates allelic exclusion at the Ig H locus, stimulates cell proliferation, and induces differentiation to small post-mitotic pre-B cells that further undergo the rearrangement of the IgL chain genes. Recent advances in elucidating the key roles of pre-BCR in B cell development have provided a better understanding of normal B lymphopoiesis and its dysregulated state leading to B cell neoplasia.

  3. The Pre-B Cell Receptor and Its Function during B Cell Development

    Institute of Scientific and Technical Information of China (English)

    MinZhang; GopeshSrivastava; LiweiLu

    2004-01-01

    The process of B cell development in the bone marrow occurs by the stepwise rearrangements of the V, D, and J segments of the Ig H and L chain gene loci. During early B cell genesis, productive IgH chain gene rearrangement leads to assembly of the pre-B cell receptor (pre-BCR), which acts as an important checkpoint at the pro-B/preB transitional stage. The pre-BCR, transiently expressed by developing precursor B cells, comprises the Ig μH chain, surrogate light (SL) chains VpreB and λ5, as well as the signal-transducing hetero-dimer Igα/Igβ. Signaling through the pre-BCR regulates allelic exclusion at the Ig H locus, stimulates cell proliferation, and induces differentiation to small post-mitotic pre-B cells that further undergo the rearrangement of the IgL chain genes. Recent advances in elucidating the key roles of pre-BCR in B cell development have provided a better understanding of normal B lymphopoiesis and its dysregulated state leading to B cell neoplasia. Cellular & Molecular Immunology. 2004;1(2):89-94.

  4. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    Science.gov (United States)

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.

  5. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P;

    1989-01-01

    Flow cytometric analysis of the peripheral blood mononuclear cells in a six year old girl with a primary cellular immune deficiency showed a normal fraction of CD3 positive T cells. Most (70%) of the CD3 positive cells, however, expressed the gamma delta and not the alpha beta T cell receptor....... Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...... deficiency associated with a high proportion of T cells expressing the gamma delta T cell receptor has been described in nude mice, and it is suggested that the immune deficiency of this patient may represent a human analogue....

  6. Solubilization and characterization of the VIP receptor on a human lymphoblastic cell line

    International Nuclear Information System (INIS)

    The neuropeptide, vasoactive intestinal peptide (VIP), has been shown to modulate several immune functions including lymphocyte trafficking, lymphoblastic transformation and natural killer cell activity. These actions of VIP appear to be mediated via specific, VIP preferring, receptors. Functional VIP receptors have been demonstrated on human T lymphocytes, pre B cell (CALLA+) leukemia cells and a Molt 4b lymphoblastic cell line. In this study, plasma membranes were prepared from Molt 4b lymphoblasts. The membrane fraction contained a function VIP receptor as determined by activation of adenylate cyclase which was potentiated by both guanine nucleotide and forskolin. 125I-VIP was covalently crosslinked to its receptor in membranes using the bifunctional reagent disuccinimidyl suberate. A 50,000 M/sub r/ protein comprising or associated with the VIP receptor was identified. Treatment of crosslinked membranes with endo-β-N-acetylglucosaminidase F did not alter the mobility of the putative VIP receptor indicating no significant high mannose or complex glycosyl residues on the receptor molecule. Similarly, treatment of crosslinked membranes with neuroaminidase resulted in no change in mobility suggesting the absence of sialic acid residues on the putative receptor molecule. The VIP receptor was solubilized by treatment of membranes with 50 mM (3-((3-Cholamidopropyl)dimethylammonio)-1-propane sulfonate) CHAPS followed by centrifugation at 48,000 g. The crosslinked solubilized receptor again migrated at M/sur r/ = 50,000 indicating a 47K (50,000 - MW of VIP) protein. Further characterization of this receptor will allow for development of therapeutic modalities to modulate lymphocyte proliferation and function in vivo

  7. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  8. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    Science.gov (United States)

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  9. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  10. Transcriptome profiling reveals higher vertebrate orthologous of intra-cytoplasmic pattern recognition receptors in grey bamboo shark.

    Directory of Open Access Journals (Sweden)

    Tirumurugaan Krishnaswamy Gopalan

    Full Text Available From an immunologist perspective, sharks are an important group of jawed cartilaginous fishes and survey of the public database revealed a great gap in availability of large-scale sequence data for the group of Chondrichthyans the elasmobranchs. In an attempt to bridge this deficit we generated the transcriptome from the spleen and kidney tissues (a total of 1,606,172 transcripts of the shark, Chiloscyllium griseum using the Illumina HiSeq2000 platform. With a cut off of > = 300 bp and an expression value of >1RPKM we used 43,385 transcripts for BLASTX analysis which revealed 17,548 transcripts matching to the NCBI nr database with an E-value of < = 10(-5 and similarity score of 40%. The longest transcript was 16,974 bases with matched to HECT domain containing E3 ubiqutin protein ligase. MEGAN4 annotation pipeline revealed immune and signalling pathways including cell adhesion molecules, cytokine-cytokine receptor interaction, T-cell receptor signalling pathway and chemokine signaling pathway to be highly expressed in spleen, while different metabolism pathways such as amino acid metabolism, carbohydrate metabolism, lipid metabolism and xenobiotic biodegradation were highly expressed in kidney. Few of the candidate genes were selected to analyze their expression levels in various tissues by real-time PCR and also localization of a receptor by in-situ PCR to validate the prediction. We also predicted the domains structures of some of the identified pattern recognition receptors, their phylogenetic relationship with lower and higher vertebrates and the complete downstream signaling mediators of classical dsRNA signaling pathway. The generated transcriptome will be a valuable resource to further genetic and genomic research in elasmobranchs.

  11. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking

    Directory of Open Access Journals (Sweden)

    Rocio Flores-Fernández

    2016-01-01

    Full Text Available Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE. In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease.

  12. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking

    Science.gov (United States)

    Flores-Fernández, Rocio; Blanco-Favela, Francisco; Fuentes-Pananá, Ezequiel M.; Chávez-Sánchez, Luis; Gorocica-Rosete, Patricia; Pizaña-Venegas, Alberto; Chávez-Rueda, Adriana Karina

    2016-01-01

    Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE). In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR) as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease. PMID:27314053

  13. Receptor interconversion model of hormone action. 3. Estrogen receptor mediated repression of reporter gene activity in A431 cells.

    Science.gov (United States)

    Nag, A; Park, I; Krust, A; Smith, R G

    1990-03-20

    The chicken estrogen receptor exists in three interconvertible forms, two of which bind estradiol with high affinity and one which lacks the capacity to bind estradiol. Interconversion is regulated by reactions involving ATP/Mg2+. By cotransfecting into A431 cells estrogen receptor cDNA in an expression vector together with the pA2 (-821/-87) tk-CAT vitellogenin construct, we demonstrate that constitutive expression of chloramphenicol acetyltransferase (CAT) activity can be regulated either by selection of ligand or by modifying phosphorylation reactions in the recipient cells. In the presence of estrogen receptors, constitutive expression of CAT activity is inhibited in three situations: (i) in the absence of an estrogenic ligand; (ii) in the presence of an anti-estrogen; and (iii) in the presence of an estrogenic ligand together with 12-O-tetradecanoylphorbol 13-acetate (TPA). Estrogen receptor mediated repression of constitutive CAT activity is not observed with the pA2 (-331/-87) tk-CAT construct, indicating that DNA sequences required for repression are located between -821 and -331 base pairs upstream of the transcription initiation site. PMID:2346742

  14. Globular adiponectin, acting via adiponectin receptor-1, inhibits leptin-stimulated oesophageal adenocarcinoma cell proliferation

    OpenAIRE

    Ogunwobi, Olorunseun O.; Beales, Ian L.P.

    2008-01-01

    Globular adiponectin, acting via adiponectin receptor-1, inhibits leptin-stimulated oesophageal adenocarcinoma cell proliferation UNITED KINGDOM (Ogunwobi, Olorunseun O.) UNITED KINGDOM Received: 2007-09-18 Revised: 2008-01-14 Accepted: 2008-01-23

  15. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  16. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas;

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part...... of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization....

  17. Modulation of cell surface GABA B receptors by desensitization,trafficking and regulated degradation

    Institute of Scientific and Technical Information of China (English)

    Dietmar; Benke; Khaled; Zemoura; Patrick; J; Maier

    2012-01-01

    Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.

  18. Modulation of cholinephosphotransferase activity in breast cancer cell lines by Ro5-4864, a peripheral benzodiazepine receptor agonist

    International Nuclear Information System (INIS)

    Changes in phospholipid and fatty acid profile are hallmarks of cancer progression. Increase in peripheral benzodiazepine receptor expression has been implicated in breast cancer. The benzodiazepine, Ro5-4864, increases cell proliferation in some breast cancer cell lines. Biosynthesis of phosphatidylcholine (PC) has been identified as a marker for cells proliferating at high rates. Cholinephosphotransferase (CPT) is the terminal enzyme for the de novo biosynthesis of PC. We have addressed here whether Ro5-4864 facilitates some cancer causing mechanisms in breast cancer. We report that cell proliferation increases exponentially in aggressive breast cancer cell lines 11-9-1-4 and BT-549 when treated with nanomolar concentrations of Ro5-4864. This increase is seen within 24 h of treatment, consistent with the cell doubling time in these cells. Ro5-4864 also upregulates c-fos expression in breast cancer cell lines 11-9-1-4 and BT-549, while expression in non-tumorigenic cell line MCF-12A was either basal or slightly downregulated. We further examined the expression of the CPT gene in breast cancer (11-9-1-4, BT-549) and non-tumorigenic cell lines (MCF-12A, MCF-12F). We found that the CPT gene is overexpressed in breast cancer cell lines compared to the non-tumorigenic cell lines. Furthermore, the activity of CPT in forming PC is increased in the breast cancer cell lines cultured for 24 h. Additionally, we examined the CPT activity in the presence of nanomolar concentrations of Ro5-4864. Biosynthesis of PC was increased in breast cancer cell lines upon treatment. We therefore propose that Ro5-4864 facilitates PC formation, a process important in membrane biogenesis for proliferating cells

  19. Rapid T-cell receptor CD4+ repertoire reconstitution and immune recovery in unrelated umbilical cord blood transplanted pediatric leukemia patients.

    Science.gov (United States)

    Finocchi, Andrea; Romiti, Maria Luisa; Di Cesare, Silvia; Puliafito, Pamela; Pensieroso, Simone; Rana, Ippolita; Pinto, Rita; Cancrini, Caterina; De Rossi, Giulio; Caniglia, Maurizio; Rossi, Paolo

    2006-07-01

    Umbilical cord blood transplantation has been successfully employed for treatment of many immune and hematologic disorders. The aim of this study was to evaluate the quality of immune reconstitution after umbilical cord blood transplantation in 6 leukemia children. T-cell receptor Vbeta third complementary region spectratyping was used for monitoring the contribution of the thymic pathway in patients' immune reconstitution. Absolute numbers of lymphocyte subsets (T, B, and natural killer), and lymphoproliferative in vitro response to mitogens, recovered within 12 months after transplantation. Furthermore, an overall diversification of T-cell receptor complexity in the repopulating T cells, with a polyclonal Gaussian profiles in most (74%) of total families was observed. Noteworthy, we showed a wider and more rapid reconstitution of T-cell receptor CD4+ T cell families compared with T-cell receptor CD8+ T ones still exhibiting some perturbations at 24 months. These data show that umbilical cord blood transplantation allows immune reconstitution already within 12 months with generation of newly diversified CD4+ T lymphocyte subsets.

  20. The B-cell receptor orchestrates environment-mediated lymphoma survival and drug resistance in B-cell malignancies

    OpenAIRE

    Shain, KH; Tao, J.

    2013-01-01

    Specific niches within the lymphoma tumor microenvironment (TME) provide sanctuary for subpopulations of tumor cells through stromal cell–tumor cell interactions. These interactions notably dictate growth, response to therapy and resistance of residual malignant B cells to therapeutic agents. This minimal residual disease (MRD) remains a major challenge in the treatment of B-cell malignancies and contributes to subsequent disease relapse. B-cell receptor (BCR) signaling has emerged as essenti...

  1. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Congjun; Evans, Chheng-Orn [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States); Stevens, Victoria L. [Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia (United States); Owens, Timothy R. [Emory University, School of Medicine, Atlanta, Georgia (United States); Oyesiku, Nelson M., E-mail: noyesik@emory.edu [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States)

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  2. Folate receptor α regulates cell proliferation in mouse gonadotroph αT3-1 cells

    International Nuclear Information System (INIS)

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FRα) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FRα has not fully been determined. We investigated the effect of FRα over-expression in the mouse gonadotroph αT3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FRα were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FRα promotes cell proliferation. These effects were abrogated in the same αT3-1 cells when transfected with a mutant FRα cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FRα over-expressing cells. In summary, our data suggests that FRα regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  3. T-Cell Tumor Elimination as a Result of T-Cell Receptor-Mediated Activation

    Science.gov (United States)

    Ashwell, Jonathan D.; Longo, Dan L.; Bridges, Sandra H.

    1987-07-01

    It has recently been shown that activation of murine T-cell hybridomas with antigen inhibits their growth in vitro. The ``suicide'' of these neoplastic T cells upon stimulation with antigen suggested the possibility that activation via the antigen-specific receptor could also inhibit the growth of neoplastic T cells in vivo. To test this, mice were subcutaneously inoculated with antigen-specific T-cell hybridomas and then treated intraperitoneally with antigen. Administration of the appropriate antigen immediately after inoculation with the T-cell hybridoma abrogated tumor formation; antigen administered after tumors had become established decreased the tumor burden and, in a substantial fraction of animals, led to long-term survival. The efficacy of antigen therapy was due to both a direct inhibitory effect on tumor growth and the induction of host immunity. These studies demonstrate the utility of cellular activation as a means of inhibiting neoplastic T-cell growth in vivo and provide a rationale for studying the use of less selective reagents that can mimic the activating properties of antigen, such as monoclonal antibodies, in the treatment of T-cell neoplasms of unknown antigen specificity.

  4. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.

    Science.gov (United States)

    Seda, Vaclav; Mraz, Marek

    2015-03-01

    The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.

  5. Mechanism of estrogen receptor-dependent transcription in a cell-free system.

    OpenAIRE

    Elliston, J F; Fawell, S E; Klein-Hitpass, L; Tsai, S. Y.; Tsai, M J; Parker, M G; O'Malley, B W

    1990-01-01

    RNA synthesis was stimulated directly in a cell-free expression system by crude preparations of recombinant mouse estrogen receptor (ER). Receptor-stimulated transcription required the presence of estrogen response elements (EREs) in the test template and could be specifically inhibited by addition of competitor oligonucleotides containing EREs. Moreover, polyclonal antibodies directed against the DNA-binding region of ER inhibited ER-dependent transcription. In our cell-free expression syste...

  6. Variable NK cell Receptors Exemplified by Human KIR3DL1/S11

    OpenAIRE

    Parham, Peter; Norman, Paul J.; Abi-Rached, Laurent; Guethlein, Lisbeth A

    2011-01-01

    Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual’s NK cell response, and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time-scales this component of immunity is exceptionally dynamic, unstable and short-lived, being dependent upon co-evolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK ...

  7. Selective Cancer Targeting via Aberrant Behavior of Cancer Cell-associated Glucocorticoid Receptor

    OpenAIRE

    Mukherjee, Amarnath; Narayan, Kumar P; Pal, Krishnendu; Kumar, Jerald M.; Rangaraj, Nandini; Shasi V Kalivendi; Banerjee, Rajkumar

    2009-01-01

    Glucocorticoid receptors (GRs) are ubiquitous, nuclear hormone receptors residing in cell types of both cancer and noncancerous origin. It is not known whether cancer cell–associated GR alone can be selectively manipulated for delivery of exogenous genes to its nucleus for eliciting anticancer effect. We find that GR ligand, dexamethasone (Dex) in association with cationic lipoplex (termed as targeted lipoplex) could selectively manipulate GR in cancer cells alone for the delivery of transgen...

  8. Differential Expression of Neurokinin-1 Receptor by Human Mucosal and Peripheral Lymphoid Cells

    OpenAIRE

    Goode, Triona; O'Connell, Joe; HO, WEN-ZHE; O'Sullivan, Gerald C.; Collins, J. Kevin; Douglas, Steven D.; Shanahan, Fergus

    2000-01-01

    Substance P (SP) has been implicated in peripheral and mucosal neuroimmunoregulation. However, confusion remains regarding immunocyte expression of the receptor for SP, neurokinin-1 receptor (NK-1R), and whether there is differential NK-1R expression in the mucosal versus the peripheral immune system. In the same assay systems, we examined the expression of NK-1R in human lamina propria mononuclear cells (LPMC), peripheral blood mononuclear cells (PBMC), peripheral blood lymphocytes (PBL), mo...

  9. Maximum Inhibition of Breast Cancer/Stem Cell Growth by Concomitant Blockage of Key Receptors

    Directory of Open Access Journals (Sweden)

    Mossa Gardaneh

    2012-01-01

    Full Text Available The blockage of cancer cell growth and division is the prime objective in clinical cancer therapy both at early stages and for inhibition of minimal residual disease and relapse. The failure of conventional therapies in treating breast cancer (BC has prompted dissection of signalling pathways involved in BC cell growth and characterisation of cellular receptors. Specific sets of membrane-bound receptors promote disarrayed self-renewal of BC stem cells and deregulated BC cell proliferation. Individual blockage of each receptor promotes only incomplete inhibition of BC cell growth and partial regression of metastasis. Such monotherapies are based on either chemotherapy or monoclonal antibodies. However, they do not provide long-lasting benefits and are further compromised by increasing resistance the cancer cells acquire against therapeutic agents, by their evasion of receptor blockage and by adoption of alternative growth routes that are induced by cross-talks between key receptors. On the other hand, dual targeting approaches, including receptor blockage combined with chemotherapy, produce prolonged overall survival but, nevertheless, complicate treatment by inducing side effects. Based on the complex nature of BC, combined targeted strategies that potentially confer maximum coverage for treatment cannot be effective without overcoming drug resistance initiated and further induced by inter-receptor communications. This implies that a comprehensive strategy based on concomitant inhibition of key receptors could provide an ultimate solution for effective treatment of aggressive types of BC. Such a strategy would likely be capable of targeting breast tumour cells and BC stem cells alike eventually forcing the cancer to regress.

  10. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available BACKGROUND: Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. METHODS: Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. RESULTS: Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. CONCLUSIONS: Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  11. Recombinant T-cell receptors : An immunologic link to cancer therapy

    NARCIS (Netherlands)

    Calogero, A; de Leij, YFMH; Mulder, NH; Hospers, GAP

    2000-01-01

    Cytotoxic T cells can specifically kill target cells that express antigens recognized by the T-cell receptor. These are membrane-bound proteins that are not ubiquitous and thus are difficult to purify and study at the protein level. The advent of recombinant DNA technology has facilitated these obje

  12. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  13. Maternal profiling of corticotropin-releasing factor receptor 2 deficient mice in association with restraint stress

    OpenAIRE

    D’Anna, Kimberly L.; Sharon A Stevenson; Gammie, Stephen C.

    2008-01-01

    Mice deficient in corticotropin releasing factor receptor 2 (CRF2) (C57BL/6J:129Sv background) exhibit impaired maternal defense (protection of offspring) and are more reactive to stressors than wild-type mice. To further understand CRF2’s role in maternal behavior, we crossed the knockout mice with a line bred for high maternal defense that also has elevated maternal care relative to inbred lines. Maternal care was normal in knockout mice (relative to wild-type). Maternal defense was impaire...

  14. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  15. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect. PMID:26475489

  16. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  17. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla... Toll-like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like receptors: paving the path

  18. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  19. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    Science.gov (United States)

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  20. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L.; Suozzo, M.; Ryan, K.A.; Napp, D.; Schneider, A.S.

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  1. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    OpenAIRE

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has ...

  2. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle touch receptor

    OpenAIRE

    Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A.

    2013-01-01

    Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analys...

  3. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    OpenAIRE

    Wu, Chia-Yung; Kole T Roybal; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2015-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen spec...

  4. Src homology 2 domain-based high throughput assays for profiling downstream molecules in receptor tyrosine kinase pathways.

    Science.gov (United States)

    Yaoi, Takuro; Chamnongpol, Sangpen; Jiang, Xin; Li, Xianqiang

    2006-05-01

    Src homology 2 (SH2) domains are evolutionary conserved small protein modules that bind specifically to tyrosine-phosphorylated peptides. More than 100 SH2 domains have been identified in proteins encoded by the human genome. The binding specificity of these domains plays a critical role in signaling within the cell, mediating the relocalization and interaction of proteins in response to changes in tyrosine phosphorylation states. Here we developed an SH2 domain profiling method based on a multiplexed fluorescent microsphere assay in which various SH2 domains are used to probe the global state of tyrosine phosphorylation within a cell and to screen synthetic peptides that specifically bind to each SH2 domain. The multiplexed, fluorescent microsphere-based assay is a recently developed technology that can potentially detect a wide variety of interactions between biological molecules. We constructed 25-plex SH2 domain-GST fusion protein-conjugated fluorescent microsphere sets to investigate phosphorylation-mediated cell signaling through the specific binding of SH2 domains to activated target proteins. The response of HeLa, COS-1, A431, and 293 cells and four breast cancer cell lines to epidermal growth factor and insulin were quantitatively profiled using this novel microsphere-based, multiplexed, high throughput assay system. PMID:16477079

  5. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators.

    Science.gov (United States)

    Schramm, Anja; Ebrahimi, Samad Nejad; Raith, Melanie; Zaugg, Janine; Rueda, Diana C; Hering, Steffen; Hamburger, Matthias

    2013-12-01

    An ethyl acetate extract of Curcuma kwangsiensis S.G. Lee & C.F. Liang (Zingiberaceae) rhizomes (100 μg/ml) enhanced the GABA-induced chloride current (IGABA) through GABAA receptors of the α1β2γ2S subtype by 79.0±7.0%. Potentiation of IGABA was measured using the two-microelectrode voltage-clamp technique and Xenopus laevis oocytes. HPLC-based activity profiling of the crude extract led to the identification of 11 structurally related labdane diterpenoids, including four new compounds. Structure elucidation was achieved by comprehensive analysis of on-line (LC-PDA-ESI-TOF-MS) and off-line (microprobe 1D and 2D NMR) spectroscopic data. The absolute configuration of the compounds was established by comparison of experimental and calculated ECD spectra. Labdane diterpenes represent a new class of plant secondary metabolites eliciting positive GABAA receptor modulation. The highest efficiency was observed for zerumin A (maximum potentiation of IGABA by 309.4±35.6%, and EC50 of 24.9±8.8 μM).

  6. Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus).

    Science.gov (United States)

    Chen, H P; Deng, S P; Dai, M L; Zhu, C H; Li, G L

    2016-01-01

    Androgen plays critical roles in vertebrate reproductive systems via androgen receptors (ARs). In the present study, the full-length spotted scat (Scatophagus argus) androgen receptor (sAR) cDNA sequence was cloned from testis. The sAR cDNA measured 2448 bp in length with an open-reading frame of 2289 bp, encoding 763 amino acids. Amino acid alignment analyses showed that the sARs exhibited highly evolutionary conserved functional domains. Phylogenetically, the sARs clustered within the ARβ common vertebrate group. Real-time polymerase chain reaction (RT-PCR) revealed that sAR expression varied in level and distribution throughout the tissues of both females and males. sAR expression was detected during testicular development by quantitative RT-PCR. The results showed that the highest transcription of sARs was observed in the mid-testicular stage, and remained at a high expression level until the late-testicular stage. In addition, the effects of 17α-methyltestosterone (MT) and estrogen (E2) on the expression of sARs in ovaries were determined using quantitative RT-PCR. sAR expression increased at 12 and 24 h post-MT treatment and decreased with E2 treatment. The present study provides preliminary evidence indicating gonadal plasticity of spotted scat under exogenous steroidal hormone treatments. It also provides a theoretical basis for sex reversal and production of artificial pseudo-males for female monosex breeding. PMID:27173207

  7. Identification of human dopamine D1-like receptor agonist using a cell-based functional assay

    Institute of Scientific and Technical Information of China (English)

    Nan JIANG; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU; Zhi-liang XU

    2005-01-01

    Aim: To establish a cell-based assay to screen human dopamine D1 and D5 receptor agonists against compounds from a natural product compound library.Methods: Synthetic responsive elements 6×cAMP response elements (CRE) and a mini promoter containing a TATA box were inserted into the pGL3 basic vector to generate the reporter gene construct pCRE/TA/Luci. CHO cells were co-transfected with the reporter gene construct and human D1 or D5 receptor cDNA in mammalian expression vectors. Stable cell lines were established for agonist screening. A natural product compound library from over 300 herbs has been established. The extracts from these herbs were used for human D1 and D5 receptor agonist screenings. Results: A number of extracts were identified that activated both D1 and D5 receptors. One of the herb extracts, SBG492, demonstrated distinct pharmacological characteristics with human D1 and D5 receptors.The EC50 values of SBG492 were 342.7 μg/mL for the D1 receptor and 31.7 μg/mL for the D5 receptor. Conclusion: We have established a cell-based assay for high-throughput drug screening to identify D 1-like receptor agonists from natural products. Several extracts that can active D1-like receptors were discovered.These compounds could be useful tools for studies on the functions of these receptors in the brain and could potentially be developed into therapeutic drugs for the treatment of central nervous system diseases.

  8. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  9. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  10. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells.

    Science.gov (United States)

    Ghosal, P; Sukocheva, O A; Wang, T; Mayne, G C; Watson, D I; Hussey, D J

    2016-07-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed