WorldWideScience

Sample records for cell receptor interactions

  1. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Monine, Michael [Los Alamos National Laboratory; Posner, Richard [TRANSLATION GENOMICS RESAEARCH INSTITUTE; Savage, Paul [BYU; Faeder, James [UNIV OF PITTSBURGH; Hlavacek, William S [UNM

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  2. Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions.

    Science.gov (United States)

    Farndale, Richard W; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G; Jarvis, Gavin E; Raynal, Nicolas

    2008-04-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha2beta1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where O is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.

  3. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  4. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.

  5. In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor.

    Science.gov (United States)

    Cardona-Maya, Walter; Velilla, Paula A; Montoya, Carlos Julio; Cadavid, Ángela; Rugeles, María T

    2011-12-01

    Leukocytes are considered to be the main source of HIV-1 infection in semen. However, HIV-1 interaction with spermatozoa has also been demonstrated, suggesting that both spermatozoa and leukocytes might play a role during sexual transmission of HIV-1. The purpose of the present study was to evaluate if HIV-1 particles interact with sperm cells through the mannose receptor (MR), and then to determine the ability of "infected" sperm cells to transmit the virus to susceptible targets. The expression of classical HIV-1 receptor and co-receptors and the MR by sperm cells was determined by flow cytometry; the interaction in vitro between sperm and HIV-1 was evaluated by fluorescence microscopy. Additionally, the in vitro interaction of sperm cells and HIV-1 was determined detecting viral nucleic acids by PCR. D-Mannose was used to block HIV-1-sperm cell interaction. Sperm cells preincubated with HIV-1 particles and activated mononuclear cells were co-cultured to determine viral transmission. The presence of viral RNA was detected in 28% of the samples in which sperm cells were preincubated with HIV-1 particles. Mannose was able to block interaction in 75% of the cases. Finally, we demonstrated that "infected" sperm cells were able to transmit the HIV-1 infection to susceptible targets. In conclusion, these results indicate that the MR is involved in sperm cell-HIV-1 interaction. Our results also suggest that sperm cells could be an important source of infection.

  6. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Ziche, M.; Morbidelli, L. (Mario Aiazzi Mancini - Viale Morgagni, Firenze (Italy)); Magnelli, L.; Del Rosso, M. (Institute of General Pathology, Viale Morgagni, Firenze (Italy))

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  7. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  8. HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2009-10-01

    Full Text Available Abstract Background Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that the cell line dependence is not important. However, different cell lines do not always respond to a particular stimulus in the same way, and lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. To address this issue, we created a clone library of human mammary epithelial (HME cells that expresses different levels of HER2 and HER3 receptors in combination with endogenous EGFR/HER1. Using our clone library, we have quantified the receptor activation patterns and systematically tested the validity of the existing hypotheses about the interaction patterns between HER1-3 receptors. Results Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3, i.e., EGFR activation and HER3 activation are only weakly linked in HME cells. We also find that observed weak transactivation is uni-directional where stimulation of EGFR leads to HER3 activation whereas HER3 stimulation does not activate the EGFR. Repeating our experiments at lower cell confluency established that cell confluency is not a major factor in the observed interaction patterns. We have also quantified the dependence of the kinetics of Erk and Akt activation on different HER receptors. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 leads to significant Erk activation. Conclusion Our study shows that clone cell libraries can be a powerful resource in systems biology research by making it possible to differentiate between various hypotheses in a consistent cellular background. Using our

  9. Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line.

    Science.gov (United States)

    Barta, Pavel; Malmberg, Jennie; Melicharova, Ludmila; Strandgård, John; Orlova, Anna; Tolmachev, Vladimir; Laznicek, Milan; Andersson, Karl

    2012-05-01

    Cell lines are common model systems in the development of therapeutic proteins and in the research on cellular functions and dysfunctions. In this field, the protein interaction assay is a frequently used tool for assessing the adequacy of a protein for diagnostic and therapeutic purposes. In this study, we investigated the extent to which the interaction characteristics depend on the choice of cell line for HER-family receptors. The interaction characteristics of two therapeutic antibodies (trastuzumab and cetuximab) and one Affibody molecule (ZHER2:342), interacting with the intended receptor were characterized with high precision using an automated real-time interaction method, in different cell lines (HaCaT, A431, HEP-G2, SKOV3, PC3, DU-145). Clear differences in binding affinity and kinetics, up to one order of magnitude, were found for the interaction of the same protein binding to the same receptor on different cells for all three proteins. For HER-family receptors, it is therefore important to refer to the measured affinity for a protein-receptor interaction together with the hosting cell line. The ability to accurately measure affinity and kinetics of a protein-receptor interaction on cell lines of different origins may increase the understanding of underlying receptor biology, and impact the selection of candidates in the development of therapeutic or diagnostic agents.

  10. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor.

    Science.gov (United States)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-10-26

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand-binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest that the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR.

  11. Multiple receptor-ligand interactions direct tissue resident gamma delta T cell activation

    Directory of Open Access Journals (Sweden)

    Deborah A. Witherden

    2014-11-01

    Full Text Available Gamma delta T cells represent a major T cell population in epithelial tissues, such as skin, intestine, and lung, where they function in maintenance of the epithelium and provide a crucial first line defense against environmental and pathogenic insults. Despite their importance, the molecular mechanisms directing their activation and function have remained elusive. Epithelial resident gamma delta T cells function through constant communication with neighboring cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate relationships allow gamma delta T cells to facilitate the maintenance of epithelial homeostasis, tissue repair following injury, inflammation, and protection from malignancy. Recent studies have identified a number of molecules involved in these complex interactions, under both homeostatic conditions, as well as following perturbation of these barrier tissues. These interactions are crucial to the timely production of cytokines, chemokines, growth factors and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this process.

  12. Cytokine-Leukotriene Receptor Interactions

    Directory of Open Access Journals (Sweden)

    Marek Rola-Pleszczynski

    2007-01-01

    Full Text Available Biochemical and pharmacological studies have identified the structure of leukotrienes, the pathways that lead to their synthesis, and the signaling events they trigger when they interact with their cognate receptors. A privileged interaction exists between these lipid mediators and another group of molecules essential for inflammation and immune modulation, namely, cytokines. Whereas leukotrienes can trigger the synthesis and release of selected cytokines in distinct cell populations, many cytokines can affect cellular responsiveness to leukotrienes by modulating leukotriene receptor expression. As we progressively begin to unravel these complex interactions, new areas of cell-cell communication and eventual therapeutic interventions will emerge.

  13. Structure and interactions of the human programmed cell death 1 receptor.

    Science.gov (United States)

    Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C; Muskett, Frederick W; Morgan, Sara H; Huo, Jiandong; Yu, Chao; Evans, Edward J; Leslie, Alasdair J; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J; Jansson, Andreas; Ladbury, John E; Ikemizu, Shinji; Carr, Mark D; Davis, Simon J

    2013-04-26

    PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.

  14. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.

    Science.gov (United States)

    Kahaleh, M B; Fan, P S; Otsuka, T

    1999-05-01

    In view of the documented perivascular mononuclear cell infiltration in the involved organs in scleroderma (SSc) and the reported accumulation of gammadelta-T cells in SSc skin and lung, we evaluated gammadelta-T cell interaction with endothelial cells (EC) in vitro. gammadelta- and alphabeta-T cells were isolated from BPMN of SSc patients with early diffuse disease and of matched control subjects by an immunomagnetic method after stimulation with mycobacterium lysate and interleukin-2 for 2 weeks. Lymphocyte adhesion, proliferation, and cytotoxicity to EC were investigated. SSc gammadelta-T cells adhered to cultured EC and proliferated at higher rates than control cells. Furthermore, significant EC cytotoxicity by SSc gammadelta was seen. The cytotoxicity was blocked by addition of anti-gammadelta-TCR antibody and by anti-granzyme A antibody but not by anti-MHC class I and II antibodies. Expression of granzyme A mRNA was seen in five/five SSc gammadelta-T cells and in one/five control cells. alphabeta-T cells from both SSc and control subjects were significantly less interactive with EC than gammadelta-T cells. The data demonstrate EC recognition by SSc gammadelta-T cells and propose gammadelta-T cells as a possible effector cell type in the immune pathogenesis of SSc.

  15. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors.

    Science.gov (United States)

    Grimaldi, Marina; Boulahtouf, Abdelhay; Delfosse, Vanessa; Thouennon, Erwan; Bourguet, William; Balaguer, Patrick

    2015-01-01

    Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics.

  16. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  17. A Cell Model for Conditional Profiling of Androgen-Receptor-Interacting Proteins

    Directory of Open Access Journals (Sweden)

    K. A. Mooslehner

    2012-01-01

    Full Text Available Partial androgen insensitivity syndrome (PAIS is associated with impaired male genital development and can be transmitted through mutations in the androgen receptor (AR. The aim of this study is to develop a cell model suitable for studying the impact AR mutations might have on AR interacting proteins. For this purpose, male genital development relevant mouse cell lines were genetically modified to express a tagged version of wild-type AR, allowing copurification of multiprotein complexes under native conditions followed by mass spectrometry. We report 57 known wild-type AR-interacting proteins identified in cells grown under proliferating and 65 under nonproliferating conditions. Of those, 47 were common to both samples suggesting different AR protein complex components in proliferating and proliferation-inhibited cells from the mouse proximal caput epididymus. These preliminary results now allow future studies to focus on replacing wild-type AR with mutant AR to uncover differences in protein interactions caused by AR mutations involved in PAIS.

  18. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    Science.gov (United States)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  19. Prolactin and dopamine 1-like receptor interaction in renal proximal tubular cells.

    Science.gov (United States)

    Crambert, Susanne; Sjöberg, Agneta; Eklöf, Ann-Christine; Ibarra, Fernando; Holtbäck, Ulla

    2010-07-01

    Prolactin is a natriuretic hormone and acts by inhibiting the activity of renal tubular Na(+)-K(+)-ATPase activity. These effects require an intact renal dopamine system. Here, we have studied by which mechanism prolactin and dopamine interact in Sprague-Dawley rat renal tissue. Na(+)-K(+)-ATPase activity was measured as ouabain-sensitive ATP hydrolysis in microdissected renal proximal tubular segments. Intracellular signaling pathways were studied by a variety of different techniques, including Western blotting using phosphospecific antibodies, immunoprecipitation, and biotinylation assays. We found that dopamine and prolactin regulated Na(+)-K(+)-ATPase activity via similar signaling pathways, including protein kinase A, protein kinase C, and phosphoinositide 3-kinase activation. The cross talk between prolactin and dopamine 1-like receptors was explained by a heterologous recruitment of dopamine 1-like receptors to the plasma membrane in renal proximal tubular cells. Prolactin had no effect on Na(+)-K(+)-ATPase activity in spontaneously hypertensive rats, a rat strain with a blunted response to dopamine. These results further emphasize the central role of the renal dopamine system in the interactive regulation of renal tubular salt balance.

  20. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells.

    Science.gov (United States)

    Chang, Melissa I; Panorchan, Porntula; Dobrowsky, Terrence M; Tseng, Yiider; Wirtz, Denis

    2005-12-01

    A quantitative description of the binding interactions between human immunodeficiency virus (HIV) type 1 envelope glycoproteins and their host cell surface receptors remains incomplete. Here, we introduce a single-molecule analysis that directly probes the binding interactions between an individual viral subunit gp120 and a single receptor CD4 and/or chemokine coreceptor CCR5 in living cells. This analysis differentiates single-molecule binding from multimolecule avidity and shows that, while the presence of CD4 is required for gp120 binding to CCR5, the force required to rupture a single gp120-coreceptor bond is significantly higher and its lifetime is much longer than those of a single gp120-receptor bond. The lifetimes of these bonds are themselves shorter than those of the P-selectin/PSGL-1 bond involved in leukocyte attachment to the endothelium bonds during an inflammation response. These results suggest an amended model of HIV entry in which, immediately after the association of gp120 to its receptor, gp120 seeks its coreceptor to rapidly form a new bond. This "bond transfer" occurs only if CCR5 is in close proximity to CD4 and CD4 is still attached to gp120. The analysis presented here may serve as a general framework to study mechanisms of receptor-mediated interactions between viral envelope proteins and host cell receptors at the single-molecule level in living cells.

  1. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells.

    Science.gov (United States)

    Zhao, Zhu-Ran; Yu, Wei-Dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-Zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.

  2. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells

    Science.gov (United States)

    Zhao, Zhu-ran; Yu, Wei-dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.

  3. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Haixing Xuan; Qishui Lin

    2008-01-01

    The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with actins in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.

  4. Cell-collagen interactions : the use of peptide Toolkits to investigate collagen-receptor interactions

    NARCIS (Netherlands)

    Farndale, Richard W.; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S.; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G.; Jarvis, Gavin E.; Raynal, Nicolas

    2008-01-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptide

  5. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models

    Science.gov (United States)

    Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells. PMID:28306722

  6. Direct identification of ligand-receptor interactions on living cells and tissues.

    Science.gov (United States)

    Frei, Andreas P; Jeon, Ock-Youm; Kilcher, Samuel; Moest, Hansjoerg; Henning, Lisa M; Jost, Christian; Plückthun, Andreas; Mercer, Jason; Aebersold, Ruedi; Carreira, Erick M; Wollscheid, Bernd

    2012-10-01

    Many cellular responses are triggered by proteins, drugs or pathogens binding to cell-surface receptors, but it can be challenging to identify which receptors are bound by a given ligand. Here we describe TRICEPS, a chemoproteomic reagent with three moieties--one that binds ligands containing an amino group, a second that binds glycosylated receptors on living cells and a biotin tag for purifying the receptor peptides for identification by quantitative mass spectrometry. We validated this ligand-based, receptor-capture (LRC) technology using insulin, transferrin, apelin, epidermal growth factor, the therapeutic antibody trastuzumab and two DARPins targeting ErbB2. In some cases, we could also determine the approximate ligand-binding sites on the receptors. Using TRICEPS to label intact mature vaccinia viruses, we identified the cell surface proteins AXL, M6PR, DAG1, CSPG4 and CDH13 as binding factors on human cells. This technology enables the identification of receptors for many types of ligands under near-physiological conditions and without the need for genetic manipulations.

  7. Glycosaminoglycans in human retinoblastoma cells: Heparan sulfate, a modulator of the pigment epithelium-derived factor-receptor interactions

    Science.gov (United States)

    Alberdi, Elena M; Weldon, John E; Becerra, S Patricia

    2003-01-01

    Background Pigment epithelium-derived factor (PEDF) has binding affinity for cell-surface receptors in retinoblastoma cells and for glycosaminoglycans. We investigated the effects of glycosaminoglycans on PEDF-receptor interactions. Results 125I-PEDF formed complexes with protease-resistant components of medium conditioned by human retinoblastoma Y-79 cells. Using specific glycosaminoglycan degrading enzymes in spectrophotometric assays and PEDF-affinity chromatography, we detected heparin and heparan sulfate-like glycosaminoglycans in the Y-79 conditioned media, which had binding affinity for PEDF. The Y-79 conditioned media significantly enhanced the binding of 125I-PEDF to Y-79 cell-surface receptors. However, enzymatic and chemical depletion of sulfated glycosaminoglycans from the Y-79 cell cultures by heparitinase and chlorate treatments decreased the degree of 125I-PEDF binding to cell-surface receptors. Conclusions These data indicate that retinoblastoma cells secrete heparin/heparan sulfate with binding affinity for PEDF, which may be important in efficient cell-surface receptor binding. PMID:12625842

  8. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta p...

  9. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  10. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin.

    Science.gov (United States)

    Nath, D; Hartnell, A; Happerfield, L; Miles, D W; Burchell, J; Taylor-Papadimitriou, J; Crocker, P R

    1999-10-01

    In many carcinomas, infiltrating macrophages are commonly found closely associated with tumour cells but little is known concerning the nature or significance of adhesion molecules involved in these cellular interactions. Here we demonstrate in primary human breast cancers that sialoadhesin (Sn), a macrophage-restricted adhesion molecule, is frequently expressed on infiltrating cells that often make close contact with breast carcinoma cells. To determine whether Sn could act as a specific receptor for ligands on breast cancer cell lines, binding assays were performed with a recombinant form of the protein fused to the Fc portion of human immunoglobulin G1 (IgG1) (Sn-Fc). Sn-Fc was found to bind specifically and in a sialic acid-dependent manner to the breast cancer cell lines MCF-7, T47.D and BT-20 both in solid- and solution-phase binding assays. To investigate the nature of the sialoglycoproteins recognized by Sn on breast cancer cells, MCF-7 cells were labelled with [6-3H]glucosamine. Following precipitation with Sn-Fc, a major band of approximately 240000 MW was revealed, which was shown in reprecipitation and Western blotting experiments to be the epithelial mucin, MUC1.

  11. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERα and ERβ agonists.

    Science.gov (United States)

    Evers, Nynke M; van den Berg, Johannes H J; Wang, Si; Melchers, Diana; Houtman, René; de Haan, Laura H J; Ederveen, Antwan G H; Groten, John P; Rietjens, Ivonne M C M

    2014-09-01

    The aim of the present study was to investigate modulation of the interaction of the ERα and ERβ with coregulators in the ligand responses induced by estrogenic compounds. To this end, selective ERα and ERβ agonists were characterized for intrinsic relative potency reflected by EC50 and maximal efficacy towards ERα and ERβ mediated response in ER selective reporter gene assays, and subsequently tested for induction of cell proliferation in T47D-ERβ cells with variable ERα/ERβ ratio, and finally for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay, with 154 unique nuclear receptor coregulator peptides derived from 66 different coregulators. Results obtained reveal an important influence of the ERα/ERβ ratio and receptor selectivity of the compounds tested on induction of cell proliferation. ERα agonists activate cell proliferation whereas ERβ suppresses ERα mediated cell proliferation. The responses in the MARCoNI assay reveal that upon ERα or ERβ activation by a specific agonist, the modulation of the interaction of the ERs with coregulators is very similar indicating only a limited number of differences upon ERα or ERβ activation by a specific ligand. Differences in the modulation of the interaction of the ERs with coregulators between the different agonists were more pronounced. Based on ligand dependent differences in the modulation of the interaction of the ERs with coregulators, the MARCoNI assay was shown to be able to classify the ER agonists discriminating between different agonists for the same receptor, a characteristic not defined by the ER selective reporter gene or proliferation assays. It is concluded that the ultimate effect of the model compounds on proliferation of estrogen responsive cells depends on the intrinsic relative potency of the agonist towards ERα and ERβ and the cellular ERα/ERβ ratio whereas differences in the modulation of the interaction of the ERα and

  12. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    Energy Technology Data Exchange (ETDEWEB)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E. (Katholieke Universiteit Leuven (Belgium))

    1989-05-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 {mu}M in various T4{sup +} cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment.

  13. Infection of Polarized MDCK Cells with Herpes Simplex Virus 1: Two Asymmetrically Distributed Cell Receptors Interact with Different Viral Proteins

    Science.gov (United States)

    Sears, Amy E.; McGwire, Bradford S.; Roizman, Bernard

    1991-06-01

    Herpes simplex virus 1 attaches to at least two cell surface receptors. In polarized epithelial (Madin-Darby canine kidney; MDCK) cells one receptor is located in the apical surface and attachment to the cells requires the presence of glycoprotein C in the virus. The second receptor is located in the basal surface and does not require the presence of glycoprotein C. Exposure of MDCK cells at either the apical or basal surface to wild-type virus yields plaques and viral products whereas infection by a glycoprotein C-negative mutant yields identical results only after exposure of MDCK cells to virus at the basal surface. Multiple receptors for viral entry into cells expand the host range of the virus. The observation that glycoprotein C-negative mutants are infectious in many nonpolarized cell lines suggests that cells in culture may express more than one receptor and explains why genes that specify the viral proteins that recognize redundant receptors, like glycoprotein C, are expendable.

  14. Interaction of targeted liposomes with primary cultured hepatic stellate cells : Involvement of multiple receptor systems

    NARCIS (Netherlands)

    Adrian, Joanna Ewa; Poelstra, Klaas; Scherphof, Gerrit; Molema, Ingrid; Meijer, D.K F; Reker-Smit, Catharina; Morselt, Henriette; Kamps, Jan

    2006-01-01

    Background/Aims: In designing a versatile liposomal drug carrier to hepatic stellate cells (HSC), the interaction of mannose 6-phosphate human serum albumin (M6P-HSA) liposomes with cultured cells was studied. Methods: M6P-HSA was covalently coupled to the liposomal surface and the uptake and bindin

  15. The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway.

    Science.gov (United States)

    Martinez, Sébastien; Scerbo, Pierluigi; Giordano, Marilyn; Daulat, Avais M; Lhoumeau, Anne-Catherine; Thomé, Virginie; Kodjabachian, Laurent; Borg, Jean-Paul

    2015-12-18

    The non-canonical WNT/planar cell polarity (WNT/PCP) pathway plays important roles in morphogenetic processes in vertebrates. Among WNT/PCP components, protein tyrosine kinase 7 (PTK7) is a tyrosine kinase receptor with poorly defined functions lacking catalytic activity. Here we show that PTK7 associates with receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a heterodimeric complex in mammalian cells. We demonstrate that PTK7 and ROR2 physically and functionally interact with the non-canonical WNT5A ligand, leading to JNK activation and cell movements. In the Xenopus embryo, Ptk7 functionally interacts with Ror2 to regulate protocadherin papc expression and morphogenesis. Furthermore, we show that Ptk7 is required for papc activation induced by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of the tagged Ptk7 intracellular domain, which can translocate into the nucleus and activate papc expression. This study reveals novel molecular mechanisms of action of PTK7 in non-canonical WNT/PCP signaling that may promote cell and tissue movements.

  16. Specific antibody-receptor interactions trigger InlAB-independent uptake of listeria monocytogenes into tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hotz Christian

    2011-07-01

    Full Text Available Abstract Background Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB-deficient Listeria monocytogenes strain (Lm-spa+, which expresses protein A of Staphylococcus aureus (SPA and anchors SPA in the correct orientation on the bacterial cell surface. Results This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin® or Cetuximab (Erbitux® to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlAB-independent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptor-mediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. Conclusions Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.

  17. Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells

    DEFF Research Database (Denmark)

    Drasbek, Mette; Christiansen, Gunna; Drasbek, Kim Ryun;

    2007-01-01

    The human pathogen Mycoplasma pneumoniae can cause atypical pneumonia through adherence to epithelial cells in the respiratory tract. The major immunogenic protein, P1, participates in the attachment of the bacteria to the host cells. To investigate the adhesion properties of P1, a recombinant...... protein (rP1-II) covering amino acids 1107-1518 of the P1 protein was produced. This protein inhibited the adhesion of M. pneumoniae to human HEp-2 cells, as visualized in a competitive-binding assay using immunofluorescence microscopy. Previous studies have shown that mAbs that recognize two epitopes...... intensity. The number of M. pneumoniae microcolonies adhering to the host cells was significantly reduced by these five peptides. Further investigations showed that inhibiting peptide 7 (amino acids 1347-1396) of the major adhesin protein P1 bound directly to host receptors, suggesting that the observed M...

  18. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    Science.gov (United States)

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  19. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    Science.gov (United States)

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  20. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  1. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis.

    Science.gov (United States)

    Fridlyand, Leonid E; Philipson, Louis H

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  2. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...... and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins...

  3. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  4. The Construction of Chimeric T-Cell Receptor with Spacer Base of Modeling Study of VHH and MUC1 Interaction

    Directory of Open Access Journals (Sweden)

    Nazanin Pirooznia

    2011-01-01

    Full Text Available Adaptive cell immunotherapy with the use of chimeric receptors leads to the best and most specific response against tumors. Chimeric receptors consist of a signaling fragment, extracellular spacer, costimulating domain, and an antibody. Antibodies cause immunogenicity; therefore, VHH is a good replacement for ScFv in chimeric receptors. Since peptide sequences have an influence on chimeric receptors, the effect of peptide domains on each other's conformation were investigated. CD3Zeta, CD28, VHH and CD8α, and FcgIIα are used as signaling moieties, costimulating domain, antibody, and spacers, respectively. To investigate the influence of the ligation of spacers on the conformational structure of VHH, models of VHH were constructed. Molecular dynamics simulation was run to study the influence of the presence of spacers on the conformational changes in the binding sites of VHH. Root mean square deviation and root mean square fluctuation of critical segments in the binding site showed no noticeable differences with those in the native VHH. Results from molecular docking revealed that the presence of spacer FcgIIα causes an increasing effect on VHH with MUC1 interaction. Each of the constructs was transformed into the Jurkat E6.1. Expression analysis and evaluation of their functions were examined. The results showed good expression and function.

  5. Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction

    DEFF Research Database (Denmark)

    Bach, Anders*; Eildal, Jonas Nii Nortey*; Stuhr-Hansen, Nicolai

    2011-01-01

    The protein--protein interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treating ischemic brain diseases, neuropathic pain, and Alzheimer's disease. We have previously demonstrated that N-alkylated tetrapeptides are potent inhibitors...... to identification of N-cyclohexylethyl-ETA(S)V (54) as the most potent, plasma-stable and cell-permeable inhibitor, which is a promising tool in unraveling the therapeutic potential of the PSD-95/NMDA receptor interaction....

  6. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  7. 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors.

    Science.gov (United States)

    Gasperi, Valeria; Evangelista, Daniela; Chiurchiù, Valerio; Florenzano, Fulvio; Savini, Isabella; Oddi, Sergio; Avigliano, Luciana; Catani, Maria Valeria; Maccarrone, Mauro

    2014-06-01

    Accumulated evidence points to a key role for endocannabinoids in cell migration, and here we sought to characterize the role of these substances in early events that modulate communication between endothelial cells and leukocytes. We found that 2-arachidonoylglycerol (2-AG) was able to initiate and complete the leukocyte adhesion cascade, by modulating the expression of selectins. A short exposure of primary human umbilical vein endothelial cells (HUVECs) to 2-AG was sufficient to prime them towards an activated state: within 1h of treatment, endothelial cells showed time-dependent plasma membrane expression of P- and E-selectins, which both trigger the initial steps (i.e., capture and rolling) of leukocyte adhesion. The effect of 2-AG was mediated by CB1 and CB2 receptors and was long lasting, because endothelial cells incubated with 2-AG for 1h released the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) for up to 24h. Consistently, TNF-α-containing medium was able to promote leukocyte recruitment: human Jurkat T cells grown in conditioned medium derived from 2-AG-treated HUVECs showed enhanced L-selectin and P-selectin glycoprotein ligand-1 (PSGL1) expression, as well as increased efficiency of adhesion and trans-migration. In conclusion, our in vitro data indicate that 2-AG, by acting on endothelial cells, might indirectly promote leukocyte recruitment, thus representing a potential therapeutic target for treatment of diseases where impaired endothelium/leukocyte interactions take place.

  8. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    Science.gov (United States)

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  9. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Hinsby, Anders Mørkeberg

    2008-01-01

    The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules ...

  10. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    Science.gov (United States)

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  11. Role of Receptor-Interacting Protein 140 in human fat cells

    Directory of Open Access Journals (Sweden)

    Stenson Britta M

    2010-01-01

    Full Text Available Abstract Background Mice lacking Receptor-interacting protein 140 (RIP140 have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, RIP140 is lower expressed in visceral white adipose tissue (WAT of obese versus lean subjects. We investigated the role of RIP140 in human subcutaneous WAT, which is the major fat depot of the body. Methods Messenger RNA levels of RIP140 were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. RIP140 mRNA was knocked down with siRNA in in vitro differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined. Results RIP140 mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. RIP140 expression increased during adipocyte differentiation in vitro and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of RIP140 increased basal glucose transport and mRNA levels of glucose transporter 4 and uncoupling protein-1. Conclusions Human RIP140 inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human RIP140 in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that RIP140 regulate human obesity.

  12. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  13. The Caenorhabditis elegans matrix non-peptidase MNP-1 is required for neuronal cell migration and interacts with the Ror receptor tyrosine kinase CAM-1.

    Science.gov (United States)

    Craft, Teresa R; Forrester, Wayne C

    2017-04-01

    Directed cell migration is critical for metazoan development. During Caenorhabditis elegans development many neuronal, muscle and other cell types migrate. Multiple classes of proteins have been implicated in cell migration including secreted guidance cues, receptors for guidance cues and intracellular proteins that respond to cues to polarize cells and produce the forces that move them. In addition, cell surface and secreted proteases have been identified that may clear the migratory route and process guidance cues. We report here that mnp-1 is required for neuronal cell and growth cone migrations. MNP-1 is expressed by migrating cells and functions cell autonomously for cell migrations. We also find a genetic interaction between mnp-1 and cam-1, which encodes a Ror receptor tyrosine kinase required for some of the same cell migrations.

  14. The Neuroprotective Effect of Cannabinoid Receptor Agonist (WIN55,212-2 in Paraoxon Induced Neurotoxicity in PC12 Cells and N-methyl-D-aspartate Receptor Interaction

    Directory of Open Access Journals (Sweden)

    Hedayat Sahraei

    2010-01-01

    Full Text Available Objective: Considering that cannabinoids protect neurons against neurodegeneration, inthis study, the neuroprotective effect of WIN55,212-2 in paraoxon induced neurotoxicity inPC12 cells and the role of the N-methyl-D-aspartate (NMDA receptor were evaluated.Materials and Methods: In this study PC12 cells were maintained in Dulbecco's modifiedeagle’s medium (DMEM+F12 culture medium supplemented with 10% fetal bovineserum. The cells were treated with paraoxon (200 μM in the presence or absence ofWIN55,212-2 (0.1 μM, NMDA receptor agonist NMDA (100 μM, cannabinoid receptorantagonist AM251 and NMDA receptor antagonist MK801 (1 μM at 15 minutes intervals.After 48 hours of exposure, cellular viability and protein expression of the CB1 receptorwere evaluated in PC12 cells.Results: Following the exposure of PC12 cells to paraoxon (200 μM, a reduction in cellsurvival and protein level of the CB1 receptor was observed (p<0.01. Treatment of thecells with WIN55,212-2 (0.1 μM and NMDA (100 μM prior to paraoxon exposure significantlyelevated cell survival and protein level of the CB1 receptor (p<0.01. Also, AM251(1μM did not inhibit the cell survival and protein level of the CB1 receptor increase inducedby WIN55,212-2 (p<0.001. However, MK801 (1 μM did inhibit cell survival andprotein expression of the CB1 receptor increase induced by NMDA (p<0.001.Conclusion: The results indicate that WIN55,212-2 and NMDA protect PC12 cellsagainst paraoxon induced toxicity. In addition, the neuroprotective effect of WIN55,212-2and NMDA was cannabinoid receptor-independent and NMDA receptor dependent, respectively.

  15. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria;

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...

  16. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to G protein-coupled receptor oligomerization.

    Science.gov (United States)

    Comps-Agrar, Laëtitia; Maurel, Damien; Rondard, Philippe; Pin, Jean-Philippe; Trinquet, Eric; Prézeau, Laurent

    2011-01-01

    G protein-coupled receptors (GPCRs) are key players in cell-cell communication, the dysregulation of which has often deleterious effects leading to pathologies such as psychiatric and neurological diseases. Consequently, GPCRs represent excellent drug targets, and as such are the object of intense research in drug discovery for therapeutic application. Recently, the GPCR field has been revolutionized by the demonstration that GPCRs are part of large protein complexes that control their pharmacology, activity, and signaling. Moreover, in these complexes, one GPCR can either associate with itself, forming homodimers or homooligomers, or with other receptor types, forming heterodimeric or heterooligomeric receptor entities that display new receptor features. These features include alterations in ligand cooperativity and selectivity, the activation of novel signaling pathways, and novel processes of desensitization. Thus, it has become necessary to identify GPCR-associated protein complexes of interest at the cell surface, and to determine the state of oligomerization of these receptors and their interactions with their partner proteins. This is essential to understand the function of GPCRs in their native environment, as well as ways to either modulate or control receptor activity with appropriate pharmacological tools, and to develop new therapeutic strategies. This requires the development of technologies to precisely address protein-protein interactions between oligomers at the cell surface. In collaboration with Cisbio Bioassay, we have developed such a technology, which combines TR-FRET detection with a new labeling method called SnapTag. This technology has allowed us to address the oligomeric state of many GPCRs.

  17. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule.

    Science.gov (United States)

    Sanchez-Heras, Elena; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2006-11-17

    Interactions between the neural cell adhesion molecules NCAM and N-cadherin with the fibroblast growth factor receptor (FGFR) are important for a number of developmental events and have also been implicated in tumor progression. The factors regulating these interactions are not known. We have used co-immunoprecipitation and co-clustering paradigms to show that both adhesion molecules can interact with the 3Ig IIIC isoform of the FGFR1 in a number of cell types. Interestingly, whereas the interaction can be seen over most of the cell surface, it is not seen at points of cell-cell contact where the adhesion molecules accumulate at stable junctions. We also demonstrate for the first time that all of the major isoforms of NCAM can interact with the FGFR. Using deletion mutagenesis we have found that the adhesion molecule/FGFR interaction can withstand the removal of most of any one of the FGFR immunoglobulin-like domains (D1-D3). In contrast, the FGFR interaction with N-cadherin and NCAM (but not FGF) is absolutely dependant on the presence of the acid box motif that can be found in the linker region between D1 and D2. As this motif can be spliced out of all four FGFRs, it suggests that this is one mechanism that can regulate the interaction of the receptor with different ligand classes.

  18. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    -binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest...

  19. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, P.; Dupuy, J.; Inamura, A.; Kiso, M.; Stevens, R.C.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  20. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A. [Emory-MED; (Keele); (Scripps)

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  1. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1

    OpenAIRE

    1986-01-01

    Tumor necrosis factor/cachectin (TNF) has been implicated as a mediator of the host response in sepsis and neoplasia. Recent work has shown that TNF can modulate endothelial cell hemostatic properties, suggesting that endothelium is a target tissue for TNF. This led us to examine whether endothelial cells have specific binding sites for TNF and augment the biological response to TNF by elaborating the inflammatory mediator, IL-1. Incubation of 125I-recombinant human TNF with confluent, cultur...

  2. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    Science.gov (United States)

    Kanasaki, Haruhiko; Oride, Aki; Hara, Tomomi; Mijiddorj, Tselmeg; Sukhbaatar, Unurjargal; Kyo, Satoru

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R) has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of GnRH neurons

  3. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    Directory of Open Access Journals (Sweden)

    Haruhiko Kanasaki

    2016-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH and follicle-stimulating hormone (FSH—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of Gn

  4. P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFalpha and potential role in myocardial cell death.

    Science.gov (United States)

    Banfi, Cristina; Ferrario, Silvia; De Vincenti, Ombretta; Ceruti, Stefania; Fumagalli, Marta; Mazzola, Alessia; D' Ambrosi, Nadia; Volontè, Cinzia; Fratto, Pasquale; Vitali, Ettore; Burnstock, Geoffrey; Beltrami, Elena; Parolari, Alessandro; Polvani, GianLuca; Biglioli, Paolo; Tremoli, Elena; Abbracchio, Maria P

    2005-12-01

    ATP acts as a neurotransmitter via seven P2X receptor-channels for Na(+) and Ca(2+), and eight G-protein-coupled P2Y receptors. Despite evidence suggesting roles in human heart, the map of myocardial P2 receptors is incomplete, and their involvement in chronic heart failure (CHF) has never received adequate attention. In left myocardia from five to nine control and 5-12 CHF subjects undergoing heart transplantation, we analyzed the full repertoire of P2 receptors and of 10 "orphan" P2Y-like receptors. All known P2Y receptors (i.e. P2Y(1,2,4,6,11,12,13,14)) and two P2Y-like receptors (GPR91 and GPR17) were detected in all subjects. All known P2X(1-7) receptors were also detected; of these, only P2X(6) was upregulated in CHF, as confirmed by quantitative real time-PCR. The potential significance of this change was studied in primary cardiac fibroblasts freshly isolated from young pigs. Exposure of cardiac fibroblasts to ATP or its hydrolysis-resistant-analog benzoylATP induced apoptosis. TNFalpha (a cytokine implicated in CHF progression) exacerbated cell death. Similar effects were induced by ATP and TNFalpha in a murine cardiomyocytic cell line. In cardiac fibroblasts, TNFalpha inhibited the downregulation of P2X(6) mRNA associated to prolonged agonist exposure, suggesting that, by preventing ATP-induced P2X(6) desensitization, TNFalpha may abolish a defense mechanism meant at avoiding Ca(2+) overload and, ultimately, Ca(2+)-dependent cell death. This may provide a basis for P2X(6) upregulation in CHF. In conclusion, we provide the first characterization of P2 receptors in the human heart and suggest that the interaction between TNFalpha and the upregulated P2X(6) receptor may represent a novel pathogenic mechanism in CHF.

  5. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    OpenAIRE

    Fukuda, Takashi; Tanaka, Tomoko; Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH...

  6. The study of interaction of HIV-1 surface GP120 protein with CD4 cell receptor by EXAFS spectroscopy

    Science.gov (United States)

    Lukashev, Vitaly Alexeevich; Bausk, Nikolay Vladimirovich; Mazalov, Lev Nikolaevich; Kaurov, Oleg Alexeevich; Kolobov, Alexandr Alexandrovich; Naumochkin, Andrey Nikolaevich; Kulichkov, Vladimir Anatolevich

    1995-02-01

    This work is aimed at the study of the interaction between gp120 protein (HIV-1) and peptides, which are similar to CD4 protein receptors from T4 lymphocytes. The preliminary results demonstrated that peptide structural information could be obtained from fluorescent EXAFS.

  7. Progesterone receptor membrane component-1 (PGRMC1) and PGRMC-2 interact to suppress entry into the cell cycle in spontaneously immortalized rat granulosa cells.

    Science.gov (United States)

    Peluso, John J; Griffin, Daniel; Liu, Xiufang; Horne, Meghan

    2014-11-01

    Progesterone receptor membrane component 1 (PGRMC1) and PGRMC2 are expressed in rat granulosa cells and spontaneously immortalized granulosa cells (SIGCs) but their biological roles are not well defined. The present studies demonstrate that depleting either Pgrmc1 or Pgrmc2 in SIGCs increases entry into the cell cycle but does not increase cell proliferation. Rather, PGRMC1 and/or PGRMC2-deplete cells accumulate in metaphase and undergo apoptosis. Because both PGRMC1 and PGRMC2 localize to the mitotic spindle, their absence likely accounts for cells arresting in metaphase. Moreover, pull-down assays, colocalization studies and in situ proximity ligation assays (PLA) indicate that PGRMC1 binds PGRMC2. Disrupting the PGRMC1:PGRMC2 complex through the use of siRNA or the cytoplasmic delivery of a PGRMC2 antibody increases entry into the cell cycle. Conversely, overexpressing either PGRMC1-GFP or GFP-PGRMC2 fusion protein inhibits entry into the cell cycle. Subsequent studies reveal that depleting PGRMC1 and/or PGRMC2 reduces the percentage of cells in G0 and increases the percentage of cells in G1. These observations indicate that in addition to their role at metaphase, PGRMC1 and PGRMC2 are involved in regulating entry into the G1 stage of the cell cycle. Interestingly, both PGRMC1 and PGRMC2 bind GTPase-activating protein-binding protein 2 (G3BP2) as demonstrated by pull-down assays, colocalization assays, and PLAs. G3bp2 siRNA treatment also promotes entry into the G1 stage. This implies that dynamic changes in the interaction among PGRMC1, PGRMC2, and G3BP2 play an important protein regulating the rate at which SIGCs enter into the cell cycle.

  8. Quantifying Rosette Formation Mediated by Receptor-ligand Interactions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRosetting is a simple assay for specific cell-cell adhesion, in which receptor- (or ligand-) coated RBCs form the rosettes with ligand- (or receptor-) expressed nucleated cells~([1]). Although routinely used by immunologists to examine the functionality of the interacting receptors and ligands, however, it has not been regarded as a quantitative method, as the measured rosette fraction has not been quantitatively related to the underlying molecular properties.Recently, we have solved probabili...

  9. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    Science.gov (United States)

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  10. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D;

    2015-01-01

    and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal...... human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting...

  11. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis

    NARCIS (Netherlands)

    Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rougé, P.; Pont-Lezica, R.; Canut, H.

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsi

  12. Evolutionary vignettes of natural killer cell receptors.

    Science.gov (United States)

    Sambrook, Jennifer G; Beck, Stephan

    2007-10-01

    The discovery of novel immune receptors has led to a recent renaissance of research into the innate immune system, following decades of intense research of the adaptive immune system. Of particular interest has been the discovery of the natural killer (NK) cell receptors which, depending on type, interact with classical or non-classical MHC class I antigens of the adaptive immune system, thus functioning at the interface of innate and adaptive immunity. Here, we review recent progress with respect to two such families of NK receptors, the killer immunoglobulin-like receptors (KIRs) and the killer cell lectin-like receptors (KLRs), and attempt to trace their evolution across vertebrates.

  13. ABA Signaling in Guard Cells Entails a Dynamic Protein-Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels

    Institute of Scientific and Technical Information of China (English)

    Sung Chul Lee; Chae Woo Lim; Wenzhi Lan; Kai He; Sheng Luan

    2013-01-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells.We previously reported that SLACl,an outward anion channel required for stomatal closure,was regulated via reversible protein phosphorylation events involving ABA signaling components,including protein phosphatase 2C members and a SnRK2-type kinase (OST1).In this study,we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors,to the PP2C-SnRK2 phosphatase-kinase pairs,to the ion channel SLACl.The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase,releasing active SnRK2 kinase to phosphorylate,and activate the SLACl channel,leading to reduced guard cell turgor and stomatal closure.Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway.These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners.The SLACl channel activity was used as an endpoint readout for the strength of the signaling pathway,depending on the presence of different combinations of signaling components.Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  14. Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells.

    Science.gov (United States)

    Townsley, E; O'Connor, G; Cosgrove, C; Woda, M; Co, M; Thomas, S J; Kalayanarooj, S; Yoon, I-K; Nisalak, A; Srikiatkhachorn, A; Green, S; Stephens, H A F; Gostick, E; Price, D A; Carrington, M; Alter, G; McVicar, D W; Rothman, A L; Mathew, A

    2016-03-01

    Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte antigen (HLA) class I ligands and play a key role in the regulation and activation of NK cells. The functional importance of KIR-HLA interactions has been demonstrated for a number of chronic viral infections, but to date only a few studies have been performed in the context of acute self-limited viral infections. During our investigation of CD8(+) T cell responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B lymphocytes in peripheral blood mononuclear cells (PBMC) from a long-standing clinical cohort in Thailand. We confirmed binding of the NS1 tetramer to CD56(dim) NK cells, which are known to express KIRs. Using depletion studies and KIR-transfected cell lines, we demonstrated further that the NS1 tetramer bound the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from HLA-B57(+) subjects with acute DENV infection revealed marked activation of NS1 tetramer-binding natural killer (NK) cells around the time of defervescence in subjects with severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated relatively late in the course of acute DENV illness and reveal a possible role for specific KIR-HLA interactions in the modulation of disease outcomes.

  15. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    Science.gov (United States)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  16. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis.

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-07-01

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.

  17. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-01-01

    Abstract Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization. PMID:21895963

  18. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    OpenAIRE

    Matsuo, Yosuke; MIYOSHI, Yukihiro; Okada, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. ...

  19. Loss of Discoidin Domain Receptor 2 Promotes Hepatic Fibrosis after Chronic Carbon Tetrachloride through Altered Paracrine Interactions between Hepatic Stellate Cells and Liver-Associated Macrophages

    OpenAIRE

    Olaso, Elvira; ARTETA, BEATRIZ; BENEDICTO, AITOR; Crende, Olatz; Friedman, Scott L.

    2011-01-01

    Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl4) to DDR2+/+ and DDR2−/− mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after...

  20. A Non-Nuclear Role of the Estrogen Receptor Alpha in the Regulation of Cell-Cell Interactions

    Science.gov (United States)

    2007-08-01

    the absence of E2, staining for E-cadherin/j3-catenin and ERu did not overlap, suggesting that ERu does not interact with these junctions (Fig. 5...vitro expressed ERa. As shown in figure 7 A, ERa interacted preferably with the a-catenin homodimer. A role of ERu in F-actin cytoskeleton remodeling

  1. 2-Methoxyestradiol Impacts on Amino Acids-mediated Metabolic Reprogramming in Osteosarcoma Cells by Interaction with NMDA Receptor.

    Science.gov (United States)

    Gorska-Ponikowska, Magdalena; Perricone, Ugo; Kuban-Jankowska, Alicja; Lo Bosco, Giosue; Barone, Giampaolo

    2017-03-06

    Deregulation of serine and glycine metabolism, have been identified to function as metabolic regulators in supporting tumor cell growth. The role of serine and glycine in regulation of cancer cell proliferation is complicated, dependent on concentrations of amino acids and tissue-specific. D-serine and glycine are coagonists of N-methyl-D-aspartate receptor subunit GRIN1. Importantly, NMDA receptors are widely expressed in cancer cells and play an important role in regulation of cell death, proliferation and metabolism of numerous malignancies. The aim of the present work was to associate the metabolism of glycine and D-serine with the anticancer activity of 2-methoxyestradiol. 2-methoxyestradiol is a potent anticancer agent but also a physiological 17β- estradiol metabolite. In the study we have chosen two malignant cell lines expressing functional GRIN1 receptors, i.e. osteosarcoma 143B and breast cancer MCF7. We used MTS assay, migration assay, flow cytometric analyses, western blotting and immunoprecipitation techniques as well as molecular modeling studies. We have demonstrated the extensive crosstalk between the deregulated metabolic network and cancer cell signaling. Herein, we observed an anticancer effect of high concentrations of glycine and D-serine in osteosarcoma cells. In contrast, the amino acids when used at low, physiological concentrations induced the proliferation and migration of osteosarcoma and breast cancer cells. Importantly, the pro-cancergogenic effects of both glycine and D-serine where abrogated by the usage of 2-methoxyestradiol at both physiological and pharmacological relevant concentrations. The obtained data confirmed that 2-methoxyestradiol may be a physiological anticancer molecule. This article is protected by copyright. All rights reserved.

  2. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Pilar Gil-Ibáñez

    Full Text Available The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3 to its nuclear receptors (TR to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.

  3. Study of the Interaction of 1,4- and 1,5-Benzodiazepines with GABAA Receptors of Rat Cerebellum Granule Cells in Culture.

    Science.gov (United States)

    Nikas, Periklis; Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Pellistri, Francesca; Robello, Mauro

    2015-08-01

    The effects of a classical 1,4-benzodiazepine agonist, such as diazepam, its catabolite N-desmethyl-diazepam (nordiazepam), and 1,5-benzodiazepines such as clobazam and RL 214 (a triazolobenzodiazepine previously synthesized in our labs) were evaluated on native GABAA receptors of cerebellar granule cells in culture. The parameter studied was the increase of GABA-activated chloride currents caused by these substances. The contributions of α6 β2/3 γ2 and α1 α6 β2/3 γ2 receptor subtypes to the increase of GABA-activated chloride current were investigated by comparing the effects of such substances in the presence vs. the absence of furosemide. Furosemide is in fact able to block such receptors. It was found that the percent enhancement of peak GABA-activated current doubled for diazepam, clobazam, and RL 214. However, it did not change for N-desmethyl-diazepam. These results indicate that diazepam, clobazam, and RL 214 interact exclusively with α1 β2/3 γ2 receptors, while N-desmethyl-diazepam seems to interact with not only α1- but also α6-containing receptors.

  4. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease.

    Science.gov (United States)

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.

  5. Heterophilic chemokine receptor interactions in chemokine signaling and biology.

    Science.gov (United States)

    Kramp, Birgit K; Sarabi, Alisina; Koenen, Rory R; Weber, Christian

    2011-03-10

    It is generally accepted that G-protein coupled receptors (GPCR), like chemokine receptors, form dimers or higher order oligomers. Such homo- and heterophilic interactions have been identified not only among and between chemokine receptors of CC- or CXC-subfamilies, but also between chemokine receptors and other classes of GPCR, like the opioid receptors. Oligomerization affects different aspects of receptor physiology, like ligand affinity, signal transduction and the mode of internalization, in turn influencing physiologic processes such as cell activation and migration. As particular chemokine receptor pairs exert specific modulating effects on their individual functions, they might play particular roles in various disease types, such as cancer. Hence, chemokine receptor heteromers might represent attractive therapeutic targets. This review highlights the state-of-the-art knowledge on the technical and functional aspects of chemokine receptor multimerization in chemokine signaling and biology.

  6. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  7. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. I. Recognition by two alpha beta T cell receptors

    DEFF Research Database (Denmark)

    Rognan, D; Stryhn, A; Fugger, L

    2000-01-01

    dynamics. Next, three-dimensional models of two different T cell receptors (TCRs) both specific for the Ha255-262/Kk complex were generated based on previously published TCR X-ray structures. Finally, guided by the recently published X-ray structures of ternary TCR/peptide/MHC-I complexes, the TCR models...... the models. They were found to account well for the experimentally obtained data, lending considerable support to the proposed models and suggesting a universal docking mode for alpha beta TCRs to MHC-peptide complexes. Such models may also be useful in guiding future rational experimentation....

  8. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells.

    Science.gov (United States)

    Manni, Marco M; Sot, Jesús; Goñi, Félix M

    2015-03-01

    Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin-Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes.

  9. The evolution of natural killer cell receptors.

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Keşmir, Can; de Boer, Rob J

    2016-01-01

    Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is "missing self" detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.

  10. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    Science.gov (United States)

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  11. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins.

  12. Attenuation of cell motility observed with high doses of sphingosine 1-phosphate or phosphorylated FTY720 involves RGS2 through its interactions with the receptor S1P.

    Science.gov (United States)

    Kohno, Takayuki; Igarashi, Yasuyuki

    2008-07-01

    Sphingosine 1-phosphate (S1P) stimulation enhances cell motility via the G-protein coupled S1P receptor S1P1. This ligand-induced, receptor-mediated cell motility follows a typical bell-shaped dose-response curve, that is, stimulation with low concentrations of S1P enhances cell motility, whereas excess ligand stimulation does not enhance it. So far, the attenuation of the response at higher ligand concentrations has not been explained. We report here that S1P1 interacts with the regulator of G protein signaling (RGS)-2 protein, which is a GTPase-activating protein (GAP) for heterotrimeric G proteins, in a concentration dependent manner. The RGS2-S1P1 complex dissociated at higher ligand concentrations, yet it was unaffected at low concentrations, suggesting that the dissociated RGS2 is involved in the concurrent decrease of cell motility. In RGS2 knockdown cells, the decrease of cell motility induced by high ligand concentrations was rescued. S1P1 internalization was not implicated in the attenuation of the response. Similar results were observed upon stimulation with the phosphorylated form of FTY720 (FTYP), which is an S1P1 agonist. In conclusion, the suppressed response in cell motility induced by excess S1P or FTYP via S1P1 is regulated by RGS2 functioning through a mechanism that is independent of S1P1 internalization.

  13. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells.

    Science.gov (United States)

    Fukuda, Yu; Fukui, Takao; Hikichi, Chika; Ishikawa, Tomomasa; Murate, Kenichiro; Adachi, Takeshi; Imai, Hideki; Fukuhara, Koki; Ueda, Akihiro; Kaplan, Allen P; Mutoh, Tatsuro

    2015-01-30

    Activation of the high-affinity nerve growth factor (NGF) receptor Trk occurs through multiple processes consisted of translocation and clustering within the plasma membrane lipid rafts, dimerization and autophosphorylation. Here we found that a nonprotein extract of inflamed rabbit skin inoculated with vaccinia virus (Neurotropin(®)) enhanced efficiency of NGF signaling. In rat pheochromocytoma PC12 cells overexpressing Trk (PCtrk cells), Neurotropin augmented insufficient neurite outgrowth observed at suboptimal concentration of NGF (2ng/mL) in a manner depending on Trk kinase activity. Cellular exposure to Neurotropin resulted in an accumulation of Trk-GM1 complexes without affecting dimerization or phosphorylation states of Trk. Following NGF stimulation, Neurotropin significantly facilitated the time course of NGF-induced Trk autophosphorylation. These observations provide a unique mechanism controlling efficiency of NGF signaling, and raise the therapeutic potential of Neurotropin for various neurological conditions associated with neurotrophin dysfunction.

  14. Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation.

    Science.gov (United States)

    Bidère, Nicolas; Snow, Andrew L; Sakai, Keiko; Zheng, Lixin; Lenardo, Michael J

    2006-08-22

    Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known role in apoptosis [3]. Caspase-8 is activated after TCR stimulation and nucleates a complex with B cell lymphoma 10 (BCL10), paracaspase MALT1, and the inhibitors of kappaB kinase (IKK) complex [4]. We now report that the ubiquitin ligase TRAF6 binds to active caspase-8 upon TCR stimulation and facilitates its movement into lipid rafts. We identified in silico two putative TRAF6 binding motifs in the caspase-8 sequence and found that mutation of critical residues within these sites abolished TRAF6 binding and diminished TCR-induced NF-kappaB activation. Moreover, RNAi-mediated silencing of TRAF6 abrogated caspase-8 recruitment to the lipid rafts. Protein kinase Ctheta (PKCtheta), CARMA1, and BCL10 are also required for TCR-induced caspase-8 relocation, but only PKCtheta and BCL10 control caspase-8 activation. Our results suggest that PKCtheta independently controls CARMA1 phosphorylation and BCL10-dependent caspase-8 activation and unveil an essential role for TRAF6 as a critical adaptor linking these two convergent signaling events.

  15. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    Science.gov (United States)

    Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip. PMID:27706259

  16. Implication of scavenger receptors in the interactions between diesel exhaust particles and immature or mature dendritic cells

    Directory of Open Access Journals (Sweden)

    Lassalle Philippe

    2009-03-01

    Full Text Available Abstract Background The exposure to pollutants such as diesel exhaust particles (DEP is associated with an increased incidence of respiratory diseases. However, the mechanisms by which DEP have an effect on human health are not completely understood. In addition to their action on macrophages and airway epithelial cells, DEP also modulate the functions of dendritic cells (DC. These professional antigen-presenting cells are able to discriminate unmodified self from non-self thanks to pattern recognition receptors such as the Toll like Receptors (TLR and Scavenger Receptors (SR. SR were originally identified by their ability to bind and internalize modified lipoproteins and microorganisms but also particles and TLR agonists. In this study, we assessed the implication of SR in the effects of DEP associated or not with TLR agonists on monocyte-derived DC (MDDC. For this, we studied the regulation of CD36, CXCL16, LOX-1, SR-A1 and SR-B1 expression on MDDC treated with DEP associated or not with TLR2, 3 and 4 ligands. Then, the capacity of SR ligands (dextran sulfate and maleylated-ovalbumin to block the effects of DEP on the function of lipopolysaccharide (LPS-activated DC has been evaluated. Results Our data demonstrate that TLR2 agonists mainly augmented CXCL16, LOX-1 and SR-B1 expression whereas DEP alone had only a weak effect. Interestingly, DEP modulated the action of TLR2 and TLR4 ligands on the expression of LOX-1 and SR-B1. Pretreatment with the SR ligand maleylated-ovalbumin but not dextran sulfate inhibited the endocytosis of DEP by MDDC. Moreover, this SR ligand blocked the effect by DEP at low dose (1 μg/ml on MDDC phenotype (a decrease of CD86 and HLA-DR expression and on the secretion of CXCL10, IL-12 and TNF-α. In contrast, the decrease of IL-12 and CXCL10 secretion and the generation of oxygen metabolite induced by DEP at 10 μg/ml was not affected by SR ligands Conclusion Our results show for the first time that the modulation of

  17. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  18. Regulation of activin receptor-interacting protein 2 expression in mouse hepatoma Hepal-6 cells and its relationship with collagen type Ⅳ

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the regulation of activin receptor-interacting protein 2 (ARIP2) expression and its possible relationships with collagen type Ⅳ (collagen Ⅳ) in mouse hepatoma cell line Hepal-6 cells.METHODS: The ARIP2 mRNA expression kinetics in Hepal-6 cells was detected by RT-PCR, and its regulation factors were analyzed by treatment with signal transduction activators such as phorbol 12-myristate 13-acetate (PMA), forskolin and A23187. After pcDNA3-ARIP2 was transfected into Hepal-6 cells, the effects of ARIP2 overexpression on activin type Ⅱ receptor (ActRII)and collagen Ⅳ expression were evaluated.RESULTS: The expression levels of ARIP2 mRNA in Hapel-6 cells were elevated in time-dependent manner 12 h after treatment with activin A and endotoxin LPS, but not changed evidently in the early stage of stimulation (2 or 4 h). TheARIP2 mRNA expression was increased after stimulated with signal transduction activators such as PMA and forskolin in Hepal-6 cells, whereas decreased after treatment with A23187 (25.3% ± 5.7% vS 48.1% ± 3.6%, P < 0.01). ARIP2 overexpression could remarkably suppress the expression of ActRIIA mRNA in dose-dependent manner, but has no effect on ActRIIB in Hepal-6 cells induced by activin A. Furthermore, we have found that overexpression of ARIP2 could inhibit collagen Ⅳ mRNA and protein expressions induced by activin A in Hapel-6 cells.CONCLUSION: These findings suggest that ARIP2 expression can be influenced by various factors. ARIP2 may participate in the negative feedback regulation of signal transduction in the late stage by affecting the expression of ActRIIA and play an important role in regulation of development of liver fibrosis induced by activin.

  19. Identification of amino acid residues involved in the interaction between measles virus Haemagglutin (MVH) and its human cell receptor (signaling lymphocyte activation molecule, SLAM).

    Science.gov (United States)

    Xu, Qin; Zhang, Peng; Hu, Chunling; Liu, Xin; Qi, Yipeng; Liu, Yingle

    2006-07-31

    Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). The interaction between MV Haemagglutin (MVH) and SLAM is an initial step for MV entry. We have identified several novel SLAM binding sites at residues S429, T436 and H437 of MVH protein and MVH mutants in these residues dramatically decrease the ability to interaction with the cell surface SLAM and fail to coprecipitation with SLAM in vivo as well as malfunction in syncytium formation. At the same time, K58, S59 and H61 of SLAM was also identified to be critical for MVH and SLAM binding. Further, these residues may be useful targets for the development of measles therapy.

  20. Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region.

    Directory of Open Access Journals (Sweden)

    Laurent Verkoczy

    Full Text Available The membrane proximal external region (MPER of HIV-1 gp41 has several features that make it an attractive antibody-based vaccine target, but eliciting an effective gp41 MPER-specific protective antibody response remains elusive. One fundamental issue is whether the failure to make gp41 MPER-specific broadly neutralizing antibodies like 2F5 and 4E10 is due to structural constraints with the gp41 MPER, or alternatively, if gp41 MPER epitope-specific B cells are lost to immunological tolerance. An equally important question is how B cells interact with, and respond to, the gp41 MPER epitope, including whether they engage this epitope in a non-canonical manner i.e., by non-paratopic recognition via B cell receptors (BCR. To begin understanding how B cells engage the gp41 MPER, we characterized B cell-gp41 MPER interactions in BALB/c and C57BL/6 mice. Surprisingly, we found that a significant (approximately 7% fraction of splenic B cells from BALB/c, but not C57BL/6 mice, bound the gp41 MPER via their BCRs. This strain-specific binding was concentrated in IgM(hi subsets, including marginal zone and peritoneal B1 B cells, and correlated with enriched fractions (approximately 15% of gp41 MPER-specific IgM secreted by in vitro-activated splenic B cells. Analysis of Igh(a (BALB/c and Igh(b (C57BL/6 congenic mice demonstrated that gp41 MPER binding was controlled by determinants of the Igh(a locus. Mapping of MPER gp41 interactions with IgM(a identified MPER residues distinct from those to which mAb 2F5 binds and demonstrated the requirement of Fc C(H regions. Importantly, gp41 MPER ligation produced detectable BCR-proximal signaling events, suggesting that interactions between gp41 MPER and IgM(a determinants may elicit partial B cell activation. These data suggest that low avidity, non-paratopic interactions between the gp41 MPER and membrane Ig on naïve B cells may interfere with or divert bnAb responses.

  1. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  2. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    Science.gov (United States)

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  3. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  4. Receptor interacting protein 1 involved in ultraviolet B induced NIH3T3 cell apoptosis through expression of matrix metalloproteinases and reactive oxygen species production

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; LI Li; XU Hao-xiang; PENG Shi-guang; QU Tao; WANG Bao-xi

    2013-01-01

    Background Receptor interacting protein 1 (RIP1),which plays a key role in apoptosis,cell survival and programmed cell necrosis,is one of the most important proteins in the RIP family.The purpose of this study was to investigate the roles of RIP1 in the apoptosis,the generation of reactive oxygen species (ROS) and the expression of matrix metalloproteinases (MMPs) induced by ultraviolet B (UVB) in fibroblasts.Methods siRNA targeting RIP1 was used to silence RIP1 expression in the NIH3T3 fibroblasts.The mRNA and protein levels of MMP-1 and MMP-3,caspase-3 and-8 activities,and ROS activities were determined by reverse transcriptasequantitative polymerase chain reaction (RT-qPCR),immunoblotting,cespase activity assay,immunofiuorescence,and flow cytometry.Results The mRNA and protein expressions of MMP-1 and MMP-3 were significantly increased in RIP1 deficient NIH3T3 cells at 24 hours after UVB treatment.At 24 hours after exposure to UVB,RIP1 deficient NIH3T3 cells presented apoptotic morphology,and the apoptosis rate was significantly increased accompanied by pronounced increase in caspase-8 and-3activities.ROS production was inhibited by UVB at 12 hours in RIP1 deficient NIH3T3 cells.Conclusion RIP1 is involved in NIH3T3 cell damage induced by UVB via participating in the apoptosis,expression of MMPs and ROS production.

  5. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Mian Long; Shouqin Lü; Ganyun Sun

    2006-01-01

    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  6. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  7. Endomorphins interact with tachykinin receptors.

    Science.gov (United States)

    Kosson, Piotr; Bonney, Iwona; Carr, Daniel B; Lipkowski, Andrzej W

    2005-09-01

    Soon after the discovery of endomorphins several studies indicated differences between pharmacological effects of endomorphins and other MOR selective ligands, as well as differences between the effects of endomorphin I and endomorphin II. We now propose that these differences are the result of an additional non-opioid property of endomorphins, namely, their weak antagonist properties with respect to tachykinin NK1 and NK1 receptors.

  8. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  9. Regulation of Toll-like receptor 2 interaction with Ecgp96 controls Escherichia coli K1 invasion of brain endothelial cells

    Science.gov (United States)

    Krishnan, Subramanian; Chen, Shuang; Turcatel, Gianluca; Arditi, Moshe; Prasadarao, Nemani V.

    2012-01-01

    SUMMARY The interaction of outer membrane protein A (OmpA) with its receptor, Ecgp96 (a homologue of Hsp90β) is critical for the pathogenesis of E. coli K1 meningitis. Since Hsp90 chaperones Toll-like receptors (TLRs), we examined the role of TLRs in E. coli K1 infection. Herein, we show that newborn TLR2−/− mice are resistant to E. coli K1 meningitis, while TLR4−/− mice succumb to infection sooner. In vitro, OmpA+ E. coli infection selectively upregulates Ecgp96 and TLR2 in human brain microvascular endothelial cells (HBMEC), whereas OmpA− E. coli upregulates TLR4 in these cells. Furthermore, infection with OmpA+ E. coli causes Ecgp96 and TLR2 translocate to the plasma membrane of HBMEC as a complex. Immunoprecipitation studies of the plasma membrane fractions from infected HBMEC reveal that the C-termini of Ecgp96 and TLR2 are critical for OmpA+ E. coli invasion. Knockdown of TLR2 using siRNA results in inefficient membrane translocation of Ecgp96 and significantly reduces invasion. In addition, the interaction of Ecgp96 and TLR2 induces a bipartite signal, one from Ecgp96 through PKC-α while the other from TLR2 through MyD88, ERK1/2 and NF-κB. This bipartite signal ultimately culminates in the efficient production of NO, which in turn promotes E. coli K1 invasion of HBMEC. PMID:22963587

  10. Direct interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fc epsilon receptors.

    Science.gov (United States)

    Amoui, M; Dráberová, L; Tolar, P; Dráber, P

    1997-01-01

    Activation of rat mast cells through the receptor with high affinity for IgE (Fc epsilonRI) requires a complex set of interactions involving transmembrane subunits of the Fc epsilonRI and two classes of nonreceptor protein tyrosine kinase (PTK). the Src family PTK p53/p56(lyn) (Lyn) and the Syk/ZAP-family PTK p72(syk) (Syk). Early activation events involve increased activity of Lyn and Syk kinases and their translocation into membrane domains containing aggregated Fc epsilonRI, but the molecular mechanisms responsible for these changes have remained largely unclear. To determine the role of Fc epsilonRI subunits in this process, we have analyzed Syk- and Lyn-associated proteins in activated rat basophilic leukemia (RBL) cells and their variants deficient in the expression of Fc epsilonRI beta or gamma subunits. Sepharose 4B gel chromatography of postnuclear supernatants from Nonidet-P40-solubilized antigen (Ag)- or pervanadate-activated RBL cells revealed extensive changes in the size of complexes formed by Lyn and Syk kinases and other cellular components. A fusion protein containing Src homology 2 (SH2) and SH3 domains of Lyn bound Syk from lysates of nonactivated RBL cells; an increased binding was observed when lysates from Ag- or pervanadate-activated cells were used. A similar amount of Syk was bound when lysates from pervanadate-activated variant cells deficient in the expression of Fc epsilonRI beta or gamma subunits were used, suggesting that Fc epsilonRI does not function as the only intermediate in the formation of the Syk-Lyn complexes. Further experiments have indicated that Syk-Lyn interactions occur in Ag-activated RBL cells under in vivo conditions and that these interactions could involve direct binding of the Lyn SH2 domain with phosphorylated tyrosine of Syk. The physical association of Lyn and Syk during mast-like cell activation supports the recently proposed functional cooperation of these two tyrosine kinases in Fc epsilonRI signaling.

  11. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  12. Immature Dengue Virus Is Infectious in Human Immature Dendritic Cells via Interaction with the Receptor Molecule DC-SIGN

    NARCIS (Netherlands)

    Richter, Mareike K. S.; Da Silva-Voorham, Júlia M.; Torres Pedraza, Silvia; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    2014-01-01

    Background: Dengue Virus (DENV) is the most common mosquito-borne viral infection worldwide. Important target cells during DENV infection are macrophages, monocytes, and immature dendritic cells (imDCs). DENV-infected cells are known to secrete a large number of partially immature and fully immature

  13. Lupin Peptides Modulate the Protein-Protein Interaction of PCSK9 with the Low Density Lipoprotein Receptor in HepG2 Cells

    Science.gov (United States)

    Lammi, Carmen; Zanoni, Chiara; Aiello, Gilda; Arnoldi, Anna; Grazioso, Giovanni

    2016-07-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently identified as a new useful target for hypercholesterolemia treatment. This work demonstrates that natural peptides, deriving from the hydrolysis of lupin protein and absorbable at intestinal level, are able to inhibit the protein-protein interaction between PCSK9 and the low density lipoprotein receptor (LDLR). In order to sort out the best potential inhibitors among these peptides, a refined in silico model of the PCSK9/LDLR interaction was developed. Docking, molecular dynamics (MD) simulations and peptide binding energy estimations, by MM-GBSA approach, permitted to select the two best candidates among tested peptides that were synthesized and evaluated for their inhibitory activity. The most active was P5 that induced a concentration dependent inhibition of the PCSK9-LDLR binding, with an IC50 value equal to 1.6 ± 0.33 μM. Tested at a 10 μM concentration, this peptide increased by 66 ± 21.4% the ability of HepG2 cells to take up LDL from the extracellular environment.

  14. Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages.

    Science.gov (United States)

    Olaso, Elvira; Arteta, Beatriz; Benedicto, Aitor; Crende, Olatz; Friedman, Scott L

    2011-12-01

    Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl(4)) to DDR2(+/+) and DDR2(-/-) mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after chronic CCl(4) administration, DDR2(-/-) livers had increased collagen deposition, gelatinolytic activity, and HSC density. Increased basal gene expression of osteopontin, transforming growth factor-β1, monocyte chemoattractant protein-1, and IL-10 and reduced basal gene expression of matrix metalloproteinase-2, matrix metalloproteinase-13, and collagen type I in quiescent DDR2(-/-) HSCs were amplified further after chronic CCl(4). In concordance, DDR2(-/-) HSCs isolated from chronically injured livers had enhanced in vitro migration and proliferation, but less extracellular matrix degradative activity. Macrophages from chronic CCl(4)-treated DDR2(-/-) livers showed stronger chemoattractive activity toward DDR2(-/-) HSCs than DDR2(+/+) macrophages, increased extracellular matrix degradation, and higher cytokine mRNA expression. In conclusion, loss of DDR2 promotes chronic liver fibrosis after CCl(4) injury. The fibrogenic sinusoidal milieu generated in chronic DDR2(-/-) livers recruits more HSCs to injured regions, which enhances fibrosis. Together, these findings suggest that DDR2 normally orchestrates gene programs and paracrine interactions between HSCs and macrophages that together attenuate chronic hepatic fibrosis.

  15. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    Science.gov (United States)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  16. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Science.gov (United States)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  17. Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells

    NARCIS (Netherlands)

    Roth, Michael; Johnson, Peter R.A.; Borger, Peter; Bihl, Michel P.; Rüdiger, Jochen J.; King, Gregory G.; Ge, Qi; Hostettler, Katrin; Burgess, Janette K.; Black, Judith L.; Tamm, Michael

    2004-01-01

    BACKGROUND: Increased proliferation of bronchial smooth-muscle cells may lead to increased muscle mass in the airways of patients with asthma. The antiproliferative effect of glucocorticoids in bronchial smooth-muscle cells in subjects without asthma is mediated by a complex of the glucocorticoid re

  18. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways.

    Science.gov (United States)

    Shatz, Maria; Shats, Igor; Menendez, Daniel; Resnick, Michael A

    2015-07-10

    The p53 tumor suppressor regulates transcription of genes associated with diverse cellular functions including apoptosis, growth arrest, DNA repair and differentiation. Recently, we established that p53 can modulate expression of Toll-like receptor (TLR) innate immunity genes but the degree of cross-talk between p53 and TLR pathways remained unclear. Here, using gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes. The p53-dependent amplification of transcriptional response to TLR5 activation required expression of NFκB subunit p65 and was mediated by several molecular mechanisms including increased phosphorylation of p38 MAP kinase, PI3K and STAT3 signaling. Additionally, p53 induction increased cytokine expression in response to TNFα, another activator of NFκB and MAP kinase pathways, suggesting a broad interaction between p53 and these signaling pathways. The expression of many synergistically induced genes is elevated in breast cancer patients responsive to chemotherapy. We suggest that p53's capacity to enhance immune response could be exploited to increase antitumor immunity and to improve cancer treatment.

  19. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways

    Science.gov (United States)

    Shatz, Maria; Shats, Igor; Menendez, Daniel; Resnick, Michael A.

    2015-01-01

    The p53 tumor suppressor regulates transcription of genes associated with diverse cellular functions including apoptosis, growth arrest, DNA repair and differentiation. Recently, we established that p53 can modulate expression of Toll-like receptor (TLR) innate immunity genes but the degree of cross-talk between p53 and TLR pathways remained unclear. Here, using gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes. The p53-dependent amplification of transcriptional response to TLR5 activation required expression of NFκB subunit p65 and was mediated by several molecular mechanisms including increased phosphorylation of p38 MAP kinase, PI3K and STAT3 signaling. Additionally, p53 induction increased cytokine expression in response to TNFα, another activator of NFκB and MAP kinase pathways, suggesting a broad interaction between p53 and these signaling pathways. The expression of many synergistically induced genes is elevated in breast cancer patients responsive to chemotherapy. We suggest that p53's capacity to enhance immune response could be exploited to increase antitumor immunity and to improve cancer treatment. PMID:26220208

  20. Epidermal growth factor-receptor interaction in rat pheochromocytoma (PC12) and human epidermoid A431 cells: Biochemical and ultrastructural studies

    NARCIS (Netherlands)

    Laat, S.W. de; Boonstra, J.; Mummery, C.L.; Defize, L.; Leunissen, J.; Verkleij, A.J.

    1984-01-01

    Pheochromocytoma cells (clone PC12) have specific plasmamembrane receptors for both epidermal growth factor (EGF) and nerve growth factor (NGF). These growth factors have however, opposite biological effects in PC12 cells; EGF acts mitogenically, while NGF induces differentiation and causes arrest o

  1. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse

    NARCIS (Netherlands)

    Romero, [No Value; Zapater, N; Calvo, M; Kalko, SG; de la Fuente, MA; Tovar, [No Value; Ockeloen, C; Pizcueta, P; Engel, P

    2005-01-01

    CD229 is a member of the CD150 family of the Ig superfamily expressed on T and B cells. Receptors of this family regulate cytokine production and cytotoxicity of lymphocytes and NK cells. The cytoplasmic tail of CD229 binds to SAP, a protein that is defective in X-linked lymphoproliferative syndrome

  2. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERa and ERB agonists

    NARCIS (Netherlands)

    Evers, N.M.; Berg, van den J.H.J.; Wang, S.; Melchers, D.; Houtman, J.; Haan, de L.H.J.; Ederveen, A.G.H.; Groten, J.P.; Rietjens, I.

    2014-01-01

    The aim of the present study was to investigate modulation of the interaction of the ERa and ERß with coregulators in the ligand responses induced by estrogenic compounds. To this end, selective ERa and ERß agonists were characterized for intrinsic relative potency reflected by EC50 and maximal effi

  3. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for CCR5 chemokine receptor signaling complex organization.

    Directory of Open Access Journals (Sweden)

    Yi-Qun Kuang

    Full Text Available Chemokine receptors are members of the G protein-coupled receptor (GPCR family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.

  4. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for CCR5 chemokine receptor signaling complex organization.

    Science.gov (United States)

    Kuang, Yi-Qun; Charette, Nicholle; Frazer, Jennifer; Holland, Patrick J; Attwood, Kathleen M; Dellaire, Graham; Dupré, Denis J

    2012-01-01

    Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.

  5. Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Differentiating granule cells develop survival requirements in culture which can be met by treatment with high K+ or N-methyl-D-aspartate (NMDA) and, according to our recent findings, also with low concentrations of kainic acid (KA, 50 microM). We have now attempted to elucidate the mechanism(s) ...

  6. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  7. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  8. The interaction of Clostridium perfringens enterotoxin with receptor claudins.

    Science.gov (United States)

    Shrestha, Archana; Uzal, Francisco A; McClane, Bruce A

    2016-10-01

    Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.

  9. Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling.

    Science.gov (United States)

    Egea, Sophie C; Dickerson, Ian M

    2012-04-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.

  10. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  11. Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    OpenAIRE

    2016-01-01

    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire coul...

  12. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  13. Interactions between drugs and occupied receptors.

    Science.gov (United States)

    Tallarida, Ronald J

    2007-01-01

    This review has 2 parts. Part I deals with isobolographic procedures that are traditionally applied to the joint action of agonists that individually produce overtly similar effects. Special attention is directed to newer computational procedures that apply to agonists with dissimilar concentration-effect curves. These newer procedures are consistent with the isobolographic methods introduced and used by Loewe, however, the present communications provides the needed graphical and mathematical detail. A major aim is distinguishing super and sub-addictive interactions from those that are simply additive. The detection and measurement of an interaction is an important step in exploring drug mechanism and is also important clinically. Part II discusses a new use of isoboles that is applicable to a single drug or chemical whose effect is mediated by 2 or more receptor subtypes. This application produces a metric that characterizes the interaction between the receptor subtypes. The expansion of traditional isobolographic theory to this multi-receptor situation follows from the newer approaches for 2-drug combination analysis in Part I. This topic leads naturally to a re-examination of competitive antagonism and the classic Schild plot. In particular, it is shown here that the Schild plot in the multi-receptor case is not necessarily linear with unit slope. Both parts of this review emphasize the quantitative aspects rather than the many drugs that have been analyzed with isobolographic methods. The mathematical exposition is rather elementary and is further aided by several graphs. An appendix is included for the reader interested in the mathematical details.

  14. Interaction of G protein coupled receptors and cholesterol.

    Science.gov (United States)

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

  15. [The Cytoskelrtal Protein Zvxin Interacts with the Hedgehog Receptor Patched].

    Science.gov (United States)

    Martynova, N U; Ermolina, L V; Eroshkin, F M; Zarayskiy, A G

    2015-01-01

    Earlier, we demonstrated Zyxin influence upon Hedgehog (Hh)-signaling pathway during early patterning of the central neural system (CNS) anlage of the Xenopus laevis embryo. Now we show that Zyxin can physically interact with the transmembrane receptor of Hh, Patched2 (Ptc2). Binding of Hh by this receptor activates signaling pathway, which regulates many events, including numerous types of cell differentiation during the embryonic development. In particular, patterning of the CNS anlage. The ability of Zyxin to interact with Ptc2 have been confirmed by immunoprecipitation experiments, in which we tested mutual binding affinity of Zyxin and Ptc2, as well as mutual affinity of their deletion mutants. As a result, we have established that in Xenopus levis, Zyxin binding to Ptc2 is due to the interaction of Zyxin 2nd LIM-domain (530-590 aa) with the under-membrane region of the cytoplasmic C-terminus of Ptc2 (1159-1412 aa). We have also demonstrated that similar interaction is valid for the homologous regions of the human Zyxin and human Hh receptor, Ptc1. The data obtained allow to hypothesize existence of evolutionary conserved mechanism that modulates Hh-signaling and based on the interaction of Zyxin with Ptc.

  16. Fibronectin-cell interactions

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, M R; Woods, A

    1990-01-01

    Fibronectins are widespread extracellular matrix and body fluid glycoproteins, capable of multiple interactions with cell surfaces and other matrix components. Their structure at a molecular level has been resolved, yet there are still many unanswered questions regarding their biologic activity i...

  17. Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T cell development.

    Science.gov (United States)

    Felli, M P; Maroder, M; Mitsiadis, T A; Campese, A F; Bellavia, D; Vacca, A; Mann, R S; Frati, L; Lendahl, U; Gulino, A; Screpanti, I

    1999-07-01

    The suggested role of Notch1 or its mutants in thymocyte differentiation and T cell tumorigenesis raises the question of how the different members of the Notch family influence distinct steps in T cell development and the role played by Notch ligands in the thymus. We report here that different Notch receptor-ligand partnerships may occur inside the thymus, as we observed differential expression of Notch1, 2 and 3 receptors, their ligands Jagged1 and 2, and downstream intracellular effectors hairy and Enhancer of Split homolog 1 (HES-1) and hairy and Enhancer of Split homolog 5 (HES-5), depending on ontogenetic stage and thymic cell populations. Indeed, while Jagged2 is expressed in both stromal cells and thymocytes, Jagged1 expression is restricted to stromal cells. Moreover, a differential distribution of Notch3, with respect to Notch1, was observed in distinct age-related thymocyte subsets. Finally, Notch3 was preferentially up-regulated in thymocytes, following the induction of their differentiation by interaction with thymic epithelial cells expressing the cognate Jagged1 and 2 ligands, suggesting that, besides Notch1, Notch3 may also be involved in distinct steps of thymocyte development. Our results suggest that the Notch signaling pathway is involved in a complex interplay of T cell developmental stages, as a consequence of the heterogeneity and specific expression of members of the Notch receptor family and their cognate ligands, in distinct thymic cell compartments.

  18. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  19. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis.

    Science.gov (United States)

    Chen, Yue; Asico, Laureano D; Zheng, Shuo; Villar, Van Anthony M; He, Duofen; Zhou, Lin; Zeng, Chunyu; Jose, Pedro A

    2013-11-01

    Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.

  20. Proliferation of neointimal smooth muscle cells after arterial injury. Dependence on interactions between fibroblast growth factor receptor-2 and fibroblast growth factor-9.

    Science.gov (United States)

    Agrotis, Alex; Kanellakis, Peter; Kostolias, Gina; Di Vitto, Giovanna; Wei, Chen; Hannan, Ross; Jennings, Garry; Bobik, Alex

    2004-10-01

    The growth factor signaling mechanisms responsible for neointimal smooth muscle cell (SMC) proliferation and accumulation, a characteristic feature of many vascular pathologies that can lead to restenosis after angioplasty, remain to be identified. Here, we examined the contribution of fibroblast growth factor receptors (FGFRs) 2 and 3 as well as novel fibroblast growth factors (FGFs) to such proliferation. Balloon catheter injury to the rat carotid artery stimulated the expression of two distinctly spliced FGFR-2 isoforms, differing only by the presence or absence of the acidic box, and two distinctly spliced FGFR-3 isoforms containing the acidic box and differing only by the presence of either the IIIb or IIIc exon. Post-injury arterial administration of recombinant adenoviruses expressing dominant negative mutant forms of these FGFRs were used to assess the roles of the endogenous FGFR isoforms in neointimal SMC proliferation. Dominant negative FGFR-2 containing the acidic box inhibited such proliferation by 40%, whereas the dominant negative FGFR-3 forms had little effect. Expression of FGF-9, known to be capable of binding to all four neointimal FGFR-2/-3 isoforms, was abundant within the neointima. FGF-9 markedly stimulated both the proliferation of neointimal SMCs and the activation of extracellular signal-related kinases 1/2, effects which were abrogated by the administration of antisense FGF-9 oligonucleotides to injured arteries and the expression of the dominant negative FGFR-2 adenovirus in cultured neointimal SMCs. These studies demonstrate that, although multiple FGFRs are induced in neointimal SMCs following arterial injury, specific interactions between distinctly spliced FGFR-2 isoforms and FGF-9 contribute to the proliferation of these SMCs.

  1. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E;

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  2. Interaction of Hepatitis C virus proteins with pattern recognition receptors

    Directory of Open Access Journals (Sweden)

    Imran Muhammad

    2012-06-01

    Full Text Available Abstract Hepatitis C virus (HCV is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I as the receptors for intracellular viral double stranded RNA (dsRNA, and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C, non structural 3/4 A (NS3/4A and non structural 5A (NS5A have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.

  3. Insights into cytokine-receptor interactions from cytokine engineering.

    Science.gov (United States)

    Spangler, Jamie B; Moraga, Ignacio; Mendoza, Juan L; Garcia, K Christopher

    2015-01-01

    Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.

  4. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    OpenAIRE

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomona...

  5. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  6. A Tunable Coarse-Grained Model for Ligand-Receptor Interaction

    Science.gov (United States)

    Guantes, Raúl; Miguez, David G.

    2013-01-01

    Cell-surface receptors are the most common target for therapeutic drugs. The design and optimization of next generation synthetic drugs require a detailed understanding of the interaction with their corresponding receptors. Mathematical approximations to study ligand-receptor systems based on reaction kinetics strongly simplify the spatial constraints of the interaction, while full atomistic ligand-receptor models do not allow for a statistical many-particle analysis, due to their high computational requirements. Here we present a generic coarse-grained model for ligand-receptor systems that accounts for the essential spatial characteristics of the interaction, while allowing statistical analysis. The model captures the main features of ligand-receptor kinetics, such as diffusion dependence of affinity and dissociation rates. Our model is used to characterize chimeric compounds, designed to take advantage of the receptor over-expression phenotype of certain diseases to selectively target unhealthy cells. Molecular dynamics simulations of chimeric ligands are used to study how selectivity can be optimized based on receptor abundance, ligand-receptor affinity and length of the linker between both ligand subunits. Overall, this coarse-grained model is a useful approximation in the study of systems with complex ligand-receptor interactions or spatial constraints. PMID:24244115

  7. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin

  8. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  9. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis.

    Science.gov (United States)

    Qian, Feng; Tang, Feng-Ru

    2016-01-01

    Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer's disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis.

  10. Androgen receptor coregulator ARA267-α interacts with death receptor-6 revealed by the yeast two-hybrid

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    ARA267-αis a newly identified androgen receptor coactivator.In order to further elucidate its precise role in cells,using the ARA267- α fragment containing four PHD and one SET conserved domains as bait we revealed an ARA267-α-PHD-SET-interacting protein,death receptor-6(DR6),in the yeast two-hybrid screening.DR6 is the member of TNF receptor family and has a death domain in its intracellular cytoplasmic portion(DR6cp)to mediate the cell apoptosis.The interaction between ARA267-α-PHD-SET and DR6cp was confirmed in vitro and in vivo.Our finding implied that androgen signaling pathway might cross talk with apoptosis signaling pathway through the interaction between ARA267-α and DR6.

  11. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  12. Mast Cell and Immune Inhibitory Receptors

    Institute of Scientific and Technical Information of China (English)

    LixinLi; ZhengbinYao

    2004-01-01

    Modulation by balancing activating and inhibitory receptors constitutes an important mechanism for regulating immune responses. Cells that are activated following ligation of receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs) can be negatively regulated by other receptors bearing immunoreceptor tyrosine-based inhibition motifs (ITIMs). Human mast cells (MCs) are the major effector cells of type I hypersensitivity and important participants in a number of disease processes. Antigen-mediated aggregation of IgE bound to its high-affinity receptor on MCs initiates a complex series of biochemical events leading to MC activation. With great detailed description and analysis of several inhibitory receptors on human MCs, a central paradigm of negative regulation of human MC activation by these receptors has emerged. Cellular & Molecular Immunology. 2004;1(6):408-415.

  13. Molecular cell biology of androgen receptor signalling.

    Science.gov (United States)

    Bennett, Nigel C; Gardiner, Robert A; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2010-06-01

    The classical action of androgen receptor (AR) is to regulate gene transcriptional processes via AR nuclear translocation, response element binding and recruitment of, or crosstalk with, transcription factors. AR also utilises non-classical, non-genomic mechanisms of signal transduction. These precede gene transcription or protein synthesis, and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Despite many decades of investigation, the role of AR in gene regulation of cells and tissues remains only partially characterised. AR exerts most of its effects in sex hormone-dependent tissues of the body, but the receptor is also expressed in many tissues not previously thought to be androgen sensitive. Thus it is likely that a complex, more over-arching, role for AR exists. Each AR domain co-ordinates a multitude of individual and vital roles via a diverse array of interacting partner molecules that are necessary for cellular and tissue development and maintenance. Aberrant AR activity, promoted by mutations or binding partner misregulation, can present as many clinical manifestations including androgen insensitivity syndrome and prostate cancer. In the case of malignant prostate cancer, treatment generally revolves around androgen deprivation therapies designed to interfere with AR action and the androgen signalling axis. Androgen therapies for prostate cancer often fail, highlighting a real need for increased research into AR function.

  14. Interleukin-1 receptor accessory protein interacts with the type II interleukin-1 receptor.

    Science.gov (United States)

    Malinowsky, D; Lundkvist, J; Layé, S; Bartfai, T

    1998-06-16

    Stably transfected HEK-293 cells express on their surface the murine type II IL-1 receptor (mIL-1RII) as demonstrated by FACS analysis using the mAb 4E2, however binding of [125I]-hrIL-1beta to these cells is nearly absent. Saturable high affinity binding of [125I]-hrIL-1beta is observed when the murine IL-1 receptor accessory protein (mIL-1RAcP) is coexpressed with mIL-1RII. Binding of [125I]-hrIL-1beta to mIL-1RII-mIL-1RAcP complex can be inhibited either with antibodies to mIL-1RII (mAb 4E2), or by antibodies to mIL-1RAcP (mAb 4C5). The number of high affinity binding sites in cells stably transfected with the cDNA for mIL-1RII is dependent on the dose of cDNA for mIL-1RAcP used to transfect the cells. The high affinity complex between mIL-1RII and mIL-1RAcP is not preformed by interaction between the intracellular domains of these two transmembrane proteins, rather it appears to require the extracellular portions of mIL-1RII and mIL-1RAcP and the presence of a ligand. We suggest that in addition to its earlier described decoy receptor role, IL-1RII may modulate the responsiveness of cells to IL-1 by binding the IL-1RAcP in unproductive/non-signalling complexes and thus reducing the number of signalling IL-1RI-IL-1RAcP-agonist complexes when IL-1 is bound.

  15. Wiskott-Aldrich Syndrome Interacting Protein Deficiency Uncovers the Role of the Co-receptor CD19 as a Generic Hub for PI3 Kinase Signaling in B Cells.

    Science.gov (United States)

    Keppler, Selina Jessica; Gasparrini, Francesca; Burbage, Marianne; Aggarwal, Shweta; Frederico, Bruno; Geha, Raif S; Way, Michael; Bruckbauer, Andreas; Batista, Facundo D

    2015-10-20

    Humans with Wiskott-Aldrich syndrome display a progressive immunological disorder associated with compromised Wiskott-Aldrich Syndrome Interacting Protein (WIP) function. Mice deficient in WIP recapitulate such an immunodeficiency that has been attributed to T cell dysfunction; however, any contribution of B cells is as yet undefined. Here we have shown that WIP deficiency resulted in defects in B cell homing, chemotaxis, survival, and differentiation, ultimately leading to diminished germinal center formation and antibody production. Furthermore, in the absence of WIP, several receptors, namely the BCR, BAFFR, CXCR4, CXCR5, CD40, and TLR4, were impaired in promoting CD19 co-receptor activation and subsequent PI3 kinase (PI3K) signaling. The underlying mechanism was due to a distortion in the actin and tetraspanin networks that lead to altered CD19 cell surface dynamics. In conclusion, our findings suggest that, by regulating the cortical actin cytoskeleton, WIP influences the function of CD19 as a general hub for PI3K signaling.

  16. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev;

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...... with colocalization of the full-length proteins in cells and with previous studies, we suggest that the range of relevant interactions might extend to interactions with K i = 450 µM in the in vitro assays. Within this range, we identify novel PSD-95 interactions with the chemokine receptor CXCR2, the neuropeptide Y...

  17. Introduction to the general principles of hormone-receptor interactions.

    Science.gov (United States)

    Levey, G S; Robinson, A G

    1982-07-01

    This review presents a concise overview of the historical development of receptor theory and the molecular mechanisms of action of the three broad classes of hormones, steroids, tyrosine derivatives, and polypeptides. Key terms required for understanding the basic terminology and concepts currently utilized in membrane receptor research are defined. The basic information should enable the reader to critically assess and understand more detailed discussions of hormone-receptor interactions and their application to clinical medicine.

  18. Mouse Leydig cells express multiple P2X receptor subunits

    OpenAIRE

    2008-01-01

    ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Ley...

  19. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.

    OpenAIRE

    Lefvert, A. K.

    1982-01-01

    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  20. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells.

    Science.gov (United States)

    Xu, Chuanming; Fang, Hui; Zhou, Li; Lu, Aihua; Yang, Tianxin

    2016-10-01

    (Pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD) with unclear functional implication. It is not known whether CD PRR is regulated by high potassium (HK). Here, we aimed to investigate the effect of HK on PRR expression and its role in regulation of aldosterone synthesis and release in the CD. In primary rat inner medullary CD cells, HK augmented PRR expression and soluble PPR (sPRR) release in a time- and dose-dependent manner, which was attenuated by PRR small interfering RNA (siRNA), eplerenone, and losartan. HK upregulated aldosterone release in parallel with an increase of CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2) protein expression and upregulation of medium renin activity, both of which were attenuated by a PRR antagonist PRO20, PRR siRNA, eplerenone, and losartan. Similarly, prorenin upregulated aldosterone release and CYP11B2 expression, both of which were attenuated by PRR siRNA. Interestingly, a recombinant sPRR (sPRR-His) also stimulated aldosterone release and CYP11B2 expression. Taken together, we conclude that HK enhances a local renin-angiotensin-aldosterone system (RAAS), leading to increased PRR expression, which in turn amplifies the response of the RAAS, ultimately contributing to heightened aldosterone release.

  1. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n......AChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n...

  2. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  3. Sex steroids and their receptors: molecular actions on brain cells.

    Science.gov (United States)

    Mannella, Paolo; Simoncini, Tommaso

    2012-03-01

    Sex steroids exert actions of paramount importance on brain cells. They contribute to shape the central nervous system during embryo development. They modulate the formation and the turnover of the interconnections between neurons. They control the function of glial cells. And they do it through a signaling machinery that is apparently simple, but that hides a level of complexity that has been unveiled only in part. Different receptor isoforms, different interactions between receptors and co-regulators, chains of events originating at the cell membrane and leading to effects in the nucleus (or the other way around) all interact to determine selective modulations of brain cells. All these actions end up in phenomenal effects on brain function that change through adolescence, pregnancy, adulthood, up to menopause and ageing. Many of these actions are relevant for degenerative processes and research may offer soon new strategies to counteract these diseases.

  4. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    Directory of Open Access Journals (Sweden)

    Kathleen L. McCoy

    2016-01-01

    Full Text Available Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.

  5. HIV-1 envelope gp41 peptides promote migration of human Fc epsilon RI+ cells and inhibit IL-13 synthesis through interaction with formyl peptide receptors.

    Science.gov (United States)

    de Paulis, Amato; Florio, Giovanni; Prevete, Nella; Triggiani, Massimo; Fiorentino, Isabella; Genovese, Arturo; Marone, Gianni

    2002-10-15

    We evaluated the effects of synthetic peptides (2017, 2019, 2020, 2021, 2023, 2027, 2029, 2030, 2031, and 2035) encompassing the structure of HIV-1(MN) envelope gp41 on both chemotaxis of human basophils and the release of preformed mediators (histamine) and of cytokines (IL-13). Peptides 2019 and 2021 were potent basophil chemoattractants, whereas the other peptides examined were ineffective. Preincubation of basophils with FMLP or gp41 2019 resulted in complete desensitization to a subsequent challenge with homologous stimulus. Incubation of basophils with low concentration (5 x 10(-7) M) of FMLP, which binds with high affinity to N-formyl peptide receptor (FPR), but not to FPR-like 1, did not affect the chemotactic response to a heterologous stimulus (gp41 2019). In contrast, a high concentration (10(-4) M) of FMLP, which binds also to FPR-like 1, significantly reduced the chemotactic response to gp41 2019. The FPR antagonist cyclosporin H inhibited chemotaxis induced by FMLP, but not by gp41 2019. None of these peptides singly induced the release of histamine or cytokines (IL-4 and IL-13) from basophils. However, low concentrations of peptides 2019 and 2021 (10(-8)-10(-6) M) inhibited histamine release from basophils challenged with FMLP but not the secretion caused by anti-IgE and gp120. Preincubation of basophils with peptides 2019 and 2021 inhibited the expression of both IL-13 mRNA, and the FMLP-induced release of IL-13 from basophils. These data highlight the complexity of the interactions between viral and bacterial peptides with FPR subtypes on human basophils.

  6. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation.

    Science.gov (United States)

    Luo, Yongde; Yang, Chaofeng; Lu, Weiqin; Xie, Rui; Jin, Chengliu; Huang, Peng; Wang, Fen; McKeehan, Wallace L

    2010-09-24

    In organs involved in metabolic homeostasis, transmembrane α and βklothos direct FGFR signaling to control of metabolic pathways. Coordinate expression of βklotho and FGFR4 is a property of mature hepatocytes. Genetic deletion of FGFR4 or βklotho in mice disrupts hepatic cholesterol/bile acid and lipid metabolism. The deletion of FGFR4 has no effect on the proliferative response of hepatocytes after liver injury. However, its absence results in accelerated progression of dimethynitrosamine-initiated hepatocellular carcinomas, indicating that FGFR4 suppresses hepatoma proliferation. The mechanism underlying the FGFR4-mediated hepatoma suppression has not been addressed. Here we show that βklotho expression is more consistently down-regulated in human and mouse hepatomas than FGFR4. Co-expression and activation by either endocrine FGF19 or cellular FGF1 of the FGFR4 kinase in a complex with βklotho restricts cell population growth through induction of apoptotic cell death in both hepatic and nonhepatic cells. The βklotho-FGFR4 partnership caused a depression of activated AKT and mammalian target of rapamycin while activating ERK1/2 that may underlie the pro-apoptotic effect. Our results show that βklotho not only interacts with heparan sulfate-FGFR4 to form a complex with high affinity for endocrine FGF19 but also impacts the quality of downstream signaling and biological end points activated by either FGF19 or canonical FGF1. Thus the same βklotho-heparan sulfate-FGFR4 partnership that mediates endocrine control of hepatic metabolism plays a role in cellular homeostasis and hepatoma suppression through negative control of cell population growth mediated by pro-apoptotic signaling.

  7. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  8. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses.

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-04-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1-CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1.

  9. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly......The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis...... and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity...

  10. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  11. Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk

    NARCIS (Netherlands)

    E.M. Colin (Edgar); A.G. Uitterlinden (André); A.P. Bergink (Arjan); M. van de Klift (Marjolein); Y. Fang (Yue); P.P. Arp (Pascal); H.A.P. Pols (Huib); J.P.T.M. van Leeuwen (Hans); J.B.J. van Meurs (Joyce); A. Hofman (Albert)

    2003-01-01

    textabstractIn view of the interactions of vitamin D and the estrogen endocrine system, we studied the combined influence of polymorphisms in the estrogen receptor (ER) alpha gene and the vitamin D receptor (VDR) gene on the susceptibility to osteoporotic vertebral fractures in 634

  12. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

    Science.gov (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E

    2013-12-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  13. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. II. Cross-reaction between a monoclonal antibody and two alpha beta T cell receptors

    DEFF Research Database (Denmark)

    Rognan, D; Engberg, J; Stryhn, A;

    2000-01-01

    but is more deeply anchored to the peptide-MHC (pep/MHC) ligand than TCRs, notably through numerous interactions of its heavy chain. The present model accounts well for the experimentally determined binding affinity of a set of 144 single amino acid substituted Ha analogues and the observed shared specificity......-restricted T cell hybridomas has supported this contention. A three-dimensional model of pSAN13.4.1 has been derived by homology modeling techniques. Subsequently, the structure of the pSAN13.4.1 antibody in complex with the antigenic Ha-Kk ligand was derived after a flexible and automated docking of the MHC...

  14. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    Science.gov (United States)

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  15. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  16. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    /13) pathway. The recognition pattern of wFw-Isn-NH(2) with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH(2) was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue...... orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH(2) is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key...

  17. New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA

    OpenAIRE

    Flayhan, Ali; Wien, Frank; Paternostre, Maïté; Boulanger, Pascale; Breyton, Cécile

    2012-01-01

    International audience; The majority of bacterial viruses are bacteriophages bearing a tail that serves to recognise the bacterial surface and deliver the genome into the host cell. Infection is initiated by the irreversible interaction between the viral receptor binding protein (RBP) and a receptor at the surface of the bacterium. This interaction results ultimately in the phage DNA release in the host cytoplasm. Phage T5 infects Escher-ichia coli after binding of its RBP pb5 to the outer me...

  18. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection.

    Science.gov (United States)

    Liebrand, Thomas W H; van den Berg, Grardy C M; Zhang, Zhao; Smit, Patrick; Cordewener, Jan H G; America, Antoine H P; America, Antione H P; Sklenar, Jan; Jones, Alexandra M E; Tameling, Wladimir I L; Robatzek, Silke; Thomma, Bart P H J; Joosten, Matthieu H A J

    2013-06-11

    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.

  19. Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines

    NARCIS (Netherlands)

    Bijnsdorp, Irene V.; Kruyt, Frank A. E.; Fukushima, Masakazu; Smid, Kees; Gokoel, Shanti; Peters, Godefridus J.

    2010-01-01

    The pyrimidine trifluorothymidine (TFT) inhibits thymidylate synthase (TS) and can be incorporated into the DNA. TFT, as part of TAS-102, is clinically evaluated in phase II studies as an oral chemotherapeutic agent. Erlotinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor (E

  20. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    Science.gov (United States)

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  1. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors.

    Directory of Open Access Journals (Sweden)

    Lenka Plzakova

    Full Text Available Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell-pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria's internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.

  2. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    porcine transmissible gastroenteris vi rus; Cell , canine coronavi rus; FECI/ , feline enteric coronavlrus; FIPV. fel ine infectious peritonitis ...bluecomb disease). b. Other diseases caused by corooaviruses inc lude infectious peritonitis , r!¥lting, nephritis , pancreatitis, parotitis, and...first described in 1961 (Innes and Stanton, 1961). Rat coronaviruses are highly infectious but the disease they cause is self limiting and rarely

  3. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  4. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  5. Cell cycle phase regulates glucocorticoid receptor function.

    Directory of Open Access Journals (Sweden)

    Laura Matthews

    Full Text Available The glucocorticoid receptor (GR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1. Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G(1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase. The impact of cell cycle-driven GR trafficking on a panel of glucocorticoid actions was profiled. In G2/M-enriched cells there was marked prolongation of glucocorticoid-induced ERK activation. This was accompanied by DNA template-specific, ligand-independent GR transactivation. Using chimeric and domain-deleted receptors we demonstrate that this transactivation effect is mediated by the AF1 transactivation domain. AF-1 harbours multiple phosphorylation sites, which are consensus sequences for kinases including CDKs, whose activity changes during the cell cycle. In G2/M there was clear ligand independent induction of GR phosphorylation on residues 203 and 211, both of which are phosphorylated after ligand activation. Ligand-independent transactivation required induction of phospho-S211GR but not S203GR, thereby directly linking cell cycle driven GR modification with altered GR function. Cell cycle phase therefore regulates GR localisation and post-translational modification which selectively impacts GR activity. This suggests that cell cycle phase is an important determinant in the cellular response to Gc, and that mitotic index contributes to tissue Gc sensitivity.

  6. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...

  7. Regulation of Immune Cells by Eicosanoid Receptors

    Directory of Open Access Journals (Sweden)

    Nancy D. Kim

    2007-01-01

    Full Text Available Eicosanoids are potent, bioactive, lipid mediators that regulate important components of the immune response, including defense against infection, ischemia, and injury, as well as instigating and perpetuating autoimmune and inflammatory conditions. Although these lipids have numerous effects on diverse cell types and organs, a greater understanding of their specific effects on key players of the immune system has been gained in recent years through the characterization of individual eicosanoid receptors, the identification and development of specific receptor agonists and inhibitors, and the generation of mice genetically deficient in various eicosanoid receptors. In this review, we will focus on the receptors for prostaglandin D2, DP1 and DP2/CRTH2; the receptors for leukotriene B4, BLT1 and BLT2; and the receptors for the cysteinyl leukotrienes, CysLT1 and CysLT2, by examining their specific effects on leukocyte subpopulations, and how they may act in concert towards the development of immune and inflammatory responses.

  8. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control.

    Science.gov (United States)

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-12-21

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a 'promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor alpha (TNFalpha)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFalpha-resistant. IL-15Ralpha and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Ralpha interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Ralpha, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl-/- or IL-15Ralpha-/- mice. Thus, IL-15-induced protection from TNFalpha-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Ralpha and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Ralpha.

  9. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA and neuropeptide S receptor 1 (NPSR1 in asthma.

    Directory of Open Access Journals (Sweden)

    Nathalie Acevedo

    Full Text Available Retinoid acid receptor-related Orphan Receptor Alpha (RORA was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs in the vicinity of the asthma-associated SNP (rs11071559 and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1, has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children and the European cross-sectional PARSIFAL study (1120 children. Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively, and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.

  10. Two dimensional VOPBA reveals laminin receptor (LAMR1 interaction with dengue virus serotypes 1, 2 and 3

    Directory of Open Access Journals (Sweden)

    Cardosa Mary

    2005-03-01

    Full Text Available Abstract Background The search for the dengue virus receptor has generated many candidates often identified only by molecular mass. The wide host range of the viruses in vitro combined with multiple approaches to identifying the receptor(s has led to the notion that many receptors or attachment proteins may be involved and that the different dengue virus serotypes may utilize different receptors on the same cells as well as on different cell types. Results In this study we used sequential extraction of PS Clone D cell monolayers with the detergent β-octylglucopyranoside followed by sodium deoxycholate to prepare a cell membrane-rich fraction. We then used 2 dimensional (2D gel electrophoresis to separate the membrane proteins and applied a modified virus overlay protein binding assay (VOPBA to show that dengue virus serotypes 1, 2 and 3 all interact with the 37 kDa/67 kDa laminin receptor (LAMR1, a common non-integrin surface protein on many cell types. Conclusion At least 3 of the 4 dengue serotypes interact with the 37 kDa/67 kDa laminin receptor, LAMR1, which may be a common player in dengue virus-cell surface interaction.

  11. Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members

    Institute of Scientific and Technical Information of China (English)

    Christopher Grefen; Katrin St(a)dele; Kamil R(u)(z)i(c)ka; Petr Obrdlik; Klaus Harter; Jakub Horák

    2008-01-01

    The gaseous phytohormone ethylene regulates many developmental processes and responses to environmental conditions in higher plants.In Arabidopsis thaliana,ethylene perception and initiation of signaling are mediated by a family of five receptors which are related to prokaryotic two-component sensor histidine kinases.The transient expression of fluorescence-tagged receptors in tobacco (Nicotiana benthamiana) epidermal leaf cells demonstrated that all ethylene receptors are targeted to the ER endomembrane network and do not localize to the plasmalemma.In support of in planta overlay studies,the ethylene receptors form homomeric and heteromeric protein complexes at the ER in living plant cells,as shown by membrane recruitment assays.A comparable in vivo interaction pattern was found in the yeast mating-based split-ubiquitin system.The overlapping but distinct expression pattern of the ethylene receptor genes suggests a differential composition of the ethylene receptor complexes in different plant tissues.Our findings may have crucial functional implications on the ethylene receptor-mediated efficiency of hormone perception,induction of signaling,signal attenuation and output.

  12. Metabotropic glutamate receptors and interacting proteins: evolving drug targets.

    Science.gov (United States)

    Enz, Ralf

    2012-01-01

    The correct targeting, localization, regulation and signaling of metabotropic glutamate receptors (mGluRs) represent major mechanisms underlying the complex function of neuronal networks. These tasks are accomplished by the formation of synaptic signal complexes that integrate functionally related proteins such as neurotransmitter receptors, enzymes and scaffold proteins. By these means, proteins interacting with mGluRs are important regulators of glutamatergic neurotransmission. Most described mGluR interaction partners bind to the intracellular C-termini of the receptors. These domains are extensively spliced and phosphorylated, resulting in a high variability of binding surfaces offered to interacting proteins. Malfunction of mGluRs and associated proteins are linked to neurodegenerative and neuropsychiatric disorders including addiction, depression, epilepsy, schizophrenia, Alzheimer's, Huntington's and Parkinson's disease. MGluR associated signal complexes are dynamic structures that assemble and disassemble in response to the neuronal fate. This, in principle, allows therapeutic intervention, defining mGluRs and interacting proteins as promising drug targets. In the last years, several studies elucidated the geometry of mGluRs in contact with regulatory proteins, providing a solid fundament for the development of new therapeutic strategies. Here, I will give an overview of human disorders directly associated with mGluR malfunction, provide an up-to-date summary of mGluR interacting proteins and highlight recently described structures of mGluR domains in contact with binding partners.

  13. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  14. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx...

  15. Interaction between muscarinic and β-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    Martin C. Michel

    2012-01-01

    In many tissues the parasympathetic and sympathetic nervous system regulate smooth musc tone via their transmitters aeetylcholine and noradrenaline, respectively. Direct smooth musc e e effects of acetylcholine via muscarinic receptors always promote contraction, but non-neuronal sources can importantly contribute to such stimulation. Direct smooth muscle effects of noradren- aline can promote contraction via al- and sometimes also α2-adrenoceptors but can promote re- laxation and inhibit contraction via β-adrenoceptors. I will focus on the interaction between sub- types of muscarinic and β-adrenergic receptors, largely using the urinary bladder as an exam- ple.

  16. Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP-binding regulatory protein [published erratum appears in J Cell Biol 1988 Dec;107(6 Pt 1):following 2463

    OpenAIRE

    1988-01-01

    Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down- regulation and the covalent modification (presumably phosphorylation) of the cAMP receptor. (c) The inhi...

  17. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    Science.gov (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  18. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    Science.gov (United States)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  19. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  20. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface.

    Science.gov (United States)

    Becker, Björn; Shaebani, M Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J

    2016-06-29

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTA(H/KDEL)), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  1. A novel comparative molecule/pseudo receptor interaction analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; TONG Jianbo; TIAN Feifei; LI Zhiliang

    2006-01-01

    Comparative molecule/pseudo receptor interaction analysis (CoMPIA) is developed as a novel 3D-QSAR method by adding postulated pseudo receptor and GA-optimized probe into comparative molecular field analysis (CoMFA). CoMPIA is used to find the pseudo receptor mode by optimizing probe distributions and to establish the optimal model of high qualities and good interpretations. Correlative coefficient R2, cross-validated correlative coefficient Q2 and root mean square error RMSEP of the resulting model are 0.940, 0.868 and 0.502, respectively by applying CoMPIA to quantitative structure-activity relationship (QSAR) of 31 classical steroids.

  2. Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors.

    Science.gov (United States)

    Fernandes, Christiane; Horn, Adolfo; Lopes, Bruna F; Bull, Erika S; Azeredo, Nathália F B; Kanashiro, Milton M; Borges, Franz V; Bortoluzzi, Adailton J; Szpoganicz, Bruno; Pires, Anderson B; Franco, Roberto W A; Almeida, João Carlos de A; Maciel, Leide L F; Resende, Jackson A L C; Schenk, Gerhard

    2015-12-01

    The synthesis, physico-chemical characterization and cytotoxicity of four new ligands and their respective copper(II) complexes toward two human leukemia cell lines (THP-1 and U937) are reported (i.e. [(HL1)Cu(μ-Cl)2Cu(HL1)]Cl2·H2O (1), [(H2L2)Cu(μ-Cl)2Cu(H2L2)]Cl2·5H2O (2), [(HL3)Cu(μ-Cl)2Cu(HL3)]Cl2·4H2O (3), [(H2L4)Cu(μ-Cl)2Cu(H2L4)]Cl2·6H2O (4)). Ligands HL1 and HL3 contain two pyridines, amine and alcohol moieties with a naphthyl pendant unit yielding a N3O coordination metal environment. Ligands H2L2 and H2L4 have pyridine, phenol, amine and alcohol groups with a naphthyl pendant unit providing a N2O2 coordination metal environment. These compounds are likely to be dinuclear in the solid state but form mononuclear species in solution. The complexes have an antiproliferative effect against both leukemia cell lines; complex (2) exhibits higher activity than cisplatin against U937 (8.20 vs 16.25μmoldm(-3)) and a comparable one against THP-1. These human neoplastic cells are also more susceptible than peripheral blood mononuclear cells (PBMCs) toward the tested compounds. Using C57BL/6 mice an LD50 of 55mgkg(-1) was determined for complex (2), suggesting that this compound is almost four times less toxic than cisplatin (LD50=14.5mgkg(-1)). The mechanism of cell death promoted by ligand H2L2 and by complexes (2) and (4) was investigated by a range of techniques demonstrating that the apoptosis signal triggered at least by complex (2) starts from an extrinsic pathway involving the activation of caspases 4 and 8. This signal is amplified by mitochondria with the concomitant release of cytochrome c and the activation of caspase 9.

  3. Structural mutations of C-domains in members of the Ig superfamily. Consequences for the interactions between the T cell antigen receptor and the zeta 2 homodimer

    DEFF Research Database (Denmark)

    Geisler, C; Rubin, B; Caspar-Bauguil, S;

    1992-01-01

    not fully understood. We locate critical amino acid residues for TCR assembly in the Ti-alpha and -beta extracellular C-domains. A point mutation (phenylalanine195----valine) in a highly conserved residue in the Ti-alpha chain of the Jurkat variant J79 was identified by DNA sequencing. This mutation did......-alpha-deficient Jurkat variant. Computer model analysis showed that the Ti-alpha phenylalanine195 directly contributed to the beta-sheet facing away from the Ti-beta chain, indicating that it could be directly involved in the interactions between one or more of the CD3 chains or the zeta 2 dimer. Site......-directed mutagenesis of the corresponding residue in the Ti-beta chain demonstrated that a phenylalanine216----valine substitution had similar effects on TCR assembly as the Ti-alpha mutation, whereas a phenylalanine216----histidine substitution allowed TCR assembly and expression. Whether the consequences for TCR...

  4. CLE Peptides in Plants: Proteolytic Processing,Structure-Activity Relationship, and Ligand-Receptor Interaction

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Gao; Yongfeng Guo

    2012-01-01

    Ligand-receptor signaling initiated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants.Biologically active CLE peptides are released from precursor proteins via proteolytic processing.The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications.This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides,the molecular structure and function of mature CLE ligands,and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).

  5. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  6. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors.

    Science.gov (United States)

    Zádor, Ferenc; Wollemann, Maria

    2015-12-01

    A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.

  7. Activation by SLAM Family Receptors Contributes to NK Cell Mediated "Missing-Self" Recognition.

    Science.gov (United States)

    Alari-Pahissa, Elisenda; Grandclément, Camille; Jeevan-Raj, Beena; Leclercq, Georges; Veillette, André; Held, Werner

    2016-01-01

    Natural Killer (NK) cells attack normal hematopoietic cells that do not express inhibitory MHC class I (MHC-I) molecules, but the ligands that activate NK cells remain incompletely defined. Here we show that the expression of the Signaling Lymphocyte Activation Molecule (SLAM) family members CD48 and Ly9 (CD229) by MHC-I-deficient tumor cells significantly contributes to NK cell activation. When NK cells develop in the presence of T cells or B cells that lack inhibitory MHC-I but express activating CD48 and Ly9 ligands, the NK cells' ability to respond to MHC-I-deficient tumor cells is severely compromised. In this situation, NK cells express normal levels of the corresponding activation receptors 2B4 (CD244) and Ly9 but these receptors are non-functional. This provides a partial explanation for the tolerance of NK cells to MHC-I-deficient cells in vivo. Activating signaling via 2B4 is restored when MHC-I-deficient T cells are removed, indicating that interactions with MHC-I-deficient T cells dominantly, but not permanently, impair the function of the 2B4 NK cell activation receptor. These data identify an important role of SLAM family receptors for NK cell mediated "missing-self" reactivity and suggest that NK cell tolerance in MHC-I mosaic mice is in part explained by an acquired dysfunction of SLAM family receptors.

  8. Interaction of Bacteriophage λ with Its E. coli Receptor, LamB

    Science.gov (United States)

    Chatterjee, Sujoy; Rothenberg, Eli

    2012-01-01

    The initial step of viral infection is the binding of a virus onto the host cell surface. This first viral-host interaction would determine subsequent infection steps and the fate of the entire infection process. A basic understating of the underlining mechanism of initial virus-host binding is a prerequisite for establishing the nature of viral infection. Bacteriophage λ and its host Escherichia coli serve as an excellent paradigm for this purpose. λ phages bind to specific receptors, LamB, on the host cell surface during the infection process. The interaction of bacteriophage λ with the LamB receptor has been the topic of many studies, resulting in wealth of information on the structure, biochemical properties and molecular biology of this system. Recently, imaging studies using fluorescently labeled phages and its receptor unveil the role of spatiotemporal dynamics and divulge the importance of stochasticity from hidden variables in the infection outcomes. The scope of this article is to review the present state of research on the interaction of bacteriophage λ and its E. coli receptor, LamB. PMID:23202520

  9. Snapin interacts with G-protein coupled receptor PKR2.

    Science.gov (United States)

    Song, Jian; Li, Jie; Liu, Hua-die; Liu, Wei; Feng, Yong; Zhou, Xiao-Tao; Li, Jia-Da

    2016-01-15

    Mutations in Prokineticin receptor 2 (PKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, characterized by delayed puberty and infertility. In this study, we performed yeast two-hybrid screening by using PKR2 C-terminus (amino acids 333-384) as a bait, and identified Snapin as a novel interaction partner for PKR2. The interaction of Snapin and PKR2 was confirmed in GST pull-down and co-immunoprecipitation studies. We further demonstrated that two α-helix domains in Snapin are required for the interaction. And the interactive motifs of PKR2 were mapped to YFK (343-345) and HWR (351-353), which shared a similar sequence of two aromatic amino acids followed by a basic amino acid. Disruption of Snapin-PKR2 interaction did not affect PKR2 signaling, but increased the ligand-induced degradation, implying a role of Snapin in the trafficking of PKR2.

  10. Computational studies of ligand-receptor interactions in bitter taste receptors.

    Science.gov (United States)

    Miguet, Laurence; Zhang, Ziding; Grigorov, Martin G

    2006-01-01

    Phenylthiocarbamide tastes intensely bitter to some individuals, but others find it completely tasteless. Recently, it was suggested that phenylthiocarbamide elicits bitter taste by interacting with a human G protein-coupled receptor (hTAS2R38) encoded by the PTC gene. The phenylthiocarbamide nontaster trait was linked to three single nucleotide polymorphisms occurring in the PTC gene. Using the crystal structure of bovine rhodopsin as template, we generated the 3D structure of hTAS2R38 bitter taste receptor. We were able to map on the receptor structure the amino acids affected by the genetic polymorphisms and to propose molecular functions for two of them that explained the emergence of the nontaster trait. We used molecular docking simulations to find that phenylthiocarbamide exhibited a higher affinity for the target receptor than the structurally similar molecule 6-n-propylthiouracil, in line with recent experimental studies. A 3D model was constructed for the hTAS2R16 bitter taste receptor as well, by applying the same protocol. We found that the recently published experimental ligand binding affinity data for this receptor correlated well with the binding scores obtained from our molecular docking calculations.

  11. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: bacterial interaction and its dependence on the conserved structural features of the SRCR domain.

    Science.gov (United States)

    Qiu, Reng; Sun, Bo-Guang; Li, Jun; Liu, Xiao; Sun, Li

    2013-03-01

    The scavenger receptor cysteine-rich (SRCR) proteins are secreted or membrane-bound receptors with one or multiple SRCR domains. Members of the SRCR superfamily are known to have diverse functions that include pathogen recognition and immunoregulation. In teleost, although protein sequences with SRCR structure have been identified in some species, very little functional investigation has been carried out. In this study, we identified and characterized a teleost SRCR protein from red drum Sciaenops ocellatus. The protein was named S. ocellatus SRCR1 (SoSRCRP1). SoSRCRP1 is 410-residue in length and was predicted to be a transmembrane protein, with the extracellular region containing a collagen triple helix repeat and a SRCR domain. The SRCR domain has six conserved cysteines, of which, C338 and C399, C351 and C409, and C379 and C389 were predicted to form three disulfide bonds. SoSRCRP1 expression was detected mainly in immune-relevant tissues and upregulated by bacterial and viral infection. In head kidney leukocytes, bacterial infection stimulated the expression of SoSRCRP1, and the expressed SoSRCRP1 was localized on cell surface. Recombinant SoSRCRP1 (rSoSRCRP1) corresponding to the SRCR domain was purified from Escherichia coli and found to be able to bind Gram-negative and Gram-positive bacteria. To examine the structure-function relationship of SoSRCRP1, the mutant proteins SoSRCRP1M1, SoSRCRP1M2, SoSRCRP1M3, and SoSRCRP1M4 were created, which bear C351S and C409S, C338S, C379S, and R325A mutations respectively. Compared to rSoSRCRP1, all mutants were significantly reduced in the ability of bacterial interaction, with the highest reduction observed with SoSRCRP1M4. Taken together, these results indicate that SoSRCRP1 is a cell surface-localized SRCR protein that binds bacterial ligands in a manner that depends on the conserved structural features of the SRCR domain.

  12. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  13. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  14. Interaction of lipids with the neurotensin receptor 1.

    Science.gov (United States)

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs.

  15. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-05

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.

  16. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF.

    Science.gov (United States)

    Valente, S; Souto, B; Balter, H; Welling, M M; Román, E; Robles, A; Pauwels, E K

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with 125Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t = 15.7, p anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  17. Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ossiboff, Robert J.; Zhou, Yi; Lightfoot, Patrick J.; Prasad, B.V. Venkataram; Parker, John S.L. (Baylor); (Cornell)

    2010-07-19

    Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline functional adhesion molecule A (fJAM-A) mediates the attachment and infectious viral entry of feline calicivirus (FCV). Here, we show that the infectivity of some FCV isolates is neutralized following incubation with the soluble receptor at 37 C. We used this property to select mutants resistant to preincubation with the soluble receptor. We isolated and sequenced 24 soluble receptor-resistant (srr) mutants and characterized the growth properties and receptor-binding activities of eight mutants. The location of the mutations within the capsid structure of FCV was mapped using a new 3.6-{angstrom} structure of native FCV. The srr mutations mapped to the surface of the P2 domain were buried at the protruding domain dimer interface or were present in inaccessible regions of the capsid protein. Coupled with data showing that both the parental FCV and the srr mutants underwent increases in hydrophobicity upon incubation with the soluble receptor at 37 C, these findings indicate that FCV likely undergoes conformational change upon interaction with its receptor. Changes in FCV capsid conformation following its interaction with fJAM-A may be important for subsequent interactions of the capsid with cellular membranes, membrane penetration, and genome delivery.

  18. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Sonia; Souto, Beatriz; Balter, Henia; Welling, Mick M.; Roman, Estela; Robles, Ana; Pauwels, Ernest K.J

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with {sup 125}Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t=15.7, p<0.05) for hEGF in its binding to MAb anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  19. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I;

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2......- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling...

  20. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    Science.gov (United States)

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  1. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  2. Novel CARM1-Interacting Protein, DZIP3, Is a Transcriptional Coactivator of Estrogen Receptor-α.

    Science.gov (United States)

    Purcell, Daniel J; Chauhan, Swati; Jimenez-Stinson, Diane; Elliott, Kathleen R; Tsewang, Tenzin D; Lee, Young-Ho; Marples, Brian; Lee, David Y

    2015-12-01

    Coactivator-associated arginine methyltransferase 1 (CARM1) is known to promote estrogen receptor (ER)α-mediated transcription in breast cancer cells. To further characterize the regulation of ERα-mediated transcription by CARM1, we screened CARM1-interacting proteins by yeast two-hybrid. Here, we have identified an E3 ubiquitin ligase, DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3), as a novel CARM1-binding protein. DZIP3-dependent ubiquitination of histone H2A has been associated with repression of transcription. However, ERα reporter gene assays demonstrated that DZIP3 enhanced ERα-mediated transcription and cooperated synergistically with CARM1. Interaction with CARM1 was observed with the E3 ligase RING domain of DZIP3. The methyltransferase activity of CARM1 partially contributed to the synergy with DZIP3 for transcription activation, but the E3 ubiquitin ligase activity of DZIP3 was dispensable. DZIP3 also interacted with the C-terminal activation domain 2 of glucocorticoid receptor-interacting protein 1 (GRIP1) and enhanced the interaction between GRIP1 and CARM1. Depletion of DZIP3 by small interfering RNA in MCF7 cells reduced estradiol-induced gene expression of ERα target genes, GREB1 and pS2, and DZIP3 was recruited to the estrogen response elements of the same ERα target genes. These results indicate that DZIP3 is a novel coactivator of ERα target gene expression.

  3. Nucleus pulposus cell-matrix interactions with laminins.

    Science.gov (United States)

    Gilchrist, C L; Francisco, A T; Plopper, G E; Chen, J; Setton, L A

    2011-06-20

    The cells of the nucleus pulposus (NP) region of the intervertebral disc play a critical role in this tissue's generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332) identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111) and several other matrix ligands (collagen, fibronectin). Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc's annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells.

  4. Nucleus pulposus cell-matrix interactions with laminins

    Directory of Open Access Journals (Sweden)

    CL Gilchrist

    2011-06-01

    Full Text Available The cells of the nucleus pulposus (NP region of the intervertebral disc play a critical role in this tissue’s generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332 identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111 and several other matrix ligands (collagen, fibronectin. Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc’s annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells.

  5. Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2.

    Directory of Open Access Journals (Sweden)

    D Malfacini

    Full Text Available Nociceptin/orphanin FQ (N/OFQ controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP. Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells. In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified.

  6. Ganglioside mediate the interaction between Nogo receptor 1 and LINGO-1.

    Science.gov (United States)

    Saha, Nayanendu; Kolev, Momchil V; Semavina, Mariya; Himanen, Juha; Nikolov, Dimitar B

    2011-09-16

    Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.

  7. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  8. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    OpenAIRE

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 [mu m ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that si...

  9. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    Science.gov (United States)

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  10. New insights into TRP channels: Interaction with pattern recognition receptors.

    Science.gov (United States)

    Han, Huirong; Yi, Fan

    2014-01-01

    An increasing number of studies have implicated that the activation of innate immune system and inflammatory mechanisms are of importance in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms in response to pathogens or tissue injury, which is performed via germ-line encoded pattern-recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) or dangers-associated molecular patterns (DAMPs). Intracellular pathways linking immune and inflammatory response to ion channel expression and function have been recently identified. Among ion channels, transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge about classifications, functions, and interactions of TRP channels and PRRs, which may provide new insights into their roles in the pathogenesis of inflammatory diseases.

  11. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    Science.gov (United States)

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  12. Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions.

    Science.gov (United States)

    Acevedo, Waldo; González-Nilo, Fernando; Agosin, Eduardo

    2016-10-12

    Stevia is one of the sweeteners with the greatest consumer demand because of its natural origin and minimal calorie content. Steviol glycosides (SG) are the main active compounds present in the leaves of Stevia rebaudiana and are responsible for its sweetness. However, recent in vitro studies in HEK 293 cells revealed that SG specifically activate the hT2R4 and hT2R14 bitter taste receptors, triggering this mouth feel. The objective of this study was to characterize the interaction of SG with these two receptors at the molecular level. The results showed that SG have only one site for orthosteric binding to these receptors. The binding free energy (ΔGbinding) between the receptor and SG was negatively correlated with SG bitterness intensity, for both hT2R4 (r = -0.95) and hT2R14 (r = -0.89). We also determined, by steered molecular dynamics simulations, that the force required to extract stevioside from the receptors was greater than that required for rebaudioside A, in accordance with the ΔG values obtained by molecular docking. Finally, we identified the loop responsible for the activation by SG of both receptors. As a whole, these results contribute to a better understanding of the resulting off-flavor perception of these natural sweeteners in foods and beverages, allowing for better prediction, and control, of the resulting bitterness.

  13. A novel gene delivery system targeting cells expressing VEGF receptors

    Institute of Scientific and Technical Information of China (English)

    LIJUNMIN; JINGCHULUO; 等

    1999-01-01

    Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.

  14. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  15. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli.

    Science.gov (United States)

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-11-09

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.

  16. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer.

    Science.gov (United States)

    Cerliani, Juan P; Guillardoy, Tomás; Giulianelli, Sebastián; Vaque, José P; Gutkind, J Silvio; Vanzulli, Silvia I; Martins, Rubén; Zeitlin, Eduardo; Lamb, Caroline A; Lanari, Claudia

    2011-05-15

    Fibroblast growth factor (FGF) receptor 2 (FGFR-2) polymorphisms have been associated with an increase in estrogen receptor and progesterone receptor (PR)-positive breast cancer risk; however, a clear mechanistic association between FGFR-2 and steroid hormone receptors remains elusive. In previous works, we have shown a cross talk between FGF2 and progestins in mouse mammary carcinomas. To investigate the mechanisms underlying these interactions and to validate our findings in a human setting, we have used T47D human breast cancer cells and human cancer tissue samples. We showed that medroxyprogesterone acetate (MPA) and FGF2 induced cell proliferation and activation of ERK, AKT, and STAT5 in T47D and in murine C4-HI cells. Nuclear interaction between PR, FGFR-2, and STAT5 after MPA and FGF2 treatment was also showed by confocal microscopy and immunoprecipitation. This effect was associated with increased transcription of PRE and/or GAS reporter genes, and of PR/STAT5-regulated genes and proteins. Two antiprogestins and the FGFR inhibitor PD173074, specifically blocked the effects induced by FGF2 or MPA respectively. The presence of PR/FGFR-2/STAT5 complexes bound to the PRE probe was corroborated by using NoShift transcription and chromatin immunoprecipitation of the MYC promoter. Additionally, we showed that T47D cells stably transfected with constitutively active FGFR-2 gave rise to invasive carcinomas when transplanted into NOD/SCID mice. Nuclear colocalization between PR and FGFR-2/STAT5 was also observed in human breast cancer tissues. This study represents the first demonstration of a nuclear interaction between FGFR-2 and STAT5, as PR coactivators at the DNA progesterone responsive elements, suggesting that FGFRs are valid therapeutic targets for human breast cancer treatment.

  17. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    Science.gov (United States)

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  18. Binding of /sup 125/I-labeled reovirus to cell surface receptors

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R.L.; Powers, M.L.; Rogart, R.B.; Weiner, H.L.

    1984-02-01

    Quantitative studies of /sup 125/I-labeled reovirus binding at equilibrium to several cell types was studied, including (1) murine L cell fibroblasts; (2) murine splenic T lymphocytes; (3) YAC cells, a murine lymphoma cell line; and (4) R1.1 cells, a murine thymoma cell line. Competition and saturation studies demonstrated (1) specific, saturable, high-affinity binding of reovirus types 1 and 3 to nonidentical receptors on L cell fibroblasts; (2) high-affinity binding of type 3 reovirus to murine splenic lymphocytes and R1.1 cells; (3) low-affinity binding of reovirus type 1 to lymphocytes and R1.1 cells; and (4) no significant binding of either serotype to YAC cells. Differences in the binding characteristics of the two reovirus serotypes to L cell fibroblasts were found to be a property of the viral hemagglutinin, as demonstrated using a recombinant viral clone. The equilibrium dissociation constant (Kd) for viral binding was of extremely high affinity (Kd in the range of 0.5 nM), and was slowly reversible. Experiments demonstrated temperature and pH dependence of reovirus binding and receptor modification studies using pronase, neuraminidase, and various sugars confirmed previous studies that reovirus receptors are predominantly protein in structure. The reovirus receptor site density was in the range of 2-8 X 10(4) sites/cell. These studies demonstrate that the pseudo-first-order kinetic model for ligand-receptor interactions provides a useful model for studying interactions of viral particles with membrane viral receptors. They also suggest that one cell may have distinct receptor sites for two serotypes of the same virus, and that one viral serotype may bind with different kinetics depending on the cell type.

  19. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation.

  20. Real-time studies of the interactions between epidermal growth factor and its receptor during endocytic trafficking.

    Science.gov (United States)

    Martin-Fernandez, M L; Clarke, D T; Tobin, M J; Jones, G R

    2000-09-01

    The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.

  1. Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites.

    Science.gov (United States)

    Witte, Amanda B; Leistra, Abigail N; Wong, Pamela T; Bharathi, Sophia; Refior, Kevin; Smith, Phillip; Kaso, Ola; Sinniah, Kumar; Choi, Seok Ki

    2014-03-20

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core-shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP-dendrimer; 20.5 nm). Binding of RfBP to the AuNP-dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP-dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro.

  2. Blueprints of signaling interactions between pattern recognition receptors: implications for the design of vaccine adjuvants.

    Science.gov (United States)

    Timmermans, Kim; Plantinga, Theo S; Kox, Matthijs; Vaneker, Michiel; Scheffer, Gert Jan; Adema, Gosse J; Joosten, Leo A B; Netea, Mihai G

    2013-03-01

    Innate immunity activation largely depends on recognition of microorganism structures by Pattern Recognition Receptors (PRRs). PRR downstream signaling results in production of pro- and anti-inflammatory cytokines and other mediators. Moreover, PRR engagement in antigen-presenting cells initiates the activation of adaptive immunity. Recent reports suggest that for the activation of innate immune responses and initiation of adaptive immunity, synergistic effects between two or more PRRs are necessary. No systematic analysis of the interaction between the major PRR pathways were performed to date. In this study, a systematical analysis of the interactions between PRR signaling pathways was performed. PBMCs derived from 10 healthy volunteers were stimulated with either a single PRR ligand or a combination of two PRR ligands. Known ligands for the major PRR families were used: Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), and RigI-helicases. After 24 h of incubation, production of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and IL-10 was measured in supernatants by enzyme-linked immunosorbent assay (ELISA). The consistency of the PRR interactions (both inhibitory and synergistic) between the various individuals was assessed. A number of PRR-dependent signaling interactions were found to be consistent, both between individuals and with regard to multiple cytokines. The combinations of TLR2 and NOD2, TLR5 and NOD2, TLR5 and TLR3, and TLR5 and TLR9 acted as synergistic combinations. Surprisingly, inhibitory interactions between TLR4 and TLR2, TLR4 and Dectin-1, and TLR2 and TLR9 as well as TLR3 and TLR2 were observed. These consistent signaling interactions between PRR combinations may represent promising targets for immunomodulation and vaccine adjuvant development.

  3. Structure-function Aspects of Extracellular Leucine-rich Repeat-containing Cell Surface Receptors in Plants

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhang; Bart PHJ Thomma

    2013-01-01

    Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed.

  4. Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers.

    Science.gov (United States)

    Baía, Diogo; Pou, Jordi; Jones, Des; Mandelboim, Ofer; Trowsdale, John; Muntasell, Aura; López-Botet, Miguel

    2016-07-01

    Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) has been reported to interact with a wide spectrum of HLA class I (HLA-I) molecules, albeit with different affinities determined by allelic polymorphisms and conformational features. HLA-G dimerization and the presence of intracellular Cys residues in HLA-B7 have been shown to be critical for their recognition by LILRB1. We hypothesized that dimerization of classical HLA class Ia molecules, previously detected in exosomes, might enhance their interaction with LILRB1. A soluble LILRB1-Fc fusion protein and a sensitive cellular reporter system expressing a LILRB1-ζ chimera were employed to assess receptor interaction with different HLA class Ia molecules transfected in the human lymphoblastoid 721.221 cell line. Under these conditions, intracellular Cys residues and HLA-I dimerization appeared associated with increased LILRB1 recognition. On the other hand, a marginal interaction of LILRB1 with primary monocytic cells, irrespective of their high HLA-I expression, was enhanced by type I interferon (IFN). This effect appeared disproportionate to the cytokine-induced increase of surface HLA-I expression and was accompanied by detection of HLA class Ia dimers. Altogether, the results support that a regulated assembly of these noncanonical HLA-I conformers during the immune response may enhance the avidity of their interaction with LILRB1.

  5. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon

    2012-04-01

    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  6. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    Science.gov (United States)

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  7. Functional Roles of the Interaction of APP and Lipoprotein Receptors

    Science.gov (United States)

    Pohlkamp, Theresa; Wasser, Catherine R.; Herz, Joachim

    2017-01-01

    The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.

  8. Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation.

    Science.gov (United States)

    Mizrahi, Keren; Askenasy, Nadir

    2014-07-10

    Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.

  9. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    Science.gov (United States)

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2014-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transected with NMB receptors. The transactivation of the EGF receptor or the tyrosine phosphorylation of ERK caused by NMB-like peptides was inhibited by AG1478 or gefitinib (tyrosine kinase inhibitors) and NMB receptor antagonist PD168368 but not the GRP receptor antagonist, BW2258U89. The transactivation of the EGF receptor caused by NMB-like peptides was inhibited by GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), or transforming growth factor (TGF)α antibody. The transactivation of the EGF receptor and the increase in reactive oxygen species caused by NMB-like peptides was inhibited by N-acetylcysteine (NAC) or Tiron. Gefitinib inhibited the proliferation of NCI-H1299 cells and its sensitivity was increased by the addition of PD168368. The results indicate that the NMB receptor regulates EGF receptor transactivation by a mechanism dependent on Src as well as metalloprotease activation and generation of reactive oxygen species. PMID:20388507

  10. Cell to substratum and cell to cell interactions of microalgae.

    Science.gov (United States)

    Ozkan, Altan; Berberoglu, Halil

    2013-12-01

    This paper reports the cell to substratum and cell to cell interactions of a diverse group of microalgae based on the Extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) approach using the previously reported physico-chemical surface properties. The microalgae included 10 different species of green algae and diatoms from both freshwater and saltwater environments while the substrata included glass, indium-tin oxide (ITO), stainless steel, polycarbonate, polyethylene, and polystryrene. The results indicated that acid-base interactions were the dominating mechanism of interaction for microalgae. For green algae, if at least one of the interacting surfaces was hydrophobic, adhesion at primary minimum was predicted without any energy barrier. However, most diatom systems featured energy barriers for adhesion due to repulsive van der Waals interactions. The results reported in this study are expected to provide useful data and insight into the interaction mechanisms of microalgae cells with each other and with substrata for a number of practical applications including prevention of biofouling of photobioreactors and other man-made surfaces, promotion of biofilm formation in algal biofilm photobioreactors, and developing bioflocculation strategies for energy efficient harvesting of algal biomass. Particularly, Botryococcus braunii and Cerithiopsis fusiformis were identified as promising species for biofloccuation and biofilm formation in freshwater and saltwater aquatic systems, respectively. Finally, based on the observed trends in this study, use of hydrophilic algae and hydrophilic coatings over surfaces are recommended for minimizing biofouling in aquatic systems.

  11. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Science.gov (United States)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  12. G protein-coupled receptor regulation: The role of protein interactions and receptor trafficking

    OpenAIRE

    Sandén, Caroline

    2009-01-01

    The superfamily of G protein-coupled receptors (GPCR) is the largest gene family in the human genome. GPCR-mediated signaling operates in every human cell, and about 50% of existing clinically useful drugs act through GPCR. Kinins are proinflammatory peptides that are rapidly produced extracellularly following pathological insults and tissue damage. These peptides act through two GPCR subtypes, B1 (B1R) and B2 (B2R), to elicit numerous inflammatory responses including vasodilatiation, increas...

  13. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.

  14. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.

  15. Nectin-4 Co-stimulates the Prolactin Receptor by Interacting with SOCS1 and Inhibiting Its Activity on the JAK2-STAT5a Signaling Pathway.

    Science.gov (United States)

    Maruoka, Masahiro; Kedashiro, Shin; Ueda, Yuki; Mizutani, Kiyohito; Takai, Yoshimi

    2017-03-03

    Cell surface cytokine receptors are regulated by their cis-interacting stimulatory and inhibitory co-receptors. We previously showed that the immunoglobulin-like cell adhesion molecule nectin-4 cis-interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis-interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that nectin-4's cytoplasmic region was also required for eliciting these effects. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling (SOCS) 1, but not SOCS3, JAK2, or STAT5a, and inhibited SOCS1's interaction with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacts with the Src homology 2 domain of SOCS1. Both the interactions of nectin-4 with the extracellular region of the prolactin receptor and the interactions of SOCS1 with nectin-4's cytoplasmic region were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third immunoglobulin-like domain of nectin-4 and the second fibronectin type-III domain of the prolactin receptor were involved in this cis-interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway.

  16. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    TanZHANG; QiXU; Feng-rongCHEN; Qi-deHAN; You-yiZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside (ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners of α1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01), while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION: In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  17. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    Tan ZHANG; Qi XU; Feng-rong CHEN; Qi-de HAN; You-yi ZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside(ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners ofα1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01),while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION:In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  18. Calcium-Sensing Receptor: Trafficking, Endocytosis, Recycling, and Importance of Interacting Proteins.

    Science.gov (United States)

    Ray, Kausik

    2015-01-01

    The cloning of the extracellular calcium-sensing receptor (CaSR) provided a new paradigm in G-protein-coupled receptor (GPCR) signaling in which principal physiological ligand is a cation, namely, extracellular calcium (Ca(o)(2+)). A wealth of information has accumulated in the past two decades about the CaSR's structure and function, its contribution to pathology in disorders of calcium in humans, and CaSR-based therapeutics. The CaSR unlike many other GPCRs must function in the presence of its ligand, thus understanding the mechanisms such as anterograde trafficking and endocytic pathways of this receptor are complex and fallen behind other classical GPCRs. Factors controlling CaSR signaling include various proteins affecting the expression of the CaSR as well as modulation of its trafficking to and from the cell surface. The dimeric cell-surface CaSR links to various heterotrimeric G-proteins (G(q/11), G(i/o), G(12/13), and G(s)) to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. This chapter describes key features of CaSR structure and function and discusses novel mechanisms by which the level of cell-surface receptor expression can be regulated including forward trafficking during biosynthesis, desensitization, internalization and recycling from the cell surface, and degradation. These processes are impacted by its interactions with several proteins in addition to signaling molecules per se (i.e., G-proteins, protein kinases, inositol phosphates, etc.) and include small molecular weight G-proteins (Sar1, Rabs, ARF, P24A, RAMPs, filamin A, 14-3-3 proteins, calmodulin, and caveolin-1). Moreover, CaSR signaling seems compartmentalized in cell-type-specific manner, and caveolin and filamin A likely act as scaffolds that bind signaling components and other key cellular

  19. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    Science.gov (United States)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  20. Diversity and bias through receptor-receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization

    OpenAIRE

    Kjell eFuxe; Tarakanov, Alexander O.; Wilber eRomero-Fernández; Luca eFerraro; Sergio eTanganelli; Małgorzata eFilip; Luigi Francesco Agnati; Pere eGarriga; Zaida eDiaz Cabiale; Dasiel Oscar Borroto-Escuela

    2014-01-01

    Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980ies and 1990ies it was shown that neurotensin through selective antagonistic NTR-D2likeR interactions incre...

  1. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  2. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations.

    Science.gov (United States)

    Xing, Shu; Grol, Matthew W; Grutter, Peter H; Dixon, S Jeffrey; Komarova, Svetlana V

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca(2+)]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca(2+)]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K 1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

  3. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

    Science.gov (United States)

    Kim, Hye-In; Kim, Taelim; Kim, Ji-Eun; Lee, Jun; Heo, Jinyuk; Lee, Na-Rae; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.

  4. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S;

    1987-01-01

    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  5. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen;

    2015-01-01

    densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  6. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons From Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAYOUB

    2012-06-01

    Full Text Available Since its development, the bioluminescence resonance energy transfer (BRET approach has been extensively applied to study G protein-coupled receptors (GPCRs in real time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly versus the agonist-dependent interaction between the protease-activated receptor 1 (PAR1 and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gi1 and G12, but also -arrestin 1, can be regulated.

  7. A novel system of polymorphic and diverse NK cell receptors in primates.

    Directory of Open Access Journals (Sweden)

    Anne Averdam

    2009-10-01

    Full Text Available There are two main classes of natural killer (NK cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR and the structurally unrelated killer cell lectin-like receptors (KLR. While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2 rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.

  8. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  9. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    Science.gov (United States)

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  10. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    Science.gov (United States)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  11. Probing mechanical principles of cell-nanomaterial interactions

    Science.gov (United States)

    Gao, Huajian

    2014-01-01

    With the rapid development of nanotechnology, various types of nanoparticles, nanowires, nanofibers, nanotubes, and atomically thin plates and sheets have emerged as candidates for an ever increasing list of potential applications for next generation electronics, microchips, composites, barrier coatings, biosensors, drug delivery, and energy harvesting and conversion systems. There is now an urgent societal need to understand both beneficial and hazardous effects of nanotechnology which is projected to produce and release thousands of tons of nanomaterials into the environment in the coming decades. This paper aims to present an overview of some recent studies conducted at Brown University on the mechanics of cell-nanomaterial interactions, including the modeling of nanoparticles entering cells by receptor-mediated endocytosis and coarse-grained molecular dynamics simulations of nanoparticles interacting with cell membranes. The discussions will be organized around the following questions: Why and how does cellular uptake of nanoparticles depend on particle size, shape, elasticity and surface structure? In particular, we will discuss the effect of nanoparticle size on receptor-mediated endocytosis, the effect of elastic stiffness on cell-particle interactions, how high aspect ratio nanomaterials such as carbon nanotubes and graphenes enter cells and how different geometrical patterns of ligands on a nanoparticle can be designed to control the rate of particle uptake.

  12. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  13. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    Science.gov (United States)

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.

  14. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    Science.gov (United States)

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.

  15. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking.

    Science.gov (United States)

    Flores-Fernández, Rocio; Blanco-Favela, Francisco; Fuentes-Pananá, Ezequiel M; Chávez-Sánchez, Luis; Gorocica-Rosete, Patricia; Pizaña-Venegas, Alberto; Chávez-Rueda, Adriana Karina

    2016-01-01

    Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE). In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR) as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease.

  16. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking

    Directory of Open Access Journals (Sweden)

    Rocio Flores-Fernández

    2016-01-01

    Full Text Available Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE. In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease.

  17. Prolactin Rescues Immature B-Cells from Apoptosis Induced by B-Cell Receptor Cross-Linking

    Science.gov (United States)

    Flores-Fernández, Rocio; Blanco-Favela, Francisco; Fuentes-Pananá, Ezequiel M.; Chávez-Sánchez, Luis; Gorocica-Rosete, Patricia; Pizaña-Venegas, Alberto; Chávez-Rueda, Adriana Karina

    2016-01-01

    Prolactin has an immunomodulatory effect and has been associated with B-cell-triggered autoimmune diseases, such as systemic lupus erythematosus (SLE). In mice that develop SLE, the PRL receptor is expressed in early bone marrow B-cells, and increased levels of PRL hasten disease manifestations, which are correlated with a reduction in the absolute number of immature B-cells. The aim of this work was to determine the effect of PRL in an in vitro system of B-cell tolerance using WEHI-231 cells and immature B-cells from lupus prone MRL/lpr mice. WEHI-231 cells express the long isoform of the PRL receptor, and PRL rescued the cells from cell death by decreasing the apoptosis induced by the cross-linking of the B-cell antigen receptor (BCR) as measured by Annexin V and active caspase-3. This decrease in apoptosis may have been due to the PRL and receptor interaction, which increased the relative expression of antiapoptotic Bcl-xL and decreased the relative expression of proapoptotic Bad. In immature B-cells from MRL/lpr mice, PRL increased the viability and decreased the apoptosis induced by the cross-linking of BCR, which may favor the maturation of self-reactive B-cells and contribute to the onset of disease. PMID:27314053

  18. The interaction between histamine H1 receptor and μ- opioid receptor in scratching behavior in ICR mice.

    Science.gov (United States)

    Nakasone, Tasuku; Sugimoto, Yumi; Kamei, Chiaki

    2016-04-15

    In this study, we examined the interaction between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice. Both histamine and morphine caused scratching and simultaneous injection of histamine and morphine had an additive effect. Chlorpheniramine and naloxone inhibited histamine-induced scratching behavior. These two drugs also inhibited morphine-induced scratching behavior. Simultaneous injection of chlorpheniramine and naloxone caused a significant inhibition of histamine-induced scratching compared with separate injections. The same findings were also noted for morphine-induced scratching. These results strongly indicate a close relationship between histamine H1 receptor and μ-opioid receptor in scratching behavior in ICR mice.

  19. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells

    CERN Document Server

    Winckler, Pascale; Giannone, Gregory; De Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent

    2013-01-01

    Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule F\\"orster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-...

  20. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Bjornsdottir, Halla; Christensen, Claus;

    2016-01-01

    in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR...... phosphorylation was abrogated by CD200R, whereas FGF2-induced FGFR activation was inhibited by CD200. We also identified a sequence motif located in the first Ig-like module of CD200, likely representing the minimal CD200 binding site for FGFR. The FGFR binding motif overlaps with the CD200R binding site......, suggesting that they can compete for CD200 binding in cells that express both receptors. We propose that CD200 in neurons functions as a ligand of FGFR....

  1. Vitamin D Receptor-Mediated Upregulation of CYP3A4 and MDR1 by Quercetin in Caco-2 cells.

    Science.gov (United States)

    Chae, Yoon-Jee; Cho, Kwan Hyung; Yoon, In-Soo; Noh, Chi-Kyoung; Lee, Hyo-Jong; Park, Yohan; Ji, Eunhee; Seo, Min-Duk; Maeng, Han-Joo

    2016-01-01

    To examine whether quercetin interacts with vitamin D receptor, we investigated the effects of quercetin on vitamin D receptor activity in human intestinal Caco-2 cells. The effects of quercetin on the expression of the vitamin D receptor target genes, vitamin D3 24-hydroxylase, cytochrome P450 3A4, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were measured using quantitative polymerase chain reaction. The vitamin D receptor siRNA was used to assess the involvement of the vitamin D receptor. Vitamin D receptor activation using a vitamin D responsive element-mediated cytochrome P450 3A4 reporter gene assay was investigated in Caco-2 cells transfected with human vitamin D receptor. We also studied the magnitude of the vitamin D receptor activation and/or synergism between 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and quercetin-like flavonoids. Slight but significant increases in the mRNA expression of cytochrome P450 3A4, vitamin D3 24-hydroxylase, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were observed after 3 days of continual quercetin treatment. The silencing effect of vitamin D receptor by vitamin D receptor siRNA in Caco-2 cells significantly attenuated the induction of the vitamin D receptor target genes. Moreover, quercetin significantly enhanced cytochrome P450 3A4 reporter activity in Caco-2 cells in a dose-dependent manner, and the expression of exogenous vitamin D receptor further stimulated the vitamin D receptor activity. Quercetin-like flavonoids such as kaempferol stimulated the vitamin D receptor activity in a manner similar to that seen with quercetin. Taken together, the data indicates that quercetin upregulates cytochrome P450 3A4 and multidrug resistance protein 1 expression in Caco-2 cells likely via a vitamin D receptor-dependent pathway.

  2. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  3. Functional discrepancies between tumor necrosis factor and lymphotoxin alpha explained by trimer stability and distinct receptor interactions

    DEFF Research Database (Denmark)

    Schuchmann, M; Hess, S; Bufler, P;

    1995-01-01

    interaction with the human p55TNFR. This was demonstrated in NIH 3T3 cells transfected with the human p55TNFR, where cytotoxicity is mediated exclusively by the transfected receptor. Although the p55ATNFR had virtually identical affinities for TNF and LT alpha, as defined by Scatchard analysis......Tumor necrosis factor (TNF) and lymphotoxin alpha (LT alpha) are closely related cytokines which bind with nearly identical affinities to the same pair of cell surface receptors, p55 and p75TNFR. Therefore it is assumed that TNF and LT alpha are redundant cytokines. This study, however...

  4. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  5. Monitoring ligand-receptor interactions by photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeney, Sylvia [M E Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056 (Switzerland); Mor, Flavio; Forro, Laszlo [Laboratory of Complex Matter Physics (LPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Koszali, Roland [Institute for Information and Communication Technologies (IICT), University of Applied Sciences of Western Switzerland (HEIG-VD), Rue Galilee 15, CH 1401 Yverdon-les-bains (Switzerland); Moy, Vincent T, E-mail: sylvia.jeney@unibas.ch, E-mail: vmoy@miami.edu [Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136 (United States)

    2010-06-25

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  6. Role of receptor patch geometry for cell adhesion in hydrodynamic flow

    Science.gov (United States)

    Korn, Christian; Schwarz, Ulrich

    2008-03-01

    Motivated by the physiological and biotechnological importance of cell adhesion under hydrodynamic flow, we theoretically investigate the efficiency of initial binding between a receptor-coated sphere and a ligand-coated wall in linear shear flow. Using a Langevin equation that accounts for both hydrodynamic interactions and Browian motion, we numerically calculate the mean first passage time (MFPT) for receptor-ligand encounter. We study how the MFPT is influenced by flow rate, receptor and ligand coverage, and receptor patch geometry. With increasing shear rate, the MFPT decreases monotonically. Above a threshold value of a few hundreds, binding efficiency is enhanced only weakly upon increasing the number of receptor patches. Increasing the height of the receptor patches increases binding efficiency much more strongly than increasing their lateral size. This strong dependance on out-off-plane geometry explains why white blood cells adhere to the vessel walls through receptor patches localized to the tips of microvilli, and why malaria-infected red blood cells form elevated receptor patches (knobs). [1] C. Korn and U. S. Schwarz, Phys. Rev. Lett. 97: 138103, 2006. [2] C. B. Korn and U. S. Schwarz. J. Chem. Phys. 126: 095103, 2007

  7. Small molecule mimetics of an interferon-α receptor interacting domain.

    Science.gov (United States)

    Bello, Angelica M; Wei, Lianhu; Majchrzak-Kita, Beata; Salum, Noruê; Purohit, Meena K; Fish, Eleanor N; Kotra, Lakshmi P

    2014-02-01

    Small molecules that mimic IFN-α epitopes that interact with the cell surface receptor, IFNAR, would be useful therapeutics. One such 8-amino acid region in IFN-α2, designated IRRP-1, was used to derive 11 chemical compounds that belong to 5 distinct chemotypes, containing the molecular features represented by the key residues Leu30, Arg33, and Asp35 in IRRP-1. Three of these compounds exhibited potential mimicry to IRRP-1 and, in cell based assays, as predicted, effectively inhibited IFNAR activation by IFN-α. Of these, compound 3 did not display cell toxicity and reduced IFN-α-inducible STAT1 phosphorylation and STAT-DNA binding. Based on physicochemical properties' analyses, our data suggest that moieties with acidic pKa on the small molecule may be a necessary element for mimicking the carboxyl group of Asp35 in IRRP-1. Our data confirm the relevance of this strategy of molecular mimicry of ligand-receptor interaction domains of protein partners for small molecule drug discovery.

  8. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells

    OpenAIRE

    Gandhari, Mukesh K; Frazier, Chester R.; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W.

    2009-01-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRα and ERRγ proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC50 and IC50 value...

  9. Ubiquitylation of the chemokine receptor CCR7 enables efficient receptor recycling and cell migration

    OpenAIRE

    Schäuble, Karin; Hauser, Mark A.; Rippl, Alexandra; Bruderer, Roland; Otero, Carolina; Gröttrup, Marcus; Legler, Daniel F.

    2012-01-01

    The chemokine receptor CCR7 is essential for lymphocyte and dendritic cell homing to secondary lymphoid organs. Owing to the ability to induce directional migration, CCR7 and its ligands CCL19 and CCL21 are pivotal for the regulation of the immune system. Here, we identify a novel function for receptor ubiquitylation in the regulation of the trafficking process of this G-protein-coupled seven transmembrane receptor. We discovered that CCR7 is ubiquitylated in a constitutive, ligand-independen...

  10. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions

    Directory of Open Access Journals (Sweden)

    Seung-Yeol eNah

    2015-10-01

    Full Text Available Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs, which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.

  11. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    in the CNS, none of the studies showed its expression and function in the endothelial cells. In the present study, we provide evidence for the first time that 5-HT4 receptor is expressed in the human umbilical vein endothelial cells (HUVECs). We demonstrate the transcription of 5-HT4 mRNA in the HUVECs using...... reverse transcription polimerase chain reaction. Additionally, we show 5- HT4 receptor expression in HUVECs by immunoblotting and immunofluorescent analysis with 5-HT4 specific antibody. Importantly, we determine that overexpression of 5-HT4 receptor leads to a pronounced cell rounding and intercellular...... gap formation in HUVECs. We are currently investigating the mechanism underlying 5-HT4 receptor-induced actin cytoskeleton changes in the endothelial cells. These data suggest that by activating 5-HT4 receptor, serotonin could be involved in regulation of actin cytoskeleton dynamics in the endothelial...

  12. Interactions between modulators of the GABA(A) receptor: Stiripentol and benzodiazepines.

    Science.gov (United States)

    Fisher, Janet L

    2011-03-05

    Many patients with refractory epilepsy are treated with polytherapy, and nearly 15% of epilepsy patients receive two or more anti-convulsant agents. The anti-convulsant stiripentol is used as an add-on treatment for the childhood epilepsy syndrome known as severe myoclonic epilepsy in infancy (Dravet syndrome). Stiripentol has multiple mechanisms of action, both enhancing GABA(A) receptors and reducing activity of metabolic enzymes that break down other drugs. Stiripentol is typically co-administered with other anti-convulsants such as benzodiazepines which also act through GABA(A) receptor modulation. Stiripentol slows the metabolism of some of these drugs through inhibition of a variety of cytochrome P450 enzymes, but could also influence their effects on GABAergic neurotransmission. Is it rational to co-administer drugs which can act through the same target? To examine the potential interaction between these modulators, we transiently transfected HEK-293T cells to produce α3β3γ2L or α3β3δ recombinant GABA(A) receptors. Using whole-cell patch clamp recordings, we measured the response to each benzodiazepine alone and in combination with a maximally effective concentration of stiripentol. We compared the responses to four different benzodiazepines: diazepam, clonazepam, clobazam and norclobazam. In all cases we found that these modulators were equally effective in the presence and absence of stiripentol. The δ-containing receptors were insensitive to modulation by the benzodiazepines, which did not affect potentiation by stiripentol. These data suggest that stiripentol and the benzodiazepines act independently at GABA(A) receptors and that polytherapy could be expected to increase the maximum effect beyond either drug alone, even without consideration of changes in metabolism.

  13. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors

    Directory of Open Access Journals (Sweden)

    Kinnosuke Yahiro

    2016-05-01

    Full Text Available Helicobacter pylori (H. pylori, a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1 that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.

  14. Distribution of P2Y receptor subtypes on haematopoietic cells

    OpenAIRE

    1998-01-01

    RT–PCR-southern hybridization analyses with radiolabelled P2Y receptor cDNAs as probes indicated that the peripheral blood leukocytes and the human umbilical vein endothelial cells express P2Y1, P2Y2, P2Y4 and P2Y6 receptors.Of the haematopoietic cell lines tested, promonocytic U937 cells express P2Y2 and P2Y6, but not P2Y1 or P2Y4; promyelocytic HL-60 cells express the P2Y1, P2Y2 and P2Y6 receptors but not the P2Y4 receptor; K562 cells express P2Y1 but not P2Y2, P2Y4 or P2Y6; and Dami cells ...

  15. The interaction of lipopolysaccharide-coated polystyrene particle with membrane receptor proteins on macrophage measured by optical tweezers

    Science.gov (United States)

    Wei, Ming-Tzo; Hua, Kuo-Feng; Hsu, Jowey; Karmenyan, Artashes; Hsu, Hsien-Yeh; Chiou, Arthur

    2006-08-01

    Lipopolysaccharide (LPS) is one of the cell wall components of Gram-positive bacteria recognized by and interacted with receptor proteins such as CD14 on macrophage cells. Such a process plays an important role in our innate immune system. In this paper, we report the application of optical tweezers (λ = 1064nm Gaussian beam focused by a water-immersed objective lens with N.A. = 1.0) to the study of the dynamics of the binding of a LPS-coated polystyrene particle (diameter = 1.5μm) onto the plasma membrane of a macrophage cell. We demonstrated that the binding rate increased significantly when the macrophage cell was pre-treated with the extract of Reishi polysaccharides (EORP) which has been shown to enhance the cell surface expression of CD14 (receptor of LPS) on macrophage cells.

  16. Molecular interaction studies of hemostasis: fibrinogen ligand-human platelet receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Imshik; Marchant, Roger E

    2003-10-15

    The interactions between fibrinogen ligands and platelet receptor {alpha}{sub IIb}{beta}{sub 3} were studied under physiological conditions by atomic force microscopy (AFM). Two linear peptide sequences in fibrinogen, RGD and HHLGGAKQAGDV, play central roles in the regulation of hemostasis and thrombosis by facilitating adhesion and aggregation of platelets. In order to measure the interactions (i.e., debonding force), oligopeptides, GSSSGaaa, where aaa is -RGDSPA or -HHLGGAKQAGDV, were synthesized and grafted on to the surface of AFM probe tips. The interaction forces between a peptide-modified AFM probe tip and platelet surface were determined from pN to nN levels using AFM force measurements. Our results show that the zero kinetic off-rate, K{sub off}(0), for RGDSPA is significantly smaller than that for HHLGGAKQAGDV, under the consideration of flexible receptor surfaces. From our analysis, the K{sub off}(0), the single molecular binding energy E{sub b}, and the transition state x{sub b}, were extracted from the data, and estimated to be 1.53 s{sup -1}, -2.64x10{sup -20} J and 1.03 A for the RGD-{alpha}{sub IIb}{beta}{sub 3} system, and 47.58 s{sup -1}, 2.67x10{sup -20}, 1.09 A for the HHLGGAKQAGDV-{alpha}{sub IIb}{beta}{sub 3} system, respectively.

  17. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T ce

  18. The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Jansen Sandra

    2011-02-01

    Full Text Available Abstract Background Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure mediates activation of the immune response in bacterial infection of the central nervous system (CNS. The chemotactic G-protein-coupled receptor (GPCR formyl-peptide-receptor like-1 (FPRL1 plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD. Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear. Methods Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide expression after infection with bacterial supernatants of Streptococcus pneumoniae (SP and Neisseria meningitides (NM. Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2 phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene expression and signal transduction were determined. Results We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between

  19. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2

    DEFF Research Database (Denmark)

    Christensen, Claus; Lauridsen, Jes B; Berezin, Vladimir;

    2006-01-01

    The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface...

  20. Interactions between Histamine H3 and Dopamine D2 Receptors and the Implications for Striatal Function

    OpenAIRE

    Ferrada, Carla; Ferré, Sergi; Casadó, Vicent; Cortés, Antonio; Justinova, Zuzana; Barnes, Chanel; Canela, Enric I.; Goldberg, Steven R.; Leurs, Rob; Lluis, Carme; Franco, Rafael

    2008-01-01

    The striatum contains a high density of histamine H3 receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H3 and dopamine D1 receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H3 and dopamine D2 receptors. In the present study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynap...

  1. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  2. Challenges in imaging cell surface receptor clusters

    Science.gov (United States)

    Medda, Rebecca; Giske, Arnold; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Super-resolution microscopy offers unique tools for visualizing and resolving cellular structures at the molecular level. STED microscopy is a purely optical method where neither complex sample preparation nor mathematical post-processing is required. Here we present the use of STED microscopy for imaging receptor cluster composition. We use two-color STED to further determine the distribution of two different receptor subunits of the family of receptor serine/threonine kinases in the presence or absence of their ligands. The implications of receptor clustering on the downstream signaling are discussed, and future challenges are also presented.

  3. Gravity and the cells of gravity receptors in mammals

    Science.gov (United States)

    Ross, M. D.

    Two new findings, that crystals located in the inner ear gravity receptors of mammals have the internal organization requisite for the piezoelectric property, and that sensory hair cells of these same receptors possess contractile-appearing striated organelles, have prompted the author to model mammalian gravity receptors in the ear on the principles of piezoelectricity and bioenergetics. This model is presented and a brief discussion of its implications for the possible effects of weightlessness follows.

  4. Eph family receptors and ligands in vascular cell targeting and assembly.

    Science.gov (United States)

    Stein, E; Schoecklmann, H; Daniel, T O

    1997-11-01

    Members of the Eph family of receptor tyrosine kinases determine neural cell aggregation and targeting behavior, functions that are also critical in vascular assembly and remodeling. Among this class of diverse receptors, EphA2 (Eck) and EphB1 (ELK) represent prototypes for two receptor subfamilies distinguished by high-affinity interaction with either glycerophosphatidylinositol (GPI)-linked or transmembrane ligands, respectively. EphA2 participates in angiogenic responses to tumor necrosis factor (TNF) through an autocrine loop affecting endothelial cell migration. EphB1 and its ligand Ephrin-B1 (LERK-2) are important determinants of assembly of endothelial cells from the microvasculature of the kidney, where both are expressed in endothelial progenitors and in glomerular microvascular endothelial cells. Ephrin-B1 activation of EphB1 promotes assembly of these cells into capillary-like structures. Interaction trap approaches have identified downstream signaling proteins that complex with ligand-activated EphA2 or EphB1, including nonreceptor tyrosine kinases and SH2 domain-containing adapter proteins. The Grb 10 adapter is one of a subset that binds activated EphB1, but not EphA2, defining distinct signaling mechanisms for these related endothelial receptors. On the basis of observations in vascular endothelial cells and recent results defining Eph receptor and ligand roles in neural cell targeting, we propose that these receptors direct cell-cell recognition events that are critical in vasculogenesis and angiogenesis. (Trends Cardiovasc Med 1997;7:329-334). © 1997, Elsevier Science Inc.

  5. Differential infection of receptor-modified host cells by receptor-specific influenza viruses.

    Science.gov (United States)

    Carroll, S M; Paulson, J C

    1985-09-01

    Influenza viruses of contrasting receptor specificity have been examined for their ability to infect receptor-modified MDCK cells containing sialyloligosaccharide receptor determinants of defined sequence. Cells were treated with sialidase to remove sialic acid and render them resistant to infection and were then incubated with sialyltransferase and CMP-sialic acid to restore sialic acid in the SA alpha 2,6Gal or SA alpha 2,3Gal linkages. The viruses A/RI/5 + /57 and A/duck/Ukraine/1/63, previously shown to exhibit preferential binding of SA alpha 2,6Gal and SA alpha 2,3Gal linkages, respectively, were found to exhibit differential infection of the receptor-modified cells in accord with their receptor specificity. Coinfection of SA alpha 2,3Gal derivatized cells with a mixture of the two viruses resulted in selective propagation of the SA alpha 2,3Gal-specific A/duck/Ukraine/1/63 virus. The results demonstrate the potential for cell surface receptors to mediate selection of receptor-specific variants of influenza virus.

  6. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes.

    Directory of Open Access Journals (Sweden)

    Greta E Weiss

    2015-02-01

    Full Text Available During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1 an early heparin-blockable interaction which weakly deforms the erythrocyte, 2 EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3 a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4 an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.

  7. Receptors from glucocorticoid-sensitive lymphoma cells and two clases of insensitive clones: physical and DNA-binding properties.

    Science.gov (United States)

    Yamamoto, K R; Stampfer, M R; Tomkins, G M

    1974-10-01

    Mouse lymphoma tissue culture cells (S49.1A) are normally killed by dexamethasone, a synthetic glucocorticoid hormone. Dexamethasone-resistant clones have been selected from this line, some of which retain the ability to specifically bind dexamethasone. Addition of [(3)H]dexamethasone to cultures, followed by cell fractionation, reveals that the nuclear transfer of hormone-receptor complexes in some of these variant clones is deficient (nt(-)), while others show increased nuclear transfer (nt(i)) relative to the parental line. Two independently selected members of each class have been studied here, in an effort to elucidate the molecular determinants involved in the receptor-nucleus interaction in vivo. The labeled receptors in cell-free extracts bind to DNA-cellulose, but only after previous incubation of the extract at 20 degrees , similar to the treatment required for cell-free interaction of receptors with nuclei. More importantly, the apparent DNA-binding affinity of the nt(-) receptors is lower than the wild type, whereas the nt(i) receptors bind DNA with an affinity higher than the parental molecules. The parallelism of nuclear and DNA binding, together with the observations that the receptors from the variants have sedimentation properties different from the wild-type cells, lead us to conclude that (i) these variants may contain altered receptor molecules and (ii) DNA is probably the primary nuclear binding site for steroid receptors in vivo.

  8. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  9. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Science.gov (United States)

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  10. Activating killer cell Ig-like receptors in health and disease

    Directory of Open Access Journals (Sweden)

    Martin A Ivarsson

    2014-04-01

    Full Text Available Expression of non-rearranged HLA class I-binding receptors characterizes human and mouse NK cells. The postulation of the missing-self hypothesis some 30 years ago triggered the subsequent search and discovery of inhibitory MHC-receptors, both in humans and mice. These receptors have two functions; i to control the threshold for NK cell activation, a process termed licensing or education, and ii to inhibit NK cell activation during interactions with healthy HLA class I-expressing cells. The discovery of activating forms of KIRs (aKIR challenged the concept of NK cell tolerance in steady state, as well as during immune challenge: what is the biological role of the activating KIR, in particular when NK cells express aKIRs in the absence of inhibitory receptors? Recently it was shown that aKIRs also participate in the education of NK cells. However, instead of lowering the threshold of activation like iKIRs, the expression of aKIRs has the opposite effect, i.e. rendering NK cells hyporesponsive. These findings may have consequences during NK cell response to viral infection, in cancer development, and in the initial stages of pregnancy. Here we review the current knowledge of activating KIRs, including the biological concept of aKIR-dependent NK cell education, and their impact in health and disease.

  11. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  12. Cryptococcal cell morphology affects host cell interactions and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Laura H Okagaki

    Full Text Available Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.

  13. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  14. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  15. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  16. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    Science.gov (United States)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  17. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    Science.gov (United States)

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  18. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  19. Rac activation by the T-cell receptor inhibits T cell migration.

    Directory of Open Access Journals (Sweden)

    Eva Cernuda-Morollón

    Full Text Available BACKGROUND: T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known. METHODOLOGY/PRINCIPAL FINDINGS: Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin. CONCLUSIONS/SIGNIFICANCE: We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.

  20. Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-dong; ZHAO Ya-li; WU Zhi-qing; MENG Yuan-guang; ZANG Li; MU Yi-ming

    2007-01-01

    Objective: It has been shown that LRP16 is an estrogen-induced gene through its receptor (Erα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ER( signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ER(-mediated transcriptional activity. GST-pulldown and immunoprecipitation (CoIP) assays were employed to investigate the physical interaction of LRP16 and Erα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of Erα were enhanced in a LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and Erα proteins was confirmed by GST-pulldown in vitro and CoIP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of Erα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length Erα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an Erα coactivator, providing a positive feedback regulatory loop for Erα signal transduction. Based on this function of LRP16, we propose that Erα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.

  1. Functional significance of erythropoietin receptor on tumor cells

    Institute of Scientific and Technical Information of China (English)

    Kodetthoor B Udupa

    2006-01-01

    Erythropoietin (Epo) is the regulator of red blood cell formation. Its receptor (EpoR) is now found in many cells and tissues of the body. EpoR is also shown to occur in tumor cells and Epo enhances the proliferation of these cells through cell signaling. EpoR antagonist can reduce the growth of the tumor in vivo. In view of our current knowledge of Epo, its recombinant forms and receptor,use of Epo in cancer patients to enhance the recovery of hematocrit after chemotherapy treatment has to be carefully evaluated.

  2. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.

    Science.gov (United States)

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V

    2017-01-25

    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.

  3. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1....... Canofins mimic the cognate ligand interaction with the receptor and preserve the neuritogenic and neuroprotective properties of FGF2. Canofins were shown by surface plasmon resonance analysis to bind to FGFR1 and promote receptor activation. However, FGF2-induced receptor phosphorylation was inhibited...

  4. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  5. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    Science.gov (United States)

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-06-01

    The main pharmacological effects of marijuana, as well as synthetic and endogenous cannabinoids, are mediated through G-protein-coupled receptors (GPCRs), including CB(1) and CB(2) receptors. The CB(1) receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain, spasticity, neurodegenerative diseases and mood and substance abuse disorders. Evidence has accumulated to suggest that CB(1) receptors, like other GPCRs, interact with and are regulated by several other proteins beyond the established role of heterotrimeric G-proteins. These proteins, which include the GPCR kinases, beta-arrestins, GPCR-associated sorting proteins, factor associated with neutral sphingomyelinase, other GPCRs (heterodimerization) and the novel cannabinoid receptor-interacting proteins: CRIP(1a/b), are thought to play important roles in the regulation of intracellular trafficking, desensitization, down-regulation, signal transduction and constitutive activity of CB(1) receptors. This review examines CB(1) receptor-interacting proteins, including heterotrimeric G-proteins, but with particular emphasis on non-G-protein entities, that might comprise the CB(1) receptosomal complex. The evidence for direct interaction with CB(1) receptors and potential functional roles of these interacting proteins is discussed, as are future directions and challenges in this field with an emphasis on the possibility of eventually targeting these proteins for drug discovery.

  6. Alpha-synuclein promotes clathrin-mediated endocytosis of NMDA receptors in dopaminergic cells

    Institute of Scientific and Technical Information of China (English)

    Shun Yu; Furong Cheng; Xin Li; Yaohua Li; Tao Wang; Guangwei Liu; Andrius Baskys

    2012-01-01

    Loss of dopaminergic i a compensatory increase in nput to the striatum associated with Parkinson' s disease brings about glutamate release onto the dopaminergic cell bodies in the substantia nigra pars compacta (SNpc)[1] Glutamate over-activation of NMDA receptors on these cells can cause excitotoxicity and contribute to their further loss. NMDA receptor-mediated neuronal death is reduced by group I mGluR-mediated up-regulation of endocytosis protein RAB5B[2.3] Among proteins shown to interact with RAB5 proteins is a-synuclein

  7. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    Science.gov (United States)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  8. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE.

    Science.gov (United States)

    West, A P; Bennett, M J; Sellers, V M; Andrews, N C; Enns, C A; Bjorkman, P J

    2000-12-08

    The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.

  9. Slit2 involvement in glioma cell migration is mediated by Robo1 receptor.

    Science.gov (United States)

    Mertsch, Sonja; Schmitz, Nicole; Jeibmann, Astrid; Geng, Jian-Guo; Paulus, Werner; Senner, Volker

    2008-03-01

    Slit and Robo proteins are evolutionarily conserved molecules whose interaction underlies axon guidance and neuronal precursor cell migration. During development secreted Slit proteins mediate chemorepulsive signals on cells expressing Robo receptors. Because similar molecular mechanisms may be utilized in glioma cell invasion and neuroblast migration, we studied the expression of Slit2 and its transmembrane receptor Robo1 as well as their functional role in migration in glioma cells. qRT-PCR and immunohistochemistry of human specimens revealed that Slit2 was distinctly expressed by non-neoplastic neurons, but at only very low levels in fibrillary astrocytoma and glioblastoma. Robo1 also was mainly restricted to neurons in the normal brain, whereas astrocytic tumor cells in situ as well as glioblastoma cell lines overexpressed Robo1 at mRNA and protein levels. Recombinant human Slit2 in a concentration of 0.45 nM was repulsive for glioma cell lines in a modified Boyden chamber assay. RNAi-mediated knockdown of Robo1 in glioma cell lines neutralized the repulsive effect of Slit2, demonstrating that Robo1 served as the major Slit2 receptor. Our findings suggest that a chemorepulsive effect mediated by interaction of Slit2 and Robo1 participates in glioma cell guidance in the brain.

  10. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  11. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor.

    Science.gov (United States)

    Streltsov, V A; Varghese, J N; Carmichael, J A; Irving, R A; Hudson, P J; Nuttall, S D

    2004-08-24

    The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-A structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the "bottom" of the molecule, apparently discontinuous from the antigen-binding paratope and similar to that observed in cell adhesion molecules. Thus, we suggest that IgNARs originated as cell-surface adhesion molecules coopted to the immune repertoire and represent an evolutionary lineage independent of variable heavy chain/variable light chain type antibodies. Additionally, both 12Y-1 and 12Y-2 form unique crystallographic dimers, predominantly mediated by main-chain framework interactions, which represent a possible model for primordial cell-based interactions. Unusually, the 12Y-2 complementarity-determining region 3 also adopts an extended beta-hairpin structure, suggesting a distinct selective advantage in accessing cryptic antigenic epitopes.

  12. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells

    Science.gov (United States)

    Poitelon, Y; Lopez-Anido, C; Catignas, K; Berti, C; Palmisano, M; Williamson, C; Ameroso, D; Abiko, K; Hwang, Y; Gregorieff, A; Wrana, J; Asmani, M; Zhao, R; Sim, FJ; Wrabetz, L; Svaren, J; Feltri, ML

    2016-01-01

    Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells. PMID:27273766

  13. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of th...

  14. Identification of a preassembled TRH receptor-G(q/11) protein complex in HEK293 cells.

    Science.gov (United States)

    Drastichova, Zdenka; Novotny, Jiri

    2012-01-01

    Protein-protein interactions define specificity in signal transduction and these interactions are central to transmembrane signaling by G-protein-coupled receptors (GPCRs). It is not quite clear, however, whether GPCRs and the regulatory trimeric G-proteins behave as freely and independently diffusible molecules in the plasma membrane or whether they form some preassociated complexes. Here we used clear-native polyacrylamide gel electrophoresis (CN-PAGE) to investigate the presumed coupling between thyrotropin-releasing hormone (TRH) receptor and its cognate G(q/11) protein in HEK293 cells expressing high levels of these proteins. Under different solubilization conditions, the TRH receptor (TRH-R) was identified to form a putative pentameric complex composed of TRH-R homodimer and G(q/11) protein. The presumed association of TRH-R with G(q/11)α or Gβ proteins in plasma membranes was verified by RNAi experiments. After 10- or 30-min hormone treatment, TRH-R signaling complexes gradually dissociated with a concomitant release of receptor homodimers. These observations support the model in which GPCRs can be coupled to trimeric G-proteins in preassembled signaling complexes, which might be dynamically regulated upon receptor activation. The precoupling of receptors with their cognate G-proteins can contribute to faster G-protein activation and subsequent signal transfer into the cell interior.

  15. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner.

    Science.gov (United States)

    Boes, Marianne; Bertho, Nicolas; Cerny, Jan; Op den Brouw, Marjolein; Kirchhausen, Tomas; Ploegh, Hidde

    2003-10-15

    Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.

  16. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan.

    NARCIS (Netherlands)

    Cambi, A.; Netea, M.G.; Mora-Montes, H.M.; Gow, N.A.; Hato, S.V.; Lowman, D.W.; Kullberg, B.J.; Torensma, R.; Williams, D.L.; Figdor, C.G.

    2008-01-01

    The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, because a detailed characterization at the structural level is lacking. Antigen-presenting dendritic cells

  17. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation.

    Science.gov (United States)

    Donius, Luke R; Weis, Janis J; Weis, John H

    2014-06-01

    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.

  18. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    Science.gov (United States)

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine.

  19. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  20. 线粒体雌激素受体β通过与Bad相互作用抑制非小细胞肺癌细胞的凋亡%Mitochondrial estrogen receptorβinhibits non-small cell lung cancer cell apoptosis via inter-action with Bad

    Institute of Scientific and Technical Information of China (English)

    谢强; 黄作平; 刘颖; 刘晓; 黄磊

    2015-01-01

    Objective To explore the molecular mechanisms by which mitochondrial estrogen receptorβ(ERβ) suppresses non-small cell lung cancer cell apoptosis induced by apoptotic stimulations. Methods The mitochondrial localization of ERβin non-small cell lung cancer cell lines A549 and 201T was determined using immunofluorescence and Western blotting. The changes of apoptosis of the cells with mitochondrial ERβ overexpression or knockdown in response to cisplatin and STS treatments were assessed, and mitochondrial ERβ interaction with the pro- apoptotic protein Bad was detected using co-immunoprecipitation and Western blotting. Results ERβ was localized in the mitochondria in A549 and 201T cells. ERβoverexpression significantly reduced while ERβknockdown increased Bax activation and cell apoptosis induced by cisplatin and STS. Mitochondrial ERβinteraction with pro-apoptotic protein Bad may suppress Bax activation and its translocation to the mitochondria. Conclusion Mitochondrial ERβ can suppress apoptosis of non-small cell lung cancer cells induced by cisplatin or STS through interaction with Bad, suggesting the value of mitochondrial ERβ as a new therapeutic target for treatment of non-small cell lung cancer.%目的:探究线粒体雌激素受体β(ERβ)抑制凋亡刺激诱导非小细胞肺癌细胞死亡的分子机制。方法免疫荧光及western blotting分析细胞内源ERβ的线粒体定位;检测顺铂与十字孢碱(staurosporine,STS)处理过表达或沉默线粒体ERβ后细胞凋亡的变化;免疫共沉淀和western blotting分析线粒体ERβ与促凋亡蛋白Bad的相互作用。结果 ERβ存在于A549及201T细胞的线粒体中;过表达或沉默ERβ可以显著减少或增加顺铂与STS诱导的Bax激活及细胞凋亡;线粒体ERβ与促凋亡蛋白Bad相互作用可能阻抑Bax的活化及线粒体转位。结论线粒体雌激素受体β可以通过与Bad相互作用抑制顺铂或STS诱导非小细胞肺癌细胞的

  1. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tonatiuh Barrios-García

    2016-06-01

    Full Text Available Tristetraprolin (TTP is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα, which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR, glucocorticoid receptor (GR and androgen receptor (AR. In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  2. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  3. Dissection of androgen receptor-promoter interactions: steroid receptors partition their interaction energetics in parallel with their phylogenetic divergence.

    Science.gov (United States)

    De Angelis, Rolando W; Yang, Qin; Miura, Michael T; Bain, David L

    2013-11-15

    Steroid receptors comprise a homologous family of ligand-activated transcription factors. The members include androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor (PR). Phylogenetic studies demonstrate that AR, GR, MR, and PR are most closely related, falling into subgroup 3C. ER is more distantly related, falling into subgroup 3A. To determine the quantitative basis by which receptors generate their unique transcriptional responses, we are systematically dissecting the promoter-binding energetics of all receptors under a single "standard state" condition. Here, we examine the self-assembly and promoter-binding energetics of full-length AR and a mutant associated with prostate cancer, T877A. We first demonstrate that both proteins exist only as monomers, showing no evidence of dimerization. Although this result contradicts the traditional understanding that steroid receptors dimerize in the absence of DNA, it is fully consistent with our previous work demonstrating that GR and two PR isoforms either do not dimerize or dimerize only weakly. Moreover, both AR proteins exhibit substantial cooperativity between binding sites, again as seen for GR and PR. In sharp contrast, the more distantly related ER-α dimerizes so strongly that energetics can only be measured indirectly, yet cooperativity is negligible. Thus, homologous receptors partition their promoter-binding energetics quite differently. Moreover, since receptors most closely related by phylogeny partition their energetics similarly, such partitioning appears to be evolutionarily conserved. We speculate that such differences in energetics, coupled with different promoter architectures, serve as the basis for generating receptor-specific promoter occupancy and thus function.

  4. Diversity and bias through receptor-receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2014-05-01

    Full Text Available Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980ies and 1990ies it was shown that neurotensin through selective antagonistic NTR-D2likeR interactions increased the diversity of DA signalling by reducing D2R mediated dopamine signalling over D1R mediated dopamine signalling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site towards neuromedin N vs neurotensin in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signalling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced which moved away from Gi/o signaling and instead favoured b-arrestin2 mediated signalling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.

  5. Matricryptins network with matricellular receptors at the surface of endothelial and tumor cells

    Directory of Open Access Journals (Sweden)

    Sylvie eRICARD-BLUM

    2016-02-01

    Full Text Available The extracellular matrix is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g. collagens, elastin and laminins and proteoglycans (e.g. perlecan. Matrix metalloproteinases (MMPs, cathepsins and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.

  6. Cloning and identification of measles virus receptor gene from marmoset cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measles virus (MV) strains with mutated hemagglutinin gene (ha) lost the capacity to infect its sensitive host cells (Vero cells), but it may infect the marmoset B-lymphoblastoid cell line B95a. From above, we can presume that there is a novel cellular receptor for those measles virus strains on B95a cell s. Using the yeast two-hybrid system, we screened and cloned a novel gene--bip (B-lympho- blastoid interaction protein of marmoset) from B95a cell cDNA library, which encoded a protein interacting with measles virus hemagglutinin protein (Ha). The bip cDNA was 1540 base pairs in length and contained a unique open rea ding frame (ORF) of 1011 base pairs encoding a transmembrane protein of 337 amino acid residues. The primary structure of amino acids residue is predicted that the Bip comprised a hydrophobic transmembrane domain and a hydrophobic leader region. The researches about the deletion mutants showed that the deletion of tran smembrane domain in Bip did not affect the interaction between Bip and Ha protei ns. Expression of bip in measles virus non-permissive cell line--CHO (Chinese hamster ovary) cells was performed to prove that CHO/Bip can be infected by meas les virus and then turned to the MV permissive cells. We concluded that the bip gene is a novel measles virus receptor gene in marmoset B-lymphoblastoid cells.

  7. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Yuxin Feng

    Full Text Available Estrogen receptor alpha (ERα, a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER's ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER's transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.

  8. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells.

    Science.gov (United States)

    Shakibaei, Mehdi; Buhrmann, Constanze; Mobasheri, Ali

    2011-04-01

    Resveratrol is a polyphenolic phytoestrogen that has been shown to exhibit potent anti-oxidant, anti-inflammatory, and anti-catabolic properties. Increased osteoclastic and decreased osteoblastic activities result in bone resorption and loss of bone mass. These changes have been implicated in pathological processes in rheumatoid arthritis and osteoporosis. Receptor activator of NF-κB ligand (RANKL), a member of the TNF superfamily, is a major mediator of bone loss. In this study, we investigated the effects of resveratrol on RANKL during bone morphogenesis in high density bone cultures in vitro. Untreated bone-derived cell cultures produced well organized bone-like structures with a bone-specific matrix. Treatment with RANKL induced formation of tartrate-resistant acid phosphatase-positive multinucleated cells that exhibited morphological features of osteoclasts. RANKL induced NF-κB activation, whereas pretreatment with resveratrol completely inhibited this activation and suppressed the activation of IκBα kinase and IκBα phosphorylation and degradation. RANKL up-regulated p300 (a histone acetyltransferase) expression, which, in turn, promoted acetylation of NF-κB. Resveratrol inhibited RANKL-induced acetylation and nuclear translocation of NF-κB in a time- and concentration-dependent manner. In addition, activation of Sirt-1 (a histone deacetylase) by resveratrol induced Sirt-1-p300 association in bone-derived and preosteoblastic cells, leading to deacetylation of RANKL-induced NF-κB, inhibition of NF-κB transcriptional activation, and osteoclastogenesis. Co-treatment with resveratrol activated the bone transcription factors Cbfa-1 and Sirt-1 and induced the formation of Sirt-1-Cbfa-1 complexes. Overall, these results demonstrate that resveratrol-activated Sirt-1 plays pivotal roles in regulating the balance between the osteoclastic versus osteoblastic activity result in bone formation in vitro thereby highlighting its therapeutic potential for treating

  9. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  10. P2 receptor-mediated signaling in mast cell biology.

    Science.gov (United States)

    Bulanova, Elena; Bulfone-Paus, Silvia

    2010-03-01

    Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.

  11. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  12. Activation of intracellular angiotensin AT₂ receptors induces rapid cell death in human uterine leiomyosarcoma cells.

    Science.gov (United States)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike M; Recanti, Chiara; Namsoleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-05-01

    The presence of angiotensin type 2 (AT₂) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT₂ receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT₂ receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT₂ receptors by a concomitant treatment with angiotensin II and the AT₁ receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT₂ receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT₂ receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT₂ receptor.

  13. Predicting the CRIP1a-cannabinoid 1 receptor interactions with integrated molecular modeling approaches

    Science.gov (United States)

    Ahmed, Mostafa H.; Kellogg, Glen E.; Selley, Dana E.; Safo, Martin; Zhang, Yan

    2015-01-01

    Cannabinoid receptors are a family of G-protein coupled receptors that are involved in a wide variety of physiological processes and diseases. One of the key regulators that are unique to cannabinoid receptors is the cannabinoid receptor interacting proteins (CRIPs). Among them CRIP1a was found to decrease the constitutive activity of the cannabinoid type-1 receptor (CB1R). The aim of this study is to gain an understanding of the interaction between CRIP1a and CB1R through using different computational techniques. The generated model demonstrated several key putative interactions between CRIP1a and CB1R, including those involving Lys130 of CRIP1a. PMID:24461351

  14. The T cell antigen receptor: the Swiss army knife of the immune system.

    Science.gov (United States)

    Attaf, M; Legut, M; Cole, D K; Sewell, A K

    2015-07-01

    The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These 'unconventional' T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.

  15. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2014-10-01

    Full Text Available G protein-coupled receptors (GPCRs are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors

  16. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  17. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Danilo Santana Alessio Franceschi

    2011-01-01

    Full Text Available Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.

  18. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Hakdong Shin

    Full Text Available BACKGROUND: Salmonella enterica subspecies enterica serovar Typhimurium is a gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages, vitamin B(12 uptake outer membrane protein, BtuB (7 phages and lipopolysaccharide-related O-antigen (7 phages. TEM observation revealed that the phages using flagella (group F or BtuB (group B as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L belong to Podoviridae family. Interestingly, while some of group F phages (F-I target FliC host receptor, others (F-II target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. CONCLUSIONS/SIGNIFICANCE: In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.

  19. P2 receptor-mediated signaling in mast cell biology

    OpenAIRE

    Bulanova, Elena; Bulfone-Paus, Silvia

    2009-01-01

    Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of ...

  20. Use of phage display to identify novel mineralocorticoid receptor-interacting proteins.

    Science.gov (United States)

    Yang, Jun; Fuller, Peter J; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P; Clyne, Colin D; Young, Morag J

    2014-09-01

    The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter.

  1. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Sanja Coso

    Full Text Available BACKGROUND: Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF family is a major regulator of lymphatic endothelial cell (LEC function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. METHODS AND RESULTS: Here we delineate the VEGF-C/VEGF receptor (VEGFR-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. CONCLUSIONS: Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

  2. Vascular Endothelial Growth Factor Receptor-3 Directly Interacts with Phosphatidylinositol 3-Kinase to Regulate Lymphangiogenesis

    Science.gov (United States)

    Coso, Sanja; Zeng, Yiping; Opeskin, Kenneth; Williams, Elizabeth D.

    2012-01-01

    Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis. PMID:22745786

  3. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels.

    Science.gov (United States)

    Luo, Wei; Mayeux, Jessica; Gutierrez, Toni; Russell, Lisa; Getahun, Andrew; Müller, Jennifer; Tedder, Thomas; Parnes, Jane; Rickert, Robert; Nitschke, Lars; Cambier, John; Satterthwaite, Anne B; Garrett-Sinha, Lee Ann

    2014-07-15

    Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.

  4. Fluorescent ligand for human progesterone receptor imaging in live cells.

    Science.gov (United States)

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.

  5. Interaction between pheromone and its receptor of the fission yeast Schizosaccharomyces pombe examined by a force spectroscopy study.

    Science.gov (United States)

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  6. Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Shintaro Sasuga

    2012-01-01

    Full Text Available Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM. An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  7. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1.

    Science.gov (United States)

    Chen, Guo-Yun; Brown, Nicholas K; Wu, Wei; Khedri, Zahra; Yu, Hai; Chen, Xi; van de Vlekkert, Diantha; D'Azzo, Alessandra; Zheng, Pan; Liu, Yang

    2014-09-03

    Both pathogen- and tissue damage-associated molecular patterns induce inflammation through toll-like receptors (TLRs), while sialic acid-binding immunoglobulin superfamily lectin receptors (Siglecs) provide negative regulation. Here we report extensive and direct interactions between these pattern recognition receptors. The promiscuous TLR binders were human SIGLEC-5/9 and mouse Siglec-3/E/F. Mouse Siglec-G did not show appreciable binding to any TLRs tested. Correspondingly, Siglece deletion enhanced dendritic cell responses to all microbial TLR ligands tested, while Siglecg deletion did not affect the responses to these ligands. TLR4 activation triggers Neu1 translocation to cell surface to disrupt TLR4:Siglec-E interaction. Conversely, sialidase inhibitor Neu5Gc2en prevented TLR4 ligand-induced disruption of TLR4:Siglec E/F interactions. Absence of Neu1 in hematopoietic cells or systematic treatment with sialidase inhibitor Neu5Gc2en protected mice against endotoxemia. Our data raised an intriguing possibility of a broad repression of TLR function by Siglecs and a sialidase-mediated de-repression that allows positive feedback of TLR activation during infection.

  8. Probing natural killer cell education by Ly49 receptor expression analysis and computational modelling in single MHC class I mice.

    Directory of Open Access Journals (Sweden)

    Sofia Johansson

    Full Text Available Murine natural killer (NK cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for "missing self" recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an "educating impact" on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.

  9. Laminins and their receptors in Schwann cells and hereditary neuropathies.

    Science.gov (United States)

    Feltri, Maria Laura; Wrabetz, Lawrence

    2005-06-01

    This review focuses on the influence of laminins, mediated through laminin receptors present on Schwann cells, on peripheral nerve development and pathology. Laminins influence multiple aspects of cell differentiation and tissue morphogenesis, including cell survival, proliferation, cytoskeletal rearrangements, and polarity. Peripheral nerves are no exception, as shown by the discovery that defective laminin signals contribute to the pathogenesis of diverse neuropathies such as merosin-deficient congenital muscular dystrophy and Charcot-Marie-Tooth 4F, neurofibromatosis, and leprosy. In the last 5 years, advanced molecular and cell biological techniques and conditional mutagenesis in mice began revealing the role of different laminins and receptors in developing nerves. In this way, we are starting to explain morphological and pathological observations beginning at the start of the last century. Here, we review these recent advances and show how the roles of laminins and their receptors are surprisingly varied in both time and place.

  10. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  11. δ-OPIOID RECEPTOR ADAPTATION IN NEUROBLASTOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    D-M,Chuang; M.Belchers; J.Barg; J.Rowinski; G.Clark; C.A.Gloeckner; A.Ho; X-M.Gao; C.J.Coscia

    1993-01-01

    The mechanisms underlying tolerance and dependence arising from chronic opioid exposure are poorly understood. However, the development of neuroblastoma and neurohybrid cell culturea, has provided a simplified model for the atudy of opioid receptor adaptation. Using neuroblastoma NG108-15 cells,

  12. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    Science.gov (United States)

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  13. An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions.

    Science.gov (United States)

    Syedbasha, Mohameedyaseen; Linnik, Janina; Santer, Deanna; O'Shea, Daire; Barakat, Khaled; Joyce, Michael; Khanna, Nina; Tyrrell, D Lorne; Houghton, Michael; Egli, Adrian

    2016-01-01

    A comprehensive understanding of signaling pathways requires detailed knowledge regarding ligand-receptor interaction. This article describes two fast and reliable point-by-point protocols of enzyme-linked immunosorbent assays (ELISAs) for the investigation of ligand-receptor interactions: the direct ligand-receptor interaction assay (LRA) and the competition LRA. As a case study, the ELISA based analysis of the interaction between different lambda interferons (IFNLs) and the alpha subunit of their receptor (IL28RA) is presented: the direct LRA is used for the determination of dissociation constants (KD values) between receptor and IFN ligands, and the competition LRA for the determination of the inhibitory capacity of an oligopeptide, which was designed to compete with the IFNLs at their receptor binding site. Analytical steps to estimate KD and half maximal inhibitory concentration (IC50) values are described. Finally, the discussion highlights advantages and disadvantages of the presented method and how the results enable a better molecular understanding of ligand-receptor interactions.

  14. The evolution of natural killer cell receptors

    NARCIS (Netherlands)

    Carrillo-Bustamante, Paola; Kesmir, C.; de Boer, Rob J

    2016-01-01

    Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibitin

  15. Niche interactions in epidermal stem cells

    Institute of Scientific and Technical Information of China (English)

    Hye-Ryung Choi; Sang-Young Byun; Soon-Hyo Kwon; Kyoung-Chan Park

    2015-01-01

    Within the epidermis and dermis of the skin, cellssecrete and are surrounded by the extracellular matrix(ECM), which provides structural and biochemicalsupport. The ECM of the epidermis is the basementmembrane, and collagen and other dermal componentsconstitute the ECM of the dermis. There is significantvariation in the composition of the ECM of the epidermisand dermis, which can affect "cell to cell" and "cellto ECM" interactions. These interactions, in turn, caninfluence biological responses, aging, and woundhealing; abnormal ECM signaling likely contributes toskin diseases. Thus, strategies for manipulating cell-ECM interactions are critical for treating wounds and avariety of skin diseases. Many of these strategies focuson epidermal stem cells, which reside in a unique nichein which the ECM is the most important component;interactions between the ECM and epidermal stemcells play a major role in regulating stem cell fate. Asthey constitute a major portion of the ECM, it is likelythat integrins and type Ⅳ collagens are important instem cell regulation and maintenance. In this review,we highlight recent research-including our previouswork-exploring the role that the ECM and its associatedcomponents play in shaping the epidermal stem cellniche.

  16. Schwann cells-axon interaction in myelination.

    Science.gov (United States)

    Taveggia, Carla

    2016-08-01

    The remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In this review I will focus on signals coming from axons in the first part and then on those from Schwann cells that promote the formation and the maintenance of peripheral myelin. I will discuss their inter-relationship together with seminal and important advances recently made.

  17. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  18. Dipicrylamine Modulates GABAρ1 Receptors through Interactions with Residues in the TM4 and Cys-Loop Domains.

    Science.gov (United States)

    Limon, Agenor; Estrada-Mondragón, Argel; Ruiz, Jorge M Reyes; Miledi, Ricardo

    2016-04-01

    Dipicrylamine (DPA) is a commonly used acceptor agent in Förster resonance energy transfer experiments that allows the study of high-frequency neuronal activity in the optical monitoring of voltage in living cells. However, DPA potently antagonizes GABAA receptors that contain α1 and β2 subunits by a mechanism which is not clearly understood. In this work, we aimed to determine whether DPA modulation is a general phenomenon of Cys-loop ligand-gated ion channels (LGICs), and whether this modulation depends on particular amino acid residues. For this, we studied the effects of DPA on human homomeric GABAρ1, α7 nicotinic, and 5-HT3A serotonin receptors expressed in Xenopus oocytes. Our results indicate that DPA is an allosteric modulator of GABAρ1 receptors with an IC50 of 1.6 µM, an enhancer of α7 nicotinic receptors at relatively high concentrations of DPA, and has little, if any, effect on 5-HT3A receptors. DPA antagonism of GABAρ1 was strongly enhanced by preincubation, was slightly voltage-dependent, and its washout was accelerated by bovine serum albumin. These results indicate that DPA modulation is not a general phenomenon of LGICs, and structural differences between receptors may account for disparities in DPA effects. In silico modeling of DPA docking to GABAρ1, α7 nicotinic, and 5-HT3A receptors suggests that a hydrophobic pocket within the Cys-loop and the M4 segment in GABAρ1, located at the extracellular/membrane interface, facilitates the interaction with DPA that leads to inhibition of the receptor. Functional examinations of mutant receptors support the involvement of the M4 segment in the allosteric modulation of GABAρ1 by DPA.

  19. A novel unidirectional cross-talk from the insulin-like growth factor-I receptor to leptin receptor in human breast cancer cells.

    Science.gov (United States)

    Ozbay, Tuba; Nahta, Rita

    2008-06-01

    Obesity is a major risk factor for the development and progression of breast cancer. Increased circulating levels of the obesity-associated hormones leptin and insulin-like growth factor-I (IGF-I) and overexpression of the leptin receptor (Ob-R) and IGF-I receptor (IGF-IR) have been detected in a majority of breast cancer cases and during obesity. Due to correlations between increased leptin, Ob-R, IGF-I, and IGF-IR in breast cancer, we hypothesized that molecular interactions may exist between these two signaling pathways. Coimmunoprecipitation and immunoblotting showed that IGF-IR and Ob-R interact in the breast cancer cell lines MDA-MB-231, MCF7, BT474, and SKBR3. Stimulation of cells with IGF-I promoted Ob-R phosphorylation, which was blocked by IGF-IR kinase inhibition. In addition, IGF-I activated downstream signaling molecules in the leptin receptor and IGF-IR pathways. In contrast to IGF-I, leptin did not induce phosphorylation of IGF-IR, indicating that receptor cross-signaling is unidirectional, occurring from IGF-IR to Ob-R. Our results show, for the first time, a novel interaction and cross-talk between the IGF-I and leptin receptors in human breast cancer cells.

  20. Chimeric antigen receptor T cells: a novel therapy for solid tumors.

    Science.gov (United States)

    Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming

    2017-03-29

    The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.

  1. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    Science.gov (United States)

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

  2. Cell-Cell Contact-Mediated Hepatitis C Virus (HCV) Transfer, Productive Infection, and Replication and Their Requirement for HCV Receptors

    OpenAIRE

    Liu, Ziqing; He, Johnny J.

    2013-01-01

    Hepatitis C virus (HCV) infection is believed to begin with interactions between cell-free HCV and cell receptors that include CD81, scavenger receptor B1 (SR-B1), claudin-1 (CLDN1), and occludin (OCLN). In this study, we have demonstrated that HCV spreading from infected hepatocytes to uninfected hepatocytes leads to the transfer of HCV and the formation of infection foci and is cell density dependent. This cell-cell contact-mediated (CCCM) HCV transfer occurs readily and requires all these ...

  3. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells.

    OpenAIRE

    1996-01-01

    mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutati...

  4. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav;

    2009-01-01

    Recent studies have shown that activated aryl hydrocarbon receptor (AHR) induced the recruitment of estrogen receptor- (ER ) to AHR-regulated genes and that AHR is recruited to ER -regulated genes. However, these findings were limited to a small number of well-characterized AHR- or ER -responsive...

  5. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  6. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  7. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available BACKGROUND: Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. METHODS: Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. RESULTS: Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. CONCLUSIONS: Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  8. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    Science.gov (United States)

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  9. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein.

    Directory of Open Access Journals (Sweden)

    Marco Pedrazzi

    Full Text Available BACKGROUND: Extracellular high mobility group box 1 (HMGB1 protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139 peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.

  10. Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48 were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the "standard" GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature.

  11. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity.

    Science.gov (United States)

    Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2013-08-16

    The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.

  12. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    Science.gov (United States)

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  13. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    Science.gov (United States)

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  14. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity.

    Directory of Open Access Journals (Sweden)

    Junfeng Han

    Full Text Available Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D. Thus, it is important to understand how glucagon receptor (GCGR activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO cells, and GCGR complexes were isolated by affinity purification (AP. Complexes were then analyzed by mass spectrometry (MS, and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon

  15. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV following in vivo escape from neutralising antibody

    Directory of Open Access Journals (Sweden)

    Samman Ayman

    2010-04-01

    Full Text Available Abstract Background In the acute phase of infection with feline immunodeficiency virus (FIV, the virus targets activated CD4+ T cells by utilising CD134 (OX40 as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Results Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. Conclusions The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.

  16. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

    Science.gov (United States)

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Martinez, Harryl D; Jasavala, Rohini J; Hinkson, Izumi V; Fermin, Damian; Eng, Jimmy K; Nesvizhskii, Alexey I; Wright, Michael E

    2015-08-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

  17. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  18. Sphingosine 1-Phosphate Receptor 1 Signaling in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Nigel J. Pyne

    2017-02-01

    Full Text Available The bioactive lipid, sphingosine 1-phosphate (S1P binds to a family of G protein-coupled receptors, termed S1P1-S1P5. These receptors function in, for example, the cardiovascular system to regulate vascular barrier integrity and tone, the nervous system to regulate neuronal differentiation, myelination and oligodendrocyte/glial cell survival and the immune system to regulate T- and B-cell subsets and trafficking. S1P receptors also participate in the pathophysiology of autoimmunity, inflammatory disease, cancer, neurodegeneration and others. In this review, we describe how S1P1 can form a complex with G-protein and β-arrestin, which function together to regulate effector pathways. We also discuss the role of the S1P1-Platelet derived growth factor receptor β functional complex (which deploys G-protein/β-arrestin and receptor tyrosine kinase signaling in regulating cell migration. Possible mechanisms by which different S1P-chaperones, such as Apolipoprotein M-High-Density Lipoprotein induce biological programmes in cells are also described. Finally, the role of S1P1 in health and disease and as a target for clinical intervention is appraised.

  19. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions.

    Science.gov (United States)

    Rood, Mark T M; Spa, Silvia J; Welling, Mick M; Ten Hove, Jan Bart; van Willigen, Danny M; Buckle, Tessa; Velders, Aldrik H; van Leeuwen, Fijs W B

    2017-01-06

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  20. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  1. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  2. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus.

  3. Molecular Characteristics of Membrane Glutamate Receptor-Ionophore Interaction.

    Science.gov (United States)

    1986-08-29

    Neurochemical - Research , 1984, 9, 29-44. Chang, H.H., Michaelis, E.K. & Roy, S. Functional characteristics of . -Z L-glutamate, N-methyl-D-aspartate and kainate...receptors in isolated brain synaptic membranes. Neurochemical Research , 1984, 9, 901-913. Michaelis, E. K., Galton, N. and Early, S. L. Spider venous

  4. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  5. Eph/ephrins mediated thymocyte-thymic epithelial cell interactions control numerous processes of thymus biology

    Directory of Open Access Journals (Sweden)

    Javier eGarcia-Ceca

    2015-06-01

    Full Text Available Numerous studies emphasize the relevance of thymocyte-thymic epithelial cell (TECs interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase receptors Ephs (Erythropoietin-producing hepatocyte kinases and their ligands, ephrins (Eph receptor interaction proteins, are molecules known to be involved in the regulation of numerous biological systems in which cell-to-cell interactions are particularly relevant. In the last years, we and other authors have demonstrated the importance of these molecules in the thymic functions and the T-cell development. In the present report, we review data on the effects of Ephs and ephrins, in the functional maturation of both thymic epithelial microenvironment and thymocyte maturation as well as on their role in the lymphoid progenitor recruitment into the thymus.

  6. Tumor cell marker PVRL4 (nectin 4 is an epithelial cell receptor for measles virus.

    Directory of Open Access Journals (Sweden)

    Ryan S Noyce

    2011-08-01

    Full Text Available Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4 rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a

  7. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P;

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains pr...

  8. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D' Avis, J.C.; Wartofsky, L. (Walter Reed Army Medical Center, Washington, DC (USA))

    1991-03-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding (125I) ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound (125I)ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized (125I)ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity.

  9. Heterochrony as Diachronically Modified Cell-Cell Interactions

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-01-01

    Full Text Available Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny.

  10. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.

    Science.gov (United States)

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y; Angers, Stéphane; Sloop, Kyle W; Dai, Feihan F; Wheeler, Michael B

    2014-11-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1.

  11. Enhancing whole-tumor cell vaccination by engaging innate immune system through NY-ESO-1/dendritic cell interactions.

    Science.gov (United States)

    Xu, Le; Zheng, Junying; Nguyen, David H; Luong, Quang T; Zeng, Gang

    2013-10-01

    NY-ESO-1 is a cancer/germline antigen (Ag) with distinctively strong immunogenicity. We have previously demonstrated that NY-ESO-1 serves as an endogenous adjuvant by engaging dendritic cell (DC)-surface receptors of calreticulin (CRT) and toll-like receptor (TLR) 4. In the present study, NY-ESO-1 was investigated for its immunomodulatory roles as a molecular adjuvant in whole-tumor cell vaccines using the Renca kidney cancer model. Renca cells were genetically engineered to express NY-ESO-1 on the cell surface to enhance direct interactions with DC. The effect of ectopic cell-surface expression of NY-ESO-1 was investigated on tumor immunogenicity, DC activation, cytotoxic T lymphocytes against model tumor-associated Ags, and the effectiveness of the modified tumor cells as a therapeutic whole-cell vaccine. Cell-surface expression of NY-ESO-1 was able to reduce the tumor growth of Renca cells in BALB/c mice, although the modification did not alter cell proliferation rate in vitro. Directly engaging the innate immune system through NY-ESO-1 facilitated the interaction of tumor cells with DC, leading to enhanced DC activation and subsequent tumor-specific T-cell priming. When used as a therapeutic whole-cell vaccine, Renca cells with NY-ESO-1 on the surface mediated stronger inhibitory effects on tumor growth and metastasis compared with parental Renca or Renca cells expressing a control protein GFP on the surface. Augmented antitumor efficacy correlated with increased CD8 T-cell infiltration into tumors and decreased myeloid-derived suppressor cells and regulatory T cells in the spleen. As a cancer/germline Ag and as an immunomodulatory adjuvant through engaging innate immune receptors, NY-ESO-1 offers a unique opportunity for improved whole-tumor cell vaccinations upon the classic GM-CSF-engineered cell vaccines.

  12. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis

    Science.gov (United States)

    Solis, Norma V.; Swidergall, Marc; Bruno, Vincent M.; Gaffen, Sarah L.

    2017-01-01

    ABSTRACT Oropharyngeal candidiasis (OPC), caused predominantly by Candida albicans, is a prevalent infection in patients with advanced AIDS, defects in Th17 immunity, and head and neck cancer. A characteristic feature of OPC is fungal invasion of the oral epithelial cells. One mechanism by which C. albicans hyphae can invade oral epithelial cells is by expressing the Als3 and Ssa1 invasins that interact with the epidermal growth factor receptor (EGFR) on epithelial cells and stimulate endocytosis of the organism. However, the signaling pathways that function downstream of EGFR and mediate C. albicans endocytosis are poorly defined. Here, we report that C. albicans infection activates the aryl hydrocarbon receptor (AhR), leading to activation of Src family kinases (SFKs), which in turn phosphorylate EGFR and induce endocytosis of the fungus. Furthermore, treatment of oral epithelial cells with interferon gamma inhibits fungal endocytosis by inducing the synthesis of kynurenines, which cause prolonged activation of AhR and SFKs, thereby interfering with C. albicans-induced EGFR signaling. Treatment of both immunosuppressed and immunocompetent mice with an AhR inhibitor decreases phosphorylation of SFKs and EGFR in the oral mucosa, reduces fungal invasion, and lessens the severity of OPC. Thus, our data indicate that AhR plays a central role in governing the pathogenic interactions of C. albicans with oral epithelial cells during OPC and suggest that this receptor is a potential therapeutic target. PMID:28325761

  13. The endothelin B receptor plays a crucial role for the adhesion of neutrophils to the endothelium in sickle cell disease.

    Science.gov (United States)

    Koehl, Bérengère; Nivoit, Pierre; El Nemer, Wassim; Lenoir, Olivia; Hermand, Patricia; Pereira, Catia; Brousse, Valentine; Guyonnet, Léa; Ghinatti, Giulia; Benkerrou, Malika; Colin, Yves; Le Van Kim, Caroline; Tharaux, Pierre-Louis

    2017-04-06

    Although the primary origin of sickle cell disease is a hemoglobin disorder, several cell types contribute considerably to the physiopathology of the disease. The adhesion of neutrophils to activated endothelium is critical in sickle cell disease pathophysiology and the targeting of neutrophils and their interactions with endothelium represent important opportunities for new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and we investigated the involvement of the endothelin receptors in interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor highly influences neutrophils recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils display functional ETB receptors with calcium signaling capability leading to increased adhesion to the endothelium, through action on both endothelial cells and neutrophils. ETB intact function was also found to be required for TNFα-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1 that may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptor, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises of sickle cell patients.

  14. Vaccination against Experimental Allergic Encephalomyelitis with T Cell Receptor Peptides

    Science.gov (United States)

    Howell, Mark D.; Winters, Steven T.; Olee, Tsaiwei; Powell, Henry C.; Carlo, Dennis J.; Brostoff, Steven W.

    1989-11-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system mediated by CD4+ T cells reactive with myelin basic protein (MBP). Rats were rendered resistant to the induction of EAE by vaccination with synthetic peptides corresponding to idiotypic determinants of the β chain VDJ region and Jα regions of the T cell receptor (TCR) that are conserved among encephalitogenic T cells. These findings demonstrate the utility of TCR peptide vaccination for modulating the activity of autoreactive T cells and represent a general therapeutic approach for T cell--mediated pathogenesis.

  15. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening.

    Science.gov (United States)

    Harini, K; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.

  16. Investigation of CNTs interaction with fibroblast cells.

    Science.gov (United States)

    Pensabene, V; Vittorio, O; Raffa, V; Menciassi, A; Dario, P

    2007-01-01

    The need for toxicological studies on carbon nanotubes (CNTs) has arisen from the rapidly emerging applications of CNTs well beyond material science and engineering. In order to provide a method to collect data about toxicology, we characterized by Scanning Electron Microscopy (SEM), by Energy Dispersive X-ray Spectrometry (EDS) analysis and by Focused Ion Beam (FIB) microscopy different kinds of treated CNTs. The bio-interaction was investigated seeding Crandell feline kidney fibroblasts with CNT-modified medium; a dedicated sample preparation by FIB has been defined to fix cells. In the present study, the cytotoxic effects of CNTs with 91% and 97% of purity were compared and changes in the growth behaviour of cells after 3 days in culture with modified medium have been recorded, considering also the distribution of CNTs within cells. While lower purified CNTs induced a slight cytotoxic effect, homogeneously suspended CNTs with high purity were less cytotoxic, and the rate of cell growth remained constant. CNTs aggregated in bundles, showed high adhesion on cell membrane. Interestingly, CNTs bundles were observed inside cells, underneath the cell membrane, and despite of that, cells were extended, in good vitality conditions and no cell-degeneration was observed.

  17. L1CAM Binds ErbB Receptors through Ig-Like Domains Coupling Cell Adhesion and Neuregulin Signalling

    Science.gov (United States)

    Grijota-Martinez, Carmen; Lakomá, Jarmila; Baars, Sigrid; Garcia-Alonso, Luis; Cabedo, Hugo

    2012-01-01

    During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM. PMID:22815787

  18. Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry.

    Directory of Open Access Journals (Sweden)

    Sheli R Radoshitzky

    Full Text Available Machupo virus (MACV is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1. TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors.

  19. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis.

    Science.gov (United States)

    Wu, Ray-Chang; Zeng, Yang; Pan, I-Wen; Wu, Mei-Yi

    2015-09-01

    Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a "coactivator" of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development.

  20. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts.

    Science.gov (United States)

    Heimes, Katharina; Feistel, Björn; Verspohl, Eugen J

    2009-12-10

    The relevance of serotonin and in particular that of 5-HT(3) receptors is unequivocal with respect to emetic/antiemetic effects, but it is controversial with respect to antidiabetic effects. The effects of tropisetron (5-HT(3) receptor antagonist) and various ginger (Zingiber officinale) extracts (known to interact with the 5-HT(3) receptor channel system) were investigated. Serotonin (32 to 500 microM) inhibits insulin release (RIA) from INS-1 cells which is reversed by tropisetron (10 to 100 microM) and two different ginger extracts (spissum and an oily extract). Their effects are obvious even in the absence of serotonin but are more pronounced in its presence (doubled to tripled). Specific 5-HT(3) binding sites are present in INS-1 cells using 0.4 nM [3H] GR65630 in displacement experiments. The in vitro data with respect to ginger are corroborated by in vivo data on glucose-loaded rats showing that blood glucose (Glucoquant) is decreased by approximately 35% and plasma insulin (RIA) is increased by approximately 10%. Both the spissum extract and the oily ginger extract are effective in two other models: they inhibit [(14)C] guanidinium uptake into N1E-115 cells (model of 5-HT(3) effects) and relax rat ileum both directly and as a serotonin antagonistic effect. Other receptors addressed by ginger are 5-HT(2) receptors as demonstrated by using methysergide and ketanserin. They weakly antagonize the serotonin effect as well. It may be concluded that serotonin and in particular the 5-HT(3) receptor channel system are involved in modulating insulin release and that tropisetron and various ginger extracts can be used to improve a diabetic situation.

  1. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction.

    Science.gov (United States)

    Braverman, Alan S; Tallarida, Ronald J; Ruggieri, Michael R

    2002-09-01

    M(3) muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M(2) receptors participate in contraction because M(3)-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M(2)-selective antagonist methoctramine in the denervated bladder is consistent with M(3) receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M(2) receptor and one by the M(3) receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M(2) and M(3) receptors can induce contraction. In the denervated bladder, the M(2) and the M(3) receptors interact in a facilitatory manner to mediate contraction.

  2. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction

    Science.gov (United States)

    BRAVERMAN, ALAN S.; TALLARIDA, RONALD J.; RUGGIERI, MICHAEL R.

    2012-01-01

    M3 muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M2 receptors participate in contraction because M3-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M2-selective antagonist methoctramine in the denervated bladder is consistent with M3 receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M2 receptor and one by the M3 receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M2 and M3 receptors can induce contraction. In the denervated bladder, the M2 and the M3 receptors interact in a facilitatory manner to mediate contraction. PMID:12185001

  3. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Science.gov (United States)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  4. Human NK cell subsets redistribution in pathological conditions: A role for CCR7 receptor

    Directory of Open Access Journals (Sweden)

    Silvia Pesce

    2016-10-01

    Full Text Available Innate and adaptive immunity has evolved complex molecular mechanisms regulating immune cell migration to facilitate the dynamic cellular interactions required for its function involving the chemokines and their receptors.One important chemokine receptor in the immune system is represented by CCR7. Together with its ligands CCL19 and CCL21, this chemokine receptor controls different arrays of migratory events, both in innate and adaptive immunity, including homing of CD56bright NK cells, T cells and DCs to lymphoid compartments where T cell priming occurs. Only recently, a key role for CCR7 in promoting CD56dim NK cell migration towards lymphoid tissues has been described. Remarkably, this event can influence the shaping and polarization of adaptive T cell responses.In this review, we describe recent progress in understanding the mechanisms and the site where CD56dim KIR+ NK cells can acquire the capability to migrate towards lymph nodes. The emerging significance of this event in clinical transplantation is also discussed.

  5. Interactions between modulators of the GABAA receptor: Stiripentol and benzodiazepines

    OpenAIRE

    Fisher, Janet L.

    2011-01-01

    Many patients with refractory epilepsy are treated with polytherapy, and nearly 15% of epilepsy patients receive two or more anti-convulsant agents. The anti-convulsant stiripentol is used as an add-on treatment for the childhood epilepsy syndrome known as severe myoclonic epilepsy in infancy (Dravet Syndrome). Stiripentol has multiple mechanisms of action, both enhancing GABAA receptors and reducing activity of metabolic enzymes that break down other drugs. Stiripentol is typically co-admini...

  6. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy.

  7. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  8. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  9. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR).

    Science.gov (United States)

    Purdy, Amanda K; Campbell, Kerry S

    2009-12-01

    Natural killer (NK) cells are innate immune effector cells that make up approximately 10-15% of the peripheral blood lymphocytes in humans and are primarily involved in immunosurveillance to eliminate transformed and virally-infected cells. They were originally defined by their ability to spontaneously eliminate rare cells lacking expression of class I major histocompatibility complex (MHC-I) self molecules, which is commonly referred to as "missing self" recognition. The molecular basis for missing self recognition emerges from the expression of MHC-I-specific inhibitory receptors on the NK cell surface that tolerize NK cells toward normal MHC-I-expressing cells. By lacking inhibitory receptor ligands, tumor cells or virus-infected cells that have down-modulated surface MHC-I expression become susceptible to attack by NK cells. Killer cell Ig-like receptors (KIR; CD158) constitute a family of MHC-I binding receptors that plays a major role in regulating the activation thresholds of NK cells and some T cells in humans. Here, we review the multiple levels of KIR diversity that contribute to the generation of a highly varied NK cell repertoire and explain how this diversity can influence susceptibility to a variety of diseases, including cancer. We further describe strategies by which KIR can be manipulated therapeutically to treat cancer, through the exploitation of KIR/MHC-I ligand mismatch to potentiate hematopoietic stem cell transplantation and the use of KIR blockade to enhance tumor cell killing.

  10. Localization of muscarinic acetylcholine receptor in plant guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  11. Interaction of the growth hormone receptor cytoplasmic domain with the JAK2 tyrosine kinase.

    Science.gov (United States)

    Frank, S J; Gilliland, G; Kraft, A S; Arnold, C S

    1994-11-01

    An early step in GH action involves tyrosine phosphorylation of various cellular proteins. Recently, it has been shown in murine preadipocytes that GH promotes the association of its receptor (the GHR) with and the activation of the JAK2 tyrosine kinase. In this study, we confirmed the human (h) GH-induced association of JAK2 with hGHR in IM-9 cells by coimmunoprecipitation experiments using anti-hGHR serum. We further examined the interaction of JAK2 with the GHR cytoplasmic domain by two lines of investigation. For in vitro studies, we assayed by immunoblotting the ability of cell-derived JAK2 to interact with glutathione S-transferase fusion proteins containing elements of the hGHR cytoplasmic domain. A fusion protein containing the entire hGHR cytoplasmic domain (residues 271-620) specifically associated with JAK2 independent of prior stimulation of cells with hGH. This interaction was not dependent on tyrosine phosphorylation of either partner. Mutational analysis of the hGHR cytoplasmic domain component of the fusions indicated that a membrane-proximal 20-residue region that includes the proline-rich box 1 was necessary for the interaction. This region appeared to cooperate with another region(s), largely in the N-terminal one third of the cytoplasmic domain, to promote full interaction with JAK2. For in vivo reconstitution experiments, wild-type (WT) and mutant rabbit GHRs (rGHRs) along with murine JAK2 were expressed by transient transfection in COS-7 cells. rGHR mutations were confined to the cytoplasmic domain and included C-terminal truncations as well as internal deletions of residues 297-406 and 278-292 (the latter contains box 1). All mutant rGHRs were expressed at the cell surface and bound hGH to a degree similar to the WT rGHR. Receptors were tested for their ability to mediate the hGH-induced immunoprecipitability of JAK2 with phosphotyrosine (APT) antibodies. A rGHR truncated to residue 275 [rGHR-(1-275)], which contains only five cytoplasmic

  12. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  13. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian; Enevold, Christian; Wang, Tao;

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs...

  14. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  15. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  16. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  17. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    Science.gov (United States)

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions.

  18. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  19. Limitations in plasticity of the T-cell receptor repertoire.

    OpenAIRE

    Nanda, N K; Apple, R; Sercarz, E.

    1991-01-01

    How constrained is T-cell recognition? Is a truncated T-cell receptor (TCR) repertoire, missing half of its V beta components (where V indicates variable), still broad enough to produce an antigen-specific T-cell response to all determinants? These questions can be answered for certain T-cell antigenic determinants whose response in the wild type is limited to specific gene segments. Our results show that mice with such a deletion in their TCR V beta genes (V beta truncated haplotype, Va beta...

  20. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  1. Cell Interactions within Biomimetic Apatite Microenvironments

    OpenAIRE

    Tsang, Eric

    2014-01-01

    Bioactive ceramics, such as calcium phosphate-based materials, have been studied extensively for the regeneration of bone tissue. Accelerated apatite coatings prepared from biomimetic methods is one approach that has had a history of success in both in vitro and in vivo studies for bone regeneration [1]-[4]. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this thesis evaluates the in vitro i...

  2. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...... is not sufficient for the trafficking of CD3+T-cells to the CSF. We hypothesize that CXCR3 is the principal inflammatory chemokine receptor involved in intrathecal accumulation of T-cells in MS. Through interactions with its ligands, CXCR3 is proposed to mediate retention of T-cells in the inflamed CNS....

  3. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis.

    Science.gov (United States)

    Liu, Chunye; Zhang, Xuejiao; Jing, Hui; Miao, Yanqing; Zhao, Lingzhi; Han, Yan; Cui, Cuixia

    2015-10-01

    Oriented covalent immobilized β2 -adrenergic receptor (β2 -AR) CE (OIRCE) was developed to determine the interactions between a set of natural extracts of Radix Paeoniae Rubra (NERPR) and β2 -AR, and to predict the activity of NERPR. The inner capillary surface is chemically bonded with stable β2 -AR coating via microwave-assisted technical synthesis. The modified capillaries were characterized via infrared spectroscopy and fluorescence microscopy. Furthermore, the bonding amounts of β2 -AR were first obtained via fluorescence spectroscopy method. In determining the amount of bonded β2 -AR, the regression equation A  =  576 707C + 35.449 and the correlation coefficient 0.9995 were obtained. This result revealed an excellent linear relationship in the range of 2 × 10(-4)  mg/mL to 1 × 10(-3)  mg/mL. The normalized capacity factor (KRCE ) was obtained using OIRCE in evaluating drug-receptor interactions. Related theories and equations were used to calculate KRCE values from apparent migration times of a solute and EOF. The order of KRCE and the binding constant (Kb ) values between drugs and β2 -AR was well consistent. The results confirmed that the OIRCE and KRCE values can be effectually used to investigate drug-receptor interactions, and OIRCE has the potential to predict drug activity and to select leading compounds from natural chemicals.

  4. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Liesbeth Lenaerts

    Full Text Available Application of human adenovirus type 5 (Ad5 derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR, as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1 is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  5. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  6. Myeloid cells in tumour-immune interactions.

    Science.gov (United States)

    Kareva, Irina; Berezovskaya, Faina; Castillo-Chavez, Carlos

    2010-07-01

    Despite highly developed specific immune responses, tumour cells often manage to escape recognition by the immune system, continuing to grow uncontrollably. Experimental work suggests that mature myeloid cells may be central to the activation of the specific immune response. Recognition and subsequent control of tumour growth by the cells of the specific immune response depend on the balance between immature (ImC) and mature (MmC) myeloid cells in the body. However, tumour cells produce cytokines that inhibit ImC maturation, altering the balance between ImC and MmC. Hence, the focus of this manuscript is on the study of the potential role of this inhibiting mechanism on tumour growth dynamics. A conceptual predator-prey type model that incorporates the dynamics and interactions of tumour cells, CD8(+) T cells, ImC and MmC is proposed in order to address the role of this mechanism. The prey (tumour) has a defence mechanism (blocking the maturation of ImC) that prevents the predator (immune system) from recognizing it. The model, a four-dimensional nonlinear system of ordinary differential equations, is reduced to a two-dimensional system using time-scale arguments that are tied to the maturation rate of ImC. Analysis shows that the model is capable of supporting biologically reasonable patterns of behaviour depending on the initial conditions. A range of parameters, where healing without external influences can occur, is identified both qualitatively and quantitatively.

  7. Science Signaling Podcast for 29 November 2016: Pre-B cell receptor signaling in leukemia.

    Science.gov (United States)

    Wilson, Bridget S; VanHook, Annalisa M

    2016-11-29

    This Podcast features an interview with Bridget Wilson, author of a Research Article that appears in the 29 November 2016 issue of Science Signaling, about pre-B cell receptor (pre-BCR) signaling in B cell precursor acute lymphoblastic leukemia (BCP-ALL). Signaling through the pre-BCR, an immature form of the BCR, promotes the survival of B cell progenitors and has been implicated in the pathology of BCP-ALL. Erasmus et al found that pre-BCRs formed transient homomeric complexes that correlated with pro-survival signaling. Preventing homotypic interactions between pre-BCRs sensitized B cells to chemotherapeutic agents, suggesting that interfering with such interactions may improve the efficacy of existing chemotherapies for BCP-ALL.Listen to Podcast.

  8. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.

    Directory of Open Access Journals (Sweden)

    Ivana Nemčovičová

    2013-03-01

    Full Text Available The TRAIL (TNF-related apoptosis inducing ligand death receptors (DRs of the tumor necrosis factor receptor superfamily (TNFRSF can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.

  9. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.

    Science.gov (United States)

    Nemčovičová, Ivana; Benedict, Chris A; Zajonc, Dirk M

    2013-03-01

    The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.

  10. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  11. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  12. Cell Surface Receptor Theory of Disease Infectivity; Body's Defence and Normal Body Functioning in Living Things

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa

    2011-01-01

    body’s offence like hormones, drugs, toxins and venoms interact with the body through the cell surface receptors (which are the receptors of the main mediator of the body’s defence and normal functioning of an organism. Substances like lidocaine (an anesthetic; tetrodotoxin and afflatoxin therefore inhibit or antagonize the normal functioning of the body by blocking the excitatory actions of the mediator of normal body functioning. Conclusion: The study concludes that cell surface receptors are the sites through which infective organisms attach to the body of a host and that the cell surface receptor has two reactive terminals or heads with which endogenous and exogenous substances like drugs and infective pathogens interact with the body of a living organism.

  13. Pregnane X receptor and natural products: beyond drug–drug interactions

    OpenAIRE

    Staudinger, Jeff L.; Ding, Xunshan; Lichti, Kristin

    2006-01-01

    The pregnane X receptor (PXR, NR1I2) is a member of the nuclear receptor superfamily that is activated by a myriad of compounds and natural products in clinical use. Activation of PXR represents the basis for several clinically important drug–drug interactions. Although PXR activation has undesirable effects in patients on combination therapy, it also mediates the hepatoprotective effects exhibited by some herbal remedies. This review focuses on PXR activation by natural products and the pote...

  14. Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen*

    OpenAIRE

    Herr, Andrew B.; Farndale, Richard W.

    2009-01-01

    Collagen peptides have been used to identify binding sites for several important collagen receptors, including integrin α2β1, glycoprotein VI, and von Willebrand factor. In parallel, the structures of these collagen receptors have been reported, and their interactions with collagen peptides have been studied. Recently, the three-dimensional structure of the intact type I collagen fiber from rat tail tendon has been resolved by fiber diffraction. It is now possible to map the binding sites of ...

  15. Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling.

    Science.gov (United States)

    Samoshkin, Alexander; Convertino, Marino; Viet, Chi T; Wieskopf, Jeffrey S; Kambur, Oleg; Marcovitz, Jaclyn; Patel, Pinkal; Stone, Laura S; Kalso, Eija; Mogil, Jeffrey S; Schmidt, Brian L; Maixner, William; Dokholyan, Nikolay V; Diatchenko, Luda

    2015-12-11

    The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to