WorldWideScience

Sample records for cell proviral dna

  1. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  2. Quantification of HIV-1 proviral DNA from peripheral blood mononuclear cells using a high throughput four-competitor competitive PCR.

    Science.gov (United States)

    Comandini, U V; Sönnerborg, A; Vahlne, A; Yun, Z

    1997-12-01

    A multiple competitor PCR (mcPCR) was developed to quantify HIV-1 proviral DNA from peripheral blood mononuclear cells (PBMC). DNA extracted from a mixture of HIV infected PBMC and four size-mutated DNA competitors were co-amplified. The Cy5-fluorescence labelled PCR products were denatured by heating, separated using an automated DNA sequencer and quantified by a fragment analysis computer software. An internal standard was generated by plotting the peak areas of the four competitors against their inputs. Based on the internal standard, HIV sample DNA was quantified by extrapolating the corresponding signal. The linear range of the mcPCR was three log wide and the quantitation limit was about 20 copies of HIV DNA/10(6) PBMC. Using the mcPCR, HIV DNA was quantified from 14 long-term non progressors (LTNP) and 14 patients with advanced disease. A significantly lower copy number of HIV DNA was obtained in the LTNP (p = 0.018). These data suggest that the mcPCR is sensitive, reliable and especially useful for HIV DNA quantification of a large number of clinical samples.

  3. Simultaneous detection and subtyping of porcine endogenous retroviruses proviral DNA using the dual priming oligonucleotide system.

    Science.gov (United States)

    Moon, Hyoung Joon; Park, Seong Jun; Kim, Hye Kwon; Ann, Soo Kyung; Rho, Semi; Keum, Hyun Ok; Park, Bong Kyun

    2010-09-01

    The purpose of this study was to develop a multiplex PCR that can detect porcine endogenous retrovirus (PERV) proviral genes (pol, envA, envB, envC) and porcine mitochondrial DNA, using a dual priming oligonucleotide (DPO) system. The primer specifically detected the PERV proviral genes pol, envA, envB, envC, and porcine mitochondrial DNA only in samples of pig origin. The sensitivity of the primer was demonstrated by simultaneous amplification of all 5 target genes in as little as 10 pg of pig DNA containing PERV proviral genes and mitochondrial DNA. The multiplex PCR, when applied to field samples, simultaneously and successfully amplified PERV proviral genes from liver, blood and hair root samples. Thus, the multiplex PCR developed in the current study using DPO-based primers is a rapid, sensitive and specific assay for the detection and subtyping of PERV proviral genes.

  4. Dynamics of 103K/N and 184M/V HIV-1 drug resistant populations: relative comparison in plasma virus RNA versus CD45RO+T cell proviral DNA

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard; Tolstrup, M; Bertelsen, L

    2007-01-01

    population with linked mutations (103N and 184V) was detected in two patients after more than 2 years of non-NNRTI HAART. CONCLUSION: The ARMS assay is useful for detecting viral quasi-species containing efavirenz and lamivudine resistant mutations in plasma virions and in proviral DNA. Data suggest...

  5. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA.

    Science.gov (United States)

    Lorenzi, Julio C C; Cohen, Yehuda Z; Cohn, Lillian B; Kreider, Edward F; Barton, John P; Learn, Gerald H; Oliveira, Thiago; Lavine, Christy L; Horwitz, Joshua A; Settler, Allison; Jankovic, Mila; Seaman, Michael S; Chakraborty, Arup K; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-12-06

    HIV-1-infected individuals harbor a latent reservoir of infected CD4(+) T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.

  6. Validation of a quantitative real-time PCR assay for HTLV-1 proviral load in peripheral blood mononuclear cells.

    Science.gov (United States)

    Rosadas, Carolina; Cabral-Castro, Mauro Jorge; Vicente, Ana Carolina Paulo; Peralta, José Mauro; Puccioni-Sohler, Marzia

    2013-11-01

    The objective of this study was to validate a TaqMan real-time PCR assay for HTLV-1 proviral load detection in peripheral blood mononuclear cells. TARL-2 cells were used to generate a standard curve. Peripheral blood mononuclear cell gDNA from 27 seropositive and 23 seronegative samples was analyzed. The sensitivity, specificity, accuracy, precision, dynamic range of the standard curve and qPCR efficiency were evaluated. All of the positive samples amplified the target gene. All of the negative samples amplified only the control gene (β-actin). The assay presented 100% specificity and sensibility. The intra- and inter-assay variability was 2.4% and 2.2%, respectively. The qPCR efficiency, slope and correlation coefficients (r2) were all acceptable. The limit of detection was 1 copy/rxn. This assay can reliably quantify HTLV-1 proviral load.

  7. Distinctive Drug-resistant Mutation Profiles and Interpretations of HIV-1 Proviral DNA Revealed by Deep Sequencing in Reverse Transcriptase

    Institute of Scientific and Technical Information of China (English)

    YIN Qian Qian; SHAO Yi Ming; MA Li Ying; LI Zhen Peng; ZHAO Hai; PAN Dong; WANG Yan; XU Wei Si; XING Hui; FENGYi; JIANG Shi Bo

    2016-01-01

    ObjectiveTo investigate distinctive features in drug-resistant mutations(DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-1-infected patients. MethodsForty-three HIV-1-infected individuals receiving first-line antiretroviral therapy were recruited to participate in a multicenter AIDS Cohort Study in Anhui and Henan Provinces in China in 2004. Drug resistance genotyping was performed by bulk sequencing and deep sequencing on the plasma and whole blood of 77 samples, respectively. Drug-resistance interpretation was compared between viral RNA and paired proviral DNA. ResultsCompared with bulk sequencing, deep sequencing could detect more DRMs and samples with DRMs in both viral RNA and proviral DNA. The mutations M184I and M230I were more prevalent in proviral DNA than in viral RNA (Fisher’s exact test,P ConclusionCompared with viral RNA, the distinctive information of DRMsand drug resistance interpretations for proviral DNA could be obtained by deep sequencing, which could provide more detailed and precise information for drug resistance monitoring and the rational design of optimal antiretroviral therapy regimens.

  8. Investigating signs of recent evolution in the pool of proviral HIV type 1 DNA during years of successful HAART

    DEFF Research Database (Denmark)

    Mens, Helene; Pedersen, Anders G; Jørgensen, Louise B;

    2007-01-01

    In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART. Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene...... HIV genomes in some patients. Interestingly, stop-codons were present at the same two positions in several independent clones and across patients. Simulation studies indicated that this phenomenon could be explained as the result of parallel evolution and that some sites were inherently more likely...

  9. Investigating signs of recent evolution in the pool of proviral HIV type 1 DNA during years of successful HAART

    DEFF Research Database (Denmark)

    Mens, Helene; Pedersen, Anders G; Jørgensen, Louise B;

    2007-01-01

    In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART. Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene......, and then determine the support for models that imply evolution between time points. Model fit and model-selection uncertainty was assessed using the Akaike information criterion (AIC) and Akaike weights. The consensus sequence data was also analyzed using a range of phylogenetic techniques to determine whether...

  10. Investigating Signs of Recent Evolution in the Pool of Pro-viral DNA during Years of Successful HAART

    DEFF Research Database (Denmark)

    Mens, H.; Pedersen, Anders Gorm; Jørgensen, L. B.;

    2007-01-01

    In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART. Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene......, and then determine the support for models that imply evolution between time points. Model fit and model-selection uncertainty was assessed using the Akaike information criterion (AIC) and Akaike weights. The consensus sequence data was also analyzed using a range of phylogenetic techniques to determine whether...

  11. Proviral Silencing in Embryonic Cells Is Regulated by Yin Yang 1

    Directory of Open Access Journals (Sweden)

    Sharon Schlesinger

    2013-07-01

    Full Text Available Embryonic cells transcriptionally repress the expression of endogenous and exogenous retroelements. Trim28, a key player in this silencing, is known to act in a large DNA-bound complex, but the other components of the complex are not fully characterized. Here, we show that the zinc finger protein Yin Yang 1 (YY1 is one such component. YY1 binds to the long terminal repeat (LTR region of both exogenous and endogenous retroviruses (ERVs. Deletion of the YY1-binding site from the retroviral genome leads to a major loss of silencing in embryonic cells and a coordinated loss of repressive histone marks from the proviral chromatin. Depletion of YY1 protein results in marked upregulation of expression of exogenous viruses and of selected ERVs. Finally, we report an embryonic cell-specific interaction between YY1 and Trim28. Our results suggest a major role for YY1 in the silencing of both exogenous retroviruses and ERVs in embryonic cells.

  12. Detection of Bovine Leukaemia Virus Antibodies and Proviral DNA in Colostrum Replacers.

    Science.gov (United States)

    Choudhury, B; Finnegan, C; Phillips, A; Horigan, M; Pollard, T; Steinbach, F

    2015-10-01

    Great Britain has been bovine leukaemia virus (BLV) disease free since 1999. We recently reported three separate incidents of BLV seropositivity on farms with home-reared cattle due to the use of colostrum replacer rather than infection with BLV (Emerg. Infect. Dis., 19, 2013, 1027). These cases were all linked via the use of the same brand of colostrum replacer. Here, we investigate further by examining multiple brands of colostrum replacer for proviral DNA and BLV antibodies. BLV antibodies were detected in 7 of the colostrum replacers tested, with PCR concurring in two cases. Thus, the use of these BLV antibody-positive colostrum replacers may also lead to false-positive serological diagnostics.

  13. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology.

    Science.gov (United States)

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN-HIV by electroporation. The target sequence was destructed in approximately 10-95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat-HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection.

  14. Genotypic tropism testing in proviral DNA to guide maraviroc initiation in aviremic subjects: 48-week analysis of the PROTEST study

    Directory of Open Access Journals (Sweden)

    Federico Garcia

    2014-11-01

    Full Text Available Introduction: In a previous interim 24-week virological safety analysis of the PROTEST study (1, initiation of Maraviroc (MVC plus 2 nucleoside reverse-transcriptase inhibitors (NRTIs in aviremic subjects based on genotypic tropism testing of proviral HIV-1 DNA was associated with low rates of virological failure. Here we present the final 48-week analysis of the study. Methods: PROTEST was a phase 4, prospective, single-arm clinical trial (ID: NCT01378910 carried on in 24 HIV care centres in Spain. Maraviroc-naïve HIV-1-positive adults with HIV-1 RNA (VL 10% in a singleton, initiated MVC with 2 NRTIs and were followed for 48 weeks. Virological failure was defined as two consecutive VL>50 c/mL. Recent adherence was calculated as: (# pills taken/# pills prescribed during the previous week*100. Results: Tropism results were available from 141/175 (80.6% subjects screened: 87/141 (60% were R5 and 74/87 (85% were finally included in the study. Their median age was 48 years, 16% were women, 31% were MSM, 36% had CDC category C at study entry, 62% were HCV+ and 10% were HBV+. Median CD4+ counts were 616 cells/mm3 at screening, and median nadir CD4+ counts were 143 cells/mm3. Previous ART included PIs in 46 (62% subjects, NNRTIs in 27 (36% and integrase inhibitors (INIs in 1 (2%. The main reasons for treatment change were dyslipidemia (42%, gastrointestinal symptoms (22%, and liver toxicity (15%. MVC was given alongside TDF/FTC in 40 (54% subjects, ABC/3TC in 30 (40%, AZT/3TC in 2 (3% and ABC/TDF in 2 (3%. Sixty-two (84% subjects maintained VL<50 c/mL through week 48, whereas 12 (16% discontinued treatment: two (3% withdrew informed consent, one (1% had a R5→X4 shift in HIV tropism between the screening and baseline visits, one (1% was lost to follow-up, one (1% developed an ART-related adverse event (rash, two (3% died due to non-study-related causes (1 myocardial infarction at week 0 and 1 lung cancer at week 36, and five (7% developed protocol

  15. Complete Sequence of Proviral DNA of Equine Infectious Anemia Virus Strain L

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-quan; WANG Liu; YANG Zhi-biao; KONG Xian-gang; TONG Guang-Zhi

    2002-01-01

    Equine infectious anemia virus strain L (EIAV-L) is the parental virulent virus of equine infectious anemia donkey leukocyte attenuated vaccine (DLA EIAV ). In this study, peripheral blood leukocytes(PBL) were collected from a horse infected with EIAV-L. The PBL DNAs were extracted. The EIAV-L proviral DNA was amplified in four parts covering the entire proviral genomic sequence by polymerase chain reaction (PCR). Each of the four parts was cloned into the plasmid pBluescript SK, and the recombinant plasmids were designated as p2.8, p2.4, p3.1, and p1.2 respectively. After identification with restriction digestion, the inserts within the four plasmids were sequenced. The complete nucleotide sequence of EIAV-L provirus was determined by analyzing each of the four parts and connecting them as a whole. The genome of EIAV-L is 8235 bp in length, and G + C content is 38%. The comparison analysis by the computer software DNASIS showed that the sequence of EIAV-L shares 98.4% and 96.9% identities with that of D-A EIAV and DLA EIAV respectively. The high homology between these strains showed that they were genetically related.The homology between EIAV-L and D-A EIAV is higher than that between EIAV-L and DLA EIAV, and this is consistent with the derivation progress of DLA EIAV. At both ends of EIAV-L provirus, there is an identical long terminal repeat (LTR) sequence of 316bp in length. The LTR consists of U3, R, and U5 regions. The genome of EIAV-L provirus has three long open reading frames(ORF) corresponding to gag, pol and env genes respectively. The gag gene is 1200bp and located at position 613-1912nt. The pol gene is 3402bp and located at position 1708-5109nt. There is a termination codon within the env dividing it into two parts,env1 of 699bp (position 5305-6003nt)and env2 of 1827bp (position 6073-7899nt). The provirus has three additional small ORFs: S1, S2 and S3 with sizes of 153bp (position 5113-5265nt), 204bp (position 5279-5482nt) and 402bp ( position 7245

  16. Restriction endonuclease mapping of linear unintegrated proviral DNA of bovine leukemia virus.

    OpenAIRE

    Kettmann, R; Couez, D; Burny, A

    1981-01-01

    A detailed restriction map was deduced for the genome of the exogenous bovine leukemia virus. The cleavage sites for nine restriction enzymes were mapped. The unintegrated linear viral DNA intermediate that is produced by infection of permissive cells with bovine leukemia virus was isolated. The linear viral DNA had a unique restriction map, indicating that it is not a set of random circular permutations of the RNA genome. From hybridization with a 3'-enriched probe, the DNA restriction map w...

  17. Quantitation of HTLV-I proviral load by a real-time PCR assay using SYBR Green: comparison of two methods for DNA isolation.

    Science.gov (United States)

    Altamirano, Natalia Andrea; Rocco, Carlos; Aulicino, Paula; Sen, Luisa; Mangano, Andrea

    2010-12-01

    A real-time quantitative PCR (qPCR) assay using SYBR Green was developed to determine HTLV-I proviral load (pVL) in peripheral blood mononuclear cells (PBMCs), and its performance was evaluated with samples processed as cell lysates and DNA isolated by salting out. Primers targeting the pol region were standardized against the MT2 cell line and HTLV-I copy number was normalized to the amount of cellular DNA by quantitation of the albumin gene. The sensitivity, specificity and reproducibility of the qPCR were assessed in the two methods used for DNA processing. The assay had a limit of detection of 400 HTLV-I copies/10(6) PBMCs for both methods, with a broad range of quantitation (2.6log(10) to >5log(10)), and without cross-reactivity with HTLV-II or with HIV-1. The inter- and intra-assay coefficients of variation were less than 2.4%. HTLV-I pVL quantitation in seven blood donor samples processed as either cell lysates or isolated DNA by salting out showed a strong linear correlation and no difference in the calculated pVL (Fisher's exact test, p>0.05). The assay was found to be a low cost, robust and reproducible assay for quantifying HTLV-I pVL in samples processed as cell lysates or as isolated DNA.

  18. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia.

    Science.gov (United States)

    Seu, Lillian; Mwape, Innocent; Guffey, M Bradford

    2014-07-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5' and 3' region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5' and 3' proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes.

  19. Evolution of Specific Antibodies and Proviral DNA in Milk of Small Ruminants Infected by Small Ruminant Lentivirus

    Directory of Open Access Journals (Sweden)

    Ana Domenech

    2013-10-01

    Full Text Available The diagnosis of Small Ruminant Lentivirus (SRLV is based on clinical signs, pathological lesions and laboratory testing. No standard reference test for the diagnosis of maedi visna has been validated up to the present, and it is puzzling that tests which detect antibodies against the virus and tests which detect the proviral genome may render opposite results. The aim of this study was to evaluate the presence in milk throughout a lactation period of specific antibodies by ELISA and of SRLV proviral DNA by a PCR of the highly conserved pol region. A six-month study was conducted with the milk of 28 ewes and 31 goats intensively reared. The percentage of animals with antibodies against SRLV increased throughout the study period. Seroprevalence in sheep was 28% at the beginning of the study and by the end it had increased up to 52.4%. In goats, initial seroprevalence of 5.6% increased to 16%. The percentage of PCR positive ewes was stable throughout the study period. Of the positive sheep, 21.4% were PCR-positive before antibodies could be detected and most of them became PCR-negative shortly after the first detection of antibodies. This might suggest that antibodies have a neutralizing effect. In addition, an equal percentage of sheep were always PCR-negative but either became ELISA-positive or was always ELISA-positive, which might support this hypothesis. On the other hand, the PCR results in goats did not follow any pattern and oscillated between 35.3% and 55.6% depending on the month. Most goats positive by PCR failed to develop antibodies in the 6 months tested. We may conclude that the infection and the antibody response to it follow a different trend in sheep and goats.

  20. A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR.

    Science.gov (United States)

    McFall, Sally M; Wagner, Robin L; Jangam, Sujit R; Yamada, Douglas H; Hardie, Diana; Kelso, David M

    2015-03-01

    Early diagnosis and access to treatment for infants with human immunodeficiency virus-1 (HIV-1) is critical to reduce infant mortality. The lack of simple point-of-care tests impedes the timely initiation of antiretroviral therapy. The development of FINA, filtration isolation of nucleic acids, a novel DNA extraction method that can be performed by clinic personnel in less than 2 min has been reported previously. In this report, significant improvements in the DNA extraction and amplification methods are detailed that allow sensitive quantitation of as little as 10 copies of HIV-1 proviral DNA and detection of 3 copies extracted from 100 μl of whole blood. An internal control to detect PCR inhibition was also incorporated. In a preliminary field evaluation of 61 South African infants, the FINA test demonstrated 100% sensitivity and specificity. The proviral copy number of the infant specimens was quantified, and it was established that 100 microliters of whole blood is required for sensitive diagnosis of infants.

  1. Quantification of HTLV-I proviral load in experimentally infected rabbits

    Directory of Open Access Journals (Sweden)

    Kindt Thomas J

    2005-05-01

    Full Text Available Abstract Background Levels of proviral load in HTLV-1 infected patients correlate with clinical outcome and are reasonably prognostic. Adaptation of proviral load measurement techniques is examined here for use in an experimental rabbit model of HTLV-1 infection. Initial efforts sought to correlate proviral load with route and dose of inoculation and with clinical outcome in this model. These methods contribute to our continuing goal of using the model to test treatments that alleviate virus infection. Results A real-time PCR assay was used to measure proviral load in blood and tissue samples from a series of rabbits infected using HTLV-1 inocula prepared as either cell-free virus particles, infected cells or blood, or by naked DNA injection. Proviral loads from asymptomatically infected rabbits showed levels corresponding to those reported for human patients with clinically silent HTLV-1 infections. Proviral load was comparably increased in 50% of experimentally infected rabbits that developed either spontaneous benign or malignant tumors while infected. Similarly elevated provirus was found in organs of rabbits with experimentally induced acute leukemia/lymphoma-like disease. Levels of provirus in organs taken at necropsy varied widely suggesting that reservoirs of infections exist in non-lymphoid organs not traditionally thought to be targets for HTLV-1. Conclusion Proviral load measurement is a valuable enhancement to the rabbit model for HTLV-1 infection providing a metric to monitor clinical status of the infected animals as well as a means for the testing of treatment to combat infection. In some cases proviral load in blood did not reflect organ proviral levels, revealing a limitation of this method for monitoring health status of HTLV-1 infected individuals.

  2. Detection of monoclonal integration of bovine leukemia virus proviral DNA as a malignant marker in two enzootic bovine leukosis cases with difficult clinical diagnosis

    OpenAIRE

    Miura, Saori; HORIUCHI, Noriyuki; Matsumoto, Kotaro; KOBAYASHI, Yoshiyasu; Kawazu, Shin-ichiro; INOKUMA, Hisashi

    2015-01-01

    Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with ...

  3. Localization of human T-cell lymphotropic virus-1 gag proviral sequences in dermato-immunological disorders with eosinophilia.

    Science.gov (United States)

    Nagy, K; Marschalkó, Márta; Kemény, B; Horváth, A

    2005-01-01

    The mechanisms leading to the development of eosinophilia were investigated in 65 patients with immunodermatological disorders, including the role of eosinophilotactic cytokines and the possible involvement of human T-cell leukemia virus, HTLV. HTLV-1 gag proviral sequences were revealed in two cases of lymphoproliferative disorders such as angiolymphoid hyperplasia with eosinophilia (ALHE) and CD4+ cutaneous lymphoma, respectively. Increased level of GM-CSF was detected in 33% of disorders studied. Elevated level of IL-5 and eotaxin was detected in 27% and 30%, respectively, of patients with bullous diseases. Elevated level of GM-CSF and eotaxin was found in 33% and 46%, respectively, of patients with inflammatory diseases. Neither of the four cytokines, however proved to be responsible alone or together for the induction of eosinophilia. The possible indirect role of human retroviruses through induction of eosinophilic chemotactic cytokines is hypothesized.

  4. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Anni A Winckelmann

    Full Text Available Toll-like receptor (TLR agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1:1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group. Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: -23.6-0.0 following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: -4.2-19.0 after each immunization, p = 0.02. Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted.

  5. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients.

    Science.gov (United States)

    Winckelmann, Anni A; Munk-Petersen, Lærke V; Rasmussen, Thomas A; Melchjorsen, Jesper; Hjelholt, Thomas J; Montefiori, David; Østergaard, Lars; Søgaard, Ole S; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1:1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: -23.6-0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: -4.2-19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted.

  6. Detection of monoclonal integration of bovine leukemia virus proviral DNA as a malignant marker in two enzootic bovine leukosis cases with difficult clinical diagnosis.

    Science.gov (United States)

    Miura, Saori; Horiuchi, Noriyuki; Matsumoto, Kotaro; Kobayashi, Yoshiyasu; Kawazu, Shin-Ichiro; Inokuma, Hisashi

    2015-07-01

    Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with persistent leukosis. These results suggest that the detection of monoclonal integration of BLV provirus into the host genome may serve as a marker of monoclonal proliferation and malignancy in difficult to diagnose EBL cattle.

  7. Carga proviral do HTLV-1 e HTLV-2: um método simples através da PCR quantitativa em tempo real HTLV-1 and HTLV-2 proviral load: a simple method using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Bruna Pedroso Tamegão-Lopes

    2006-12-01

    Full Text Available Os vírus linfotrópicos de células T humanas, quando integrados ao genoma da célula hospedeira, provírus, têm como marcador de replicação seu DNA proviral. A carga proviral parece ser um importante fator no desenvolvimento de patologias associadas a estes retrovírus. Neste estudo foi desenvolvida uma metodologia para quantificação absoluta da carga proviral dos HTLV-1 e HTLV-2 através da PCR em tempo real. Cinqüenta e três amostras de doadores de sangue com teste de ELISA reagente foram submetidas à metodologia, que utilizou o sistema TaqMan® para três seqüências alvo: HTLV-1, HTLV-2 e albumina. A quantificação proviral absoluta foi determinada através da proporção relativa entre o genoma do HTLV e o genoma da célula hospedeira, levando em consideração o número de leucócitos. O método apresentado é sensível (215 cópias/mL, prático e simples para quantificação proviral, além de eficiente e adequado para confirmação e discriminação da infecção pelos tipos virais.When the human T cell lymphotropic virus (HTLV is integrated with the host cell genome (provirus, its proviral DNA is a replication marker. Proviral load appears to be an important factor in the development of diseases related to these retroviruses. In this study, a methodology for absolute quantification of the HTLV-1 and HTLV-2 proviral load using real-time PCR was developed. Fifty-three blood donor samples with positive ELISA test result were subjected to this methodology, which utilized the TaqMan® system for three target sequences: HTLV-1, HTLV-2 and albumin. The absolute proviral load was quantified using the relative ratio between the HTLV genome and the host cell genome, taking into consideration the white blood cell count. The method presented is sensitive (215 copies/ml, practical and simple for proviral quantification, and is efficient and appropriate for confirming and discriminating infections according to viral type.

  8. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    Science.gov (United States)

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-02

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle.

  9. Correlation between LTR point mutations and proviral load levels among Human T cell Lymphotropic Virus type 1 (HTLV-1 asymptomatic carriers

    Directory of Open Access Journals (Sweden)

    Neto Walter K

    2011-12-01

    Full Text Available Abstract Background In vitro studies have demonstrated that deletions and point mutations introduced into each 21 bp imperfect repeat of Tax-responsive element (TRE of the genuine human T-cell leukemia virus type I (HTLV-1 viral promoter abolishes Tax induction. Given these data, we hypothesized that similar mutations may affect the proliferation of HTLV-1i nfected cells and alter the proviral load (PvL. To test this hypothesis, we conducted a cross-sectional genetic analysis to compare the near-complete LTR nucleotide sequences that cover the TRE1 region in a sample of HTLV-1 asymptomatic carriers with different PvL burden. Methods A total of 94 asymptomatic HTLV-1 carriers with both sequence from the 5' long terminal repeat (LTR and a PvL for Tax DNA measured using a sensitive SYBR Green real-time PCR were studied. The 94 subjects were divided into three groups based on PvL measurement: 31 low, 29 intermediate, and 34 high. In addition, each group was compared based on sex, age, and viral genotypes. In another analysis, the median PvLs between individuals infected with mutant and wild-type viruses were compared. Results Using a categorical analysis, a G232A substitution, located in domain A of the TRE-1 motif, was detected in 38.7% (12/31, 27.5% (8/29, and 61.8% (21/34 of subjects with low, intermediate, or high PvLs, respectively. A significant difference in the detection of this mutation was found between subjects with a high or low PvL and between those with a high or intermediate PvL (both p p > 0.05. This result was confirmed by a non-parametric analysis that showed strong evidence for higher PvLs among HTLV-1 positive individuals with the G232A mutation than those without this mutation (p p > 0. 05. Conclusions The data described here show that changes in domain A of the HTLV-1 TRE-1 motif resulting in the G232A mutation may increase HTLV-1 replication in a majority of infected subjects.

  10. Analysis of HIV-1 proviral DNA in peripheral blood cells from long-term HAART-treated AIDS patients in China%经长期HAART治疗的中国HIV-AIDS患者外周血细胞内HIV-1前病毒DNA的检测及其意义

    Institute of Scientific and Technical Information of China (English)

    陈霞; 姚运海; 郑煜煌; Diallo MA; 何艳; 周华英; 谌资; 罗艳; 贺波; 贺梅

    2012-01-01

    Objective The aim of this study was to verify that NK cells were one type of the virus reservoir cells,and to observe whether NK cells,T lymphocytes and monocyte are long-term viral reservoir cells of HIV-1.Methods A group of 15 chronic HIV-l-infected adults,who received 4 ~7 years-HAART treatment[ mean(62.45 ± 13.53) months],participated in this study for crosssectional study.After the ethical approval was obtained,a volume (40 ml) of peripheral whole blood was obtained from each patient.The number of T cell subgroup was detected with flow cytomctry.The NK cells,T lymphocytes,and monocytes were separated from peripheral blood mononuclear cells (PBMC) using microbead sorting method ( CD3 +,CD14 + and CD56 + antibody microbeads).DNA was extracted with human DNA kit.Real-time fluorescent quantitative PCR was used to detect the serum HIV RNA and DNA in the three types of cells.Graphpad prism5 software was used to analyze the collected data.Results Among 15 patients with 4 ~ 7-year-HAART treatment,plasma HIV-1 RNA of all the patients are undetectable; however,HIV-1 DNA was detected in 6 patients'T lymphocyte [ mean(2.03 ± 0.48)logl0copies/106 cells],in 4 patients'Nk cells [mean ( 1.82 ± 0.32 ) logl0copies/106 cells ],and in 2 patients'monocytes [ mean( 1.75 ± 0.19) logl0copies/106 cells ].Conclusions These findings revealed that NK cells were another important HIV cellular reservoir besides T-lymphocytes and monocytes,and T-lymphocytes might be the main long-lasting HIV reservoir.%目的 探索NK细胞是否是HIV-1病毒的储存库细胞之一,并观察在长期HAART治疗后,T淋巴细胞及单核细胞内是否仍有HIV-1前病毒DNA存在.方法 对15例规范接受HAART治疗4~7年的HIV-AIDS患者采集血标本进行横断面研究.使用磁珠分选法从外周血单个核细胞(PBMC)中分离出T淋巴细胞、单核细胞和NK细胞,通过HIV实时荧光定量检测外周血HIV-1 RNA病毒载量和NK细胞、单核细胞、T淋巴细胞内的HIV-1

  11. Jaagsiekte sheep retrovirus proviral clone JSRV(JS7), derived from the JS7 lung tumor cell line, induces ovine pulmonary carcinoma and is integrated into the surfactant protein A gene.

    Science.gov (United States)

    DeMartini, J C; Bishop, J V; Allen, T E; Jassim, F A; Sharp, J M; de las Heras, M; Voelker, D R; Carlson, J O

    2001-05-01

    Ovine pulmonary carcinoma (OPC) is a contagious neoplasm of alveolar epithelial type II (ATII) or Clara cells caused by a type D/B chimeric retrovirus, jaagsiekte sheep retrovirus (JSRV). Here we report the isolation, sequencing, pathogenicity, and integration site of a JSRV provirus isolated from a sheep lung tumor cell line (JS7). The sequence of the virus was 93 to 99% identical to other JSRV isolates and contained all of the expected open reading frames. To produce virions and test its infectivity, the JS7 provirus (JSRV(JS7)) was cloned into a plasmid containing a cytomegalovirus promoter and transfected into 293T cells. After intratracheal inoculation with virions from concentrated supernatant fluid, JSRV-associated OPC lesions were found in one of four lambs, confirming that JSRV(JS7) is pathogenic. In JS7-cell DNA, the viral genome was inserted in the protein-coding region for the surfactant protein A (SP-A) gene, which is highly expressed in ATII cells, in an orientation opposite to the direction of transcription of the SP-A gene. No significant transcription was detected from either the viral or the SP-A gene promoter in the JS7 cell line at passage level 170. The oncogenic significance of the JSRV proviral insertion involving the SP-A locus in the JS7 tumor cell line is unknown.

  12. Detection and quantification of proviral HIV-1 184 M/V in circulating CD4(+) T cells of patients on HAART with a viremia less than 1000 copies/ml

    DEFF Research Database (Denmark)

    Mohey, Rajesh; Jørgensen, Anne Louise; Møller, Bjarne K;

    2005-01-01

    Background Highly active anti-retroviral therapy (HAART) effectively reduces HIV replication but does not completely hinder it. Sub-optimal therapy leads to HIV resistance to the drugs administered. However, the role of low-level viremia (viral-load less than 1000 copies/ml) on mutation genesis...... proviral HIV-1 was detected and quantified by a specific and sensitive assay combining a TaqMan real-time PCR analysis with the amplification-refractory mutation system (ARMS) principle. Results Fifty-six percent of patients with low-level viremia had 184V in the CD4+ T cellular DNA compartment as compared...... a median viral load of 498 copies/ml (P = 0.006). No significant differences between the groups were observed in proviral HIV-1 DNA load. Conclusions The frequency of the 184V mutation was significantly lower, in the CD4+ T cellular compartment of patients with a viral load of less than 20 copies...

  13. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas.

    Science.gov (United States)

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A; Copeland, Neal G; Lenz, Jack

    2003-02-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.

  14. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  15. HIV RNA and proviral HIV DNA can be detected in semen after 6 months of antiretroviral therapy although HIV RNA is undetectable in blood.

    Science.gov (United States)

    Du, Peiwei; Liu, An; Jiao, Yanmei; Liu, Cuie; Jiang, Taiyi; Zhu, Weijun; Zhu, Yunxia; Wu, Hao; Sun, Lijun

    2016-03-01

    The risk of sexual transmission of HIV is strongly correlated with amounts of genital HIV RNA. Few studies have reported amounts of HIV RNA and HIV DNA in semen in HIV-infected Chinese patients undergoing antiviral treatment (ART). In this observational study, the amounts of HIV RNA and HIV DNA in semen were assessed after six months of ART in HIV-infected Chinese individuals, when HIV RNA was undetectable in blood . This study included 19 HIV-infected Chinese men undergoing ART for six months. Amounts of HIV in paired semen and blood samples were assessed using real-time PCR. The C2-V5 region of the HIV envelope (env) genes was cloned and sequenced and genotype and co-receptor usage predicted based on the sequence. It was found that HIV RNA was undetectable in the plasma of most patients (17/19), whereas HIV RNA could be detected in the semen of most patients (16/19). HIV DNA could be detected in both semen and blood. Genetic diversity of HIV between the seminal and blood compartments was identified. Thus, amounts of HIV RNA and HIV DNA remain high in semen of HIV-infected Chinese patients after six months of ART treatment, even when HIV RNA was undetectable in blood.

  16. Recovery of infectious human immunodeficiency virus type 1 after fusion of defectively infected clones of U-937 cells.

    OpenAIRE

    1991-01-01

    Polyethylene glycol was used to induce polykaryon formation among U-937 cell subclones carrying defective human immunodeficiency virus (HIV) type 1 proviral DNA. Fusion of cells which produced gp120-defective virions (UHC15.7) with cells unable to generate reverse transcriptase (RT) activity (UHC8 and UHC18) yielded polykaryons which made infectious viral progeny that showed normal protein profiles. Southern blot analysis of proviral DNA of cells infected with such fusion-derived virus reveal...

  17. A High Excision Potential of TALENs for Integrated DNA of HIV-Based Lentiviral Vector

    OpenAIRE

    Hirotaka Ebina; Yuka Kanemura; Naoko Misawa; Tetsushi Sakuma; Tomoko Kobayashi; Takashi Yamamoto; Yoshio Koyanagi

    2015-01-01

    DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV) provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonuc...

  18. Detection of HIV proviral DNA by a duplex fluorescence PCR for early diagnosis of HIV infection in infants%双重荧光PCR检测HIV前病毒DNA及其在婴幼儿HIV感染早期诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    张佳峰; 郭志宏; 黄晶晶; 丁晓贝; 黄蓓

    2013-01-01

    Objective To establish a duplex fluorescence PCR for detection of HIV proviral DNA and to evaluate its application for early diagnosis of HIV infection in infants .Methods A duplex fluores-cence PCR system was set up based on TaqMan technology for detection of human ribonuclease P ( RNase P) gene and long terminal repeat ( LTR) region of HIV.A recombinant plasmid containing the targeted gene fragment , pTG19-T, was constructed by TA cloning technique and used as the template for evaluation of sen -sitivity of the assay .Blood samples from 11 healthy individuals and 98 HIV-infected patients were collected and detected to validate the assay specificity .The assay of duplex fluorescence PCR was then carried out to detect 96 infant blood samples collected from several maternal and child health hospitals in Zhejiang province from January 2011 to September 2012 for early diagnosis of HIV infection .The results were compared with those by using the Roche HIV DNA qualitative detection kit .Results The established duplex fluorescence PCR could specifically detect HIV proviral DNA with a specificity of 100%and a detection sensitivity of 100 cps per reaction .The coincidence rate between the established assay and the Roche HIV DNA qualitative de -tection kit was 100%in the detection of 96 blood samples .Conclusion The duplex fluorescence PCR as-say showed advantages of cost-effectiveness , convenience , good specificity and accuracy with high sensitivi-ty.It could be used for early diagnosis of HIV infection in infants and also as a general technical platform for the detection of HIV proviral DNA .%  目的建立双重荧光PCR检测HIV前病毒DNA的方法,并应用于婴幼儿HIV感染的早期诊断。方法采用TaqMan技术,组建针对人类核糖核酸酶P( RNase P)和HIV的长末端重复序列( LTR)基因的双重荧光PCR体系;采用TA克隆技术构建pTG19-T重组质粒作为模板进行该方法灵敏度的评价;采用11

  19. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm

    Directory of Open Access Journals (Sweden)

    Matoba Kazuhiro

    2010-11-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is closely related to human T-cell leukemia virus (HTLV and is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly extended course that often involves persistent lymphocytosis and culminates in B-cell lymphomas. BLV provirus remains integrated in cellular genomes, even in the absence of detectable BLV antibodies. Therefore, to understand the mechanism of BLV-induced leukemogenesis and carry out the selection of BLV-infected animals, a detailed evaluation of changes in proviral load throughout the course of disease in BLV-infected cattle is required. The aim of this study was to develop a new quantitative real-time polymerase chain reaction (PCR method using Coordination of Common Motifs (CoCoMo primers to measure the proviral load of known and novel BLV variants in clinical animals. Results Degenerate primers were designed from 52 individual BLV long terminal repeat (LTR sequences identified from 356 BLV sequences in GenBank using the CoCoMo algorithm, which has been developed specifically for the detection of multiple virus species. Among 72 primer sets from 49 candidate primers, the most specific primer set was selected for detection of BLV LTR by melting curve analysis after real-time PCR amplification. An internal BLV TaqMan probe was used to enhance the specificity and sensitivity of the assay, and a parallel amplification of a single-copy host gene (the bovine leukocyte antigen DRA gene was used to normalize genomic DNA. The assay is highly specific, sensitive, quantitative and reproducible, and was able to detect BLV in a number of samples that were negative using the previously developed nested PCR assay. The assay was also highly effective in detecting BLV in cattle from a range of international locations. Finally, this assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but

  20. Recombiant DNA and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, G.S.; Stein, J.L.

    1984-01-01

    This book contains 13 chapters. Some of the chapter titles are: Expression of Dihydrofolate Reductase and Thymidylate Synthase Genes in Mammalian Cells; Expression of Histone Genes during the Cell Cycle in Human Cells; Regulation of Nonmuscle Actin Gene Expression during Early Development; and Recombinant DNA Approaches to Studying Control of Cell Proliferation: An Overview.

  1. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells

    Science.gov (United States)

    Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T

    2016-01-01

    We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI: http://dx.doi.org/10.7554/eLife.18447.001 PMID:27644592

  2. Sequence analysis for the complete proviral genome of reticuloendotheliosis virus Chinese strain HA9901

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The genomic DNA extracted from chicken embryo fibroblast (CEF) infected with a Chinese field isolate HA9901 of reticuloendotheliosis virus (REV) was used as the template to amplify the REV proviral genomic cDNA by PCR with 6 pairs of primers according to published sequences. Six overlapping fragments were amplified, cloned into the TA vector and sequenced, including a fragment which was amplified from the circular proviral cDNA and covering both 5'- and 3'-ends. The complete sequence of the whole genome was established and analyzed with a DNAstar software. Comparisons of the sequence with two other strains demonstrated that the genomes of REV were relatively conservative, the homogenecity for all genes or LTR fragments of the 3 strains was over 92%, no matter whether they were isolated from different species and regions in different years. But, the homology of Chinese strain HA9901 to a fowl pox virus-associated strain from Chickens was higher than that to strain SNV isolated from ducks.

  3. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector.

    Science.gov (United States)

    Ebina, Hirotaka; Kanemura, Yuka; Misawa, Naoko; Sakuma, Tetsushi; Kobayashi, Tomoko; Yamamoto, Takashi; Koyanagi, Yoshio

    2015-01-01

    DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV) provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonuclease system targeting HIV long terminal repeats (LTR). Here, we generated a more efficient strategy that enables the excision of HIV proviral DNA using customized transcription activator-like effector nucleases (TALENs) targeting the same HIV LTR site. A single transfection of TALEN-encoding mRNA, prepared from in vitro transcription, resulted in more than 80% of lentiviral vector DNA being successfully removed from the T cell lines. Furthermore, we developed a lentiviral vector system that takes advantage of the efficient proviral excision with TALENs and permits the simple selection of gene-transduced and excised cells in T cell lines.

  4. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector.

    Directory of Open Access Journals (Sweden)

    Hirotaka Ebina

    Full Text Available DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 endonuclease system targeting HIV long terminal repeats (LTR. Here, we generated a more efficient strategy that enables the excision of HIV proviral DNA using customized transcription activator-like effector nucleases (TALENs targeting the same HIV LTR site. A single transfection of TALEN-encoding mRNA, prepared from in vitro transcription, resulted in more than 80% of lentiviral vector DNA being successfully removed from the T cell lines. Furthermore, we developed a lentiviral vector system that takes advantage of the efficient proviral excision with TALENs and permits the simple selection of gene-transduced and excised cells in T cell lines.

  5. Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts

    Science.gov (United States)

    NISHIIKE, Masao; HAOKA, Michiyo; DOI, Takashi; KOHDA, Tomoko; MUKAMOTO, Masafumi

    2016-01-01

    Analysis of the association between antibodies against bovine leukemia virus (BLV), BLV proviral load, and white blood cell (WBC) and lymphocyte counts was performed with 774 dairy cows. The average age, WBC counts and lymphoid cell counts tended to be higher in BLV antibody-positive cows than in antibody-negative cows. There was a similar trend in levels of proviral DNA. We analyzed age, WBC counts and lymphocyte counts by principal component analyses to create a distribution chart of the principle component scores. Using the chart, we categorized cows into four quadrants based on additional information, such as the presence of antibody and the levels of proviral DNA. Antibody-positive cows and cows with high BLV proviral load were found mostly in one quadrant of the chart, indicating that it is possible to predict the risk of infection without any knowledge on antibody status by using information, such as WBC counts as a biomarker. When only antibody-positive cows were included in the analysis, a characteristic distribution of different levels of proviral DNA was seen in the quadrants, suggesting that it is possible to estimate the extent of bovine leukosis infection by using this analysis. For this analysis and categorization of the cows into quadrants, we computed a mathematical formulation using discriminant analysis based on age and WBC and lymphocyte counts. This mathematical formulation for the hematological preliminary diagnosis of the disease is recommended as a screening tool to monitor bovine leukosis. PMID:27064146

  6. DNA Methylation and Histone Modifications Are the Molecular Lock in Lentivirally Transduced Hematopoietic Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Siew Ching Ngai

    2015-01-01

    Full Text Available Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP reporter gene driven by cytomegalovirus (CMV promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.

  7. Telomere Length, Proviral Load and Neurologic Impairment in HTLV-1 and HTLV-2-Infected Subjects

    Directory of Open Access Journals (Sweden)

    Benjamin Usadi

    2016-08-01

    Full Text Available Short or damaged telomeres have been implicated in degenerative conditions. We hypothesized that analysis of telomere length (TL in human T-cell lymphotropic virus (HTLV infection and HTLV-associated neuropathy might provide clues to the etiology of HTLV-associated disease and viral dynamics. A subset of 45 human T-cell lymphotropic virus type 1 (HTLV-1, 45 human T-cell lymphotropic virus type 2 (HTLV-2, and 45 seronegative subjects was selected from the larger HTLV Outcomes Study (HOST cohort, matched on age, sex and race/ethnicity. Telomere-to-single-copy gene (T/S ratio (a measure of TL and HTLV-1 and HTLV-2 proviral loads were measured in peripheral blood mononuclear cells (PBMCs using quantitative PCR (qPCR. Vibration sensation measured by tuning fork during neurologic examinations performed as part of the HOST study allowed for an assessment of peripheral neuropathy. TL was compared between groups using t-tests, linear and logistic regression. Mean T/S ratio was 1.02 ± 0.16 in HTLV-1, 1.03 ± 0.17 in HTLV-2 and 0.99 ± 0.18 in HTLV seronegative subjects (p = 0.322. TL was not associated with HTLV-1 or -2 proviral load. Shorter TL was significantly associated with impaired vibration sense in the HTLV-2 positive group only. Overall, we found no evidence that telomere length was affected by chronic HTLV-1 and HTLV-2 infection. That TL was only associated with peripheral neuropathy in the HTLV-2-positive group is intriguing, but should be interpreted cautiously. Studies with larger sample size and telomere length measurement in lymphocyte subsets may clarify the relationship between TL and HTLV-infection.

  8. DNA methylation profiling of hematopoietic stem cells.

    Science.gov (United States)

    Begtrup, Amber Hogart

    2014-01-01

    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  9. DNA damage response in adult stem cells.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  10. Existence of proviral porcine endogenous retrovirus in fresh and decellularised porcine tissues

    Directory of Open Access Journals (Sweden)

    Prabha S

    2008-01-01

    Full Text Available Purpose: Swine are expected to be utilized as xenograft donors for both whole organ and cellular transplantation. A major concern in using porcine organs for transplantation is the potential of transmission of porcine endogenous retrovirus (PERV. Tissue-engineered or decellularised heart valves have already been implanted in humans and have been marketed by certain companies after Food and Drug Administration (FDA approval. The aim of this study was to examine the existence of porcine endogenous retrovirus (PERV in fresh and decellularised porcine tissues. Methods: Porcine tissues (both fresh and decellularised were analysed using validated assays specific for PERV: polymerase chain reaction (PCR, reverse transcriptase polymerase chain reaction (RT-PCR. Results: PERV specific GAG sequences were found in the porcine heart tissue samples using PCR for DNA and RT- PCR for RNA. All tissue samples (both fresh and treated tissues like aortic valve, pulmonary valve and heart muscle showed the presence of PERV DNA. RT PCR for PERV was positive in all fresh tissues and was found to be negative in decellularised treated tissues. Conclusions: PCR is a rapid, specific test for the detection of PERV virus in xenografts. These findings have demonstrated that the presence of proviral DNA form of PERV in porcine tissues needs to be carefully considered when the infectious disease potential of xenotransplantation is being assessed.

  11. HIV Excision Utilizing CRISPR/Cas9 Technology: Attacking the Proviral Quasispecies in Reservoirs to Achieve a Cure.

    Science.gov (United States)

    Dampier, Will; Nonnemacher, Michael R; Sullivan, Neil T; Jacobson, Jeffrey M; Wigdahl, Brian

    2014-10-17

    Recently several gene-editing technologies developed are being explored for their potential utility in providing new and unique treatments for HIV. One of these technologies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 system. This system is being explored for its utility against host genes important to HIV infection, namely the HIV coreceptor CCR5, and for excision of the integrated genome from infected cells by targeting selected genes or genomic regions, especially the HIV-1 promoter or long terminal repeat (LTR). One of the major hurdles with the development of this technology for use in patients is defining the LTR sequence spectrum within the viral quasispecies present in the integrated virus and how that effects the number of guide RNAs (gRNAs) required to completely excise all proviral genomes. In this study, the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort was utilized to demonstrate that [1] the predominant sequence of the integrated proviral LTR within the PBMC compartment shows a decrease in the amount of variation per year regardless of the type of therapy; [2] predominant HIV-1 LTR sequence undergoes continued genetic change with respect to the predominant genotype in these cells for at least 6 years while on effective suppressive ART; [3] using next generation sequencing (NGS), to demonstrate that 4 of the 8 patient samples examined could have a complete gRNA regimen designed to target all known quasispecies; and [4] length of HAART therapy may reduce the number of gRNA required to eradicate provirus as shown by NGS and gRNA design for longitudinal samples of patient A0017 in the CARES cohort. Overall, these studies demonstrate the feasibility of addressing at least one of the major technological challenges of CRISPR/Cas9-mediated HIV-1 proviral genome eradication involving the effective targeting of all viral quasispecies in a given patient sample.

  12. [DNA homologous recombination repair in mammalian cells].

    Science.gov (United States)

    Popławski, Tomasz; Błasiak, Janusz

    2006-01-01

    DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.

  13. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    Directory of Open Access Journals (Sweden)

    Maria T. V. Romanos

    2011-04-01

    Full Text Available A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR. The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell monolayers. The proviral cDNA was only detected when the sulfated polysaccharide was added to the cells three hours post-infection, indicating that the inhibitory activity occurred in the initial stages of virus-cell interaction. Our results demonstrate, for the first time, the ability of a sulfated fucan from marine algae to inhibit virus transmission through free virus particles.

  14. Regulators of DNA methylation in mammalian cells

    OpenAIRE

    Termanis, Ausma

    2013-01-01

    Although the many cells within a mammal share the same DNA sequence, their gene expression programmes are highly heterogeneous, and their functions correspondingly diverse. This heterogeneity within an isogenic population of cells arises in part from the ability of each cell to respond to its immediate surroundings via a network of signalling pathways. However, this is not sufficient to explain many of the transcriptional and functional differences between cells, particularly t...

  15. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  16. Proviral genomic sequence analysis of Chinese donkey leukocyte attenuated equine infectious anemia virus vaccine and its parental virus strain Liaoning

    Institute of Scientific and Technical Information of China (English)

    王柳; 童光志; 刘红全; 杨志彪; 仇华吉; 孔宪刚; 王玫

    2002-01-01

    Proviral DNA was extracted from donkey leukocyte infected with Chinese donkey leukocyte attenuated equine infectious anemia virus(DLA-EIAV), and peripheral blood lymphocytes(PBL) from a horse infected with the virulent EIAV strain Liaoning(EIAV L). The entire proviral DNA from both viruses was cloned and sequenced. The lengths of complete genomic sequences of DLA-EIAV and EIAV L provirus were 8266 bp and 8235 bp, respectively. Sequence comparison indicated that DLA-EIAV shares 97.0% and 97.5% in sequence homology with EIAV L and donkey-adapted EIAV(DA-EIAV), respectively. Lots of variations occurred in long terminal repeat(LTR, consisting of U3, R, U5), ORF S2, and env regions between DLA-EIAV and EIAV L. The nucleotide sequence differences of the two viruses in U3, R, U5, ORF S2, and env are 13.2%, 7.5%, 5.1%, 3.9%, and 2.7%, respectively, and predicted amino acid sequence differences in env and S2 coding regions are 4.4% and 8.8%, respectively. Six conserved regions are characterized in Gp90. There is a cis-activating GATA motif in ENH of DLA-EIAV and EIAV L. Two N-linked glycosylation sites disappeared in DLA-EIAV Gp90 in comparison with that of EIAV L. A bHLH transcription factor binding consensus sequence was found in LTR of DLA-EIAV but not in EIAV L. Furthermore, there is a mutation in the stem of DLA-EIAV TAR resulting in formation of a uridine tuber. Further study is needed to uncover the relationship between sequence changes and their biological functions of DLA-EIAV and L.

  17. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  18. Engineered cell-cell communication via DNA messaging

    Directory of Open Access Journals (Sweden)

    Ortiz Monica E

    2012-09-01

    Full Text Available Abstract Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.

  19. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas;

    2011-01-01

    The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and t......, the GC B cells of Dnmt1 hypomorphic animals showed evidence of increased DNA damage, suggesting dual roles for DNMT1 in DNA methylation and double strand DNA break repair.......The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation...... and the role of DNA methyltransferases in the formation of GCs. DNA methylation profiling revealed a marked shift in DNA methylation patterning in GC B cells versus resting/naive B cells. This shift included significant differential methylation of 235 genes, with concordant inverse changes in gene expression...

  20. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...

  1. Tat protein expression in MDBK cells does not confer susceptibility to bovine immunodeficiency virus.

    Science.gov (United States)

    Kempster, S; Collins, M E; Brownlie, J

    2002-03-01

    The ability of BIV strain R29 to infect bovine cell lines in the presence or absence of a functional lentiviral Tat protein is described. Jembrana disease virus (JDV) Tat protein was stably expressed in MDBK cells. No viral replication could be detected in this cell line after infection with BIV R29. Transfection of MDBK cells and MDBK Tat expressing cells with BIV R29 proviral DNA established that BIV R29 could not replicate in MDBK cells. Whether viral entry into MDBK cells is also a block to BIV R29 infection of MDBK cells has yet to be established.

  2. Extremely underwound chromosomal DNA in nucleoids of mouse sarcoma cells.

    Science.gov (United States)

    Hartwig, M; Matthes, E; Arnold, W

    1981-07-01

    The superhelical properties of chromosomal DNA from cells of a mouse sarcoma were investigated in neutral sucrose gradients containing ethidium bromide. Removal of negative supercoiling from the DNA of the sarcoma cells required a substantially higher dye concentration than was necessary in the case of DNA from cultured mouse fibroblasts. The calculated value of the mean superhelical density in malignant cells (sigma = -0.14) appears abnormally high compared with the value (sigma = -0.09) obtained for DNA of mouse fibroblasts. Chromosomal DNA from mouse sarcoma cells is therefore concluded to be highly deficient in helical turns.

  3. DNA Ligase I Is Not Essential for Mammalian Cell Viability

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-04-01

    Full Text Available Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1 has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  4. DNA ligase I is not essential for mammalian cell viability.

    Science.gov (United States)

    Han, Li; Masani, Shahnaz; Hsieh, Chih-lin; Yu, Kefei

    2014-04-24

    Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1) has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  5. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy. METHODOLOGY/PRINCIPAL FINDINGS: A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both. The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001 than in SA women with normal karyotype (r = 0.465, P = 0.002 and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037. The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852-0.945 and 0.939 (95% CI, 0.903-0.975, respectively. CONCLUSIONS: Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA

  6. DNA conformational behavior and compaction in biomimetic systems: Toward better understanding of DNA packaging in cell.

    Science.gov (United States)

    Zinchenko, Anatoly

    2016-06-01

    In a living cell, long genomic DNA is strongly compacted and exists in the environment characterized by a dense macromolecular crowding, high concentrations of mono- and divalent cations, and confinement of ca. 10μm size surrounded by a phospholipid membrane. Experimental modelling of such complex biological system is challenging but important to understand spatiotemporal dynamics and functions of the DNA in cell. The accumulated knowledge about DNA condensation/compaction in conditions resembling those in the real cell can be eventually used to design and construct partly functional "artificial cells" having potential applications in drug delivery systems, gene therapy, and production of synthetic cells. In this review, I would like to overview the past progress in our understanding of the DNA conformational behavior and, in particular, DNA condensation/compaction phenomenon and its relation to the DNA biological activity. This understanding was gained by designing relevant experimental models mimicking DNA behavior in the environment of living cell. Starting with a brief summary of classic experimental systems to study DNA condensation/compaction, in later parts, I highlight recent experimental methodologies to address the effects of macromolecular crowding and nanoscale and microscale confinements on DNA conformation dynamics. All the studies are discussed in the light of their relevance to DNA behavior in living cells, and future prospects of the field are outlined.

  7. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  8. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells.

    Science.gov (United States)

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C

    2016-06-07

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  9. DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation.

    Science.gov (United States)

    Fernández-Nestosa, María José; Monturus, Estefanía; Sánchez, Zunilda; Torres, Francisco S; Fernández, Agustín F; Fraga, Mario F; Hernández, Pablo; Schvartzman, Jorge B; Krimer, Dora B

    2013-01-01

    In mice, the proviral integration of the Friend Spleen Focus Forming Virus (SFFV) within the PU.1 locus of erythroid precursors results in the development of erythroleukemia. SFFV integrates several kilobases upstream of the PU.1 transcription initiation start site leading to the constitutive activation of the gene which in turn results in a block of erythroid differentiation. In this study we have mapped and sequenced the exact location of the retroviral integration site. We have shown that SFFV integrates downstream of a previously described upstream regulatory element (URE), precisely 2,976 bp downstream of the URE-distal element. We have also found that SFFV persists integrated within the same location in resistant cell lines that have lost their differentiation capacity and in which case PU.1 remains silent. We have examined the methylation status of PU.1 and found that in resistant cells the nearby CpG islands remained methylated in contrast to a non-methylated status of the parental cell lines. Treatment with 5-aza-2'-deoxycytidine caused resistant cells to differentiate yet only when combined with HMBA. Altogether these results strongly suggest that methylation plays a crucial role with regard to PU.1 silencing. However, although demethylation is required, it is not sufficient to overcome the differentiation impasse. We have also showed that activation blockage of the Epo/Epo-R pathway remains despite of the absence of PU.1.

  10. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  11. Controls to validate plasma samples for cell free DNA quantification

    DEFF Research Database (Denmark)

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund;

    2015-01-01

    Recent research has focused on the utility of cell free DNA (cfDNA) in serum and plasma for clinical application, especially in oncology. The literature holds promise of cfDNA as a valuable tumour marker to be used for treatment selection, monitoring and follow-up. The results, however, are diver...

  12. DNA MUTAGENESIS IN PANAX GINSENG CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Kiselev K.V.

    2012-08-01

    Full Text Available At the present time, it is well documented that plant tissue culture induces a number of mutations and chromosome rearrangements termed “somaclonal variations”. However, little is known about the nature and the molecular mechanisms of the tissue culture-induced mutagenesis and the effects of long-term subculturing on the rate and specific features of the mutagenesis. The aim of the present study was to investigate and compare DNA mutagenesis in different genes of Panax ginseng callus cultures of different age. It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during long-term cultivation of transgenic cell cultures of P. ginseng. In the present work, we analyzed nucleotide sequences of selected plant gene families in a 2-year-old and 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We analysed sequence variability between the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL and dammarenediol synthase (DDS genes, which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK genes, which control plant development. The frequency of point mutations in the Actin, PAL, DDS, and SERK genes in the 2-year-old callus culture was markedly higher than that in cultivated plants but lower than that in the 20-year-old callus culture of P. ginseng. Most of the mutations in the 2- and 20-year-old P. ginseng calli were A↔G and T↔C transitions. The number of nonsynonymous mutations was higher in the 2- and 20-year-old callus cultures than the number of nonsynonymous mutations in the cultivated plants of P. ginseng. Interestingly, the total number of N→G or N→C substitutions in the analyzed genes was 1.6 times higher than the total number of N→A or N→T substitutions. Using methylation-sensitive DNA fragmentation

  13. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  14. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    Science.gov (United States)

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  15. Effect of DNA methylation on protein-DNA interaction of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    何忠效; 白坚石; 张昱

    1999-01-01

    HL-60 cells have been induced with differentiation index 16 % by S-adenosyl-L-rnethionine (SAM) as inducer in the presence of optimum conceptration of 10 μmol/L. The methylation level of genorne DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma I, Sal I, XhoI and Hind Ⅲ which are sensitive to 5-methylcytosine were used to cleave the genorne DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.

  16. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ames, B.N.; Shigenaga, M.K. [Univ. of California, Berkeley, CA (United States); Gold, L.S. [Lawrence Berkeley National Lab., CA (United States)

    1993-12-01

    DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10{sup 6} oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

  17. Prevention of DNA re-replication in eukaryotic cells

    Institute of Scientific and Technical Information of China (English)

    Lan N. Truong; Xiaohua Wu

    2011-01-01

    DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.

  18. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  19. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  20. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  1. Dicer is associated with ribosomal DNA chromatin in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Lasse Sinkkonen

    Full Text Available BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/- ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.

  2. The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion.

    Science.gov (United States)

    Cavignac, Yolaine; Lieber, Diana; Laib Sampaio, Kerstin; Madlung, Johannes; Lamkemeyer, Tobias; Jahn, Gerhard; Nordheim, Alfred; Sinzger, Christian

    2015-01-01

    While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.

  3. The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion.

    Directory of Open Access Journals (Sweden)

    Yolaine Cavignac

    Full Text Available While it is well established that human cytomegalovirus (HCMV upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.

  4. DNA Based Electrochromic and Photovoltaic Cells

    Science.gov (United States)

    2012-01-01

    and biodegradable material, has low cost and good film forming properties, is not toxic and forms transparent solutions with high viscosity [17]. An...applications requires fundamental studies on DNA in solid state, in which the behavior is expected to be different than that in solution. DNA is an acid , but...function of temperature of the blends samples of DNA with poly(ethylene dioxythiophene):poly(styrene sulphonate ) (PEDOT:PSS), poly(orthoethoxy aniline

  5. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  6. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  7. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  8. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs.

  9. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Directory of Open Access Journals (Sweden)

    Mark R. Openshaw

    2016-02-01

    Full Text Available Gestational trophoblastic neoplasia (GTN represents a group of diseases characterized by production of human chorionic gonadotropin (hCG. Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA (from 9% to 53% of total cfDNA in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis.

  10. Circulating Cell Free DNA in the Diagnosis of Trophoblastic Tumors

    Science.gov (United States)

    Openshaw, Mark R.; Harvey, Richard A.; Sebire, Neil J.; Kaur, Baljeet; Sarwar, Naveed; Seckl, Michael J.; Fisher, Rosemary A.

    2015-01-01

    Gestational trophoblastic neoplasia (GTN) represents a group of diseases characterized by production of human chorionic gonadotropin (hCG). Since non-gestational tumors may occasionally secrete hCG, histopathological diagnosis is important for appropriate clinical management. However, a histopathological diagnosis is not always available. We therefore investigated the feasibility of extracting cell free DNA (cfDNA) from the plasma of women with GTN for use as a “liquid biopsy” in patients without histopathological diagnosis. cfDNA was prepared from the plasma of 20 women with a diagnosis of GTN and five with hCG-secreting tumors of unknown origin. Genotyping of cfDNA from the patient, genomic DNA from her and her partner and DNA from the tumor tissue identified circulating tumor DNA (ctDNA) (from 9% to 53% of total cfDNA) in 12 of 20 patients with GTN. In one case without a tissue diagnosis, ctDNA enabled a diagnosis of GTN originating in a non-molar conception and in another a diagnosis of non-gestational tumor, based on the high degree of allelic instability and loss of heterozygosity in the ctDNA. In summary ctDNA can be detected in the plasma of women with GTN and can facilitate the diagnosis of both gestational and non-gestational trophoblastic tumors in cases without histopathological diagnosis. PMID:26981554

  11. The LMO2 oncogene regulates DNA replication in hematopoietic cells.

    Science.gov (United States)

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F T; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, El Bachir; Verreault, Alain; Hoang, Trang

    2016-02-02

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.

  12. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  13. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng;

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold pe...

  14. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    OpenAIRE

    Romanos,Maria T. V.; Maria J. Andrada-Serpa; Mourão, Paulo A. S.; Yocie Yoneshigue-Valentin; Pereira,Mariana S.; Norma Santos; Marcia D. Wigg

    2011-01-01

    A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR). The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell...

  15. Increment of DNA topoisomerases in chemically and virally transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.D.; Mladovan, A.G.; Baldi, A. (Instituto de Biologia y Medicina Experimental, Buenos Aires (Argentina))

    1988-03-01

    The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo(a)pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between {sup 32}P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo(a)pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.

  16. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  17. Links between DNA Replication, Stem Cells and Cancer

    Directory of Open Access Journals (Sweden)

    Alex Vassilev

    2017-01-01

    Full Text Available Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  18. Links between DNA Replication, Stem Cells and Cancer.

    Science.gov (United States)

    Vassilev, Alex; DePamphilis, Melvin L

    2017-01-25

    Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  19. Cell-free DNA screening and sex chromosome aneuploidies.

    Science.gov (United States)

    Mennuti, Michael T; Chandrasekaran, Suchitra; Khalek, Nahla; Dugoff, Lorraine

    2015-10-01

    Cell-free DNA (cfDNA) testing is increasingly being used to screen pregnant women for fetal aneuploidies. This technology may also identify fetal sex and can be used to screen for sex chromosome aneuploidies (SCAs). Physicians offering this screening will need to be prepared to offer comprehensive prenatal counseling about these disorders to an increasing number of patients. The purpose of this article is to consider the source of information to use for counseling, factors in parental decision-making, and the performance characteristics of cfDNA testing in screening for SCAs. Discordance between ultrasound examination and cfDNA results regarding fetal sex is also discussed.

  20. DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior.

    Science.gov (United States)

    Kearney, Cathal J; Lucas, Christopher R; O'Brien, Fergal J; Castro, Carlos E

    2016-07-01

    DNA origami is a DNA-based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2D and 3D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargoes including drugs, antibodies, nucleic acid sequences, small molecules, and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing, and synthetic nanopore formation. Here, the advances in the DNA-origami field since its inception several years ago are reviewed with a focus on how these DNA-nanodevices can be designed to interact with cells to direct or probe their behavior.

  1. Can graphene quantum dots cause DNA damage in cells?

    Science.gov (United States)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  2. Photoenzyme probes of photodamage to cells and cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B. M.

    1979-01-01

    Development of photoenzyme probes for detection of ultraviolet damage to cells and DNA is reviewed with special emphasis on a process using polyethylene glycol to induce cell fusion. Polyethylene glycol is easy to obtain and handle, is gentle to the cells and does not induce latent or productive virus infection; therefore, it may be a general method for insertion of exogenous enzymes into mammalian cells. (PCS)

  3. Segrosome complex formation during DNA trafficking in bacterial cell division

    Directory of Open Access Journals (Sweden)

    Maria A. Oliva

    2016-09-01

    Full Text Available Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialised partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  4. Proviral integrations and expression of endogenous Avian leucosis virus during long term selection for high and low body weight in two chicken lines

    Directory of Open Access Journals (Sweden)

    Bornold Lina

    2009-07-01

    Full Text Available Abstract Background Long-term selection (> 45 generations for low or high juvenile body weight from a common founder population of White Plymouth Rock chickens has generated two extremely divergent lines, the LWS and HWS lines. In addition to a > 9-fold difference between lines for the selected trait, large behavioural and metabolic differences between the two lines evolved during the course of the selection. We recently compared gene expression in brain tissue from birds representing these lines using a global cDNA array analysis and the results showed multiple but small expression differences in protein coding genes. The main differentially expressed transcripts were endogenous retroviral sequences identified as avian leucosis virus subgroup-E (ALVE. Results In this work we confirm the differential ALVE expression and analysed expression and number of proviral integrations in the two parental lines as well as in F9 individuals from an advanced intercross of the lines. Correlation analysis between expression, proviral integrations and body weight showed that high ALVE levels in the LWS line were inherited and that more ALVE integrations were detected in LWS than HWS birds. Conclusion We conclude that only a few of the integrations contribute to the high expression levels seen in the LWS line and that high ALVE expression was significantly correlated with lower body weights for the females but not males. The conserved correlation between high expression and low body weight in females after 9 generations of intercrosses, indicated that ALVE loci conferring high expression directly affects growth or are very closely linked to loci regulating growth.

  5. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    Science.gov (United States)

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  6. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  7. [Retrotransposons: selfish DNA or active epigenetic players in somatic cells?].

    Science.gov (United States)

    Guidez, Fabien

    2014-01-01

    Transposable elements (TE) represent around 40% of the human genome. They are endogenous mobile DNA sequences able to jump and duplicate in the host genome. TE have long been considered as "junk" DNA but are now believed to be important regulators of gene expression by participating to the establishment of the DNA methylation profile. Recent advances in genome sequencing reveals a higher transposition frequency and TE driven gene expression in somatic cells than previously thought. As TE propagation is deleterious and may be involved in oncogenic mechanisms, host cells have developed silencing mechanisms mainly described in germinal and embryonic cells. However, somatic cells are also proned to TE transposition and use specific mechanisms involving tumor suppressor proteins including p53, Rb and PLZF. These transcription factors specifically target genomic retrotransposon sequences, histone deacetylase and DNA methylase activities, inducing epigenetic modifications related to gene silencing. Thus, these transcription factors negatively regulate TE expression by the formation of DNA methylation profil in somatic cells possibly associated with oncogenic mechanisms.

  8. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  9. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1984-06-01

    Full Text Available In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97% by aphidicolin at 10 micrograms/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30% and 90% depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90% at 100 micrograms/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 micrograms/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase alpha and a non-alpha DNA polymerase (possibly DNA polymerase beta, are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase alpha in UDS favored DNA synthesis in the intranucleosomal region.

  10. Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells

    Science.gov (United States)

    Castro-Smirnov, Fidel Antonio; Piétrement, Olivier; Aranda, Pilar; Bertrand, Jean-Rémi; Ayache, Jeanne; Le Cam, Eric; Ruiz-Hitzky, Eduardo; Lopez, Bernard S.

    2016-01-01

    Nanofibers of sepiolite, a natural silicate belonging to the clay minerals family, might constitute a potential promising nanocarrier for the non-viral transfer of bio-molecules. We show here that sepiolite nanofibers efficiently bind different types of DNA molecules through electrostatic interactions, hydrogen bonding, cation bridges, and van der Waals forces. Moreover, Fourier-transform infrared spectroscopy identified the external silanol groups as the main sites of interaction with the DNA. Furthermore, as a proof of concept, we show that sepiolite is able to stably transfer plasmid DNA into mammalian cells and that the efficiency can be optimized. Indeed, sonication of sepiolite 100-fold stimulated DNA transfection efficiency. These results open the way to the use of sepiolite-based biohybrids as a novel class of nanoplatform for gene transfer with potential clinical applications. PMID:27808269

  11. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    Directory of Open Access Journals (Sweden)

    Domenico Spadafora

    Full Text Available Due to the essential role played by mitochondrial DNA (mtDNA in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90% reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  12. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    Science.gov (United States)

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  13. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  14. Does 'Immortal DNA strand' exist in 'immortal' stem cells?

    Institute of Scientific and Technical Information of China (English)

    Linheng Li

    2007-01-01

    @@ Stem cells function to generate differentiated cells,and,at the same time,are maintained as‘immortal'cells through self-renewal.Accumulated evidence indicates that adult stem cells may be the most common precursor for cancers in adult mammalian tissue[1],and this concept is gaining increasing support[2,3].Meanwhile,this also raises the question of how stem cells,which have a much longer lifespan compared to other progenitor and mature ceils,can avoid accumulating mutations from DNA replica-tion errors.

  15. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  16. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  17. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  18. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  19. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells.

    Science.gov (United States)

    Ruhanen, Heini; Ushakov, Kathy; Yasukawa, Takehiro

    2011-12-01

    Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.

  20. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (Padduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response.

  1. Detection of DNA methylation in eucaryotic cells.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2008-01-01

    Full Text Available The methods of molecular biology allow for analyzing the methylation pattern in the whole genome and in particular genes. We differentiate methylated sequences from unmethylated ones by means of cutting the genomic template with methylation-sensitive restriction enzymes or by sodium bisulfite DNA modification. Chemical modification precedes most quantitative and qualitative PCR techniques: MS-PCR, MS-nested PCR, Real-Time PCR, QAMA, HeavyMethyl, MSHRM. Restriction enzymes, on the other hand, may be used together with PCR or hybridisation methods (Southern blot and microarrays. PCRs are conducted with primers specific for methylated and unmethylated sequences and sometimes, similarly to hybridisation techniques, with specifically labeled probes or dyes intercalating to double-stranded nucleic acids. The most advanced methylation detection techniques (MALDI-TOF MS and HPLC significantly reduce the amount of biological material used for tests, but they require specialist equipment.

  2. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Science.gov (United States)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  3. Cell and molecular biology of DNA methyltransferase 1.

    Science.gov (United States)

    Mohan, K Naga; Chaillet, J Richard

    2013-01-01

    The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.

  4. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  5. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  6. Detection of DNA damage in individual cells by flow cytometric analysis using anti-DNA monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Roswell Park Memorial Institute, Buffalo, NY (USA))

    1987-06-01

    A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.

  7. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco, CA (USA). Lab. of Radiobiology)

    1989-11-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G{sub 2} chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author).

  8. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  9. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    Directory of Open Access Journals (Sweden)

    Sun X

    2012-06-01

    Full Text Available Xun Sun, Simu Chen, Jianfeng Han, Zhirong ZhangKey Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of ChinaBackground: To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG and a series of its mannosylated derivatives.Methods: PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs using flow cytometry.Results: PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.Conclusion: These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.Keywords: dendritic cells, DCs, mannose, polyethyleneimine, PEI, gene delivery

  10. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or near-dip

  11. Detection of meiotic DNA breaks in mouse testicular germ cells.

    Science.gov (United States)

    Qin, Jian; Subramanian, Jaichandar; Arnheim, Norman

    2009-01-01

    The study of location and intensity of double-strand breaks (DSBs) in mammalian systems is more challenging than in yeast because, unlike yeast, the progression through meiosis is not synchronous and only a small fraction of all testis cells are actually at the stage where DSB formation is initiated. We devised a quantitative approach that is sensitive enough to detect the position of rare DNA strand breaks in mouse germ cell-enriched testicular cell populations. The method can detect DNA breaks at any desired location in the genome but is not specific for DSBs-overhangs, nicks, or gaps with a free 3' OH group are also detected. The method was successfully used to compare testicular cells from mouse strains that possess or lack an active recombination hot spot at the H2-Ea gene. Breaks that were due to meiotic hot spot activity could be distinguished from the background of DNA breaks. This highly sensitive approach could be used to study other biological processes where rare DNA breaks are generated.

  12. Involvement of proliferating cell nuclear antigen (Cyclin) in DNA replication in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, M.; Tan, E.M.; Ryoji, M.

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase /delta/ but not the other DNA polymerases in vitro. The authors injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase /delta/ is necessary for plasmid replication in vivo, Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase /alpha/. Anti-DNA polymerase /alpha/ alone inhibited plasmid replication by 63%. Thus, DNA ploymerase /alpha/ is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase /alpha/ antibody blocked 73% of replication. They concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase /delta/. In addition, they obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymearse /alpha/, that the structure of DNA polymerase /alpha/ holoenzyme for chromosome replication is significantly different from that for plasmid replication.

  13. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  14. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  15. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    Directory of Open Access Journals (Sweden)

    Paolo Cremaschi

    Full Text Available Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  16. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    Science.gov (United States)

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  17. Analysis of human T-cell lymphotropic virus in CD25+ anaplastic large cell lymphoma in children.

    Science.gov (United States)

    Gualco, Gabriela; Chioato, Lucimara; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-07-01

    Anaplastic large cell lymphoma (ALCL) is recognized as 2 distinct diseases: anaplastic lymphoma kinase (ALK)+ ALCL and ALK- ALCL. ALK+ ALCL occurs in younger patients and has a better prognosis. Human T-cell lymphotropic virus (HTLV-1) is linked to the development of adult T-cell leukemia/lymphoma (ATLL), which frequently expresses CD25. CD25 is significantly expressed in childhood ALCL. In Brazil, HTLV-1 infection is endemic, and vertical transmission is responsible for spread to children. Of HTLV-1 carriers, 90% or more remain asymptomatic. Some cases of adult HTLV-1-related lymphomas have characteristics of ALCL but are considered CD30+ ATLL subtypes. No similar cases have been described in children. We analyzed 33 cases of pediatric ALCL, CD25+ and CD25-, for proviral HTLV-1 DNA. All cases corresponded to the common histologic ALCL type and were CD30+ in virtually all neoplastic cells. ALK expression was observed in 31 (94%) of 33 cases; CD25 was positive in 27 (82%), including 1 ALK- ALCL case. There was a strong positive correlation between ALK and CD25 expression. None of the cases showed proviral HTLV-1 DNA. ALCL in children has no relationship with HTLV-1; the frequent CD25 expression must be explained by a mechanism different from that in ATLL.

  18. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott;

    2014-01-01

    by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional......Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial...... DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly...

  19. Cell-free circulating tumor DNA in cancer

    Institute of Scientific and Technical Information of China (English)

    Zhen Qin; Vladimir A Ljubimov; Cuiqi Zhou; Yunguang Tong; Jimin Liang

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason under-lying difculties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive“liquid biopsy”from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalized genetic and epigenetic alterations of the entire tumor. In addition, ctDNA has the potential to accurately monitor tumor burden and treatment response, while also being able to monitor minimal residual disease, reducing the need for harmful adjuvant chemotherapy and allowing more rapid detection of relapse. There are still many challenges that need to be overcome prior to this biomarker getting wide adoption in the clinical world, including optimization, standardization, and large multicenter trials.

  20. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  1. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  2. A wild-type DNA ligase I gene is expressed in Bloom's syndrome cells.

    OpenAIRE

    Petrini, J H; Huwiler, K G; Weaver, D T

    1991-01-01

    Alteration of DNA ligase I activity is a consistent biochemical feature of Bloom's syndrome (BS) cells. DNA ligase I activity in BS cells either is reduced and abnormally thermolabile or is present in an anomalously dimeric form. To assess the role of DNA ligase function in the etiology of BS, we have cloned the DNA ligase I cDNA from normal human cells by a PCR strategy using degenerate oligonucleotide primers based on conserved regions of the Saccharomyces cerevisiae and Schizosaccharomyces...

  3. Functionalization of DNA Nanostructures for Cell Signaling Applications

    Science.gov (United States)

    Pedersen, Ronnie O.

    Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by

  4. Equine fetal sex determination using circulating cell-free fetal DNA (ccffDNA).

    Science.gov (United States)

    de Leon, Priscila Marques Moura; Campos, Vinicius Farias; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2012-02-01

    In this study, polymerase chain reaction (PCR) reamplification of the first PCR product (2nd-PCR) and a qPCR assay were used to detect the sex determining region Y (SRY) gene from circulating cell-free fetal DNA (ccffDNA) in blood plasma of pregnant mares to determine fetal sex. The ccffDNA was isolated from plasma of 20 Thoroughbred mares (5-13 y old) in the final 3 mo of pregnancy (fetal sex was verified after foaling). For controls, plasma from two non-pregnant mares and two virgin mares were used, in addition to the non-template control. The 182 bp nucleotide sequence corresponding to the SRY-PCR product was confirmed by DNA sequencing. Based on SRY/PCR, 8 of 11 male and 9 of 9 female fetuses were correctly identified, resulting in a sensitivity of 72.7% (for male fetuses) and an overall accuracy of 85%. Furthermore, using SRY/2nd-PCR and qPCR techniques, sensitivity and accuracy were 90.9 and 95%, respectively. In conclusion, this study is apparently the first report of fetal sex determination in mares using ccffDNA.

  5. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    Energy Technology Data Exchange (ETDEWEB)

    Lushaj, Entela B., E-mail: lushaj@surgery.wisc.edu [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States); Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States)

    2012-06-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  6. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different pha

  7. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  8. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  9. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tangliang Li

    2016-06-01

    Full Text Available Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal and progenitor progenies (differentiation, which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  10. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    Full Text Available BACKGROUND: Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts. CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were

  11. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Panicucci, R.; Heal, R.; Laderoute, K.; Cowan, D.; McClelland, R.A.; Rauth, A.M.

    1989-04-01

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 is reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.

  12. DNA methylation programming and reprogramming in primate embryonic stem cells.

    Science.gov (United States)

    Cohen, Netta Mendelson; Dighe, Vikas; Landan, Gilad; Reynisdóttir, Sigrún; Palsson, Arnar; Mitalipov, Shoukhrat; Tanay, Amos

    2009-12-01

    DNA methylation is an important epigenetic mechanism, affecting normal development and playing a key role in reprogramming epigenomes during stem cell derivation. Here we report on DNA methylation patterns in native monkey embryonic stem cells (ESCs), fibroblasts, and ESCs generated through somatic cell nuclear transfer (SCNT), identifying and comparing epigenome programming and reprogramming. We characterize hundreds of regions that are hyper- or hypomethylated in fibroblasts compared to native ESCs and show that these are conserved in human cells and tissues. Remarkably, the vast majority of these regions are reprogrammed in SCNT ESCs, leading to almost perfect correlation between the epigenomic profiles of the native and reprogrammed lines. At least 58% of these changes are correlated in cis to transcription changes, Polycomb Repressive Complex-2 occupancy, or binding by the CTCF insulator. We also show that while epigenomic reprogramming is extensive and globally accurate, the efficiency of adding and stripping DNA methylation during reprogramming is regionally variable. In several cases, this variability results in regions that remain methylated in a fibroblast-like pattern even after reprogramming.

  13. Circular Herpesvirus sylvilagus DNA in spleen cells of experimentally infected cottontail rabbits.

    Science.gov (United States)

    Medveczky, P; Kramp, W J; Sullivan, J L

    1984-01-01

    Cottontail rabbits (Sylvilagus floridanus) were infected with Herpesvirus sylvilagus, and spleen cells were analyzed for the presence of virus-specific, covalently closed circular, and linear DNA molecules by a simple electrophoretic technique, followed by transfer to nitrocellulose filters and hybridization with cloned viral DNA (Gardella et al., J. Virol. 50:248-254, 1984). Approximately 0.2 copies per cell of circular DNA and 0.2 copies per cell of linear DNA were detected by hybridization with a cloned viral DNA fragment. The size of the viral DNA was estimated at ca. 158 kilobase pairs. Restriction endonuclease patterns suggested structural similarities to cottontail herpesvirus DNA. Images PMID:6092696

  14. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients.

    Science.gov (United States)

    Addai, Amma B; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K; Pratap, Siddharth; Dash, Chandravanu

    2015-04-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4(+) T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM-100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4(+) T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4(+) T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4(+) T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients.

  15. Bleomycin-induced DNA synthesis in a cell-free system using a permeable mouse sarcoma cell Extract.

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1987-10-01

    Full Text Available To investigate factors involved in excision repair DNA synthesis, a soluble extract was prepared from permeable mouse sarcoma (SR-C3H/He cells by homogenization and ultracentrifugation. DNA synthesis measured by using native calf thymus DNA as the template-primer and the extract as the polymerase source showed low activity. The DNA synthesis was enhanced more than ten-fold by the addition of an appropriate concentration of bleomycin, a radiomimetic DNA-damaging drug. Using selective inhibitors of DNA polymerases, it was shown that the DNA polymerase involved in the bleomycin-induced DNA synthesis was DNA polymerase beta. In addition to DNA polymerase beta, an exonuclease which converts bleomycin-damaged DNA into suitable template-primers for repair DNA synthesis appeared to be present in the permeable cell extract.

  16. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.

  17. RNA cell typing and DNA profiling of mixed samples: can cell types and donors be associated?

    Science.gov (United States)

    Harteveld, Joyce; Lindenbergh, Alexander; Sijen, Titia

    2013-09-01

    Forensic samples regularly involve mixtures, which are readily recognised in forensic analyses. Combined DNA and mRNA profiling is an upcoming forensic practice to examine donors and cell types from the exact same sample. From DNA profiles individual genotypes may be deconvoluted, but to date no studies have established whether the cell types identified in corresponding RNA profiles can be associated with individual donors. Although RNA expression levels hold many variables from which an association may not be expected, proof of concept is important to forensic experts who may be cross examined about this possible correlation in court settings. Clearly, the gender-specificity of certain body fluids (semen, vaginal mucosa, menstrual secretion) can be instructive. However, when donors of the same gender or gender-neutral cell types are involved, alternatives are needed. Here we analyse basic two-component mixtures (two cell types provided by different donors) composed of six different cell types, and assess whether the heights of DNA and RNA peaks may guide association of donor and cell type. Divergent results were obtained; for some mixtures RNA peak heights followed the DNA results, but for others the major DNA component did not present higher RNA peaks. Also, variation in mixture ratios was observed for RNA profiling replicates and when different donor couples gave the same two body fluids. As sample degradation may affect the two nucleic acids and/or distinct cell types differently (and thus influence donor and cell type association), mixtures were subjected to elevated temperature or UV-light. Variation in DNA and RNA stability was observed both between and within cell types and depended on the method inducing degradation. Taken together, we discourage to associate cell types and donors from peak heights when performing RNA and DNA profiling.

  18. File list: Oth.ALL.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.05.DNA-RNA_hybrids.AllCell.bed ...

  19. File list: Oth.ALL.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.10.DNA-RNA_hybrids.AllCell.bed ...

  20. File list: Oth.ALL.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.20.DNA-RNA_hybrids.AllCell.bed ...

  1. File list: Oth.ALL.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.50.DNA-RNA_hybrids.AllCell.bed ...

  2. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  3. Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Caulobacter crescentus.

    OpenAIRE

    1990-01-01

    Chromosome replication in the asymmetrically dividing bacteria Caulobacter crescentus is discontinuous with the new, motile swarmer cell undergoing an obligatory presynthetic gap period (G1 period) of 60 min before the initiation of DNA synthesis and stalk formation. To examine the regulation of the cell division cycle at the molecular level, we have cloned the DNA chain elongation gene dnaC from a genomic DNA library constructed in cosmid vector pLAFR1-7. To ensure that the cloned sequence c...

  4. Preparation of cDNA libraries from vascular cells.

    Science.gov (United States)

    Lieb, M E; Taubman, M B

    1999-01-01

    The vast majority of past and present efforts in the molecular cloning of expressed sequences involve isolation of clones from cDNA libraries constructed in bacteriophage lambda (1,2). As discussed in Chapter 6 , screening these cDNA libraries using labeled probes remains the most straightforward method to isolate full length cDNAs for which some partial sequence information is known. Although the availability of high quality reagents and kits over the past decade has made the process of library construction increasingly straightforward, generation of high-quality libraries is a task that still requires a fair amount of dedicated effort. Because alternative PCR-based cloning strategies have become increasingly popular alternatives to cDNA library screening, it is useful to consider the advantages and disadvantages of each strategy before embarking on a project to construct a cDNA library (Table 1). In our opinion, it is worthwhile to construct a cDNA library when the transcript of interest is not exceedingly rare (i.e., can readily be detected by Northern blot analysis of total RNA), when multiple cDNAs will need to be cloned over a period of time, and in situations where occasional mutations can not be tolerated (for example, if the cDNA is to be expressed in mammalian cells to examine function). In situations where the transcript of interest is expressed at exceedingly low levels, or when only a single cDNA needs to be cloned, a PCR-based strategy should be considered. When the tissue source is precious (such as a unique clinical specimen), successful construction of a phage library provides a resource that can be amplified and used for multiple cloning projects over many years, but runs the risk of consuming the available RNA if the library construction fails. Table 1 Comparison of Relative Advantages of cDNA Cloning from Lambda Phage Libraries by Plaque Hybridization Compared to Newer PCR- Based Strategies Lambda phage cDNA library PCR-based strategy Freedom

  5. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  6. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  7. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  8. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair.

    Science.gov (United States)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-01

    Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.

  9. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle

    NARCIS (Netherlands)

    Shaltiel, Indra A.; Krenning, Lenno; Bruinsma, Wytse; Medema, René H.

    2015-01-01

    Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cyc

  10. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  11. Senescence of primary amniotic cells via oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    Full Text Available OBJECTIVE: Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB and preterm prelabor rupture of the membranes (pPROM; however, the precise mechanistic role of reactive oxygen species (ROS in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE, a predicted cause of pregnancy complications, on human amnion epithelial cells. METHODS: Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2'7'-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1, phospho-p38 (P-p38 MAPK, and p19(arf. Expression of senescence-associated β-galectosidase (SAβ-gal was used to confirm cell ageing in situ. RESULTS: ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min and significantly (p<0.01 at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19(Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19(Arf were not significantly affected by NAC. CONCLUSIONS: The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB.

  12. DNA methylation supports intrinsic epigenetic memory in mammalian cells.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available We have investigated the role of DNA methylation in the initiation and maintenance of silenced chromatin in somatic mammalian cells. We found that a mutated transgene, in which all the CpG dinucleotides have been eliminated, underwent transcriptional silencing to the same extent as the unmodified transgene. These observations demonstrate that DNA methylation is not required for silencing. The silenced CpG-free transgene exhibited all the features of heterochromatin, including silencing of transcriptional activity, delayed DNA replication, lack of histone H3 and H4 acetylation, lack of H3-K4 methylation, and enrichment in tri-methyl-H3-K9. In contrast, when we tested for transgene reactivation using a Cre recombinase-mediated inversion assay, we observed a marked difference between a CpG-free and an unmodified transgene: the CpG-free transgene resumed transcription and did not exhibit markers of heterochromatin whereas the unmodified transgene remained silenced. These data indicate that methylation of CpG residues conferred epigenetic memory in this system. These results also suggest that replication delay, lack of histone H3 and H4 acetylation, H3-K4 methylation, and enrichment in tri-methyl-H3-K9 are not sufficient to confer epigenetic memory. We propose that DNA methylation within transgenes serves as an intrinsic epigenetic memory to permanently silence transgenes and prevent their reactivation.

  13. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  14. Adenovirus DNA replication in vitro is stimulated by RNA from uninfected HeLa cells

    NARCIS (Netherlands)

    Vliet, P.C. van der; Dam, D. van; Kwant, M.M.

    1984-01-01

    Adenovirus DNA replication was studied in a partially reconstituted system consisting of purified viral proteins (DNA-binding protein, precursor terminal protein and Ad DNA polymerase) and a nuclear extract from uninfected HeLa cells. Optimal DNA replication required the presence of a heat-stable, r

  15. The novel immunosuppressive protein kinase C inhibitor sotrastaurin has no pro-viral effects on the replication cycle of hepatitis B or C virus.

    Directory of Open Access Journals (Sweden)

    Thomas von Hahn

    Full Text Available The pan-protein kinase C (PKC inhibitor sotrastaurin (AEB071 is a novel immunosuppressant currently in phase II trials for immunosuppression after solid organ transplantation. Besides T-cell activation, PKC affects numerous cellular processes that are potentially important for the replication of hepatitis B virus (HBV and hepatitis C virus (HCV, major blood-borne pathogens prevalent in solid organ transplant recipients. This study uses state of the art virological assays to assess the direct, non-immune mediated effects of sotrastaurin on HBV and HCV. Most importantly, sotrastaurin had no pro-viral effect on either HBV or HCV. In the presence of high concentrations of sotrastaurin, well above those used clinically and close to levels where cytotoxic effects become detectable, there was a reduction of HCV and HBV replication. This reduction is very likely due to cytotoxic and/or anti-proliferative effects rather than direct anti-viral activity of the drug. Replication cycle stages other than genome replication such as viral cell entry and spread of HCV infection directly between adjacent cells was clearly unaffected by sotrastaurin. These data support the evaluation of sotrastaurin in HBV and/or HCV infected transplant recipients.

  16. The novel immunosuppressive protein kinase C inhibitor sotrastaurin has no pro-viral effects on the replication cycle of hepatitis B or C virus.

    Science.gov (United States)

    von Hahn, Thomas; Schulze, Andreas; Chicano Wust, Ivan; Heidrich, Benjamin; Becker, Thomas; Steinmann, Eike; Helfritz, Fabian A; Rohrmann, Katrin; Urban, Stephan; Manns, Michael P; Pietschmann, Thomas; Ciesek, Sandra

    2011-01-01

    The pan-protein kinase C (PKC) inhibitor sotrastaurin (AEB071) is a novel immunosuppressant currently in phase II trials for immunosuppression after solid organ transplantation. Besides T-cell activation, PKC affects numerous cellular processes that are potentially important for the replication of hepatitis B virus (HBV) and hepatitis C virus (HCV), major blood-borne pathogens prevalent in solid organ transplant recipients. This study uses state of the art virological assays to assess the direct, non-immune mediated effects of sotrastaurin on HBV and HCV. Most importantly, sotrastaurin had no pro-viral effect on either HBV or HCV. In the presence of high concentrations of sotrastaurin, well above those used clinically and close to levels where cytotoxic effects become detectable, there was a reduction of HCV and HBV replication. This reduction is very likely due to cytotoxic and/or anti-proliferative effects rather than direct anti-viral activity of the drug. Replication cycle stages other than genome replication such as viral cell entry and spread of HCV infection directly between adjacent cells was clearly unaffected by sotrastaurin. These data support the evaluation of sotrastaurin in HBV and/or HCV infected transplant recipients.

  17. Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny.

    Science.gov (United States)

    Lee, W; Johnson, J; Gough, D J; Donoghue, J; Cagnone, G L M; Vaghjiani, V; Brown, K A; Johns, T G; St John, J C

    2015-02-26

    Mitochondrial DNA (mtDNA) copy number is strictly regulated during differentiation so that cells with a high requirement for ATP generated through oxidative phosphorylation have high mtDNA copy number, whereas those with a low requirement have few copies. Using immunoprecipitation of DNA methylation on 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), which distinguish between de novo DNA methylation and demethylation, respectively, we set out to determine whether DNA methylation at exon 2 of the human mtDNA-specific polymerase (DNA polymerase gamma A (POLGA)) regulates cell-specific mtDNA copy number in highly proliferative and terminally differentiated cells. Highly proliferative cancer and pluripotent and multipotent cells possessed low mtDNA copy number and were highly methylated at exon 2 of POLGA in contrast to post-mitotic cells. Unlike neural stem cells, cancer cells were unable to differentiate and remained extensively DNA methylated at exon 2 of POLGA. However, mtDNA depletion of cancer cells reduced DNA methylation at exon 2 of POLGA as they replenished mtDNA to form tumours in mice. Glioblastoma cells treated with the DNA demethylation agent 5-azacytidine over 28 days of astrocyte-induced differentiation demethylated exon 2 of POLGA leading to increased mtDNA copy number and expression of the astrocyte endpoint marker glial fibrillary acidic protein (GFAP). However, the demethylation agent vitamin C (VitC) was unable to sustain increased mtDNA copy number and differentiation, as was the case when VitC was withdrawn after short-term treatment. These data demonstrate that DNA demethylation of POLGA is an essential regulator of mtDNA copy number and cellular fate and that cancer cells are only able to modulate DNA methylation of POLGA and mtDNA copy number in the presence of a DNA demethylation agent that inhibits de novo methyltransferase 1 activity.

  18. Mitochondrial DNA Ligase Is Dispensable for the Viability of Cultured Cells but Essential for mtDNA Maintenance*

    Science.gov (United States)

    Shokolenko, Inna N.; Fayzulin, Rafik Z.; Katyal, Sachin; McKinnon, Peter J.; Wilson, Glenn L.; Alexeyev, Mikhail F.

    2013-01-01

    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ0 phenotype. PMID:23884459

  19. Mitochondrial DNA ligase is dispensable for the viability of cultured cells but essential for mtDNA maintenance.

    Science.gov (United States)

    Shokolenko, Inna N; Fayzulin, Rafik Z; Katyal, Sachin; McKinnon, Peter J; Wilson, Glenn L; Alexeyev, Mikhail F

    2013-09-13

    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ(0) phenotype.

  20. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    Science.gov (United States)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.

  1. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  2. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  3. File list: Oth.Unc.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.05.DNA-RNA_hybrids.AllCell.bed ...

  4. File list: Oth.Unc.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.50.DNA-RNA_hybrids.AllCell.bed ...

  5. File list: Oth.YSt.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.20.DNA-RNA_hybrids.AllCell.bed ...

  6. File list: Oth.YSt.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.50.DNA-RNA_hybrids.AllCell.bed ...

  7. File list: Oth.YSt.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.05.DNA-RNA_hybrids.AllCell.bed ...

  8. File list: Oth.YSt.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.10.DNA-RNA_hybrids.AllCell.bed ...

  9. File list: Oth.Unc.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.20.DNA-RNA_hybrids.AllCell.bed ...

  10. File list: Oth.Unc.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.10.DNA-RNA_hybrids.AllCell.bed ...

  11. Absolute first trimester cell-free DNA levels and their associations with adverse pregnancy outcomes

    NARCIS (Netherlands)

    Thurik, Florentine F; Lamain-de Ruiter, Marije; Javadi, Ahmad; Kwee, Anneke; Woortmeijer, Heleen; Page-Christiaens, Godelieve C M L; Franx, Arie; van der Schoot, C Ellen; Koster, Maria P H

    2016-01-01

    OBJECTIVE: To study associations of first trimester cell-free fetal DNA levels (in this paper referred to as cell-free placental DNA (cfpDNA) levels) and preeclampsia (PE), pregnancy-induced hypertension (PIH), gestational diabetes (GDM) and spontaneous preterm birth (sPB). METHOD: A nested case-con

  12. Crosslinking of DNA repair and replication proteins to DNA in cells treated with 6-thioguanine and UVA.

    Science.gov (United States)

    Gueranger, Quentin; Kia, Azadeh; Frith, David; Karran, Peter

    2011-07-01

    The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.

  13. Studies on bleomycin-induced repair DNA synthesis in permeable mouse ascites sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Mori,Shigeru

    1989-04-01

    Full Text Available To study the mechanism of DNA excision repair, a DNA repair system employing permeable mouse sarcoma (SR-C3H/He cells was established and characterized. SR-C3H/He cells were permeabilized with a 0.0175% Triton X-100 solution. The permeable cells were treated with 1 mM ATP and 0.11 mM bleomycin, and then washed thoroughly to remove ATP and bleomycin. Repair DNA synthesis occurred in the bleomycin-damaged, permeable SR-C3H/He cells when incubated with ATP and four deoxyribonucleoside triphosphates. The repair nature of the DNA synthesis was confirmed by the BrdUMP density shift technique, and by the reduced sensitivity of the newly synthesized DNA to Escherichia coli exonuclease III. The DNA synthesis was optimally enhanced by addition of 0.08 M NaCl. Studies using selective inhibitors of DNA synthesis showed that aphidicolin-sensitive DNA polymerase (DNA polymerase alpha and/or delta and DNA polymerase beta were involved in the repair process. The present DNA repair system is thought to be useful to study nuclear DNA damage by bleomycin, removal of the damaged ends by an exonuclease, repair DNA synthesis by DNA polymerases and repair patch ligation by DNA ligase(s.

  14. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos.

    Science.gov (United States)

    Encalada, S E; Martin, P R; Phillips, J B; Lyczak, R; Hamill, D R; Swan, K A; Bowerman, B

    2000-12-15

    In early Caenorhabditis elegans embryos, asymmetric cell divisions produce descendants with asynchronous cell cycle times. To investigate the relationship between cell cycle regulation and pattern formation, we have identified a collection of embryonic-lethal mutants in which cell divisions are delayed and cell fate patterns are abnormal. In div (for division delayed) mutant embryos, embryonic cell divisions are delayed but remain asynchronous. Some div mutants produce well-differentiated cell types, but they frequently lack the endodermal and mesodermal cell fates normally specified by a transcriptional activator called SKN-1. We show that mislocalization of PIE-1, a negative regulator of SKN-1, prevents the specification of endoderm and mesoderm in div-1 mutant embryos. In addition to defects in the normally asymmetric distribution of PIE-1, div mutants also exhibit other losses of asymmetry during early embryonic cleavages. The daughters of normally asymmetric divisions are nearly equal in size, and cytoplasmic P-granules are not properly localized to germline precursors in div mutant embryos. Thus the proper timing of cell division appears to be important for multiple aspects of asymmetric cell division. One div gene, div-1, encodes the B subunit of the DNA polymerase alpha-primase complex. Reducing the function of other DNA replication genes also results in a delayed division phenotype and embryonic lethality. Thus the other div genes we have identified are likely to encode additional components of the DNA replication machinery in C. elegans.

  15. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  16. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  17. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    Directory of Open Access Journals (Sweden)

    Yuh Shiwa

    Full Text Available Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03 when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50 when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14 by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45 and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17. These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  18. Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics

    Directory of Open Access Journals (Sweden)

    Matthias Farlik

    2015-03-01

    Full Text Available Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS assay that enables DNA methylation mapping in very small cell populations (μWGBS and single cells (scWGBS. Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples.

  19. Extrachromosomal recombination in vaccinia-infected cells requires a functional DNA polymerase participating at a level other than DNA replication.

    Science.gov (United States)

    Colinas, R J; Condit, R C; Paoletti, E

    1990-12-01

    Homologous recombination was measured in vaccinia-infected cells cotransfected with two plasmid recombination substrates. One plasmid contains a vaccinia protein lacZ coding region bearing a 1.1 kb 3' terminal deletion while the other plasmid contains a non-promoted lacZ coding region bearing a 1.1 kb 5' terminal deletion. Homologous recombination occurring between the 825 bp of lacZ common to both plasmids regenerates a functional lacZ gene from which B-galactosidase expression was measured. The entire 3 kb lacZ gene was used as a positive control. A panel of thermosensitive mutants was screened in cells either transfected with the positive control plasmid or cotransfected with the recombination substrates. A DNA - mutant, ts42, known to map to the viral DNA polymerase gene was found to be defective in recombination. Significantly, other DNA - mutants, ts17 or ts25, or other DNA polymerase mutants did not exhibit a defect in recombination similar to ts42. Inhibitors of viral DNA synthesis did not uniformly affect recombination. Cytosine arabinoside and aphidicolin inhibited B-galactosidase expression from the recombination substrates but not from the positive control plasmid, whereas hydroxyurea enhanced expression from both. Marker rescue with the cloned wildtype DNA polymerase gene repaired the defect in ts42. Southern and western analyses demonstrated that B-galactosidase activity was consistent with a recombined lacZ gene and unit size 116 kDa protein. Measurement of plasmid and viral DNA replication in cells infected with the different DNA - mutants indicated that recombination was independent of plasmid and viral DNA replication. Together these results suggest that the vaccinia DNA polymerase participates in homologous recombination at a level other than that of DNA replication.

  20. Swelling and Replicative DNA Synthesis of Detergent-treated Mouse Ascites Sarcoma Cells

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1978-04-01

    Full Text Available Previous investigation showed that mouse ascites sarcoma cells permeabilized with appropriate concentrations of detergents (Triton X-100, Nonidet P-40 and Brij 58 had high replicative DNA synthesis in the presence of the four deoxyribonucleoside triphosphates, ATP, Mg2+ and proper ionic environment. The present study showed the optimum detergent concentration for DNA synthesis coincided closely with the minimum detergent concentration for inducing cell swelling. Phase contrast microscopy and electron microscopy of Triton-permeabilized cells showed the characteristic swollen cytoplasms and nucleus. Autoradiographic study showed that the DNA synthesis in permeable cells was confined to the nucleus. Cell viability and [3H] deoxythymidine uptake were impaired at much lower concentrations of Triton X-100 than the optimum concentration for in vitro DNA synthesis. In Triton-permeabilized cells, the minimum Triton concentration that produced cell swelling also seemed to produce high repliative DNA synthesis, which reflects the in vivo state of DNA synthesis.

  1. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells.

  2. Production of anti-double-stranded DNA antibodies in activated lymphocyte derived DNA induced lupus model was dependent on CD4+ T cells.

    Science.gov (United States)

    Wen, Z; Xu, L; Xu, W; Xiong, S

    2012-04-01

    Our previous study demonstrated that activated lymphocyte derived DNA (ALD-DNA) could function as an autoantigen to induce production of anti-double-stranded DNA (anti-dsDNA) antibodies in syngeneic BALB/c mice. Here we carefully evaluated the potential role of T cells in the induction of anti-dsDNA antibody. We demonstrated that ALD-DNA could effectively induce production of anti-dsDNA antibodies in vivo and in vitro. In contrast, ALD-DNA could not induce the generation of anti-dsDNA antibodies in nude mice. We further showed that in vivo depletion of CD3(+) T cells blocked the induction of anti-dsDNA antibodies in BALB/c mice. Notably, we demonstrated that CD4(+) but not CD8(+) T cells conferred ALD-DNA to induce anti-dsDNA antibodies. Finally, we demonstrated that adoptive transfer of CD4(+) T cells could rescue ALD-DNA induced anti-dsDNA antibodies in nude mice. Our results suggested that T helper cells were required for ALD-DNA to induce anti-dsDNA antibodies. These findings could further our understanding about the immunogenic properties of DNA and throw new light on SLE pathogenesis.

  3. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin;

    2011-01-01

    in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls......To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...

  4. Asymmetric cell division and template DNA co-segregation in cancer stem cells

    Directory of Open Access Journals (Sweden)

    Sharon R Pine

    2014-08-01

    Full Text Available During tissue homeostasis, normal stem cells self-renew and repopulate the diverse cell types found within the tissue via a series of carefully controlled symmetric and asymmetric cell divisions. The notion that solid tumors comprise a subset of cancer stem cells with dysregulated self-renewal and excessive symmetric cell divisions has led to numerous studies aimed to elucidate the mechanisms regulating asymmetric cell division under steady-state conditions, during stem cell expansion, and in cancer. In this perspective, we focus on a type of asymmetry that can be established during asymmetric cell division, called non-random co-segregation of template DNA, which has been identified across numerous species, cell types and cancers. We discuss the role of p53 loss in maintaining self-renewal in both normal and malignant cells. We then review our current knowledge of the mechanisms underlying co-segregation of template DNA strands and the stem cell pathways associated with it in normal and cancer stem cells.

  5. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA.

    Science.gov (United States)

    Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-11-01

    The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.

  6. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  7. Human Bone Marrow Mesenchymal Stem Cells Regulate Biased DNA Segregation in Response to Cell Adhesion Asymmetry

    Directory of Open Access Journals (Sweden)

    Delphine Freida

    2013-11-01

    Full Text Available Biased DNA segregation is a mitotic event in which the chromatids carrying the original template DNA strands and those carrying the template copies are not segregated randomly into the two daughter cells. Biased segregation has been observed in several cell types, but not in human mesenchymal stem cells (hMSCs, and the factors affecting this bias have yet to be identified. Here, we have investigated cell adhesion geometries as a potential parameter by plating hMSCs from healthy donors on fibronectin-coated micropatterns. On symmetric micropatterns, the segregation of sister chromatids to the daughter cells appeared random. In contrast, on asymmetric micropatterns, the segregation was biased. This sensitivity to asymmetric extracellular cues was reproducible in cells from all donors but was not observed in human skin-derived fibroblasts or in a fibroblastic cell line used as controls. We conclude that the asymmetry of cell adhesion is a major factor in the regulation of biased DNA segregation in hMSCs.

  8. DNA asymmetry in stem cells - immortal or mortal?

    Science.gov (United States)

    Yadlapalli, Swathi; Yamashita, Yukiko M

    2013-09-15

    The immortal strand hypothesis proposes that stem cells retain a template copy of genomic DNA (i.e. an 'immortal strand') to avoid replication-induced mutations. An alternative hypothesis suggests that certain cells segregate sister chromatids non-randomly to transmit distinct epigenetic information. However, this area of research has been highly controversial, with conflicting data even from the same cell types. Moreover, historically, the same term of 'non-random sister chromatid segregation' or 'biased sister chromatid segregation' has been used to indicate distinct biological processes, generating a confusion in the biological significance and potential mechanism of each phenomenon. Here, we discuss the models of non-random sister chromatid segregation, and we explore the strengths and limitations of the various techniques and experimental model systems used to study this question. We also describe our recent study on Drosophila male germline stem cells, where sister chromatids of X and Y chromosomes are segregated non-randomly during cell division. We aim to integrate the existing evidence to speculate on the underlying mechanisms and biological relevance of this long-standing observation on non-random sister chromatid segregation.

  9. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  10. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  11. Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase

    Directory of Open Access Journals (Sweden)

    Stenerlöw Bo

    2007-10-01

    Full Text Available Abstract Background Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood. Results In this report we demonstrate that long single-stranded DNA (ssDNA ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times ≥ 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G1-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs (catalytic subunit of DNA-PK inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE, no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i. e., lysis at 50°C are used. Conclusion We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required.

  12. DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells.

    Science.gov (United States)

    Deng, Xuefeng; Xu, Peng; Zou, Wei; Shen, Weiran; Peng, Jianxin; Liu, Kaiyu; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-01-01

    Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest.

  13. Comparison of DNA double—strand breaks induced by 16O8+ in deproteinized DNA and intact cells

    Institute of Scientific and Technical Information of China (English)

    ZhouGuang-Ming; GaoQing-Xiang; 等

    1998-01-01

    The yield of DNA double-strand breaks(DSBs) is sure to be influenced by the environment around DNA molecule.Inverse pulsed-field gel electrophoresis(PIGE)has been applied to compared the sensitivity of B16 cells and their DNA in DSBs induced by 75MeV/u 16O8+ beam.Results show that the percentages of DNA released from the plug(PR)in both kinds of the samples increase with the dose and approach a similar quasi-threshold of about 81%.A simple new equation was presented to calculated the break level of DNA molecules.Within a certain dose,the relationship between the break level and the dose is linear.THe yield of DSBs in deproteinized DNA was 1.11DSBs/100Mbp/Gy,while that in intact cells was 0.60DSBs/100Mbp/Gy.it is testified that deproteinized DNA is more sensitive to oxygen ions irradiation than intact cells.

  14. Fluorometric analysis of the formation and repair of DNA breaks in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N.I.; Proskuryakov, S.Ya.; Ivannik, B.P.; Kutmin, A.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the dependence of the fluorescence of ethidium bromide upon NaOH concentration after staining of single- and double-strand DNA in cell lysates was demonstrated. The method of fluorometry was used to study the dose dependence of a change in the share of double-stranded DNA in the irradiated thymocytes and Ehrlich ascites carcinoma cells which permitted to determine the appearance and repair of DNA breaks in these cells.

  15. Detección proviral de HTLV-1 mediante reacción en cadena de la polimerasa (PCR)

    OpenAIRE

    Sevilla, Carlos; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Alarcón, Jorge; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Huiza, Alina; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Gutiérrez, César; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Ñavincopa, Marcos; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Cornejo, William; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Cáceres, Abraham; D. A. Microbiología Médica, Facultad de Medicina, UNMSM; Centro de Biotecnología, Universidad Iberoamericana de Ciencias y Tecnología; Laboratorio Entomología Médica, Sección Parasitología, Instituto de Salud Pública; Laboratorio de Entomología Médica, Laboratorio de Referencia Regional, Gerencia Regional de Salud La Libertad; Dirección Ejecutiva de Salud Ambiental, Sub Región de Salud “Luciano Castillo Colonna”, DIRESA Piura.; Tejada, Abelardo; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Romaní, Franco; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Mori, Nicanor; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Wong, Paolo; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Huamán, Víctor; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Vásquez, Rubén; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Tejada, Romina; D.A. Microbiología Médica, Facultad de Medicina, UNMSM; Flores, Alitza; D.A. Microbiología Médica, Facultad de Medicina, UNMSM

    2013-01-01

    Objetivos: Detectar el genoma proviral de HTLV-1 mediante el desarrollo de reacción en cadena de la polimerasa (PCR). Diseño: Descriptivo. Institución: D.A. Microbiología Médica, Facultad de Medicina, UNMSM. Participantes: Personas con y sin sospecha de HTLV-I. Principales medidas de resultados: detección de HTLV-1 mediante PCR. Resultados: El 71,4% de los pacientes con sospecha clínica de HTLV-I fue reactivo por métodos Inmunológico. Elisa HTLV I-II Biokit detectó 5 casos reactivos (X=2,359 ...

  16. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

    Directory of Open Access Journals (Sweden)

    Gersende Caron

    2015-11-01

    Full Text Available Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-β1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxymethylation, and cell fate determination.

  17. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells.

    Science.gov (United States)

    Caron, Gersende; Hussein, Mourad; Kulis, Marta; Delaloy, Céline; Chatonnet, Fabrice; Pignarre, Amandine; Avner, Stéphane; Lemarié, Maud; Mahé, Elise A; Verdaguer-Dot, Núria; Queirós, Ana C; Tarte, Karin; Martín-Subero, José I; Salbert, Gilles; Fest, Thierry

    2015-11-03

    Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.

  18. Qualitative and quantitative characteristics of the extracellular DNA delivered to the nucleus of a living cell

    Directory of Open Access Journals (Sweden)

    Bogachev Sergei S

    2006-10-01

    Full Text Available Abstract Background The blood plasma and other intertissue fluids usually contain a certain amount of DNA, getting there due to a natural cell death in the organism. Cells of this organism can capture the extracellular DNA, whereupon it is delivered to various cell compartments. It is hypothesized that the extracellular DNA is involved in the transfer of genetic information and its fixation in the genome of recipient cell. Results The existence of an active flow of extracellular DNA into the cell is demonstrated using human breast adenocarcinoma (MCF-7 cells as a recipient culture. The qualitative state of the DNA fragments delivered to the main cell compartments (cytoplasm and interchromosomal fraction was assessed. The extracellular DNA delivered to the cell is characterized quantitatively. Conclusion It is demonstrated that the extracellular DNA fragments in several minutes reach the nuclear space, where they are processed so that their linear size increases from about 500 bp to 10,000 bp. The amount of free extracellular DNA fragments simultaneously present in the nuclear space may reach up to 2% of the haploid genome. Using individual DNA fragments with a known molecular weight and sequence as an extracellular DNA, it is found that these fragments degrade instantly in the culture liquid in the absence of a competitor DNA and are delivered into the cell as degradants. When adding a sufficient amount of competitor DNA, the initial undegraded molecules of the DNA fragments with the known molecular weight and sequence are detectable both in the cytoplasm and nuclear space only at the zero point of experiments. The labeled precursor α-dNTP*, added to culture medium, was undetectable inside the cell in all the experiments.

  19. From DNA radiation damage to cell death: theoretical approaches.

    Science.gov (United States)

    Ballarini, Francesca

    2010-10-05

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to "historical" approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA "sublesions" and "lesions" as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively.

  20. From DNA Radiation Damage to Cell Death: Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Francesca Ballarini

    2010-01-01

    Full Text Available Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to “historical” approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA “sublesions” and “lesions” as clustered DNA double-strand breaks and (lethal chromosome aberrations, respectively.

  1. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    Science.gov (United States)

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-06-24

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  2. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  3. Cell nucleus - physical limitation of a quasar-galaxy association. Cell, DNA and cosmological background

    Energy Technology Data Exchange (ETDEWEB)

    Muheim, J.T. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Festkoerperphysik)

    1985-03-15

    The author extends his analogy of atomic structure to cosmological structures to include the cell nucleus and DNA replication. From this the author believes that there is extraterrestrial life within 34 light years of us and that telepathy is possible within the solar system.

  4. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  5. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  6. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  7. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer

    DEFF Research Database (Denmark)

    Bechmann, Troels; Andersen, Rikke Fredslund; Pallisgaard, Niels

    2013-01-01

    Measurement of human epidermal growth factor receptor 2 (HER2) gene amplification in cell-free DNA (cfDNA) is an evolving technique in breast cancer, enabling liquid biopsies and treatment monitoring. The present study investigated the dynamics of plasma HER2 gene copy number and amplification in...... in cfDNA during neoadjuvant chemotherapy....

  8. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    NARCIS (Netherlands)

    Yamada, T.; Takatsu, Y.; Kasumi, K.; Ichimura, K.; Doorn, van W.G.

    2006-01-01

    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the num

  9. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris;

    2016-01-01

    for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA...

  10. Single Cell Gel Electrophoresis Assay of Porcine Leydig Cell DNA Damage Induced by Zearalenone

    Institute of Scientific and Technical Information of China (English)

    Jianwei ZHEN; Qincl LIU; Jianhong GU; Yan YUAN; Xuezhong LIU; Handong WANG; Zongping LIU; Jianchun BIAN

    2012-01-01

    Abstract [Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD~o) of ZEN with tetra- zolium-based colorimetric assay (MTT assay). Comet assay was carried out to de- tect the DNA damage of porcine leydig cells exposed to at 0 (negative group), 1, 5, 10, 20, 40 tJmol/L of ZEN. [Result] The percentage of cell tail was 16.67%, 34.00%, 40.67%. 52.00% and 64.67% under 0, 1, 5, 10 and 20 ~mo~/L o~ ZEN, respectively; the differences between the percentages of celt tail in various experimental groups had extremely significant statistical significance compared with the negative group (P〈0.01), showing a significant dose-effect relationship; Tail length in various groups was 57.60_+4.78, 57.75_+6.25, 78.97_+5.83, 100.50~6.94 and 146.83_+12.31 ~m, re- spectively; Tail DNA % in various groups was 21.29_+2.25%, 22.24_+2.43%, 31.21_+ 6.27%, 37.45_+4.33% and 60.68_+9.83%, respectively; Tail length and Tail DNA % in experimental groups with ZEN concentration above 5 ~mo~/L showed significant dif- ferences (P〈0.05) compared with the negative group, which showed an upward trend with the increase of ZEN concentration. [Conclusion] ZEN has genotoxic effect on porcine leydig cells, which can cause DNA damage, with a significant dose-effect relationship.

  11. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective.

    Science.gov (United States)

    Bai, Qiang; Desprat, Romain; Klein, Bernard; Lemaître, Jean-Marc; De Vos, John

    2013-04-01

    Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are two types of pluripotent stem cells that hold great promise for biomedical research and medical applications. iPSCs were initially favorably compared to ESCs. This view was first based on ethical arguments (the generation of iPSCs does not require the destruction of an embryo) and on immunological reasons (it is easier to derive patient HLA-matched iPSCs than ESCs). However, several reports suggest that iPSCs might be characterized by higher occurrence of epigenetic and genetic aberrations than ESCs as a consequence of the reprogramming process. We focus here on the DNA integrity of pluripotent stem cells and examine the three main sources of genomic abnormalities in iPSCs: (1) genomic variety of the parental cells, (2) cell reprogramming, and (3) in vitro cell culture. Recent reports claim that it is possible to generate mouse or human iPSC lines with a mutation level similar to that of the parental cells, suggesting that "genome-friendly" reprogramming techniques can be developed. The issue of iPSC DNA integrity clearly highlights the crucial need of guidelines to define the acceptable level of genomic integrity of pluripotent stem cells for biomedical applications. We discuss here the main issues that such guidelines should address.

  12. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  13. Configuration of nucleolarDNA in situ in nucleolus ofAllium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The location and configuration of nucleolar DNA have not beendetermined for a long time. In this paper, we have observed the nucleolar ultrastructure and the character of nucleolar DNA in Allium cepa cells by conventional electron microscopy and the cytochemical NAMA-Ur DNA specific staining method. Furthermore, we have properly improved the NAMA-Ur method so as to analyze the location and configuration of nucleolar DNA in situ. Our results indicated that the nucleolar DNA in Allium cepa cells is mainly located at the border between fibrillar centers and dense fibrillar component, especially distributed in the configuration of encircling the fibrillar centers.

  14. Construction of a Sequencing Library from Circulating Cell-Free DNA.

    Science.gov (United States)

    Fang, Nan; Löffert, Dirk; Akinci-Tolun, Rumeysa; Heitz, Katja; Wolf, Alexander

    2016-04-01

    Circulating DNA is cell-free DNA (cfDNA) in serum or plasma that can be used for non-invasive prenatal testing, as well as cancer diagnosis, prognosis, and stratification. High-throughput sequence analysis of the cfDNA with next-generation sequencing technologies has proven to be a highly sensitive and specific method in detecting and characterizing mutations in cancer and other diseases, as well as aneuploidy during pregnancy. This unit describes detailed procedures to extract circulating cfDNA from human serum and plasma and generate sequencing libraries from a wide concentration range of circulating DNA.

  15. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    Science.gov (United States)

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  16. PCR-based detection of a rare linear DNA in cell culture

    Directory of Open Access Journals (Sweden)

    Saveliev Sergei V.

    2002-01-01

    Full Text Available The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  17. Uses of cell free fetal DNA in maternal circulation.

    Science.gov (United States)

    Hill, Melissa; Barrett, Angela N; White, Helen; Chitty, Lyn S

    2012-10-01

    For over a decade, researchers have focused their attention on the development of non-invasive prenatal diagnosis tests based on cell-free fetal DNA circulating in maternal blood. With the possibility of earlier and safer testing, non-invasive prenatal diagnosis has the potential to bring many positive benefits to prenatal diagnosis. Non-invasive prenatal diagnosis for fetal sex determination for women who are carriers of sex-linked conditions is now firmly established in clinical practice. Other non-invasive prenatal diagnosis-based tests are set to follow, as future applications, such as the detection of single-gene disorders and chromosomal abnormalities, are now well within reach. Here, we review recent developments in non-invasive prenatal diagnosis for genetic conditions and chromosomal abnormalities, and provide an overview of research into ethical concerns, social issues and stakeholder view points.

  18. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.

    Science.gov (United States)

    Barwick, Benjamin G; Scharer, Christopher D; Bally, Alexander P R; Boss, Jeremy M

    2016-10-01

    The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.

  19. Gene therapy of mitochondrial DNA mutations: a brief, biased history of allotopic expression in mammalian cells.

    Science.gov (United States)

    Zullo, S J

    2001-09-01

    Successful treatment of mitochondrial DNA (mtDNA) mutations might be possible by construction of mtDNA-encoded protein genes so that they can be inserted into the nuclear genome and the protein expressed in the mitochondria (allotopic expression). This technique would require individual assembly of all 13 mtDNA-encoded protein genes with an aminoterminal leader peptide that directs the cytoplasmic translated protein to the mitochondrial membrane. The 13 allotopic genes could be inserted into the nuclear genome of a patient's stem cell that had been "cured" of its nascent mtDNA via ethidium bromide treatment (rho-zero cell). The rho-zero cell would be a uridine auxotroph, and recovery from uridine auxotrophy would indicate successful transformation. The patient's own cells could then be returned to the patient's body. With a selective advantage of recovered oxidative phosphorylation, the transformed cells could replace cells with mtDNA mutations. Results of experiments by us on allotopically expressed CHO ATPase6 and of experiments by other workers suggest that there might be competition with endogenous mtDNA-encoded proteins if the particular protein gene is not removed from the endogenous mitochondrial genomes. Thus, it is likely that all 13 mtDNA-encoded protein genes will need to be allotopically expressed, with concomitant removal of all mtDNA genomes, in order for this form of mtDNA gene therapy to be successful.

  20. Improved recovery of bisulphite-treated cell-free DNA in plasma

    DEFF Research Database (Denmark)

    Pedersen, Inge Søkilde; Krarup, H.B.; Thorlacius-Ussing, O.;

    Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amount of cell-free DNA in plasma, sensitivity of the detection methods are of utmost importance. The vast majority of currently available methods for analysing DNA...... of PCR amplifying methylated and umethylated MEST. This procedure allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma........ The analytical sensitivity of the method was analysed by detection of methylated/unmethylated copies of the imprinted (and hemimethylated) gene MEST in a dilution series of plasma DNA. The method is based on an accelerated deamination step and magnetic silica purification of DNA in combination with a first round...

  1. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle.

    Science.gov (United States)

    Miyasaka, T; Takeshima, S-n; Jimba, M; Matsumoto, Y; Kobayashi, N; Matsuhashi, T; Sentsui, H; Aida, Y

    2013-02-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. Bovine leukocyte antigen (BoLA) is strongly involved in the subclinical progression of BLV infections. Recent studies show that the BoLA-DRB3 gene might play a direct role in controlling the number of BLV-infected peripheral B lymphocytes in vivo in Holstein cattle. However, the specific BoLA class II allele and DRB3-DQA1 haplotypes determining the BLV proviral load in Japanese Black cattle are yet to be identified. In this study, we focused on the association of BLV proviral load and polymorphism of BoLA class II in Japanese Black cattle. We genotyped 186 BLV-infected, clinically normal cattle for BoLA-DRB3 and BoLA-DQA1 using a polymerase chain reaction-sequence-based typing method. BoLA-DRB3*0902 and BoLA-DRB3*1101 were associated with a low proviral load (LPVL), and BoLA-DRB3*1601 was associated with a high proviral load (HPVL). Furthermore, BoLA-DQA1*0204 and BoLA-DQA1*10012 were related to LPVL and HPVL, respectively. Furthermore, we confirmed the correlation between the DRB3-DQA1 haplotype and BLV proviral load. Two haplotypes, namely 0902B or C (DRB3*0902-DQA1*0204) and 1101A (DRB3*1101-DQA1*10011), were associated with a low BLV proviral load, whereas one haplotype 1601B (DRB3*1601-DQA1*10012) was associated with a high BLV proviral load. We conclude that resistance is a dominant trait and susceptibility is a recessive trait. Additionally, resistant alleles were common between Japanese Black and Holstein cattle, and susceptible alleles differed. This is the first report to identify an association between the DRB3-DQA1 haplotype and variations in BLV proviral load.

  2. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  3. DNA-SMART: Biopatterned Polymer Film Microchannels for Selective Immobilization of Proteins and Cells.

    Science.gov (United States)

    Schneider, Ann-Kathrin; Nikolov, Pavel M; Giselbrecht, Stefan; Niemeyer, Christof M

    2017-02-22

    A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.

  4. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    OpenAIRE

    2014-01-01

    Author Summary DNA replication must be coordinated with cellular physiology to ensure proper genome inheritance. Model bacteria such as the soil-dwelling Bacillus subtilis can achieve a wide range of growth rates in response to nutritional and chemical signals. In order to match the rate of DNA synthesis to the rate of nutrient-mediated cell growth, bacteria regulate the initiation frequency of DNA replication. This control of bacterial DNA replication initiation was first observed over forty...

  5. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  6. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    Science.gov (United States)

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways.

  7. DNA methylation in mouse embryonic stem cells and development.

    Science.gov (United States)

    Latham, Tom; Gilbert, Nick; Ramsahoye, Bernard

    2008-01-01

    Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.

  8. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  9. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    Science.gov (United States)

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  10. HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Ulrike eKreimer

    2013-09-01

    Full Text Available Changes in DNA methylation frequently accompany cancer development. One prominent change is an apparently genome-wide decrease in methylcytosine that is often ascribed to DNA hypomethylation at retroelements comprising nearly half the genome. DNA hypomethylation may allow reactivation of retroelements, enabling retrotransposition and causing gene expression disturbances favoring tumor development. However, neither the extent of hypomethylation nor of retroelement reactivation are precisely known. We therefore assessed DNA methylation and expression of three major classes of retroelements (LINE-1, HERV-K and AluY in human urinary bladder cancer tissues and cell lines by pyrosequencing and quantitative reverse transcription–polymerase chain reaction, respectively. We found substantial global LINE-1 DNA hypomethylation in bladder cancer going along with a shift towards full-length LINE-1 expression. Thus, pronounced differences in LINE-1 expression were observed, which may be promoted, among others, by LINE-1 hypomethylation. Significant DNA hypomethylation was found at the HERV-K_22q11.23 proviral long terminal repeat (LTR in bladder cancer tissues but without reactivation of its expression. DNA methylation of HERVK17, essentially absent from normal urothelial cells, was elevated in cell lines from invasive bladder cancers. Accordingly, the faint expression of HERVK17 in normal urothelial cells disappeared in such cancer cell lines. Of 16 additional HERV-Ks, expression of 7 could be detected in the bladder, albeit generally at low levels. Unlike in prostate cancers, none of these showed significant expression changes in bladder cancer. In contrast, expression of the AluYb8 but not of the AluYa5 family was significantly increased in bladder cancer tissues. Collectively, our findings demonstrate a remarkable specificity of changes in expression and DNA methylation of retroelements in bladder cancer with a significantly different pattern from that

  11. Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Sharpe, H.; Brown, N.

    1994-07-01

    The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNA heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.

  12. Adjusting for Cell Type Composition in DNA Methylation Data Using a Regression-Based Approach.

    Science.gov (United States)

    Jones, Meaghan J; Islam, Sumaiya A; Edgar, Rachel D; Kobor, Michael S

    2017-01-01

    Analysis of DNA methylation in a population context has the potential to uncover novel gene and environment interactions as well as markers of health and disease. In order to find such associations it is important to control for factors which may mask or alter DNA methylation signatures. Since tissue of origin and coinciding cell type composition are major contributors to DNA methylation patterns, and can easily confound important findings, it is vital to adjust DNA methylation data for such differences across individuals. Here we describe the use of a regression method to adjust for cell type composition in DNA methylation data. We specifically discuss what information is required to adjust for cell type composition and then provide detailed instructions on how to perform cell type adjustment on high dimensional DNA methylation data. This method has been applied mainly to Illumina 450K data, but can also be adapted to pyrosequencing or genome-wide bisulfite sequencing data.

  13. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells.

    Science.gov (United States)

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human-mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human-mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis.

  14. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide(As2O3) on the mitochondrial DNA(mtDNA) of acute promyelocytic leukemia(APL) cells.The NB4 cell line was treated with 2.0 μmol/L As2O3 in vitro,and the primary APL cells were treated with 2.0 μmol/L As2O3 in vitro and 0.16 mg kg-1 d-1 As2O3 in vivo.The mitochondrial DNA of all the cells above was amplified by PCR,directly sequenced and analyzed by Sequence Navigatore and Factura software.The apoptosis rates were assayed by flow cytometry.Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As2O3 use,but the mutation spots were remarkably increased after As2O3 treatment,which was positively correlated to the rates of cellular apoptosis,the correlation coefficient:rNB4-As2O3=0.973818,and rAPL-As2O3=0.934703.The mutation types include transition,transversion,codon insertion or deletion,and the mutation spots in all samples were not constant and regular.It is revealed that As2O3 aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo.Mitochondrial DNA might be one of the targets of As2O3 in APL treatment.

  15. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  16. Photoreactivation of pyrimidine dimers in DNA from thyroid cells of the teleost, Poecilia formosa

    Energy Technology Data Exchange (ETDEWEB)

    Achey, P.M.; Woodhead, A.D.; Setlow, R.B.

    1979-01-01

    We have developed and used a simple technique to estimate the quantity of pyrimidine dimers in unlabeled cellular DNA. DNA is extracted from cells, treated with an endonuclease specific for dimers, and its molecular weight estimated by its electrophoretic mobility on alkaline agarose slab gels. The technique is used to show that cells from thyroid tissue of the fish Poecilia formosa have photoreactivating activity towards dimmers in the cellular DNA.

  17. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    Science.gov (United States)

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  18. Gibberellic Acid enhancement of DNA turnover in barley aleurone cells.

    Science.gov (United States)

    Taiz, L; Starks, J E

    1977-08-01

    When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [(3)H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile.The buoyant density on CsCl density gradients of hormone-treated aleurone DNA is identical with that of DNA extracted from whole seedlings. After density-labeling halfseed DNA with 5-bromodeoxyuridine, a bimodal absorption profile is obtained in neutral CsCl. The light band (1.70 g/ml) corresponds to unsubstituted DNA, while the heavy band (1.725-1.74 g/ml) corresponds to a hybrid density-labeled species. GA increases the relative amount of the heavy (hybrid) peak in halfseed aleurone layer DNA, further suggesting that the hormone enhances semiconservative replication in halfseeds.DNA methylation was also demonstrated. Over 60% of the radioactivity from [(3)H-Me]methionine is incorporated into 5-methylcytosine. GA has no effect on the percentage distribution of label among the bases.It was concluded that GA enhances the rate of DNA degradation and DNA synthesis (turnover) in halfseeds, but primarily DNA degradation in isolated aleurone layers. Incorporation by isolated aleurone layers is due to DNA repair. Semiconservative replication apparently plays no physiological role in the hormone response, since both isolated aleurone layers and gamma-irradiated halfseeds respond normally. The hypothesis was advanced that endoreduplication and DNA degradation are means by which the seed stores and mobilizes deoxyribonucleotides for the embryo during

  19. DNA damage induction and tumour cell radiosensitivity : PFGE and halo measurements

    NARCIS (Netherlands)

    Woudstra, EC; Driessen, C; Konings, AWT; Kampinga, HH

    1998-01-01

    Purpose: To test whether induction of DNA damage is correlated with tumour-cell radiosensitivity. Materials and methods: Initial DNA damage caused by X-irradiation was measured in ten human tumour cell lines, which largely differed in radiosensitivity, using either the pulsed-field gel electrophores

  20. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it po

  1. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation.

    Science.gov (United States)

    Fath, A; Bethke, P C; Jones, R L

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  2. Selective Removal of DNA from Dead Cells of Mixed Bacterial Communities by Use of Ethidium Monoazide

    OpenAIRE

    Nocker, Andreas; Anne K. Camper

    2006-01-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A prom...

  3. An association between overexpression of DNA methyltransferase 3B4 and clear cell renal cell carcinoma.

    Science.gov (United States)

    Liu, You; Sun, Liantao; Fong, Peter; Yang, Jie; Zhang, Zhuxia; Yin, Shuihui; Jiang, Shuyuan; Liu, Xiaolei; Ju, Hongge; Huang, Lihua; Bai, Jing; Gong, Kerui; Yan, Shaochun; Zhang, Chunyang; Shao, Guo

    2017-02-01

    It is well known that abnormal DNA methylations occur frequently in kidney cancer. However, it remains unclear exactly which types of DNA methyltransferases (DNMT) contribute to the pathologies of kidney cancers. In order to determine the functions of DNA methyltransferase in kidney tumorigenesis on the molecular level, we examined the mRNA expression levels of DNMT1, DNMT3A, DNMT3B, and DNMT3B variants in renal cell carcinoma tissue. Both mRNA and protein levels of DNMT3B4, a splice variant of DNMT3B, were increased in renal cell carcinoma tissue compared with adjacent control tissues. Additionally, Alu elements and long interspersed nuclear elements (LINE-1) were hypomethylated in renal cell carcinoma tissue. Meanwhile, methylation of the promoter for RASSF1A, a tumor suppressor gene, was moderately increased in renal cell carcinoma tissue, while RASSF1A expression was decreased. Thus, our data suggest that the overexpression of DNMT3B4 may play an important role in human kidney tumorigenesis through chromosomal instability and methylation of RASSF1A.

  4. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  5. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  6. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Koury, M.J.; Bondurant, M.C. (Vanderbilt Univ. Medical Center, Nashville, TN (USA) Veterans Administration Medical Center, Nashville, TN (USA))

    1990-04-20

    The mechanism by which erythropoietin controls mammalian erythrocyte production is unknown. Labeling experiments in vitro with ({sup 3}H) thymidine demonstrated DNA cleavage in erythroid progenitor cells that was accompanied by DNA repair and synthesis. Erythropoietin reduced DNA cleavage by a factor of 2.6. In the absence of erythropoietin, erythroid progenitor cells accumulated DNA cleavage fragments characteristic of those found in programmed cell death (apoptosis) by 2 to 4 hours and began dying by 16 hours. In the presence of erythropoietin, the progenitor cells survived and differentiated into reticulocytes. Thus, apoptosis is a major component of normal erythropoiesis, and erythropoietin controls erythrocyte production by retarding DNA breakdown and preventing apoptosis in erythroid progenitor cells.

  7. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH in buccal cells

    Directory of Open Access Journals (Sweden)

    E. I. Cortés-Gutiérrez

    2012-12-01

    Full Text Available DNA breakage detection-fluorescence in situ hybridization (DBD-FISH is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91. In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  8. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) in buccal cells.

    Science.gov (United States)

    Cortés-Gutiérrez, E I; Dávila-Rodríguez, M I; Fernández, J L; López-Fernández, C; Gosálvez, J

    2012-12-28

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91). In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work.

  9. Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Ashton, Thomas M; Hickson, Ian D

    2011-01-01

    The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR......) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous...... and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN...

  10. Measuring the DNA Content of Cells in Apoptosis and at Different Cell-Cycle Stages by Propidium Iodide Staining and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Chojnowski, Grace; Waterhouse, Nigel J

    2016-10-03

    All cells are created from preexisting cells. This involves complete duplication of the parent cell to create two daughter cells by a process known as the cell cycle. For this process to be successful, the DNA of the parent cell must be faithfully replicated so that each daughter cell receives a full copy of the genetic information. During the cell cycle, the DNA content of the parent cell increases as new DNA is synthesized (S phase). When there are two full copies of the DNA (G2/M phase), the cell splits to form two new cells (G0/G1 phase). As such, cells in different stages of the cell cycle have different DNA contents. The cell cycle is tightly regulated to safeguard the integrity of the cell and any cell that is defective or unable to complete the cell cycle is programmed to die by apoptosis. When this occurs, the DNA is fragmented into oligonucleosomal-sized fragments that are disposed of when the dead cell is removed by phagocytosis. Consequently apoptotic cells have reduced DNA content compared with living cells. This can be measured by staining cells with propidium iodide (PI), a fluorescent molecule that intercalates with DNA at a specific ratio. The level of PI fluorescence in a cell is, therefore, directly proportional to the DNA content of that cell. This protocol describes the use of PI staining to determine the percentage of cells in each phase of the cell cycle and the percentage of apoptotic cells in a sample.

  11. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  12. Heterogeneity of DNA Distribution in Diploid Cells: A New Predicitive Discriminant Factor for Solid Tumour Behaviour

    Directory of Open Access Journals (Sweden)

    Jacques Assailly

    1999-01-01

    Full Text Available Spatial nuclear DNA heterogeneity distribution of Feulgen‐stained DNA diploid cells was studied by image cytometry in voided urine of 119 patients without bladder tumour (n=20 and with initial (n=23 or previous (n=76 diagnosed bladder tumour. For each patient, repetitive DNA measurements were performed during 1–4 years of follow up. Only cells of diploid DNA histograms and diploid subpopulations of aneuploid DNA histograms were used for analysis. DNA heterogeneity distribution of these diploid cells was quantified by statistical parameters of each nuclear optical density distribution. Discriminant analysis was performed on three groups of DNA histograms. Group A (n=44: aneuploid DNA histograms of patients with bladder tumour. Group D (n=55: 38 diploid DNA histograms of the 20 patients without bladder tumour (subgroup D1 and 17 diploid DNA histograms of patients with a non‐recurrent bladder tumour (subgroup D2. Group R (n=27: diploid DNA histograms of patients with bladder tumour recurrence. No statistically significant discriminant function was found to separate D1 and D2. However, the first canonical discriminant function C1 differentiated diploid cells of diploid DNA histograms (group D and group R from diploid cell subpopulations of aneuploid DNA histograms (group A. Mean C1 values were 1.06, 0.84 and –1.45 for groups R, D and A, respectively. The second canonical discriminant function C2 differentiated diploid DNA histograms of patients with bladder tumour recurrence (group R from diploid DNA histograms of patients without bladder tumour or without bladder tumour recurrence (group D. Mean C2 values were 1.78 and –0.76 for groups R and D, respectively. In 95% confidence limit, the rate of rediscrimination using the two first canonical discriminant functions C1 and C2 were 86.4, 74.5 and 74.1% for groups A, D and R, respectively. Percent of “grouped” cases correctly classified was 78.6%. Thus spatial DNA heterogeneity

  13. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  14. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  15. Chimeric External Control to Quantify Cell Free DNA in Plasma Samples by Real Time PCR

    Science.gov (United States)

    Eini, Maryam; Behzad-Behbahani, Abbas; Takhshid, Mohammad Ali; Ramezani, Amin; Rafiei Dehbidi, Gholam Reza; Okhovat, Mohammad Ali; Farhadi, Ali; Alavi, Parniyan

    2016-01-01

    Background: DNA isolation procedure can significantly influence the quantification of DNA by real time PCR specially when cell free DNA (cfDNA) is the subject. To assess the extraction efficiency, linearity of the extraction yield, presence of co-purified inhibitors and to avoid problems with fragment size relevant to cfDNA, development of appropriate External DNA Control (EDC) is challenging. Using non-human chimeric nucleotide sequences, an EDC was developed for standardization of qPCR for monitoring stability of cfDNA concentration in blood samples over time. Methods: A0 DNA fragment of 167 bp chimeric sequence of parvovirus B19 and pBHA designated as EDC fragment was designed. To determine the impact of different factors during DNA extraction processing on quantification of cfDNA, blood samples were collected from normal subjects and divided into aliquots with and without specific treatment. In time intervals, the plasma samples were isolated. The amplicon of 167 bp EDC fragment in final concentration of 1.1 pg/500 μl was added to each plasma sample and total DNA was extracted by an in house method. Relative and absolute quantification real time PCR was performed to quantify both EDC fragment and cfDNA in extracted samples. Results: Comparison of real time PCR threshold cycle (Ct) for cfDNA fragment in tubes with and without specific treatment indicated a decrease in untreated tubes. In contrast, the threshold cycle was constant for EDC fragment in treated and untreated tubes, indicating the difference in Ct values of the cfDNA is because of specific treatments that were made on them. Conclusions: Spiking of DNA fragment size relevant to cfDNA into the plasma sample can be useful to minimize the bias due to sample preparation and extraction processing. Therefore, it is highly recommended that standard external DNA control be employed for the extraction and quantification of cfDNA for accurate data analysis. PMID:27141267

  16. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  17. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells

    Science.gov (United States)

    Mao, Zhiyong; Bozzella, Michael; Seluanov, Andrei; Gorbunova, Vera

    2009-01-01

    DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency of NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1cell cycle stages. We conclude that human somatic cells utilize error-prone NHEJ as the major DSB repair pathway at all cell cycle stages, while HR is used, primarily, in the S phase. PMID:18769152

  18. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    Directory of Open Access Journals (Sweden)

    Peixin Huang

    2015-06-01

    Full Text Available Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1 and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR, ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  19. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  20. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Hui [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Haberzettl, Petra [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Albrecht, Catrin [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hoehr, Doris [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Knaapen, Ad M. [Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), University of Maastricht (Netherlands); Borm, Paul J.A. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hogeschool Zuyd Heerlen (Netherlands); Schins, Roel P.F. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany)]. E-mail: roel.schins@uni-duesseldorf.de

    2007-04-01

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism.

  1. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    Science.gov (United States)

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  2. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    Science.gov (United States)

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.

  3. Identification of DNA-PKcs as a primary resistance factor of salinomycin in osteosarcoma cells.

    Science.gov (United States)

    Zhen, Yun-Fang; Li, Song-Tao; Zhu, Yun-Rong; Wang, Xiao-Dong; Zhou, Xiao-Zhong; Zhu, Lun-Qing

    2016-11-29

    Malignant osteosarcoma (OS) is still a deadly disease for many affected patients. The search for the novel anti-OS agent is extremely urgent and important. Our previous study has proposed that salinomycin is a novel anti-OS agent. Here we characterized DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a primary salinomycin resistance factor in OS cells. DNA-PKcs inhibitors (NU7026, NU7441 and LY294002) or DNA-PKcs shRNA knockdown dramatically potentiated salinomycin-induced death and apoptosis of OS cells (U2OS and MG-63 lines). Further, forced-expression of microRNA-101 ("miR-101") downregulated DNA-PKcs and augmented salinomycin's cytotoxicity against OS cells. Reversely, over-expression of DNA-PKcs in OS cells inhibited salinomycin's lethality. For the mechanism study, we show that DNA-PKcs is required for salinomycin-induced pro-survival autophagy activation. DNA-PKcs inhibition (by NU7441), shRNA knockdown or miR-101 expression inhibited salinomycin-induced Beclin-1 expression and autophagy induction. Meanwhile, knockdown of Beclin-1 by shRNA significantly sensitized salinomycin-induced OS cell lethality. In vivo, salinomycin administration suppressed U2OS xenograft tumor growth in severe combined immuno-deficient (SCID) mice, and its anti-tumor activity was dramatically potentiated with co-administration of the DNA-PKcs inhibitor NU7026. Together, these results suggest that DNA-PKcs could be a primary resistance factor of salinomycin in OS cells. DNA-PKcs inhibition or silence may thus significantly increase salinomycin's sensitivity in OS cells.

  4. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sonny C.; Crow, Ailey K.; Lam, Wilbur A.; Bertozzi, Carolyn R.; Fletcher, Daniel A.; Francis, Matthew B.

    2008-08-01

    Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells.

  5. Alpha interferon-induced antiviral response noncytolytically reduces replication defective adenovirus DNA in MDBK cells.

    Science.gov (United States)

    Guo, Ju-Tao; Zhou, Tianlun; Guo, Haitao; Block, Timothy M

    2007-12-01

    Although alpha interferon (IFN-alpha) is of benefit in the treatment of viral hepatitis B, HBV replication has been refractory to the cytokine in commonly used hepatocyte-derived cell lines. In search for a cell culture system to study the mechanism by which IFN-alpha inhibits HBV replication, we infected a variety of cell lines with an adenoviral vector containing a replication competent 1.3-fold genome length HBV DNA (AdHBV) and followed by incubation with IFN-alpha. We found that IFN-alpha efficiently decreased the level of HBV DNA replicative intermediates in AdHBV infected Madin-Darby bovine kidney (MDBK) cells. Further analysis revealed, surprisingly, that IFN-alpha did not directly inhibit HBV replication, rather the amount of adenovirus DNA in the nuclei of MDBK cells was reduced. As a consequence, HBV RNA transcription and DNA replication were inhibited. Experiments with adenoviral vector expressing a green fluorescent protein (GFP) further supported the notion that IFN-alpha treatment noncytolytically eliminated adenovirus DNA, but did not kill the vector infected MDBK cells. Our data suggest that IFN-alpha-induced antiviral program is able to discriminate host cellular DNA from episomal viral DNA and might represent a novel pathway of interferon mediate innate defense against DNA virus infections.

  6. Neurotoxin-induced DNA damage is persistentin SH-SY5Y cells and LC neurons

    Science.gov (United States)

    Wang, Yan; Musich, Phillip R.; Cui, Kui; Zou, Yue; Zhu, Meng-Yang

    2015-01-01

    Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathologic characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxincamptothecin (CPT)to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured LC and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficientin DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathologic characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insultsin vivo. PMID:25724887

  7. Simple Laboratory methods to measure cell proliferation using DNA synthesis property

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2007-01-01

    Full Text Available This is a mini-review on the techniques to measure proliferation of cells by estimation of DNA synthesis. This is not an exhaustive review of literature, but a bird’s eye view of a few selected articles which may provide the technical details to the readers.The nucleus of a cell occupies about 10-30% of the cells space, depends on the type of genetic material (DNA -DeoxyriboNucleic Acid. DNA is a long, double-stranded, helical molecule which carries the genetic information. Duplication of the DNA takes place by the phenomena of replication. One copy of double-stranded DNA molecule forms two double-stranded DNA molecules. DNA replication is the fundamental process used in all living organisms as it is the basis for biological inheritance. This process is known also as Mitosis in somatic cells. In Mitosis, the duplication process results in two genetically identical "daughter" cells from a single "parent" cell. The resulting double-stranded DNA molecules are identical; proof reading and error-checking mechanisms exist to ensure near perfect pair. Mitosis is divided into six phases: prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis.

  8. Epigenetic choreography of stem cells: the DNA demethylation episode of development.

    Science.gov (United States)

    Kar, Swayamsiddha; Parbin, Sabnam; Deb, Moonmoon; Shilpi, Arunima; Sengupta, Dipta; Rath, Sandip Kumar; Rakshit, Madhumita; Patra, Aditi; Patra, Samir Kumar

    2014-03-01

    Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive make-over of the genome via reprogramming in the early embryo results in stem cell plasticity followed by commitment to the principal cell lineages. This article attempts to highlight the sequential phases and hierarchical mode of DNA demethylation events during enactment of the molecular strategy for developmental transition. A comprehensive knowledge regarding the pattern of DNA demethylation during embryogenesis and organogenesis and study of the related lacunae will offer exciting avenues for future biomedical research and stem cell-based regenerative therapy.

  9. Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; de Vries, Liesbeth; Mulder, Nanno

    1990-01-01

    In a previous study we suggested that, in addition to the reduced Adriamycin accumulation, part of the resistance in an Adriamycin-resistant human small cell lung carcinoma cell line (GLC4/ADR) could be explained by supposing a changed Adriamycin-DNA-topoisomerase II (Topo II) interaction. The prese

  10. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    Science.gov (United States)

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent.

  11. Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency

    Directory of Open Access Journals (Sweden)

    Cao X

    2011-12-01

    Full Text Available Xia Cao*, Wenwen Deng*, Yuan Wei*, Weiyan Su, Yan Yang, Yawei Wei, Jiangnan Yu, Ximing XuDepartment of Pharmaceutics, School of Pharmacy, and Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Jingkou District, Zhenjiang, People's Republic of China*These authors contributed equally to this workBackground: The purpose of this study was to develop calcium phosphate nanocomposite particles encapsulating plasmid DNA (CP-pDNA nanoparticles as a nonviral vector for gene delivery.Methods: CP-pDNA nanoparticles employing plasmid transforming growth factor beta 1 (TGF-β1 were prepared and characterized. The transfection efficiency and cell viability of the CP-pDNA nanoparticles were evaluated in mesenchymal stem cells, which were identified by immunofluorescence staining. Cytotoxicity of plasmid TGF-β1 and calcium phosphate to mesenchymal stem cells were evaluated by MTT assay.Results: The integrity of TGF-β1 encapsulated in the CP-pDNA nanoparticles was maintained. The well dispersed CP-pDNA nanoparticles exhibited an ultralow particle size (20–50 nm and significantly lower cytotoxicity than Lipofectamine™ 2000. Immunofluorescence staining revealed that the cultured cells in this study were probably mesenchymal stem cells. The cellular uptake and transfection efficiency of the CP-pDNA nanoparticles into the mesenchymal stem cells were higher than that of needle-like calcium phosphate nanoparticles and a standard calcium phosphate transfection kit. Furthermore, live cell imaging and confocal laser microscopy vividly showed the transportation process of the CP-pDNA nanoparticles in mesenchymal stem cells. The results of a cytotoxicity assay found that both plasmid TGF-β1 and calcium phosphate were not toxic to mesenchymal stem cells.Conclusion: CP-pDNA nanoparticles can be developed into an effective alternative as a nonviral gene delivery system that is highly efficient and has low cytotoxicity.Keywords: calcium

  12. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues.

    Science.gov (United States)

    Wood, Bayden R

    2016-04-07

    Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting

  13. Whole-Mount DAPI Staining and Measurement of DNA Content in Plant Cells.

    Science.gov (United States)

    Schnittger, Arp; Hülskamp, Martin

    2007-01-01

    INTRODUCTIONDuring development, many plant cells undergo endoreduplication, whereby ploidy increases to a multiple of the normal 2C content. For example, trichome development is accompanied by an increase in ploidy to 32C, indicating that trichome cells undergo four rounds of endoreduplication. In the protocol described here, DNA levels, and hence developmental progress in the corresponding cells, are measured by staining the DNA with a fluorescent marker and then quantifying the fluorescence of individual nuclei.

  14. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide.

    Science.gov (United States)

    Nocker, Andreas; Camper, Anne K

    2006-03-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.

  15. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages.

    Science.gov (United States)

    Vitak, Nazarii; Hume, David A; Chappell, Keith J; Sester, David P; Stacey, Katryn J

    2016-06-01

    Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence.

  16. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers

    Science.gov (United States)

    Hecht, Stephen S.

    2017-01-01

    This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk. But they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed. PMID:28092948

  17. DNA polymerase zeta is required for proliferation of normal mammalian cells.

    Science.gov (United States)

    Lange, Sabine S; Wittschieben, John P; Wood, Richard D

    2012-05-01

    Unique among translesion synthesis (TLS) DNA polymerases, pol ζ is essential during embryogenesis. To determine whether pol ζ is necessary for proliferation of normal cells, primary mouse fibroblasts were established in which Rev3L could be conditionally inactivated by Cre recombinase. Cells were grown in 2% O(2) to prevent oxidative stress-induced senescence. Cells rapidly became senescent or apoptotic and ceased growth within 3-4 population doublings. Within one population doubling following Rev3L deletion, DNA double-strand breaks and chromatid aberrations were found in 30-50% of cells. These breaks were replication dependent, and found in G1 and G2 phase cells. Double-strand breaks were reduced when cells were treated with the reactive oxygen species scavenger N-acetyl-cysteine, but this did not rescue the cell proliferation defect, indicating that several classes of endogenously formed DNA lesions require Rev3L for tolerance or repair. T-antigen immortalization of cells allowed cell growth. In summary, even in the absence of external challenges to DNA, pol ζ is essential for preventing replication-dependent DNA breaks in every division of normal mammalian cells. Loss of pol ζ in slowly proliferating mouse cells in vivo may allow accumulation of chromosomal aberrations that could lead to tumorigenesis. Pol ζ is unique amongst TLS polymerases for its essential role in cell proliferation.

  18. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues.

    Science.gov (United States)

    Galbiati, Alessandro; Beauséjour, Christian; d'Adda di Fagagna, Fabrizio

    2017-01-26

    The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.

  19. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    Science.gov (United States)

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA.

  20. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  1. Effects of Coptidis Rhizoma on Cell Cycle, DNA Damage, and Apoptosis in L929 Murine Fibroblast Cells

    Institute of Scientific and Technical Information of China (English)

    Yan-fei Huang; Man-man Gu; Jing Xu; Chun-yang Han; Teng-fei Liu; Cui-yan Liu

    2016-01-01

    Objective Coptidis Rhizoma(CR), a widely used traditional Chinese herbal medicine, is commonly believed to be non-toxic. However, little is known about its cytotoxicity and relevant mechanisms at cellular and genetic levels. The present study was conducted to explore the cytotoxicity of CR and its mechanisms related to cell cycle arrest, DNA damage, cell apoptosis, and mitochondrial membrane potential in L929 murine fibroblast cells. Methods The cells were cultured and treated with different concentration of CR aqueous extract for 24 h. Cell viability was determined by CCK-8 method, morphological changes, and mitochondrial membrane potential were observed with an inverted microscope, cell cycle and cell apoptosis were examined by flow cytometry and DNA damages were detected by comet assay. Results Our results showed that cell viability was significantly decreased in a dose-dependent manner when concentration was higher than 0.2 mg/m L. A concentration above 1 mg/mL altered the cells morphology. Each DNA damage indicator score increased in the groups with the concentration of above 0.1 mg/mL. Cells at G2/M phase, cell apoptosis and mitochondrial membrane potential changed in the 2 mg/m L group. Conclusion Overall, our study suggests that CR at a high dosage exhibits cytotoxicity on L929 cells, which is likely to be the consequences of cell cycle arrest, DNA damage, cell apoptosis and mitochondrial membrane potential reduction.

  2. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  3. Optimal Arrangement of Four Short DNA Strands for Delivery of Immunostimulatory Nucleic Acids to Immune Cells.

    Science.gov (United States)

    Ohtsuki, Shozo; Matsuzaki, Noriyuki; Mohri, Kohta; Endo, Masayuki; Emura, Tomoko; Hidaka, Kumi; Sugiyama, Hiroshi; Takahashi, Yuki; Ishiyama, Kenichi; Kadowaki, Norimitsu; Takakura, Yoshinobu; Nishikawa, Makiya

    2015-10-01

    Nanosized DNA assemblies are useful for delivering immunostimulatory cytosine-phosphate-guanine (CpG) DNA to immune cells, but little is known about the optimal structure for such delivery. In this study, we designed three different DNA nanostructures using four 55-mer oligodeoxynucleotides (ODNs), that is, tetrapod-like structured DNA (tetrapodna), tetrahedral DNA (tetrahedron), and tetragonal DNA (tetragon), and compared their potencies. Electrophoresis showed that tetrapodna was obtained with high yield and purity, whereas tetrahedron formed multimers at high ODN concentrations. Atomic force microscopy revealed that all preparations were properly constructed under optimal conditions. The thermal stability of tetrapodna was higher than those of the others. Dynamic light scattering analysis showed that all of the assemblies were about 8 nm in diameter. Upon addition to mouse macrophage-like RAW264.7 cells, tetrahedron was most efficiently taken up by the cells. Then, a CpG DNA, a ligand for toll-like receptor 9, was linked to these DNA nanostructures and added to RAW264.7 cells. CpG tetrahedron induced the largest amount of tumor necrosis factor-α, followed by CpG tetrapodna. Similar results were obtained using human peripheral blood mononuclear cells. Taken together, these results indicate that tetrapodna is the best assembly with the highest yield and high immunostimulatory activity, and tetrahedron can be another useful assembly for cellular delivery if its preparation yield is improved.

  4. Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization.

    Science.gov (United States)

    Arrabito, Giuseppe; Reisewitz, Stephanie; Dehmelt, Leif; Bastiaens, Philippe I; Pignataro, Bruno; Schroeder, Hendrik; Niemeyer, Christof M

    2013-12-20

    A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidin (DNA-STV) conjugates bearing ligands recognized by cells. To this end, biotinylated epidermal growth factor (EGF) is coupled to the DNA-STV conjugates, the resulting constructs are hybridized with the DNA arrays and the resulting surfaces used for the culturing of MCF-7 (human breast adenocarcinoma) cells. Owing to the lateral diffusion of transmembrane proteins in the cell's plasma membrane, specific recruitment and concentration of EGF receptor can be induced specifically at the sites where the ligands are bound on the solid substrate. This is a clear demonstration that this method is suitable for precise functional manipulations of subcellular areas within living cells.

  5. Immune cell activation from multivalent interactions with liquid-crystalline polycation-DNA complexes

    Science.gov (United States)

    Schmidt, Nathan; Jin, Fan; Lande, Roberto; Curk, Tine; Xian, Wujing; Frasca, Loredana; Dobnikar, Jure; Frenkel, Daan; Gilliet, Michel; Wong, Gerard

    2014-03-01

    Microbial DNA can trigger type I interferon (IFN) production in plasmacytoid cells (pDCs) by binding to endosomal toll-like receptor 9 (TLR9). TLR9 in pDCs do not normally respond to self-DNA, but in certain autoimmune diseases self-DNA can complex with the polycationic antimicrobial peptide LL37 into condensed structures which allow DNA to access endosomal compartments and stimulate TLR9 in pDCs. We use x-ray studies and cell measurements of IFN secretion by pDCs to show that a broad range of polycation-DNA complexes stimulate pDCs and elucidate the criterion for high IFN production. Furthermore, we show via experiments and computer simulations that the distinguishing factor for why certain complexes activate pDCs while others do not is the self-assembled structure of the liquid-crystalline polycation-DNA complex.

  6. Quantitative and qualitative differences in DNA complementary to avian myeloblastosis virus between normal and leukemic chicken cells.

    Science.gov (United States)

    Baluda, M A; Shoyab, M; Evans, R; Markham, P D; Ali, M

    1975-01-01

    Hybridization of avian myeloblastosis virus (AMV) RNA with DNA immobilized on filters or in liquid with a vast DNA excess was used to measure the viral specific DNA sequences in chicken cells. Newly synthesized viral DNA (v-DNA) appears within an hour after infection of chicken embryo fibroblasts (CEF) with avian oncornaviruses. A fraction of newly synthesized v-DNA becomes integrated into the cellular genome and the remainder gradually disappears. A covalent linkage between v-DNA and cellular DNA was demonstrated to exist in CEF and in leukemic myeloblasts by alkaline sucrose velocity sedimentation. Hybridization of AMV RNA in DNA excess has revealed that there are 2 clases of viral specific sequences within normal as well as in leukemic cells. The 2 types of sequences differ in their rate of hybridization. The amount of both types of DNA sequences is about 2 times higher in leukemic cells than in normal cells. Both the fast- and slowly reacting sequences in leukemic cells exhibit a higher Tm (2 degrees C) than the respective DNA sequences in normal cells. Furthermore, when nucleotide sequences in AMV RNA complementary to normal DNA are removed first by exhaustive hybridization with normal DNA, the residual RNA only hybridizes with leukemic DNA but not with normal DNA. These results suggest that leukemic cells contain viral specific DNA sequences which are absent in normal cells. Endogenous v-DNA has been shown to be integrated in cellular DNA region(s) with a reiteration frequency of approximately 1,200 copies per cell and each integration unit appears to have a size approximately equivalent to the 35S RNA subunit of the viral genome. Viral sequences acquired after infection appear to be integrated in the unique region of cell DNA, or in tandem with the endogenous viral sequences.

  7. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    Science.gov (United States)

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  8. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  9. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Science.gov (United States)

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2017-01-01

    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  10. DNA degradation within mouse brain and dental pulp cells 72 hours postmortem

    Institute of Scientific and Technical Information of China (English)

    Jilong Zheng; Xiaona Li; Di Shan; Han Zhang; Dawei Guan

    2012-01-01

    In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.

  11. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  12. Enhancement of therapeutic drug and DNA delivery into cells by electroporation* Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    Science.gov (United States)

    Rabussay, Dietmar; Dev, Nagendu B.; Fewell, Jason; Smith, Louis C.; Widera, Georg; Zhang, Lei

    2003-02-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as `electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing `pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm-1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  13. Molecular cloning of complementary DNA for human medullasin: an inflammatory serine protease in bone marrow cells.

    Science.gov (United States)

    Okano, K; Aoki, Y; Sakurai, T; Kajitani, M; Kanai, S; Shimazu, T; Shimizu, H; Naruto, M

    1987-07-01

    Medullasin, an inflammatory serine protease in bone marrow cells, modifies the functions of natural killer cells, monocytes, and granulocytes. We have cloned a medullasin cDNA from a human acute promyelocytic cell (ML3) cDNA library using oligonucleotide probes synthesized from the information of N-terminal amino acid sequence of natural medullasin. The cDNA contained a long open reading frame encoding 237 amino acid residues beginning from the second amino acid of natural meduallasin. The deduced amino acid sequence of medullasin shows a typical serine protease structure, with 41% homology with pig elastase 1.

  14. Pleiotropic expression of Epstein--Barr virus DNA in human epithelial cells.

    OpenAIRE

    1981-01-01

    We have attempted to establish a system that can be used to study the association of Epstein--Barr virus (EBV) with epithelial cells. Attempts were made to transfect human carcinoma cells with EBV DNA. Successful transfection was confirmed by the expression of EBV-specific early antigen (EA), virus capsid antigen, and the presence of virus DNA. The transfecting preparation contained a mixture of EBV and cellular DNA extracted from two producer cell lines, P3HR-1 and AG-876. Our data suggest t...

  15. Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    Institute of Scientific and Technical Information of China (English)

    Hui Yu

    2012-01-01

    To treat many types of cancer,ionizing radiation (IR) is primarily used as external-beam radiotherapy,brachytherapy,and targeted radionuclide therapy.Exposure of tumor cells to IR can induce DNA damage as well as generation of reactiveoxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation.The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing,as well as synthesis and releasing ligands (such as growth factors,cytokines,and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

  16. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  17. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  18. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Joshua W Modell

    2014-10-01

    Full Text Available Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  19. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Science.gov (United States)

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  20. How do human cells react to the absence of mitochondrial DNA?

    Directory of Open Access Journals (Sweden)

    Rossana Mineri

    Full Text Available BACKGROUND: Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA and the mitochondrial genome (mtDNA. The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(- and A549, which had been entirely depleted of mtDNA (rho(o cells, and compared it with that of corresponding undepleted parental cells (rho(+ cells. RESULTS: Our data indicate that absence of mtDNA is associated with: i a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment. CONCLUSIONS: Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA.

  1. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Malkondu, Sait [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Uyar, Pembegul [Selcuk University, Faculty of Science, Department of Biology, 42075 Konya (Turkey); Selcuk University, Advanced Technology Research and Application Center, Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey)

    2015-03-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope.

  2. Construction of porcine CCK pDNA and its expression in COS-7 cells.

    Science.gov (United States)

    Bai, Jigang; Lü, Yi; Bai, Qiaoling

    2007-06-01

    CCK correlates with the generation and progression of pancreatic cancer. The research aims to construct eukaryotic expression plasmid pIRES2-EGFP/CCK (CCK pDNA) and transiently express it in COS-7 cells. Total RNA was extracted from porcine intestinal mucosa. RT-PCR was used to amplify the aimed segments CCKcDNA which was then digested with EcoR1 and BamH1 and inserted into a eukaryotic expression plasmid pIRES2-EGFP to construct CCK pDNA. The constructed plasmid was transfected into COS-7 cells by lepofectamin 2000-mediated transfer method. The expression of CCK in transfected COS-7 cells was detected 24, 48 and 72 h post-transfection with fluorescence microscopy and the expression level of CCK mRNA in transfected COS-7 cells was assayed by using RT-PCR. The results showed CCK pDNA was successfully constructed and expressed transiently in COS-7 cells. Green fluorescent protein could be detected in the COS-7 cells transfected with porcine CCK pDNA 24 h post-transfection. At 48th h post-transfection, the number of positive cells was increased significantly and much brighter green fluorescence could be detected. And 72 h post-transfection, the green fluorescence of positive cells became even stronger, while no green fluorescence was detected in the control group. The expression of CCK mRNA in the cells was detectable by using RT-PCR. In COS-7 cells transfected with CCK pDNA a high level of porcine CCK mRNA was detected while no expression of porcine CCKmRNA was found in the cells transfected with null plasmid. It was concluded CCK pDNA was expressed successfully in COS-7 cells, which lays a foundation for further research on the relationship between CCK and tumor.

  3. Construction of Porcine CCK pDNA and Its Expression in COS-7 Cells

    Institute of Scientific and Technical Information of China (English)

    BAI Jigang; L(U) Yi; BAI Qiaoling

    2007-01-01

    CCK correlates with the generation and progression of pancreatic cancer. The research aims to construct eukaryotic expression plasmid pIRES2-EGFP/CCK (CCK pDNA) and transiently express it in COS-7 cells. Total RNA was extracted from porcine intestinal mucosa. RT-PCR was used to amplify the aimed segments CCKcDNA which was then digested with EcoR1 and BamH1 and inserted into a eukaryotic expression plasmid pIRES2-EGFP to construct CCK pDNA. The constructed plasmid was transfected into COS-7 cells by lepofectamine TM2000-mediated transfer method.The expression of CCK in transfected COS-7 cells was detected 24, 48 and 72 h post-transfection with fluorescence microscopy and the expression level of CCK mRNA in transfected COS-7 cells was assayed by using RT-PCR. The results showed CCK pDNA was successfully constructed and expressed transiently in COS-7 cells. Green fluorescent protein could be detected in the COS-7 cells transfected with porcine CCK pDNA 24 h post-transfection. At 48th h post-transfection, the number of positive cells was increased significantly and much brighter green fluorescence could be detected.And 72 h post-transfection, the green fluorescence of positive cells became even stronger, while no green fluorescence was detected in the control group. The expression of CCK mRNA in the cells was detectable by using RT-PCR. In COS-7 cells transfected with CCK pDNA a high level of porcine CCK mRNA was detected while no expression of porcine CCKmRNA was found in the cells transfected with null plasmid. It was concluded CCK pDNA was expressed successfully in COS-7 cells,which lays a foundation for further research on the relationship between CCK and tumor.

  4. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  5. Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment.

    Directory of Open Access Journals (Sweden)

    Youmin Kang

    Full Text Available BACKGROUND: Regulatory T (Treg cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS. Tacrolimus (FK506 has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. METHODOLOGY/PRINCIPAL FINDINGS: After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. CONCLUSIONS/SIGNIFICANCE: DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.

  6. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  7. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  8. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  9. DNA damage in leukocytes, buccal cells and nasal epithelial cells of individuals exposed to air pollution in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Valverde, M.; Lopez, M.C.; Ostrosky-Wegman, P. [and others

    1997-10-01

    There is an increased interest in using biological markers to monitor populations for the identification of exposure to environmental toxicants. Test systems which permit the sensitive detection of DNA damage and DNA repair are critically important. The single cell gel electrophoresis assay is a rapid and a sensitive method for the evaluation of DNA damage at the single cell level ant it provides information on the occurrence of DNA single-strand breaks and alkali labile sites using alkaline conditions. In this work, the differences in the basal level of DNA single strand breaks using alkaline single strand breaks using alkaline single cell gel electrophoresis, between young adults from the south (exposed principally to high levels of ozone) and north (exposed principally to hydrocarbons and particles) of Mexico City was investigated using three different cell types (leukocytes, nasal and buccal epithelial cells). We found an increased DNA tail length in blood and nasal cells from individuals who live in the south part of the city compared to the northern part. However, no differences were observed in buccal epithelial cells. These results show the feasibility of using SCGE in different tissues and its great potential for the monitoring of humans exposed to xenobiotics.

  10. The FACT complex promotes avian leukosis virus DNA integration.

    Science.gov (United States)

    Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L

    2017-01-25

    All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. Here, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-LTR circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.

  11. DNA Damage in CD133-Positive Cells in Barrett’s Esophagus and Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Raynoo Thanan

    2016-01-01

    Full Text Available Barrett’s esophagus (BE caused by gastroesophageal reflux is a major risk factor of Barrett’s esophageal adenocarcinoma (BEA, an inflammation-related cancer. Chronic inflammation and following tissue damage may activate progenitor cells under reactive oxygen/nitrogen species-rich environment. We previously reported the formation of oxidative/nitrative stress-mediated mutagenic DNA lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG and 8-nitroguanine, in columnar epithelial cells of BE tissues and cancer cells of BEA tissues. We investigated the mechanisms of BEA development in relation to oxidative/nitrative DNA damage and stem cell hypothesis. We examined 8-nitroguanine and 8-oxodG formation and the expression of stem cell marker (CD133 in biopsy specimens of patients with BE and BEA by immunohistochemical analysis in comparison with those of normal subjects. CD133 was detected at apical surface of columnar epithelial cells of BE and BEA tissues, and the cytoplasm and cell membrane of cancer cells in BEA tissues. DNA lesions and CD133 were colocalized in columnar epithelial cells and cancer cells. Their relative staining intensities in these tissues were significantly higher than those in normal subjects. Our results suggest that BE columnar epithelial cells with CD133 expression in apical surface undergo inflammation-mediated DNA damage, and mutated cells acquire the property of cancer stem cells with cytoplasmic CD133 expression.

  12. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    Science.gov (United States)

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  13. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise Garm; Appelt, Ane L; Pallisgaard, Niels;

    2014-01-01

    The purpose was to investigate total cell-free DNA (cfDNA) in colorectal cancer (CRC) patients during treatment with second-line chemotherapy and in healthy controls and patients with different comorbidities. Patient treated with second-line irinotecan for metastatic CRC (n = 100), a cohort of he...

  14. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  15. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  16. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells

    Directory of Open Access Journals (Sweden)

    Gay Bernard

    2011-09-01

    Full Text Available Abstract Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.

  17. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells.

    Science.gov (United States)

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J; Hendrickson, Eric A

    2014-09-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.

  18. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.

    Science.gov (United States)

    Liang, Le; Li, Jiang; Li, Qian; Huang, Qing; Shi, Jiye; Yan, Hao; Fan, Chunhai

    2014-07-21

    DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single-particle tracking. We found that the TDNs were rapidly internalized by a caveolin-dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule-dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA-nanostructure-based drug delivery nanocarriers for targeted therapy.

  19. KRAS mutations in the circulating free DNA (cfDNA) of non-small cell lung cancer (NSCLC) patients

    Science.gov (United States)

    Villatoro, Sergi; Teixidó, Cristina; Mayo, Clara; Martínez, Alejandro; de los Llanos Gil, Maria; Viteri, Santiago; Morales-Espinosa, Daniela; Rosell, Rafael

    2016-01-01

    Circulating free DNA (cfDNA) is obtained from serum or plasma by non-invasive methods such as a simple blood draw, a technique known as “liquid biopsy”. Genetic analyses of driver alterations in cfDNA have proved very effective to predict survival and treatment response of cancer patients according to tumoral cfDNA burden in blood. Non-small cell lung cancer (NSCLC) patients with higher concentration of tumoral cfDNA in blood have, on average, shorter progression-free survival (PFS) and overall survival (OS). Regarding specific genetic alterations, KRAS proto-oncogene, GTPase (KRAS) is one of the main genes involved in NSCLC and several studies have been performed to determine its value as a predictive and prognostic biomarker in liquid biopsy. Unfortunately, to date no strong conclusions can be drawn since they have yielded contradictory results. Therefore, further investigations are necessary to establish the value of KRAS testing in liquid biopsy as prognostic or predictive factor in NSCLC. Herein, we review the current knowledge on the importance of KRAS as prognostic and predictive biomarker using non-invasive approaches and the scientific data available regarding its application in clinical practice for treatment of NSCLC. PMID:27826532

  20. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors

    Directory of Open Access Journals (Sweden)

    Diesch Claude

    2009-11-01

    Full Text Available Abstract Background With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA and mitochondrial DNA (mtDNA have been found in several cancer types and might have a diagnostic value. Methods Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. Results While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P P P P = 0.022. The level of ccf nDNA was also associated with tumor-size (2 cmP = 0.034. Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P P Conclusion Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.

  1. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  2. Cell-free fetal DNA in amniotic fluid supernatant for prenatal diagnosis.

    Science.gov (United States)

    Soltani, M; Nemati, M; Maralani, M; Estiar, M A; Andalib, S; Fardiazar, Z; Sakhinia, E

    2016-04-30

    In widespread conviction, amniotic fluid is utilized for prenatal diagnosis. Amniotic fluid supernatant is usually discarded, notwithstanding being a good source of fetal DNA. The aim of the present study was to assess cell-free fetal DNA extracted from amniotic fluid supernatant for application in prenatal diagnosis such as gender determination and early diagnosis of β-thalassemia. Samples of amniotic fluid of 70 pregnant women were collected and went through routine tests along with tests for cell-free fetal DNA from amniotic fluid supernatant. The DNA in the amniotic fluid supernatant was extracted and analyzed for gender determination by PCR and Real-time PCR. ARMS-PCR was applied to test early diagnosis of IVS II-I mutation (common β-thalassemia mutation) and E7V mutation for sickle cell anemia using DNA extracted from the amniotic fluid supernatant. Using the cell-free fetal DNA extracted from the amniotic fluid supernatant, the sensitivity of PCR and Real-time PCR for gender detection was compared with the routine cytogenetic method. The fetus tested for sickle cell anemia and β-thalassemia was observed to be healthy but heterozygous for IVS II-I mutation. The findings indicated that cell-free fetal DNA from amniotic fluid supernatant can be a good source of fetal DNA and be used in early prenatal diagnosis since because of its fast and accurate application. Therefore, it would be suggested that the amniotic fluid supernatant's disposal is prevented because if the tests needs to be repeated, cell-free fetal DNA extracted from the amniotic fluid supernatant can be used as an alternative source for prenatal diagnosis.

  3. Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster.

    Science.gov (United States)

    Woodruff, R C; Thompson, J N; Barker, J S; Huai, H

    1999-01-01

    Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.

  4. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  5. Potent T cell Responses Induced by Single DNA Vaccine Boosted with Recombinant Vaccinia Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianxing Liu; Chao Qiu; Yang Huang; Jianqing Xu; Yiming Shao

    2013-01-01

    Plasmid DNA,an effective vaccine vector,can induce both cellular and humoral immune responses.However,plasmid DNA raises issues concerning potential genomic integration after injection.This issue should be considered in preclinical studies.Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China.This virus has also been considered as a successful vaccine vector against a few infectious diseases.Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine.To develop a safer immunization strategy,a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice.Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity,preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation.No differences in T cell responses were observed among one,two or three DNA prime/rTV boost regimens.This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.

  6. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  7. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation.

    Science.gov (United States)

    Lowes, Lori E; Bratman, Scott V; Dittamore, Ryan; Done, Susan; Kelley, Shana O; Mai, Sabine; Morin, Ryan D; Wyatt, Alexander W; Allan, Alison L

    2016-09-08

    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.

  8. Change and Significance of Mitochondrial DNA Copy Number in Esophageal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zongwen Liu; Zhihua Zhao; Qiumin Zhao; Shenglei Li; Dongling Gao; Xia Pang; Kuisheng Chen; Yunhan Zhang

    2007-01-01

    OBJECTIVE To compare the differences of mitochondrial DNA (mtDNA)copies among the tissues of esophageal squamous cell carcinoma (ESCC),para-neoplastic tissue and normal mucous membrane of the esophagus,and to study the relationship between the mtDNA and the occurrence and development of esophageal squamous cell carcinoma.METHODS The mtDNA copies of 42 specimens with the ESCC,paraneoplastic mucous tissue and normal mucous membrane of the esophagus were determined using real-time fluorescence quantitative PCR.The mtDNA was analyzed using agarose gel electrophoresis.RESULTS The mtDNA from all of the tissues (42/42) from the ESCC,para-neoplastic tissue and normal esophageal mucous membranes was analyzed.showing thal there were an average mtDNA copy number of 27.1894x106 μg DNA.9.4102x106 μg DNA and 5.9347x106 μg DNA,from the respective tissues.There were significant differences (F=27.83,P<0.05) in mtDNA copy number among the three.A positive band was shown at 403 bp after qel electrophoresis of the PCR products.and the lane where the ESCC mtDNA located was rather bright.which was in accordance with the result of the real-time PCR determination.CONCLUSION An increase in the mtDNA copy number is related to the occurrence and development of ESCC.

  9. Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery

    CERN Document Server

    Escoffre, Jean-Michel; Favard, Cyril; Teissié, Justin; Dean, David S; Rols, Marie-Pierre

    2011-01-01

    Electroporation is a physical method to induce the uptake of therapeutic drugs and DNA, by eukaryotic cells and tissues. The phenomena behind electro-mediated membrane permeabilization to plasmid DNA have been shown to be significantly more complex than those for small molecules. Small molecules cross the permeabilized membrane by diffusion whereas plasmid DNA first interacts with the electropermeabilized part of the cell surface, forming localized aggregates. The dynamics of this process is still poorly understood because direct observations have been limited to scales of the order of seconds. Here, cells are electropermeabilized in the presence of plasmid DNA and monitored with a temporal resolution of 2 ms. This allows us to show that during the first pulse application, plasmid complexes, or aggregates, start to form at distinct sites on the cell membrane. FRAP measurements show that the positions of these sites are remarkably immobile during the application of further pluses. A theoretical model is propos...

  10. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    Science.gov (United States)

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  11. 5-hydroxymethylcytosine-mediated DNA demethylation in stem cells and development.

    Science.gov (United States)

    Sun, Wenjia; Guan, Minxin; Li, Xuekun

    2014-05-01

    The pursuit of DNA demethylation has a colorful history, but it was not until 2009 that the stars of this story, the Ten-eleven-translocation (Tet) family of proteins, were really identified. Tet proteins convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine and 5-cyboxycytosine by Tet proteins to achieve DNA demethylation. Recent studies have revealed that 5hmC-mediated DNA demethylation can play essential roles in diverse biological processes, including development and diseases. Here, we review recent discoveries in 5hmC-mediated DNA demethylation in the context of stem cells and development.

  12. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  13. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT-) using an Epstein-Barr virus derived cDNA expression vector.

    NARCIS (Netherlands)

    P.B.G.M. Belt; W. Jongmans; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude); P. van de Putte (Pieter)

    1991-01-01

    textabstractHuman cells are, in general, poor recipients of foreign DNA, which has severely hampered the cloning of genes by direct phenotypic correction of deficient human cell lines after DNA mediated gene transfer. In this communication a methodology is presented which largely circumvents this pr

  14. Circulating Cell-Free DNA from Colorectal Cancer Patients May Reveal High KRAS or BRAF Mutation Load

    NARCIS (Netherlands)

    Mouliere, F.; Messaoudi, S. El; Gongora, C.; Guedj, A.S.; Robert, B.; Rio, M. del; Molina, F.; Lamy, P.J.; Lopez-Crapez, E.; Mathonnet, M.; Ychou, M.; Pezet, D.; Thierry, A.R.

    2013-01-01

    We used a novel method based on allele-specific quantitative polymerase chain reaction (Intplex) for the analysis of circulating cell.free DNA (ccfDNA) to compare total ccfDNA and KRAS- or BRAF-mutated ccfDNA concentrations in blood samples from mice xenografted with the human SW620 colorectal cance

  15. [The presence of non-integrated SV40 viral DNA in nonproductive cells transformed by this virus].

    Science.gov (United States)

    Daya-Grosjean, L; Bénichou, D; Monier, R

    1975-09-08

    The hot phenol extraction of nuclic acids reveals the presence of small amounts of nonintegrated SV 40 DNA in transformed syrian hamster or mouse cells. The extractibility of the viral DNA is influenced by its conformation; SV 40 DNA, form I is preferentially extracted by contrast with form III DNA.

  16. Dynamical change of mitochondrial DNA induced in the living cell by perturbing the electrochemical gradient.

    OpenAIRE

    Coppey-Moisan, M; Brunet, A C; Morais, R.; Coppey, J

    1996-01-01

    Digital-imaging microscopy was used in conditions that allowed the native state to be preserved and hence fluorescence variations of specific probes to be followed in the real time of living mammalian cells. Ethidium bromide was shown to enter into living cells and to intercalate stably into mitochondrial DNA (mtDNA), giving rise to high fluorescence. When the membrane potential or the pH gradient across the inner membrane was abolished by specific inhibitors or ionophores, the ethidium fluor...

  17. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  18. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    Science.gov (United States)

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  19. Fabrication of a Novel Cell Culture System Using DNA-Grafted Substrates and DNase.

    Science.gov (United States)

    Mitomo, Hideyuki; Eguchi, Asumi; Suzuki, Yasunobu; Matsuo, Yasutaka; Niikura, Kenichi; Nakazawa, Kohji; Ijiro, Kuniharu

    2016-02-01

    In conventional cell culture systems, trypsin is generally used for cell harvesting. However, trypsin damages the cells due to the nonselective degradation of proteins on the cell surface. This is a critical issue for cell culture systems. Therefore, an alternative cell culture system with the lowest possible impact on cells is desired. In this paper, we have focused on DNA as a sacrificial layer and DNase as an alternate enzyme instead of trypsin. DNase ought not to result in damage to or stress on cells as it only hydrolyzes DNAs while the plasma membrane and extracellular matrices are basically composed of lipids, proteins, and glycosides. Therefore, we fabricated DNA-grafted substrates as cell culture dishes and evaluated this novel cell culture system. As a result, we were able to culture several types of mammalian cells on the DNA-grafted substrates, with the cells harvested using DNase with only little damage to the cells. This cell culture system could provide a breakthrough in cell culturing technology.

  20. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  1. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  2. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation.

    Science.gov (United States)

    Liao, Gary J W; Gronowski, Ann M; Zhao, Zhen

    2014-01-20

    The identification of cell-free fetal DNA (cffDNA) in maternal circulation has made non-invasive prenatal testing (NIPT) possible. Maternal plasma cell free DNA is a mixture of maternal and fetal DNA, of which, fetal DNA represents a minor population in maternal plasma. Therefore, methods with high sensitivity and precision are required to detect and differentiate fetal DNA from the large background of maternal DNA. In recent years, technical advances in the molecular analysis of fetal DNA (e.g., digital PCR and massively parallel sequencing (MPS)) has enabled the successful implementation of noninvasive testing into clinical practice, such as fetal sex assessment, RhD genotyping, and fetal chromosomal aneuploidy detection.With the ability to decipher the entire fetal genome from maternal plasma DNA, we foresee that an increased number of non-invasive prenatal tests will be available for detecting many single-gene disorders in the near future. This review briefly summarizes the technical aspects of the NIPT and application of NIPT in clinical practice.

  3. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  4. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2016-01-01

    Full Text Available Background. Noninvasive prenatal screening (NIPS is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information.

  5. Light chain editors of anti-DNA receptors in human B cells.

    Science.gov (United States)

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André; Weigert, Martin

    2014-02-10

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.

  6. Molecular behavior of DNA in a cell-sized compartment coated by lipids

    CERN Document Server

    Hamada, T; Shimobayashi, S F; Ichikawa, M; Takagi, M

    2015-01-01

    The behavior of long DNA molecules in a cell-sized confined space was investigated. We prepared water-in-oil droplets covered by phospholipids, which mimic the inner space of a cell, following the encapsulation of DNA molecules with unfolded coil and folded globule conformations. Microscopic observation revealed that the adsorption of coiled DNA onto the membrane surface depended on the size of the vesicular space. Globular DNA showed a cell-size-dependent unfolding transition after adsorption on the membrane. Furthermore, when DNA interacted with a two-phase membrane surface, DNA selectively adsorbed on the membrane phase, such as an ordered or disordered phase, depending on its conformation. We discuss the mechanism of these trends by considering the free energy of DNA together with a polyamine in the solution. The free energy of our model was consistent with the present experimental data. The cooperative interaction of DNA and polyamines with a membrane surface leads to the size-dependent behavior of molec...

  7. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  8. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  9. 5-Ethynyl-2'-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells.

    Science.gov (United States)

    Qu, Dezhong; Wang, Guoxing; Wang, Zhe; Zhou, Li; Chi, Weilin; Cong, Shujie; Ren, Xiaoshuai; Liang, Peizhou; Zhang, Biliang

    2011-10-01

    The labeling of newly synthesized DNA in cells to identify cell proliferation is an important experimental technique. The most accurate methods incorporate [(3)H]thymidine or 5-bromo-2'-deoxyruidine (BrdU) into dividing cells during S phase, which is subsequently detected by autoradiography or immunohistochemistry, directly measuring the newly synthesized DNA. Recently, a novel method was developed to detect DNA synthesis in proliferating cells based on a novel thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU). EdU is incorporated into DNA and subsequently detected with a fluorescent azide via "click" chemistry. This novel technique is highly sensitive and does not require DNA denaturation. However, it was also found that EdU exhibits time-dependent inhibition effects on cell growth. Therefore, here we report a novel deoxycytidine analog, 5-ethynyl-2'-deoxycytidine (EdC), that can be used to detect DNA synthesis in vitro and in vivo at a similar sensitivity level compared with EdU. Furthermore, the EdC-induced cytotoxicity is much less than that of EdU when combined with thymidine. This will be a potential application for the long-term detection of proliferating cells.

  10. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  11. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories

    DEFF Research Database (Denmark)

    Godschalk, Roger W L; Ersson, Clara; Stępnik, Maciej;

    2014-01-01

    This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred...... to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were......%) by standardisation of the primary comet assay endpoint with calibration curve samples. The level of DNA strand breaks in the samples from two of the centres (0.56-0.61 lesions/10(6) bp) was significantly higher compared with the other three centres (0.41-0.45 lesions/10(6) bp). In contrast, there was no difference...

  12. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  13. [Research advances on DNA extraction methods from peripheral blood mononuclear cells].

    Science.gov (United States)

    Wang, Xiao-Ying; Yu, Chen-Xi

    2014-10-01

    DNA extraction is a basic technology of molecular biology. The purity and the integrality of DNA structure are necessary for different experiments of gene engineering. As commonly used materials in the clinical detection, the fast, efficient isolation and extraction of genomic DNA from peripheral blood mononuclear cells is very important for the inspection and analysis of clinical blood. At present, there are many methods for extracting DNA, such as phenol-chloroform method, salting out method, centrifugal adsorption column chromatography method (artificial methods), magnetic beads (semi-automatic method) and DNA extraction kit. In this article, a brief review of the principle for existing DNA blood extraction method, the specific steps and the assessment of the specific methods briefly are summarized.

  14. Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma

    Science.gov (United States)

    Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara

    2016-01-01

    Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050

  15. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer.

    Science.gov (United States)

    De Mattos-Arruda, Leticia; Caldas, Carlos

    2016-03-01

    Recent developments in massively parallel sequencing and digital genomic techniques support the clinical validity of cell-free circulating tumour DNA (ctDNA) as a 'liquid biopsy' in human cancer. In breast cancer, ctDNA detected in plasma can be used to non-invasively scan tumour genomes and quantify tumour burden. The applications for ctDNA in plasma include identifying actionable genomic alterations, monitoring treatment responses, unravelling therapeutic resistance, and potentially detecting disease progression before clinical and radiological confirmation. ctDNA may be used to characterise tumour heterogeneity and metastasis-specific mutations providing information to adapt the therapeutic management of patients. In this article, we review the current status of ctDNA as a 'liquid biopsy' in breast cancer.

  16. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation.

    Science.gov (United States)

    Wegrzyn, Katarzyna; Witosinska, Monika; Schweiger, Pawel; Bury, Katarzyna; Jenal, Urs; Konieczny, Igor

    2013-06-01

    Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.

  17. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  18. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  19. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    Science.gov (United States)

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  20. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  1. Human papillomavirus DNA and p16 expression in Japanese patients with oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Kawakami, Hisato; Okamoto, Isamu; Terao, Kyoichi; Sakai, Kazuko; Suzuki, Minoru; Ueda, Shinya; Tanaka, Kaoru; Kuwata, Kiyoko; Morita, Yume; Ono, Koji; Nishio, Kazuto; Nishimura, Yasumasa; Doi, Katsumi; Nakagawa, Kazuhiko

    2013-12-01

    Human papillomavirus (HPV) is a major etiologic factor for oropharyngeal squamous cell carcinoma (OPSCC). However, little is known about HPV-related OPSCC in Japan. During the study, formalin-fixed, paraffin-embedded OPSCC specimens from Japanese patients were analyzed for HPV DNA by the polymerase chain reaction (PCR) and for the surrogate marker p16 by immuno-histochemistry. For HPV DNA-positive, p16-negative specimens, the methylation status of the p16 gene promoter was examined by methylation-specific PCR. Overall survival was calculated in relation to HPV DNA and p16 status and was subjected to multivariate analysis. OPSCC cell lines were examined for sensitivity to radiation or cisplatin in vitro. The study results showed that tumor specimens from 40 (38%) of the 104 study patients contained HPV DNA, with such positivity being associated with tumors of the tonsils, lymph node metastasis, and nonsmoking. Overall survival was better for OPSCC patients with HPV DNA than for those without it (hazard ratio, 0.214; 95% confidence interval, 0.074-0.614; P = 0.002). Multivariate analysis revealed HPV DNA to be an independent prognostic factor for overall survival (P = 0.015). Expression of p16 was associated with HPV DNA positivity. However, 20% of HPV DNA-positive tumors were negative for p16, with most of these tumors manifesting DNA methylation at the p16 gene promoter. Radiation or cisplatin sensitivity did not differ between OPSCC cell lines positive or negative for HPV DNA. Thus, positivity for HPV DNA identifies a distinct clinical subset of OPSCC with a more favorable outcome in Japanese.

  2. Fetal Sex Determination Using Cell-Free Fetal Dna (cffDNA in Maternal Blood

    Directory of Open Access Journals (Sweden)

    I Nyoman Hariyasa Sanjaya

    2016-06-01

    Full Text Available Background: Prenatal test has routinely performed in antenatal care and has become a part of the obstetric care feature in many countries. Prenatal test is divided into screening and diagnostic test. Recently, the early noninvasive method in order to found and lessen the risk factors of pregnancy loss, has been studied. One of the methods is molecular test using cffDNA which has many screening purpose such as sex determination, aneuploidy, paternal inherited genetic disorder, fetus rhesus, and performed early at 7 weeks of pregnancy. Objective: The purpose of this study is to measure diagnostic value of cffDNA in determining fetal sex prenatally. Methods: In a diagnostic test study, 18 randomized samples were selected and divided based on fetal gender confirmed at birth. The group consisted of 9 pregnant women with male babies and 9 pregnant women with female babies. CffDNA then isolated from maternal blood sample and specific region in Y chromosome termed SRY is detected by PCR and electrophoresis. The data obtained analyzed both descriptively for baseline characteristic and analytically to determine its diagnostic value. Results: This study found significant correlation between SRY detection in cffDNA with male fetal phenotype (p<0.05. The sensitivity of the method is 100% with 89% specificity. In addition, we found 9.09 values for positive likelihood ratio (LR+ and 0 for negative likelihood ratio (LR-. Moreover, the result yielded 100% positive predictive value (PPV+ and 88.8% of negative predictive value (PPV-. Conclusion: This study proofed that cffDNA have a great diagnostic value to determine fetal sex prenatally. However, further study with several group of gestational age mother and better matching is required to further confirm the diagnostic potential of cffDNA 

  3. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Edith E., E-mail: ed.mueller@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Mayr, Johannes A., E-mail: h.mayr@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Zimmermann, Franz A., E-mail: f.zimmermann@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Feichtinger, Rene G., E-mail: r.feichtinger@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Stanger, Olaf, E-mail: o.stanger@rbht.nhs.uk [Department of Cardiac Surgery, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Sperl, Wolfgang, E-mail: w.sperl@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Kofler, Barbara, E-mail: b.kofler@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

  4. RESTRICTION ENDONUCLEASE ANALYSIS OF MITOCHONDRIAL DNA FROM HUMAN LUNG ADENOCARCINOMA CELL LINE SPC-A-1

    Institute of Scientific and Technical Information of China (English)

    HU Yide; QIAN Guisheng; CHEN Weizhong; LI Shuping; WANG Guansong; MAO Baoling

    1999-01-01

    Objective: To understand the role of mitochondrial DNA (mtDNA) in carcinogenesis. Methods: single-step method was used to isolate the mtDNA from human lung adenocarcinoma cell line SPC-A-1. The mtDNA was analyzed by restriction fragment length polymorphism (RFLP) with 11 kinds of restriction endonuclease, which were Pvu Ⅱ, Xho Ⅰ, Pst Ⅰ, EcoR Ⅰ,BstE Ⅱ, Hind Ⅲ, Hpa Ⅰ, Bcl Ⅰ, EcoR Ⅴ, Sca Ⅰ and Xba Ⅰ.Restriction map of mtDNA from SPC-A-1 cell was obtained by the single and double-digestion method.Results: It was found that no variation at 32 restrictionsites could be detected in the coding region of mtDNA from SPC-A-1 cell line. But a new site was found at nucleotide 16276 (EcoR Ⅴ) within the noncoding region.Conclusion: These results indicate that the primary structure of gene coding region of mtDNA isolated from SPC-A-1 cell is highly stable. While the major variation of nucleotide is probably located in the noncoding region.

  5. The effect of a DNA damaging agent on embryonic cell cycles of the cnidarian Hydractinia echinata.

    Directory of Open Access Journals (Sweden)

    Tin Tin Su

    Full Text Available The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila. DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS, on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.

  6. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay.

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-03-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

  7. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome.

    Science.gov (United States)

    Hou, Yan-Qiang; Liang, Dong-Yu; Lou, Xiao-Li; Zhang, Mei; Zhang, Zhen-huan; Zhang, Lu-rong

    2016-02-01

    Cell-free circulating DNA (cf-DNA) can be detected by various of laboratory techniques. We described a branched DNA-based Alu assay for measuring cf-DNA in septic patients. Compared to healthy controls and systemic inflammatory response syndrome (SIRS) patients, serum cf-DNA levels were significantly higher in septic patients (1426.54 ± 863.79 vs 692.02 ± 703.06 and 69.66 ± 24.66 ng/mL). The areas under the receiver operating characteristic curve of cf-DNA for normal vs sepsis and SIRS vs sepsis were 0.955 (0.884-1.025), and 0.856 (0.749-0.929), respectively. There was a positive correlation between cf-DNA and interleukin 6 or procalcitonin or Acute Physiology and Chronic Health Evaluation II. The cf-DNA concentration was higher in intensive care unit nonsurviving patients compared to surviving patients (2183.33 ± 615.26 vs 972.46 ± 648.36 ng/mL; P DNA-based Alu assays are feasible and useful to quantify serum cf-DNA levels. Increased cf-DNA levels in septic patients might complement C-reactive protein and procalcitonin in a multiple marker format. Cell-free circulating DNA might be a new marker in discrimination of sepsis and SIRS.

  8. An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, Aleksei V., E-mail: avePlato@mail.ru [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Konkova, Marina S.; Kostyuk, Svetlana V.; Smirnova, Tatiana D.; Malinovskaya, Elena M.; Efremova, Liudmila V.; Veiko, Natalya N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2011-07-01

    The human umbilical vein endothelial cells culture was exposed to X-ray radiation in a low dose of 10 cGy. The fragments of extracellular genomic DNA (ecDNA{sup R}) were isolated from the culture medium after the short-term incubation. A culture medium of unirradiated endothelial cells was then supplemented with ecDNA{sup R}, followed by analysing the cells along the series of parameters (bystander effect). The exposed cells and bystander endotheliocytes showed similar response to low doses: approximation of the 1q12 loci of chromosome 1 and their transposition into the cellular nucleus, change in shape of the endotheliocytic nucleus, activation of the nucleolus organizing regions (NORs), actin polymerization, and an elevated level of DNA double-stranded breaks. Following blockade of TLR9 receptors with oligonucleotide-inhibitor or chloroquine in the bystander cells these effects - except of activation of NORs - on exposure to ecDNA{sup R} disappeared, with no bystander response thus observed. The presence of the radiation-induced apoptosis in the bystander effect being studied suggests a possibility for radiation-modified ecDNA fragments (i.e., stress signaling factors) to be released into the culture medium, whereas inhibition of TLR9 suggests the binding these ligands to the recipient cells. A similar DNA-signaling pathway in the bystander effect we previously described for human lymphocytes. Integrity of data makes it possible to suppose that a similar signaling mechanism which we demonstrated for lymphocytes (humoral system) might also be mediated in a monolayer culture of cells (cellular tissue) after the development of the bystander effect in them and transfer of stress signaling factors (ecDNA{sup R}) through the culture medium.

  9. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages

    Directory of Open Access Journals (Sweden)

    Bedayat Babak

    2010-02-01

    Full Text Available Abstract Background The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Results Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts. With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. Conclusions In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival.

  10. DNA-membrane complex damages in mammalian cells after gamma irradiation and chemical agent action and role of the complex in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Kiseleva, V.I.; Synzynys, B.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    1982-06-22

    The sedimentation behavior of the DNA-membrane complex (DMC) from Ehrlich ascites tumor (EAT) cells after gamma irradiation and carminomycin (CM) treatment was studied. The DNA and membrane containing material released by alkaline lysis from EAT cells had an anomalous sedimentation relative to denatured DNA. The DMC sediments with a great sedimentation constant (255 S). Both the chemical and physical agents induced DNA single-strand breaks and damage of the DMC. It was shown that 0.01 g/ml CM did not affect the incorporation of exogenic thymidine into DNA but the DMC was completely disrupted by this CM dose. There was no correlation between postirradiation repair kinetics of the DMC and the kinetics of /sup 3/H-thymidine incorporation into DNA of ETA cells.

  11. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    NARCIS (Netherlands)

    Fernandez, A.F.; Mentink, A.; Boer, de J.; et, al.

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylat

  12. File list: Oth.NoD.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.05.DNA-RNA_hybrids.AllCell.bed ...

  13. File list: Oth.NoD.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.50.DNA-RNA_hybrids.AllCell.bed ...

  14. File list: Oth.NoD.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.20.DNA-RNA_hybrids.AllCell.bed ...

  15. File list: Oth.NoD.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.10.DNA-RNA_hybrids.AllCell.bed ...

  16. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase IV transcription of daunorubicin-resistant leukemia cell lines.

    Science.gov (United States)

    Nishida, Yayoi; Mizutani, Naoki; Inoue, Minami; Omori, Yukari; Tamiya-Koizumi, Keiko; Takagi, Akira; Kojima, Tetsuhito; Suzuki, Motoshi; Nozawa, Yoshinori; Minami, Yosuke; Ohnishi, Kazunori; Naoe, Tomoki; Murate, Takashi

    2014-01-01

    Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we characterized the expression of non-homologous DNA end joining (NHEJ) components, a major DNA double strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone (K562/DNR). K562/DNR overexpressed major enzymes of NHEJ, DNA-PKcs and DNA ligase IV, and K562/DNR repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR) cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level, and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5'-region between -49bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1 and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells. DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition. EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHEJ component expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.

  17. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available DNA elements thatrespond to T cell activation signals. PubmedID 1492121 Title Activation of lymphokine genes... in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. Authors Arai N, Naito...ivation signals. Arai N, Naito Y, Watanabe M, Masuda ES, Yamaguchi-Iwai Y, Tsuboi A...1492121 Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell act

  18. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  19. Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Interspecies somatic cell nuclear transfer (iSCNT involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%; and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%. Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 µM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38% compared to embryos generated from non-supplemented oocytes (P<0.01. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They

  20. Heavy ion induced DNA-DSB in yeast and mammalian cells

    Science.gov (United States)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    Molecular changes at the DNA are assumed to be the main cause for radiation effects in a number of organisms. During the course of the last decades techniques have been developed for measuring DNA double-strand breaks (dsb), generally assumed to be the most critical DNA lesions. The outcome of all those different approaches portrays a collection of data useful for a theoretical description of radiation action mechanisms. However, in the case of heavy ion induced DNA dsb the picture is not quite clear yet and further projects and strategies have to be developed. The biological systems studied in our group are yeast and mammalian cells. While in the case of yeast cells technical and methodical reasons highlight these organisms mammalian cells reach greater importance when dsb repair studies are performed. In both types of organisms the technique of pulsed-field gel electrophoresis (PFGE) is applied, although with different modifications and evaluation procedures mainly due to the different genome sizes.

  1. Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content

    Energy Technology Data Exchange (ETDEWEB)

    Pellicciari, C.; Mangiarotti, R.; Bottone, M.G.; Danova, M. [Univ. of Pavia (Italy); Wang, E. [Jewish General Hospital, Montreal, Quebec (Canada)

    1995-12-01

    Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G{sub 0}) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G{sub 0} cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G{sub 0} (statin positive) cells can be discriminated from the potentially cycling (statin negative) G{sub 1} cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G{sub 0}-G{sub 1} transition in unperturbed and drug-treated cell populations. 48 refs., 5 figs., 1 tab.

  2. DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID.

    Science.gov (United States)

    Dominguez, Pilar M; Teater, Matt; Chambwe, Nyasha; Kormaksson, Matthias; Redmond, David; Ishii, Jennifer; Vuong, Bao; Chaudhuri, Jayanta; Melnick, Ari; Vasanthakumar, Aparna; Godley, Lucy A; Papavasiliou, F Nina; Elemento, Olivier; Shaknovich, Rita

    2015-09-29

    Changes in DNA methylation are required for the formation of germinal centers (GCs), but the mechanisms of such changes are poorly understood. Activation-induced cytidine deaminase (AID) has been recently implicated in DNA demethylation through its deaminase activity coupled with DNA repair. We investigated the epigenetic function of AID in vivo in germinal center B cells (GCBs) isolated from wild-type (WT) and AID-deficient (Aicda(-/-)) mice. We determined that the transit of B cells through the GC is associated with marked locus-specific loss of methylation and increased methylation diversity, both of which are lost in Aicda(-/-) animals. Differentially methylated cytosines (DMCs) between GCBs and naive B cells (NBs) are enriched in genes that are targeted for somatic hypermutation (SHM) by AID, and these genes form networks required for B cell development and proliferation. Finally, we observed significant conservation of AID-dependent epigenetic reprogramming between mouse and human B cells.

  3. YAP controls retinal stem cell DNA replication timing and genomic stability.

    Science.gov (United States)

    Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel

    2015-09-22

    The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability.

  4. Genome-wide screen for differential DNA methylation associated with neural cell differentiation in mouse.

    Directory of Open Access Journals (Sweden)

    Rene Cortese

    Full Text Available Cellular differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Using Differential Methylation Hybridization (DMH in combination with a custom DMH array containing 51,243 features covering more than 16,000 murine genes, we carried out a genome-wide screen for cell- and tissue-specific differentially methylated regions (tDMRs in undifferentiated embryonic stem cells (ESCs, in in-vitro induced neural stem cells (NSCs and 8 differentiated embryonic and adult tissues. Unsupervised clustering of the generated data showed distinct cell- and tissue-specific DNA methylation profiles, revealing 202 significant tDMRs (p1.96 enrichment for genes involved in neural differentiation, including, for example, Jag1 and Tcf4. Our results provide robust evidence for the relevance of DNA methylation in early neural development and identify novel marker candidates for neural cell differentiation.

  5. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...... lymphoblastoid cell lines. These complex forms of mtDNA were present in much lower frequencies in lymphocytes isolated from donor blood (1.3%-4.6%). Similar low frequencies were found with primary fibroblasts (1.1%) or freshly isolated monkey liver cells (2.1%). Samples from cultures of Burkitt lymphoma (BL......) cell lines of EBV-positive or -negative origin contained intermediate (5%-7%) frequencies of complex forms of mtDNA....

  6. Monitoring of organ transplants through genomic analyses of circulating cell-free DNA

    Science.gov (United States)

    de Vlaminck, Iwijn

    Solid-organ transplantation is the preferred treatment for patients with end-stage organ diseases, but complications due to infection and acute rejection undermine its long-term benefits. While clinicians strive to carefully monitor transplant patients, diagnostic options are currently limited. My colleagues and I in the lab of Stephen Quake have found that a combination of next-generation sequencing with a phenomenon called circulating cell-free DNA enables non-invasive diagnosis of both infection and rejection in transplantation. A substantial amount of small fragments of cell-free DNA circulate in blood that are the debris of dead cells. We discovered that donor specific DNA is released in circulation during injury to the transplant organ and we show that the proportion of donor DNA in plasma is predictive of acute rejection in heart and lung transplantation. We profiled viral and bacterial DNA sequences in plasma of transplant patients and discovered that the relative representation of different viruses and bacteria is informative of immunosuppression. This discovery suggested a novel biological measure of a person's immune strength, a finding that we have more recently confirmed via B-cell repertoire sequencing. Lastly, our studies highlight applications of shotgun sequencing of cell-free DNA in the broad, hypothesis free diagnosis of infection.

  7. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  8. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress.

    Science.gov (United States)

    Mehrotra, Sonam; Maqbool, Shahina B; Kolpakas, Alexis; Murnen, Katherine; Calvi, Brian R

    2008-11-15

    Initiation of DNA replication at origins more than once per cell cycle results in rereplication and has been implicated in cancer. Here we use Drosophila to examine the checkpoint responses to rereplication in a developmental context. We find that increased Double-parked (Dup), the Drosophila ortholog of Cdt1, results in rereplication and DNA damage. In most cells, this rereplication triggers caspase activation and apoptotic cell death mediated by both p53-dependent and -independent pathways. Elevated Dup also caused DNA damage in endocycling cells, which switch to a G/S cycle during normal development, indicating that rereplication and the endocycling DNA reduplication program are distinct processes. Unexpectedly, however, endocycling cells do not apoptose regardless of tissue type. Our combined evidence suggests that endocycling apoptosis is repressed in part because proapoptotic gene promoters are silenced. Normal endocycling cells had DNA lesions near heterochromatin, which increased after rereplication, explaining why endocycling cells must constantly repress the genotoxic apoptotic response. Our results reveal a novel regulation of apoptosis in development and new insights into the little-understood endocycle. Similar mechanisms may operate during vertebrate development, with implications for cancer predisposition in certain tissues.

  9. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    Science.gov (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  10. 45. Damage effects of sulfur dioxide inhalation on DNA of brain cells from mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The damage effects of sulfur dioxide (SO2) inhalation on DNA of brain cells from mice were studied with the single cell microgel electrophoresis tecknique (Comet test). The results show that SO2 inhalation caused the damage effects to DNA of the mouse brain cells in a dose-dependent manner. The results indicate that even under SO2 inhalation at low concentrations as 7 mg SO2/m3, The brain cells with DNA damaged also reached to 98.8%, it implies the brain cells of mammalian animals are very sensitive to SO2 inhalation. The results also indicate that DNA damage of the brain cells from male mice is more serious than that from female mice, that remains to be further studied. These results led us to conclusion SO2 pollution even at low concentrations also has a potential risk to damage genetic material DNA of brain cells from mammalian animals. It might be explained by our conclusion that the recently published epidemiological studies of workers exposed to SO2 or it's derivatives (bi)sulfite) found increased mortality for brain cancer.

  11. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells.

    Science.gov (United States)

    Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K

    2014-02-01

    The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.

  12. EdU induces DNA damage response and cell death in mESC in culture.

    Science.gov (United States)

    Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A

    2013-03-01

    Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.

  13. Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo

    Directory of Open Access Journals (Sweden)

    H. Korr

    1998-02-01

    Full Text Available It is generally accepted that mitochondria are able to proliferate even in postmitotic cells due to their natural turnover and also to satisfy increased cell energy requirements. However, no detailed studies are available, particularly with respect to specific cell types. Since [3H]-thymidine is incorporated not only into nuclear (n DNA but also into the DNA of cytoplasmic mitochondria, an autoradiographic approach was developed at the light microscopy level in order to study basic questions of mitochondrial (mt proliferation in organs of rodents in situ via the cytoplasmic incorporation of [3H]-thymidine injected into the animals 1 h before sacrifice. Experiments carried out on mice after X-irradiation showed that cytoplasmic labeling was not due to a process such as unscheduled nuclear DNA synthesis (nUDS. Furthermore, half-lives of mitochondria between 8-23 days were deduced specifically in relation to cell types. The phase of mtDNA synthesis was about 75 min. Finally, mt proliferation was measured in brain cells of mice as a function of age. While all neurons showed a decreasing extent of mtDNA synthesis during old age, nUDS decreased only in distinct cell types of the cortex and hippocampus. We conclude that the leading theories explaining the phenomenon of aging are closely related, i.e., aging is due to a decreasing capacity of nDNA repair, which leads to unrepaired nDNA damage, or to an accumulation of mitochondria with damaged mtDNA, which leads to a deficit of cellular energy production

  14. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  15. DNA Damage Signaling, Impairment of Cell Cycle Progression, and Apoptosis Triggered by 5-Ethynyl-2′-deoxyuridine Incorporated into DNA

    OpenAIRE

    Zhao, Hong; Halicka, H. Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-01-01

    The “click chemistry” approach utilizing 5-ethynyl-2′-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis...

  16. Uhrf2 is important for DNA damage response in vascular smooth muscle cells.

    Science.gov (United States)

    Luo, Tao; Cui, Shijun; Bian, Chunjing; Yu, Xiaochun

    2013-11-08

    Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.

  17. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Seok-Jo Kim

    2015-09-01

    Full Text Available Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC programmed cell death (apoptosis that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF and asbestosis (pulmonary fibrosis following asbestos exposure. The mammalian mitochondrial DNA (mtDNA encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1 and mitochondrial aconitase (ACO-2 in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.

  18. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  19. Construction and analysis of SSH cDNA library of human vascular endothelial cells related to gastrocarcinoma

    OpenAIRE

    2003-01-01

    AIM: To construct subtracted cDNA libraries of human vascular endothelial cells (VECs) related to gastrocarcinoma using suppression substractive hybridization (SSH) and to analyze cDNA libraries of gastrocarcinoma and VECs in Cancer Gene Anatomy Project (CGAP) database.

  20. The role of the cancer stem cell marker CD271 in DNA damage response and drug resistance of melanoma cells

    Science.gov (United States)

    Redmer, T; Walz, I; Klinger, B; Khouja, S; Welte, Y; Schäfer, R; Regenbrecht, C

    2017-01-01

    Several lines of evidence have suggested that stemness and acquired resistance to targeted inhibitors or chemotherapeutics are mechanistically linked. Here we observed high cell surface and total levels of nerve growth factor receptor/CD271, a marker of melanoma-initiating cells, in sub-populations of chemoresistant cell lines. CD271 expression was increased in drug-sensitive cells but not resistant cells in response to DNA-damaging chemotherapeutics etoposide, fotemustine and cisplatin. Comparative analysis of melanoma cells engineered to stably express CD271 or a targeting short hairpin RNA by expression profiling provided numerous genes regulated in a CD271-dependent manner. In-depth analysis of CD271-responsive genes uncovered the association of CD271 with regulation of DNA repair components. In addition, gene set enrichment analysis revealed enrichment of CD271-responsive genes in drug-resistant cells, among them DNA repair components. Moreover, our comparative screen identified the fibroblast growth factor 13 (FGF13) as a target of CD271, highly expressed in chemoresistant cells. Further we show that levels of CD271 determine drug response. Knock-down of CD271 in fotemustine-resistant cells decreased expression of FGF13 and at least partly restored sensitivity to fotemustine. Together, we demonstrate that expression of CD271 is responsible for genes associated with DNA repair and drug response. Further, we identified 110 CD271-responsive genes predominantly expressed in melanoma metastases, among them were NEK2, TOP2A and RAD51AP1 as potential drivers of melanoma metastasis. In addition, we provide mechanistic insight in the regulation of CD271 in response to drugs. We found that CD271 is potentially regulated by p53 and in turn is needed for a proper p53-dependent response to DNA-damaging drugs. In summary, we provide for the first time insight in a CD271-associated signaling network connecting CD271 with DNA repair, drug response and metastasis. PMID

  1. Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage.

    Science.gov (United States)

    Wu, Z; Lee, S T; Qiao, Y; Li, Z; Lee, P L; Lee, Y J; Jiang, X; Tan, J; Aau, M; Lim, C Z H; Yu, Q

    2011-11-01

    Polycomb protein histone methyltransferase enhancer of Zeste homologe 2 (EZH2) is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating DNA damage response. Here, we show that EZH2 is an important determinant of cell fate decision in response to genotoxic stress. EZH2 depletion results in abrogation of both cell cycle G1 and G2/M checkpoints, directing DNA damage response toward predominant apoptosis in both p53-proficient and p53-deficient cancer cells, but not in normal cells. Mechanistically, EZH2 regulates DNA damage response in p53 wild-type cells mainly through transcriptional repression of FBXO32, which binds to and directs p21 for proteasome-mediated degradation, whereas it affects p53-deficient cells through regulating Chk1 activation by a distinct mechanism. Furthermore, pharmacological depletion of EZH2 phenocopies the effects of EZH2 knockdown on cell cycle checkpoints and apoptosis. These data unravel a crucial role of EZH2 in determining the cancer cell outcome following DNA damage and suggest that therapeutic targeting oncogenic EZH2 might serve as a strategy for improving conventional chemotherapy in a given malignancy.

  2. Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells.

    Science.gov (United States)

    Desplancq, Dominique; Freund, Guillaume; Conic, Sascha; Sibler, Annie-Paule; Didier, Pascal; Stoessel, Audrey; Oulad-Abdelghani, Mustapha; Vigneron, Marc; Wagner, Jérôme; Mély, Yves; Chatton, Bruno; Tora, Laszlo; Weiss, Etienne

    2016-03-15

    Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.

  3. Development of Viral Capsid DNA Aptamer Conjugates as Cell-Targeted Delivery Vehicles

    Science.gov (United States)

    Tong, Gary Jen-Wei

    The ability to generate semi-synthetic DNA-protein conjugates has become increasingly important in the fields of chemical biology and nanobiotechnology. As applications in these fields become more complex, there is also an increased need for methods of attaching synthetic DNA to protein substrates in a well-defined manner. This work outlines the development of new methods for site-specific DNA-protein bioconjugation, as well as the development of novel viral capsid DNA aptamer conjugates for cell-targeting purposes. In order to generate DNA-protein conjugates in a site-specific manner, chemistries orthogonal to native functional groups present on DNA and proteins were exploited. In one method, the attachment of DNA to proteins was achieved via oxime formation. This strategy involved the in situ deprotection of an allyloxycarbonyl-protected alkoxyamine-bearing DNA in the presence of a protein containing a single ketone group. The utility of this approach was demonstrated in the synthesis of a DNA-GFP conjugate. In addition to the oxime formation route, two oxidative coupling methods were also developed for DNA-protein bioconjugation. The first reaction coupled phenylenediamine-containing DNA to anilines, which had been site-specifically incorporated into proteins, in the presence of NaIO4. These reaction conditions were demonstrated on the proteins bacteriophage MS2 and GFP, and were mild enough for the components to retain both protein structure and DNA base-pairing capabilities. The second oxidative coupling reaction conjugated aniline-containing proteins to DNA bearing an o-aminophenol moiety. This reaction occurred under similarly mild conditions; however, higher coupling yields were achieved on MS2 at shorter reaction times by using this strategy. In all three of these methods, the generation of a singly-modified product was achieved. Using one of our oxidative coupling strategies, MS2-DNA aptamer conjugates were synthesized for the development of multivalent

  4. An Advanced Model to Precisely Estimate the Cell-Free Fetal DNA Concentration in Maternal Plasma

    Science.gov (United States)

    Xu, Huixin; Jiang, Haojun; Xie, Weiwei; Chen, Fang; Zeng, Peng; Li, Xuchao; Xie, Yifan; Liu, Hongtai; Huang, Guodong; Chen, Dayang; Liu, Ping; Jiang, Hui; Zhang, Xiuqing

    2016-01-01

    Background With the speedy development of sequencing technologies, noninvasive prenatal testing (NIPT) has been widely applied in clinical practice for testing for fetal aneuploidy. The cell-free fetal DNA (cffDNA) concentration in maternal plasma is the most critical parameter for this technology because it affects the accuracy of NIPT-based sequencing for fetal trisomies 21, 18 and 13. Several approaches have been developed to calculate the cffDNA fraction of the total cell-free DNA in the maternal plasma. However, most approaches depend on specific single nucleotide polymorphism (SNP) allele information or are restricted to male fetuses. Methods In this study, we present an innovative method to accurately deduce the concentration of the cffDNA fraction using only maternal plasma DNA. SNPs were classified into four maternal-fetal genotype combinations and three boundaries were added to capture effective SNP loci in which the mother was homozygous and the fetus was heterozygous. The median value of the concentration of the fetal DNA fraction was estimated using the effective SNPs. A depth-bias correction was performed using simulated data and corresponding regression equations for adjustments when the depth of the sequencing data was below 100-fold or the cffDNA fraction is less than 10%. Results Using our approach, the median of the relative bias was 0.4% in 18 maternal plasma samples with a median sequencing depth of 125-fold. There was a significant association (r = 0.935) between our estimations and the estimations inferred from the Y chromosome. Furthermore, this approach could precisely estimate a cffDNA fraction as low as 3%, using only maternal plasma DNA at the targeted region with a sequencing depth of 65-fold. We also used PCR instead of parallel sequencing to calculate the cffDNA fraction. There was a significant association (r = 98.2%) between our estimations and those inferred from the Y chromosome. PMID:27662469

  5. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation.

    Science.gov (United States)

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-06-05

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes; however, there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.

  6. Visualization of mitochondrial DNA replication in individual cells by EdU signal amplification.

    Science.gov (United States)

    Haines, Kristine M; Feldman, Eva L; Lentz, Stephen I

    2010-11-15

    Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) with a tyramide signal amplification (TSA) protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.

  7. Fatal outcome in bacteremia is characterized by high plasma cell free DNA concentration and apoptotic DNA fragmentation: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Reetta Huttunen

    Full Text Available INTRODUCTION: Recent studies have shown that apoptosis plays a critical role in the pathogenesis of sepsis. High plasma cell free DNA (cf-DNA concentrations have been shown to be associated with sepsis outcome. The origin of cf-DNA is unclear. METHODS: Total plasma cf-DNA was quantified directly in plasma and the amplifiable cf-DNA assessed using quantitative PCR in 132 patients with bacteremia caused by Staphylococcus aureus, Streptococcus pneumoniae, ß-hemolytic streptococcae or Escherichia coli. The quality of cf-DNA was analyzed with a DNA Chip assay performed on 8 survivors and 8 nonsurvivors. Values were measured on days 1-4 after positive blood culture, on day 5-17 and on recovery. RESULTS: The maximum cf-DNA values on days 1-4 (n = 132 were markedly higher in nonsurvivors compared to survivors (2.03 vs 1.26 ug/ml, p1.52 ug/ml remained an independent risk factor for case fatality in a logistic regression model. Qualitative analysis of cf-DNA showed that cf-DNA displayed a predominating low-molecular-weight cf-DNA band (150-200 bp in nonsurvivors, corresponding to the size of the apoptotic nucleosomal DNA. cf-DNA concentration showed a significant positive correlation with visually graded apoptotic band intensity (R = 0.822, p<0.001. CONCLUSIONS: Plasma cf-DNA concentration proved to be a specific independent prognostic biomarker in bacteremia. cf-DNA displayed a predominating low-molecular-weight cf-DNA band in nonsurvivors corresponding to the size of apoptotic nucleosomal DNA.

  8. SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y; Payno, H; Delage, E; Maigne, L [Clermont Universite, CNRS/IN2P3, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Incerti, S [Universite Bordeaux 1, CNRS/IN2P3, Centres d' Etudes Nucleaires de Bordeaux-Gradignan, Gradignan (France); Debiton, E; Peyrode, C; Chezal, J; Miot-Noirault, E; Degoul, F [Clermont Universite, Universite d' Auvergne, Imagerie Moleculaire et Therapie Vectorisee, INSERM U990, Centre Jean Perrin, Clermont-Ferrand (France)

    2014-06-01

    Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm and nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro

  9. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    Science.gov (United States)

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  10. Construction of cDNA representational difference analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Li; Lin Yang; Jian-Tao Cui; Wen-Mei Li; Rui-Fang Guo; You-Yong Lu

    2002-01-01

    AIM: To elucidate molecular mechanism of chemopreventiveefficacies of garlic against human gastric cancer (HGC):METHODS: HGC cell line BGC823 was treated with Allitridi (akind of garlic extract) and Allitridi-treated and parentalBGC823 cDNA librarles were constructed respectively byusing λZAP Ⅱ vector. cDNA Representatinal DifferenceAnalysis (cDNA RDA) was perfonmed using BamH Ⅰ cutting-site and abundant ~DNA messages provided by the Iibrarles.Northern blot analysls was applied to identifythe obtaineddifference prnducts.RESULTS: Two specific cDNA fragments were obtained andcharacterized to be derived from homo sapiens folatereceptorα (FRα) gene and calcyclin gene respectively.Northern blot results showed a 4-fold increase in FRα geneexpression level and 9-fold increase in calcyclin mRNA levelin BGC823 cells after Allilridi treatment for 72 h.CONCLUSION: The method of cDNA RDA based on cDNAlibraries combines the high specificity of cDNA RDA withabundant cDNA messages in cDNA library; this expands theapplication of cDNA library and increases the specificity ofcDNA RDA. Up-regulstion of FRα gene and calcyclin geneexpressions induced by Allitridi provide valuable molecularevidence for theefficacy of garlic in treating HGC as well asother diseases.

  11. Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing.

    Science.gov (United States)

    Quispe-Tintaya, Wilber; White, Ryan R; Popov, Vasily N; Vijg, Jan; Maslov, Alexander Y

    2013-09-01

    Standard methods for mitochondrial DNA (mtDNA) extraction do not provide the level of enrichment for mtDNA sufficient for direct sequencing and must be followed by long-range-PCR amplification, which can bias the sequencing results. Here, we describe a fast, cost-effective, and reliable method for preparation of mtDNA enriched samples from eukaryotic cells ready for direct sequencing. Our protocol utilizes a conventional miniprep kit, paramagnetic bead-based purification, and an optional, limited PCR amplification of mtDNA. The first two steps alone provide more than 2000-fold enrichment for mtDNA when compared with total cellular DNA (~200-fold in comparison with current commercially available kits) as demonstrated by real-time PCR. The percentage of sequencing reads aligned to mtDNA was about 22% for non-amplified samples and greater than 99% for samples subjected to 10 cycles of long-range-PCR with mtDNA specific primers.

  12. Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells

    NARCIS (Netherlands)

    Pijlman, G.P.; Vermeesch, A.M.G.; Vlak, J.M.

    2003-01-01

    Successive Viral passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in the S. exigua cell line Se301 leads to the rapid accumulation of the non-hr origin of DNA replication (ori) as large concatemers. Passage of SeMNPV in two other S. exigua cell lines, SeUCR1 and SeIZD2109, did

  13. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-05-11

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E₂, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional "repair and survive, or die" hypothesis.

  14. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads.

    Science.gov (United States)

    Lendez, Pamela Anahi; Passucci, Juan Antonio; Poli, Mario Andres; Gutierrez, Silvina Elena; Dolcini, Guillermina Laura; Ceriani, Maria Carolina

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824.

  15. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    Science.gov (United States)

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  16. Comparison of EBV DNA viral load in whole blood, plasma, B-cells and B-cell culture supernatant.

    Science.gov (United States)

    Ouedraogo, David Eric; Bollore, Karine; Viljoen, Johannes; Foulongne, Vincent; Reynes, Jacques; Cartron, Guillaume; Vendrell, Jean-Pierre; Van de Perre, Philippe; Tuaillon, Edouard

    2014-05-01

    Epstein-Barr virus (EBV) genome quantitation in whole blood is used widely for therapeutic monitoring of EBV-associated disorders in immunosuppressed individuals and in patients with EBV-associated lymphoma. However, the most appropriate biological material to be used for EBV DNA quantitation remains a subject of debate. This study compare the detection rate and levels of EBV DNA from whole blood, plasma, enriched B-cells, and B-cell short-term culture supernatant using quantitative real-time PCR. Samples were collected from 33 subjects with either HIV infection or B-cell lymphoma. Overall, EBV DNA was detected in 100% of enriched B-cell samples, in 82% of B-cell culture supernatants, in 57% of plasma, and 42% of whole blood samples. A significant correlation for EBV viral load was found between enriched B-cell and B-cell culture supernatant material (ρ = 0.92; P cells (ρ = -0.02; P = 0.89), whole blood and plasma (ρ = 0.24; P = 0.24), or enriched B-cells and plasma (ρ = 0.08; P = 0.77). Testing of enriched B-cells appeared to be the most sensitive method for detection of EBV DNA as well as for exploration of the cellular reservoir. Quantitation of EBV DNA in plasma and B-cell culture supernatant may be of interest to assess EBV reactivation dynamics and response to treatment as well as to decipher EBV host-pathogen interactions in various clinical scenarios.

  17. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.

    Science.gov (United States)

    Le Chalony, Catherine; Hoffschir, Françoise; Gauthier, Laurent R; Gross, Julia; Biard, Denis S; Boussin, François D; Pennaneach, Vincent

    2012-09-01

    DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.

  18. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  19. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment.

    Science.gov (United States)

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR-mediated extracellular alarm signals.

  20. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  1. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Science.gov (United States)

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  2. Increased mammogram-induced DNA damage in mammary epithelial cells aged in vitro.

    Science.gov (United States)

    Hernández, Laia; Terradas, Mariona; Martín, Marta; Feijoo, Purificación; Soler, David; Tusell, Laura; Genescà, Anna

    2013-01-01

    Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged-but not to young-human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones. Our studies point to an inefficient damage response of aged cells to low-dose radiation, this being due to both delayed and incomplete mobilization of repair proteins to DNA strand breaks. This inefficient damage response is translated into an important delay in double-strand break disappearance and consequent accumulation of unrepaired DNA breaks. The result of this is a significant increase in micronuclei frequency in the in vitro aged mammary epithelial cells exposed to doses equivalent to a single mammogram X-ray exploration. Since our experiments were carried out in primary epithelial cell cultures in which cells age at the same time as they undergo replication-dependent telomere shortening, we needed to determine the contribution of these two factors to their phenotype. In this paper, we report that the exogenous expression of human telomerase retrotranscriptase in late population doubling epithelial cells does not rescue its delayed repair phenotype. Therefore, retarded DNA break repair is a direct consequence of cellular aging itself, rather than a consequence of the presence of dysfunctional telomeres. Our findings of long-lasting double strand breaks and incomplete DNA break repair in the in vitro aged epithelial cells are in line with the increased carcinogenic risks of radiation exposures at older ages revealed by epidemiologic studies.

  3. Increased mammogram-induced DNA damage in mammary epithelial cells aged in vitro.

    Directory of Open Access Journals (Sweden)

    Laia Hernández

    Full Text Available Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged-but not to young-human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones. Our studies point to an inefficient damage response of aged cells to low-dose radiation, this being due to both delayed and incomplete mobilization of repair proteins to DNA strand breaks. This inefficient damage response is translated into an important delay in double-strand break disappearance and consequent accumulation of unrepaired DNA breaks. The result of this is a significant increase in micronuclei frequency in the in vitro aged mammary epithelial cells exposed to doses equivalent to a single mammogram X-ray exploration. Since our experiments were carried out in primary epithelial cell cultures in which cells age at the same time as they undergo replication-dependent telomere shortening, we needed to determine the contribution of these two factors to their phenotype. In this paper, we report that the exogenous expression of human telomerase retrotranscriptase in late population doubling epithelial cells does not rescue its delayed repair phenotype. Therefore, retarded DNA break repair is a direct consequence of cellular aging itself, rather than a consequence of the presence of dysfunctional telomeres. Our findings of long-lasting double strand breaks and incomplete DNA break repair in the in vitro aged epithelial cells are in line with the increased carcinogenic risks of radiation exposures at older ages revealed by epidemiologic studies.

  4. Cell-free DNA for diagnosing myocardial infarction: not ready for prime time.

    Science.gov (United States)

    Lippi, Giuseppe; Sanchis-Gomar, Fabian; Cervellin, Gianfranco

    2015-11-01

    A modest amount of cell-free DNA is constantly present in human blood, originating from programmed cell death, apoptosis and rupture of blood cells or pathogens. Acute or chronic cell injury contributes to enhance the pool of circulating nucleic acids, so that their assessment may be regarded as an appealing perspective for diagnosing myocardial ischemia. We performed a search in Medline, Web of Science and Scopus to identify clinical studies that investigated the concentration of cell-free DNA in patients with myocardial ischemia. Overall, eight case-control studies could be detected and reviewed. Although the concentration of cell-free DNA was found to be higher in the diseased than in the healthy population, the scenario was inconclusive due to the fact that the overall number of subjects studied was modest, the populations were unclearly defined, cases and controls were not adequately matched, the methodology for measuring the reference cardiac biomarkers was inadequately described, and the diagnostic performance of cell-free DNA was not benchmarked against highly sensitive troponin immunoassays. Several biological and technical hurdles were also identified in cell-free DNA testing, including the lack of specificity and unsuitable kinetics for early diagnosis of myocardial ischemia, the long turnaround time and low throughput, the need for specialized instrumentation and dedicated personnel, the lack of standardization or harmonization of analytical techniques, the incremental costs and the high vulnerability to preanalytical variables. Hence it seems reasonable to conclude that the analysis of cell-free DNA is not ready for prime time in diagnostics of myocardial ischemia.

  5. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  6. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Directory of Open Access Journals (Sweden)

    Rajendran Praveen

    2011-10-01

    Full Text Available Abstract Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.

  7. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer

    Directory of Open Access Journals (Sweden)

    Laird Peter W

    2008-07-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients. Results We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p Conclusion We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.

  8. Genetic alteration andmutation proifling ofcirculating cell-free tumor DNA (cfDNA) fordiagnosis andtargeted therapy ofgastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    WeixinYan; AiguoZhang; MichaelJPowell

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identiifcation of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the effcacy of cancer therapy by match-ing targeted drugs to speciifc mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by theKIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target ampliifcation technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitor-ing of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR ampliifcation of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

  9. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny.

    Science.gov (United States)

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape.This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and L-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  10. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny.

    Directory of Open Access Journals (Sweden)

    Maïté Hanot

    Full Text Available Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape.This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and L-buthionine sulfoximine association combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61 displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable

  11. Membrane-DNA attachment sites in Streptococcus faecalis cells grown at different rates.

    OpenAIRE

    Parks, L C; Rigney, D; Daneo-Moore, L; Higgins, M. L.

    1982-01-01

    The M-band technique was used to assess the number of attachment points of DNA to the cell membrane of Streptococcus faecalis grown at three different rates. Cells were X irradiated in liquid nitrogen and then analyzed simultaneously for the introduction of double-strand breaks into the chromosome and the degree of removal of DNA from the cell membrane (M band). Consideration of the data from these experiments and of the topology of the bacterial chromosome resulted in a reevaluation of forme...

  12. Enhancement of DNA repair capacity of mammalian cells by carcinogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Protic, M.; Roilides, E.; Levine, A.S.; Dixon, K.

    1988-07-01

    To determine whether DNA excision repair is enhanced in mammalian cells in response to DNA damage, as it is in bacteria as part of the SOS response, we used an expression vector-host cell reactivation assay to measure cellular DNA repair capacity. When UV-damaged chloramphenicol acetyltransferase (CAT) vector DNA was introduced into monkey cells (CV-1), the level of CAT activity was inversely related to the UV fluence due to inhibition of CAT gene expression by UV photoproducts. When CV-1 cells were treated with either UV radiation or mitomycin C, 24-48 h before transfection, CAT expression from the UV-irradiated plasmid was increased. This increase also occurred in a line of normal human cells, but not in repair-deficient human xeroderma pigmentosum cells. We confirmed that this increase in CAT expression was due to repair, and not to production of damage-free templates by recombination; the frequency of generation of supF+ recombinants after transfection with UV-irradiated pZ189 vectors carrying different point mutations in the supF gene did not significantly increase in carcinogen-treated CV-1 cells. From these results we conclude that carcinogen treatment enhances the excision-repair capacity of normal mammalian cells.

  13. Sodium perbarate and benzalkonium chloride induce DNA damage in Chang conjunctival epithelial cells.

    Science.gov (United States)

    Zhang, Huina; Wu, Han; Yang, Jun; Ye, Juan

    2017-02-06

    Content and objective: To investigate and compare the toxic effects of benzalkonium chloride (BAC) and new type oxidative preservative sodium perborate (NaBO3) on DNA damage, reactive oxygen species (ROS), and cell survival in immortalized human Chang conjunctival cells.

  14. Protective effect of O6-methylguanine-DNA-methyltransferase on mammalian cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-bo; WANG Ji-shi; FANG Qin; SUN Hai-yang; XU Wei; LI Wei-da

    2007-01-01

    Background O6-methylguanine-DNA-methyltransferase (MGMT) is a specific DNA revising enzyme transferring alkylated groups from DNA to its cysteine residue to avoid the abnormal twisting of DNA. Therefore, it is one of the drug resistant genes targeted in the treatment of cancer. This study explored the protective effect of MGMT gene transferred into mammalian cells.Methods Mammalian expression vector containing the MGMT gene cloned from human hepatocytes by RT-PCR was constructed and transferred into K562 cells and human peripheral blood mononuclear cells (PBMCs) via liposome, then assayed for gene expression at RNA and protein levels. MTT assay was used to check the drug resistance of cells transfected with MGMT gene.Results MGMT gene was successfully cl