WorldWideScience

Sample records for cell protein tyrosine

  1. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.;

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly......-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130-132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the...

  2. Salmonella typhimurium invasion of epithelial cells: role of induced host cell tyrosine protein phosphorylation.

    OpenAIRE

    Rosenshine, I.; Ruschkowski, S; Foubister, V; Finlay, B B

    1994-01-01

    Salmonella typhimurium invades nonphagocytic epithelial and fibroblast cells via a process resembling phagocytosis. We have compared some phenotypes that are involved in S. typhimurium invasion by using different host cell lines, including HeLa, Henle-407, and A431. Infection with either wild-type S. typhimurium, bacterial culture supernatant, or the noninvasive invA mutant was associated with induction of tyrosine phosphorylation of host cell mitogenic activating protein kinase. However, we ...

  3. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  4. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by...

  5. Immunohistochemical Analysis of IA-2 Family of Protein Tyrosine Phosphatases in Rat Gastrointestinal Endocrine Cells

    OpenAIRE

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-01-01

    Islet-associated protein–2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the...

  6. Incorporation of Ortho- and Meta-Tyrosine Into Cellular Proteins Leads to Erythropoietin-Resistance in an Erythroid Cell Line

    Directory of Open Access Journals (Sweden)

    Esztella Mikolás

    2014-04-01

    Full Text Available Background/Aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance. Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated. Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment. Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.

  7. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    Directory of Open Access Journals (Sweden)

    Tähtinen Siri

    2010-01-01

    Full Text Available Abstract Background T-cell protein tyrosine phosphatase (TCPTP/TC45 is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. Methods We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. Results From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. Conclusions In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first

  8. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase.

    OpenAIRE

    Mustelin, T; Coggeshall, K M; Altman, A

    1989-01-01

    T lymphocytes express a tyrosine protein kinase (TPK; protein-tyrosine kinase; ATP:protein-tyrosine O-phosphotransferase, EC 2.7.1.112), pp56lck that is encoded by the lck protooncogene. This TPK was recently found to be associated with the intracellular domain of the T-cell surface glycoproteins, CD4 and CD8, suggesting that it plays an important role in T-cell development and activation. We have studied the regulation of pp56lck and found that this kinase can be rapidly activated by an endo...

  9. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  10. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  11. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  12. c-Jun and Ets2 proteins regulate expression of spleen tyrosine kinase in T cells.

    Science.gov (United States)

    Ghosh, Debjani; Tsokos, George C; Kyttaris, Vasileios C

    2012-04-01

    Effector T cells and T cells from patients with systemic lupus erythematosus (SLE) express increased levels of the spleen tyrosine kinase (Syk). Syk binds to the T cell receptor (TCR)-CD3 complex and transduces the TCR-mediated signal in the cell more efficiently than the canonical CD3ζ chain. The reasons for the increased expression of Syk are unclear. In the present study, we found that Syk is regulated by the transcription factor c-Jun in cooperation with Ets2. c-Jun and Ets2 bound to the SYK promoter in close proximity and increased the promoter activity in a specific manner. Disruption of c-Jun and Ets2 expression by siRNA resulted in decreased expression of Syk. Overexpression of c-Jun but not Ets2 resulted in increase in Syk protein. c-Jun and Ets2 co-immunoprecipitated and had an additive effect on Syk expression. c-Jun-driven SYK promoter activation showed a similar pattern in B cells; however, as expected, basal promoter activity was much higher in B cells as compared with T cells. Overexpression of c-Jun led to increase in intracytoplasmic calcium flux following TCR stimulation. Moreover, we found that SLE T cells had increased levels of c-Jun at baseline and phosphorylated c-Jun upon activation. Finally, disruption of c-Jun and Ets2 in SLE T cells resulted in a decrease in calcium flux upon TCR stimulation. In conclusion, c-Jun in cooperation with Ets2 increases the expression of Syk and contributes to Syk-mediated heightened calcium responses in SLE T cells. PMID:22354960

  13. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    International Nuclear Information System (INIS)

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  14. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    OpenAIRE

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  15. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2009-10-01

    Full Text Available Abstract Background- Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis may help in identifying new candidate molecules for HCC-targeted therapy. Methods- Hep3B (a nonmetastatic HCC cell line and MHCC97H (a highly metastatic HCC cell line were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and functional clustering analyses were performed to determine the activities of the identified proteins and the signaling pathways closely related to HCC metastasis. Results- In both cell lines, a total of 247 phosphotyrosine (pTyr proteins containing 281 pTyr sites were identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data confirmed that FER might play a critical role in the invasion and metastasis of HCC. Conclusion- The

  16. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis may help in identifying new candidate molecules for HCC-targeted therapy. Hep3B (a nonmetastatic HCC cell line) and MHCC97H (a highly metastatic HCC cell line) were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and functional clustering analyses were performed to determine the activities of the identified proteins and the signaling pathways closely related to HCC metastasis. In both cell lines, a total of 247 phosphotyrosine (pTyr) proteins containing 281 pTyr sites were identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data confirmed that FER might play a critical role in the invasion and metastasis of HCC. The identification of pTyr proteins and signaling pathways associated

  17. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [32P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  18. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, Christophe; Karouri, Salah-Eddine [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), Paris (France); Inserm, U567, Paris (France); Issad, Tarik, E-mail: tarik.issad@inserm.fr [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), Paris (France); Inserm, U567, Paris (France)

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  19. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  20. Some lymphoid cell lines transformed by Abelson murine leukemia virus lack a major 36,000-dalton tyrosine protein kinase substrate.

    OpenAIRE

    Sefton, B M; Hunter, T; Cooper, J. A.

    1983-01-01

    Fibroblasts transformed by Abelson murine leukemia virus differ from normal fibroblasts in that they contain several cellular proteins, including one of 29 and one of 36 kilodaltons, which are phosphorylated at tyrosine residues. Since it has been shown before that these proteins also become phosphorylated at tyrosine after transformation of fibroblasts by a number of other retroviruses, their phosphorylation may play an important role in the transformation of these cells. In contrast, the 36...

  1. ADHESION-INDUCE PROTEIN TYROSINE PHOSPHORY-LATION IS ASSOCIATED WITH INVASIVE AND METASTATIC POTENTIALS IN B16-BL6 MELANOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    Yan Chunhong; Han Rui

    1998-01-01

    Objective: The interaction of cancer cell with extracellular matrix (ECM) happens as an earlier and specific event in the invasive and metastatic cascade. To explore the key element(s) in cancer metastasis and observe the cell-ECM interaction and its role. Methods:To interrupt the cell-ECM interaction by suppression of adhesion-induced protein tyrosine phosphorylation with protein tyrosine kinase inhibitor genistein in B16-B16mouse melanoma cells. Results: When B16-BL6 cells attached to Matrigel, a solubilized basement membrane preparation from EHS sarcoma, a 125 kDa protein increased its phosphotyrosine content dramatically. In contrast, when the cells were pretreated with 20μM or 30μM genistein for 3 days, it was revealed a less increase in the phosphotyrosine content of this 125 kDa protein inresponse to cell attachment to ECM was revealed with immunoblot analysis. Accompanied by the lower level of adhesion-induced protein tyrosine phosphorylation the genistein-treated cells exhibited a decrease in their capabilities of adhesion to Matrigel and invasion through reconstituted basement membrane. The potentials of and forming lung metastatic nodules were also shown to be decreased dramatically in these genistein-treated cells.Conclusion: It was suggested that protein tyrosine phosphorylation in cell-ECM interaction might be associated with invasive and metastatic potentials in cancer cells.

  2. Integrin α1β1 Promotes Caveolin-1 Dephosphorylation by Activating T Cell Protein-tyrosine Phosphatase*

    Science.gov (United States)

    Borza, Corina M.; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  3. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase.

    Science.gov (United States)

    Borza, Corina M; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R; Zent, Roy; Pozzi, Ambra

    2010-12-17

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  4. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells.

    OpenAIRE

    Rosenshine, I.; Duronio, V; Finlay, B B

    1992-01-01

    The ability to enter into (invade) mammalian cells is an essential virulence determinant of many pathogenic bacteria and intracellular parasites. These organisms are internalized by host cells upon attachment to their surface. However, the mechanisms used by intracellular parasites to induce internalization into host cells have not been defined. We found that the protein kinase inhibitor staurosporine blocks invasion by some pathogenic bacteria, including Yersinia enterocolitica and Yersinia ...

  5. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases

    International Nuclear Information System (INIS)

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, the authors previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60src, the src-encoded tyrosine kinase. To study transformation-relevant tyrosine kinase substrates, they have generated monoclonal antibodies to individual tyrosine phosphoproteins, including p130, p120, p110, and five additional phosphoproteins (p210, p125, p118, p85, and p185/p64). These antibodies detected several of the same tyrosine phosphoproteins in chicken embryo fibroblasts transformed by avian retroviruses Y73 and CT10, encoding the yes and crk oncogenes, respectively. Protein substrates in mouse, rat, hamster, and human cells overexpressing activated variants of chicken pp60src were also detected by several of the monoclonal antibodies

  6. Protein tyrosine phosphorylation in synaptic vesicles.

    OpenAIRE

    Pang, D T; Wang, J K; Valtorta, F; Benfenati, F; Greengard, P.

    1988-01-01

    Protein tyrosine phosphorylation in purified synaptic vesicles from rat forebrain has been studied in the presence of Mn2+ and orthovanadate. High levels of endogenous protein tyrosine phosphorylation were observed. Four major phosphoproteins, with apparent molecular masses of 105, 94, 38, and 30 kDa, were shown to contain phosphotyrosine. The 38-kDa phosphoprotein was identified as synaptophysin (p38), a well-characterized integral membrane protein of synaptic vesicles. The three other phosp...

  7. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    This paper reports the identification of the lyn gene product, a member of the src-related family of protein-tyrosine kinases, and its expression in hematopoietic cells. A lyn-specific sequence (Arg-25 to Ala-119 of the protein) was expressed in Escherichia coli as a fusion protein with β-galactosidase. Antiserum raised against the fusion protein immunoprecipitated a 56-kDa protein from human B lymphocytes. Incubation of the immunoprecipitate with [γ-32P]ATP resulted in the phosphorylation of this protein at tyrosine residues. Immunohistological and immunoblotting analyses showed that the lyn gene product was expressed in lymphatic tissues (spleen and tonsil) and in adult lung, which contains many macrophages. Furthermore, both the transcripts and the protein products of the lyn gene accumulated in macrophages/monocytes, platelets, and B lymphocytes but were not expressed appreciably in granulocytes, erythrocytes, or T lymphocytes, suggesting that lyn gene products function primarily in certain differentiated cells of lymphoid and myeloid lineages

  8. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  9. Redox Regulation of Protein Tyrosine Phosphatase Activity by Hydroxyl Radical

    OpenAIRE

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2012-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. ...

  10. Suppression of PKG by PDGF or nitric oxide in differentiated aortic smooth muscle cells: obligatory role of protein tyrosine phosphatase 1B

    OpenAIRE

    Zhuang, Daming; Balani, Poonam; Pu, Qinghua; Thakran, Shalini; Hassid, Aviv

    2010-01-01

    Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the p...

  11. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP-proline-, glutamate-, serine-,and threonine-rich sequence (PEST

    Directory of Open Access Journals (Sweden)

    Yanhua Zheng

    2013-02-01

    Full Text Available Protein tyrosine phosphatase (PTP-proline-, glutamate-, serine-, and threonine-rich sequence (PEST is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephos-phorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.

  12. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST)

    Institute of Scientific and Technical Information of China (English)

    Yanhua Zheng; Zhimin Lu

    2013-01-01

    Protein tyrosine phosphatase (PTP)-proline-,glutamate-,serine-,and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration.PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications,including phosphorylation,oxidation,and caspase-dependent cleavage.PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins.Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.

  13. THE EFFECTS OF HUMAN CHORIONIC GONADOTROPIN AND TYROSINE PROTEIN KINASE ON THE GROWTHOF HYBRIDOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    HANShou-Wei; LIUShah-Ling; CAOZe-Yi; CHENMan-Ling

    1989-01-01

    In recent years, the production and development of receptor monoclonal antibodies (McAB) have been attentively studied. Wc observed the effects of human ehorionicgonadotropin (HCG) and tyrosinc protein kinase (TPK) on the growth of two hybridoma

  14. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  15. Evaluation of Enrichment Techniques for Mass Spectrometry : Identification of Tyrosine Phosphoproteins in Cancer Cells

    OpenAIRE

    Schumacher, Jonathan A.; Crockett, David K.; Elenitoba-Johnson, Kojo S.J.; Lim, Megan S.

    2007-01-01

    Phosphorylation of tyrosine residues by protein tyrosine kinases mediates numerous cellular processes. Deregulated tyrosine phosphorylation underlies constitutive activation of signaling pathways leading to oncogenesis. Analytical techniques for evaluation of the global phosphoproteome level are challenging and can be improved on to enhance yields. Here, we evaluated several approaches to enrich for tyrosine phosphoproteins in cancer cells for subsequent liquid chromatography-tandem mass spec...

  16. Decreased expression of protein tyrosine phosphatase non-receptor type 12 is involved in the proliferation and recurrence of bladder transitional cell carcinoma

    OpenAIRE

    PIAO, YONGRUI; LIU, XIANKUI; Lin, Zhenhua; Jin, Zhehu; JIN, XUANSHUN; Yuan, Kuichang; Wu, Wenyuan

    2015-01-01

    Protein tyrosine phosphatase non-receptor type 12 (PTPN12) has been shown to be involved in the development of a number of types of carcinoma. However, the effect of PTPN12 on the proliferation and recurrence of human bladder transitional cell carcinoma (TCC) is unclear. The present study aimed to investigate the expression and function of PTPN12 in human TCC. Samples from 164 patients with TCC, in addition to 146 patients undergoing bladder surgery for indications other than TCC, were examin...

  17. Receptor-type protein tyrosine phosphatases in cancer

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-02-01

    Full Text Available Protein tyrosine phosphatases (PTPs play an important role in regulating cell signaling events in coordination with tyrosine kinases to control cell proliferation, apoptosis, survival, migration, and invasion. Receptor-type protein tyrosine phosphatases (PTPRs are a subgroup of PTPs that share a transmembrane domain with resulting similarities in function and target specificity. In this review, we summarize genetic and epigenetic alterations including mutation, deletion, amplification, and promoter methylation of PTPRs in cancer and consider the consequences of PTPR alterations in different types of cancers. We also summarize recent developments using PTPRs as prognostic or predictive biomarkers and/or direct targets. Increased understanding of the role of PTPRs in cancer may provide opportunities to improve therapeutic approaches.

  18. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.;

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge on...... protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  19. Protein tyrosine phosphatase µ (PTP µ or PTPRM, a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis.

    Directory of Open Access Journals (Sweden)

    Ping-Hui Sun

    Full Text Available BACKGROUND: PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. DESIGN: Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. RESULTS: A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. CONCLUSIONS: Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.

  20. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases.

    OpenAIRE

    Kanner, S B; Reynolds, A B; Vines, R R; Parsons, J T

    1990-01-01

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, we previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60src, the ...

  1. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2005-01-01

    Roč. 12, č. 16 (2005), s. 1859-1871. ISSN 0929-8673 R&D Projects: GA ČR(CZ) GA204/03/0594; GA ČR(CZ) GA301/03/0596; GA AV ČR(CZ) IAA5052310; GA MZd(CZ) NR8079; GA MŠk(CZ) 1M0506; GA MŠk(CZ) 1P04OE158 Institutional research plan: CEZ:AV0Z50520514 Keywords : mast cell * tyrosine phosphatase * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.904, year: 2005

  2. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells.

    Directory of Open Access Journals (Sweden)

    Ildar Gabaev

    2011-12-01

    Full Text Available Human cytomegalovirus (CMV exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV.

  3. cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family

    International Nuclear Information System (INIS)

    A human peripheral T-cell cDNA library was screened with two labeled synthetic oligonucleotides encoding regions of a human placenta protein-tyrosine-phosphatase. One positive clone was isolated and the nucleotide sequence was determined. It contained 1,305 base pairs of open reading frame followed by a TAA stop codon and 978 base pairs of 3' untranslated end, although a poly(A)+ tail was not found. An initiator methionine residue was predicted at position 61, which would result in a protein of 415 amino acid residues. This was supported by the synthesis of a Mr 48,000 protein in an in vitro reticulocyte lysate translation system using RNA transcribed from the cloned cDNA and T7 RNA polymerase. The deduced amino acid sequence was compared to other known proteins revealing 65% identity to the low Mr PTPase 1B isolated from placenta. In view of the high degree of similarity, the T-cell cDNA likely encodes a newly discovered protein-tyrosine-phosphatase, thus expanding this family of genes

  4. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E;

    2000-01-01

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activati...... delayed tumor growth and metastasis. To our knowledge, this is the first example of a study correlating expression level of a specific bona fide PTP with neoplastic disease status in humans....

  5. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  6. Phospho-tyrosine dependent protein–protein interaction network

    Science.gov (United States)

    Grossmann, Arndt; Benlasfer, Nouhad; Birth, Petra; Hegele, Anna; Wachsmuth, Franziska; Apelt, Luise; Stelzl, Ulrich

    2015-01-01

    Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes. PMID:25814554

  7. Distinct Mechanisms of Receptor and Nonreceptor Tyrosine Kinase Activation by Reactive Oxygen Species in Vascular Smooth Muscle Cells: Role of Metalloprotease and Protein Kinase C-δ

    OpenAIRE

    Frank, Gerald D.; Mifune, Mizuo; Inagami, Tadashi; Ohba, Motoi; Sasaki, Terukatsu; Higashiyama, Shigeki; Dempsey, Peter J; Eguchi, Satoru

    2003-01-01

    Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor...

  8. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Ondřej; Kalina, T.; Dráber, Peter; Skopcová, Tereza; Svojgr, K.; Angelisová, Pavla; Hořejší, Václav; Weiss, A.; Brdička, Tomáš

    2011-01-01

    Roč. 286, č. 25 (2011), s. 22101-22112. ISSN 0021-9258 R&D Projects: GA MŠk 2B06064; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : CD148 * tyrosine phosphatase * Src family kinases Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  9. Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2generation in guard cells of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    SHI Wuliang; JlA Wensuo; LIU Xin; ZHANG Shuqiu

    2004-01-01

    Although protein tyrosine phosphatases (PTPases) play an important role in signal transduction in animal cells, little is known about the function of PTPases in higher plants. Hydrogen peroxide (H2O2) and mitogen-activated protein kinases (MAPKs) are the critical components of ABA signaling pathway in guard cells. PTPase is an important regulator of MAPK, which is believed to mediate ABA-induced H2O2 generation in guard cells of Viciafaba L. Here, we investigate the possible role of PTPases in stomatal movement process. Phenylarsine oxide (PAO), a specific inhibitor of PTPases, could prevent ABA or H2O2-induced stomatal closure of Vicia faba L; furthermore, it could promote opening of the stomata closed by ABA or H2O2. The activity of PTPases can be effectively inhibited by PAO and H2O2. DTT had no effect on the PAO-induced inhibition of PTPases activity, but it could relieve the inhibition of H2O2 on PTPases activity. PAO could also inhibit the ABA-induced H2O2 generation in guard cells of Vicia faba L. These results suggested that PTPases is a critical signaling component in ABA-induced stomatal closure, and serve as targets for H2O2 lying on the signaling pathways downstream of ABA induced H2O2 generation.

  10. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate.

    OpenAIRE

    Schmidt, A.; Rutledge, S J; Endo, N; Opas, E E; Tanaka, H; Wesolowski, G.; Leu, C T; Huang, Z; Ramachandaran, C; Rodan, S B; Rodan, G A

    1996-01-01

    Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot ...

  11. Protein tyrosine kinase inhibition and cell proliferation: is the [3H]-thymidine uptake assay representative of the T-lymphocyte proliferation rate?

    Science.gov (United States)

    Spinozzi, F; Pagliacci, M C; Agea, E; Migliorati, G; Riccardi, C; Bertotto, A; Nicoletti, I

    1995-01-01

    T-cell growth is controlled to a large degree by extracellular signals that bind to specific receptors on the surface of cells. A number of these receptors have intrinsic protein tyrosine kinase (PTK) activity. Their action on second messenger generation, and thus on cell proliferation, has been indirectly demonstrated by the decrease in [3H]-thymidine (TdR) uptake that follows co-stimulation of T-cells with mitogens and PTK inhibitors such as genistein (GEN). In this paper we report that the [3H]-TdR uptake assay is not a valid and reliable tool for investigating the proliferative activity of certain T-cell lines. In fact, a concomitant assessment of both [3H]-TdR uptake and cell cycle progression demonstrated that GEN is able to block G2/M progression of Jurkat T-lymphocytes even at doses (5 micrograms/ml) that do not influence [3H]-TdR uptake. Pretreatment with sodium o-vanadate (100 nM) could not reverse the GEN-related cell cycle perturbation, but was able to restore optimal [3H]-TdR uptake. Finally, GEN treatment was able to induce concentration-dependent apoptotic cell death of Jurkat T-cells. The control of cell activation, proliferation and programmed cell death is undoubtedly influenced by receptor-associated PTKs. The final effect on cell survival is almost entirely dependent on the activation state of the cell. The [3H]-TdR uptake assay seems to be inadequate for a correct interpretation of the expected results. PMID:7655707

  12. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B;

    1999-01-01

    In addition to providing the framework for peptide presentation, major histocompatibility complex class I (MHC-I) molecules can act as signal transducing molecules in lymphoid cells. Here we show that the mobilization of intracellular calcium, which follows crosslinking of MHC-I molecules on huma....../threonine kinases in MHC-I-mediated apoptosis in human B-cells and suggest the presence of several MHC-I signaling pathways leading to diverse effects in these cells.......In addition to providing the framework for peptide presentation, major histocompatibility complex class I (MHC-I) molecules can act as signal transducing molecules in lymphoid cells. Here we show that the mobilization of intracellular calcium, which follows crosslinking of MHC-I molecules on human...... B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...

  13. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2 beta)

    DEFF Research Database (Denmark)

    Drake, P.G.; Peters, Günther H.j.; Andersen, H.S.;

    2003-01-01

    Islet-cell antigen 512 (IA-2) and phogrin (IA-2) are atypical members of he receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent studies...... indicate that IA-2 may be involved in granule trafficking and exocytosis. To further 9 understand their function, we have embarked upon developing low-molecular-mass inhibitors of IA-2 and IA-2. Previously, we have shown that a general PTP inhibitor, 2-(oxalylamino)benzoic acid (OBA), can be developed into...

  14. Involvement of the Tyrosine Kinase Fer in Cell Adhesion

    OpenAIRE

    Rosato, Roberto; Veltmaat, Jacqueline M.; Groffen, John; Heisterkamp, Nora

    1998-01-01

    The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cel...

  15. Protein tyrosine kinase, JNK, and ERK involvement in p seudolaric acid B-induced apoptosis of human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Jing-hua YU; Hong-jun WANG; Xiang-ru LI; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2008-01-01

    Aim:To investigate the apoptotic mechanism ofpseudolaric acid B (PAB) in hu-man breast cancer MCF-7 cells. Methods: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide analysis and morphological changes were applied to detect apoptosis. The percentage of apoptotic and necrotic cells were calculated by the lactate dehydrogenase activity-based cytotoxicity assay, and the protein expression was examined by Western blot analysis. Results: PAB and/or the mitogen-activated protein kinases, including p38, c-Jun-N-terrninal kinase (JNK) and extracellular signal-regulated kinase (ERK), did not participate in necrosis. P38 had no obvious function on apoptosis after 4 μmol/L PAB treatment for 36 h, but PAB induced JNK phosphorylation and inhibited ERK phosphorylation in the apoptotic process. In this study the inhibitor of protein tyrosine kinase (PTK) genistein inverted the inhibitory effect of PAB, instead promoting the survival of MCF-7 cells. Like genistein, another PTK inhibitor AG1024 had a similar ef-fect on PAB-treated MCF-7 cells, indicating that PAB activated PTK to induce apoptosis. Together with PAB, genistein increased the expression of p-ERK, and decreased the expressions of JNK and p-JNK in PAB-treated MCF-7 cells at 36 h. And it is considered that the p-ERK and p-JNK were active patterns of ERK and JNK, respectively. Conclusion: PTK were upstream of ERK and JNK, and PTK induced apoptosis through activating JNK and inactivating ERK in PAB-treated MCF-7 cells.

  16. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    International Nuclear Information System (INIS)

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates

  17. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  18. Physical and functional association of the cbl protooncogen product with an src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling.

    Science.gov (United States)

    Tezuka, T; Umemori, H; Fusaki, N; Yagi, T; Takata, M; Kurosaki, T; Yamamoto, T

    1996-02-01

    To identify novel signal transducers involved in signaling mediated by the Src-family protein tyrosine kinases (PTKs), we used a yeast two-hybrid system with a probe corresponding to the regulatory region of p56lyn, a member of Src-family PTKs. One of the isolated clones contained the COOH-terminal 470 amino acid residues of p120c-cbl, the product of the cellular homologue of the v-cbl retroviral oncogene. p120c-cbl is a cytoplasmic protein with nuclear protein-like motifs. Here we show in vivo association of p120c-cbl with p53/56lyn. After stimulation of the B cell antigen receptor (BCR), p120c-cbl was rapidly tyrosine phosphorylated. Studies with lyn- or syk-negative chicken B cells demonstrated that p53/56lyn, but not p72syk, was crucial for tyrosine phosphorylation of p120c-cbl upon stimulation of the BCR. We also show the importance of p59fyn in tyrosine phosphorylation of p120c-cbl in the T-cell receptor-mediated signaling using fyn-overexpressing T cell hybridomas and splenic T cells from fyn-deficient mice. These results suggest that p120c-cbl is an important substrate of Src-family PTKs in the intracellular signaling mediated by the antigen receptors PMID:8627181

  19. MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12

    Science.gov (United States)

    Liang, Tian; Li, Liru; Cheng, Yan; Ren, Chengcheng; Zhang, Guangmei

    2016-01-01

    Ovarian carcinoma is the most lethal gynecologic malignancy among women. Ovarian cancer metastasis is the main reason for poor prognosis. MicroRNAs (miRNAs) have been shown to play an important role in tumorigenesis and metastasis in various cancers by affecting the expression of their targets. In this study, we explored the role of miR-194 in ovarian cancer. Real-time polymerase chain reaction assays showed that miR-194 was significantly upregulated in ovarian cancer tissues. Overexpression of miR-194 in ovarian cancer cells promotes cell proliferation, migration, and invasion; in contrast, inhibition of the expression of miR-194 has the opposite effects. Meanwhile, bioinformatics tools were used to identify protein tyrosine phosphatase nonreceptor type 12 (PTPN12) as a potential target of miR-194. The luciferase assay showed that miR-194 directly binds to the 3′-untranslated region of PTPN12. Western blot analysis and quantitative real-time polymerase chain reaction assay revealed that PTPN12 expression was negatively associated with miR-194 expression in both ovarian cancer tissues and cells. Thus, we conclude that miR-194 targets PTPN12 and functions as an oncogene in ovarian cancer cells. This novel pathway may provide a new insight to explain ovarian cancer development and metastasis. PMID:27486333

  20. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y;

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two trans......-stimulated glucose transport....

  1. ABNORMAL PROTEIN TYROSINE KINASES ASSOCIATED WITH HUMAN HAEMATOLOGICAL MALIGNANCIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To survey the role of protein tyrosine kinases (PTKs) in the pathogenesis of several hematopoietic malignancies. Methods: By reviewing the published laboratory and clinical studies on PTK-related oncoproteins and their causative role in some leukemias and lymphomas. Results: Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiations. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) plays an etiologic role in several clonal hematopoietic malignancies. For example, the PTK product of the BCR-ABL fusion gene resulting from the t (9; 22) translocation exhibits several fold higher tyrosine kinase activity than the product of the ABL gene. Evidence suggests that the BCR-ABL oncoprotein alone is sufficient to case chronic myelogenous leukemia (CML) and other Ph positive acute leukemia. PTK over-activity resulting from chromosomal translocations creating TEL-ABL, TEL-JAK2 and TEL-PDGFR( fusion proteins plays an important role in the pathogenesis of other types of leukemia. Another example occurs in anaplastic large cell lymphoma (ALCL). Experimental and clinical evidences indicate that translocations involving ALK gene on chromosome 2p23, most commonly resulting in an NPM-ALK fusion oncogene, result in constitutive activation of ALK and cause ALCL. This group of lymphomas is now named ALK positive lymphoma or ALKoma. Conclusion: Genetic lesions creating aberrant fusion proteins that result in excessive PTK activity are increasingly being recognized as central to the pathogenesis of hemotopoietic malignancies. These chimeric PTK molecules represent attractive disease-specific targets against which new classes therapeutic agents are being developed.

  2. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  3. Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells

    OpenAIRE

    Li, Hai; Wang, Fengjie; Han, Zongxi; Gao, Qi; Li, Huixin; Shao, Yuhao; Sun, Nana; Liu, Shengwang

    2015-01-01

    ABSTRACT Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an import...

  4. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+

    International Nuclear Information System (INIS)

    Epidemiological studies have implicated zinc (Zn2+) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn2+-induced EGFR activation in HAEC, we treated HAEC with 500 μM ZnSO4 for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn2+ results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn2+-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn2+ treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn2+. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn2+ or V4+ was significantly diminished. Moreover, exposure of HAEC to Zn2+ also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn2+-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn2+ exposure

  5. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    Science.gov (United States)

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  6. Complexes of gamma-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macůrek, Libor; Sulimenko, Tetyana; Dráberová, Eduarda; Dráber, Pavel

    2004-01-01

    Roč. 298, - (2004), s. 218-228. ISSN 0014-4827 R&D Projects: GA AV ČR IAA5052004; GA ČR GA304/00/0553; GA ČR GA304/04/1273; GA MŠk LN00A026 Keywords : gamma-tubulin * P19 cells * Fyn and Src kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.007, year: 2004

  7. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    Science.gov (United States)

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  8. Expression of protein-tyrosine phosphatases in the major insulin target tissues

    DEFF Research Database (Denmark)

    Norris, K; Norris, F; Kono, D H;

    1997-01-01

    Protein-tyrosine phosphatases (PTPs) are key regulators of the insulin receptor signal transduction pathway. We have performed a detailed analysis of PTP expression in the major human insulin target tissues or cells (liver, adipose tissue, skeletal muscle and endothelial cells). To obtain a repre...

  9. Cloning and expression of catalytic domain of Abl protein tyrosine kinase gene in E. coli

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, differentiation and are involved in signal transduction. Uncontrolled signaling from receptor tyrosine kinases to intracellular tyrosine kinases can lead to inflamma tory responses and diseases such as cancer and atherosclerosis. Thus, inhibitors that block the activity of tyrosine kinases or the signaling pathways of PTKs activation could be assumed as the potential candidate for drug development. On this assumption, we cloned and expressed the Abl PTK gene in E. coli, and purified the PTK, which was used to screen the PTK inhibitors from the extracts of Chinese herbs. The catalytic domain sequence of PTK gene was amplified by PCR us ing the cDNA of abl from Abelson murine leukemia virus as template. The amplified fragment was then cloned into the GST-tagged expression vector pGEX2T. The recombinant plasmid was transformed into host cell E. coli DH5α and was induced to express PTK protein. The expression of the protein was detected using SDS-PAGE. The result showed that a specific protein was induced to express after 12 min induction, and reached peak level about 40% of the host total pro tein after 4 h induction. The molecular weight of the fusion protein was about 58 kD. The purified GST-PTK fusion pro tein presented higher activity for tyrosine phosphorylation.

  10. Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and is a Minor Regulator of Glucose Homeostasis

    OpenAIRE

    Carl Owen; Alicja Czopek; Abdelali Agouni; Louise Grant; Robert Judson; Lees, Emma K; George D Mcilroy; Olga Göransson; Andy Welch; Bence, Kendra K.; Kahn, Barbara B.; Neel, Benjamin G.; Nimesh Mody; Mirela Delibegović

    2012-01-01

    Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency...

  11. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    Science.gov (United States)

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  12. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H2O2 in HL-1 mouse cardiac muscle cells

    International Nuclear Information System (INIS)

    Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC

  13. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H{sub 2}O{sub 2} in HL-1 mouse cardiac muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, F. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Deng, C.Y. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Zhang, Q.H.; Xue, Y.M. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Xiao, D.Z.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X.; Liu, X.Y.; Zhu, J.N. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Yu, X.Y. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Wu, S.L. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China)

    2013-09-06

    Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H{sub 2}O{sub 2}), but not angiotensin II, stimulated MIF expression in HL-1 cells. H{sub 2}O{sub 2}-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H{sub 2}O{sub 2}-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.

  14. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    Science.gov (United States)

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  15. Epidermal growth factor stimulates substrate-selective protein-tyrosine-phosphatase activity.

    OpenAIRE

    Hernández-Sotomayor, S M; Arteaga, C L; Soler, C. (Carlos); Carpenter, G

    1993-01-01

    This study investigates the regulation of protein-tyrosine-phosphatase (PTPase; EC 3.1.3.48) activity by epidermal growth factor (EGF). Cytosol from EGF-treated A-431 human epidermoid carcinoma cells was used as a source of PTPase activity, and tyrosine-phosphorylated ErbB2, EGF receptor, phospholipase C-gamma 1, and the Ras GTPase-activating protein were used as substrates to monitor PTPase activity. EGF stimulated PTPase activity that was selective toward these substrates, as it dephosphory...

  16. Kinetics and Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B) Inactivation by Acrolein

    OpenAIRE

    Seiner, Derrick R.; LaButti, Jason N.; Gates, Kent S.

    2007-01-01

    Human cells are exposed to the electrophilic α,β-unsaturated aldehyde acrolein from a variety of sources. Reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine int...

  17. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  18. Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective

    Directory of Open Access Journals (Sweden)

    Josef eDeutscher

    2015-01-01

    Full Text Available The discovery of tyrosine-phosphorylated proteins in Bacillus subtilis in the year 2003 was followed by a decade of intensive research activity. Here we provide an overview of the lessons learned in that period. While the number of characterized kinases and phosphatases involved in reversible protein-tyrosine phosphorylation in B. subtilis has remained essentially unchanged, the number of proteins known to be targeted by this post-translational modification has increased dramatically. This is mainly due to phosphoproteomics and interactomics studies, which were instrumental in identifying new tyrosine-phosphorylated proteins. Despite their structural similarity, the two B. subtilis protein-tyrosine kinases (BY-kinases, PtkA and PtkB (EpsB, seem to accomplish different functions in the cell. The PtkB is encoded by a large operon involved in exopolysaccharide production, and its main role appears to be the control of this process. The PtkA seems to have a more complex role; it phosphorylates and regulates a large number of proteins involved in the DNA, fatty acid and carbon metabolism and engages in physical interaction with other types of kinases (Ser/Thr kinases, leading to mutual phosphorylation. PtkA also seems to respond to several activator proteins, which direct its activity towards different substrates. In that respect PtkA seems to function as a highly connected signal integration device.

  19. Sulphation of L-tyrosine in mammalian cells: a comparative study.

    Science.gov (United States)

    Sakakibara, Y; Suiko, M; Nakajima, H; Liu, M C

    1995-02-01

    Chang liver cells, Caco-2 human intestinal epithelial cells and Madin-Darby canine kidney (MDCK) cells, labelled with [35S]sulphate in the presence of different concentrations of cycloheximide, produced 87.7-95.3%, 35.8-41.1% and 23.2-25.9%, respectively, of the amounts of free tyrosine O-[35S]-sulphate (Tyr[35S]) formed by corresponding cells labelled in the absence of cycloheximide. Homogenates prepared from the three kinds of cells showed the presence of enzymic activities catalysing the sulphation of L-tyrosine, with specific activities in the order: Caco-2 cells > MDCK cells > Chang liver cells. In all three cases, most of the tyrosine sulphotransferase' activity was found in the cytosolic fraction, indicating the enzyme to be a cysolic protein. A tyrosine-dependence experiment revealed that, for all three kinds of cells labelled with [35S]sulphate, the production of free Tyr[35S] was proportional to the concentration of L-tyrosine present in the culture medium. These results imply an involvement of sulphation in removing excess intracellular L-tyrosine. PMID:7848302

  20. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22.

    Science.gov (United States)

    Spalinger, Marianne R; Kasper, Stephanie; Gottier, Claudia; Lang, Silvia; Atrott, Kirstin; Vavricka, Stephan R; Scharl, Sylvie; Gutte, Petrus M; Grütter, Markus G; Beer, Hans-Dietmar; Contassot, Emmanuel; Chan, Andrew C; Dai, Xuezhi; Rawlings, David J; Mair, Florian; Becher, Burkhard; Falk, Werner; Fried, Michael; Rogler, Gerhard; Scharl, Michael

    2016-05-01

    Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation. PMID:27043286

  1. Angiotensin II-Induced Migration of Vascular Smooth Muscle Cells Is Mediated by p38 Mitogen-Activated Protein Kinase-Activated c-Src Through Spleen Tyrosine Kinase and Epidermal Growth Factor Receptor Transactivation

    OpenAIRE

    Mugabe, Benon E.; Yaghini, Fariborz A.; Song, Chi Young; Buharalioglu, Cuneyt K.; Waters, Christopher M.; Malik, Kafait U.

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 ± 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as det...

  2. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar;

    2014-01-01

    signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...... proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS......-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also...

  3. Heparin-binding growth factor 1 stimulates tyrosine phosphorylation in NIH 3T3 cells.

    OpenAIRE

    Friesel, R; Burgess, W H; Maciag, T

    1989-01-01

    Tyrosine phosphorylation of cellular proteins induced by heparin-binding growth factor 1 (HBGF-1) was studied by using the murine fibroblast cell line NIH 3T3 (clone 2.2). HBGF-1 specifically induced the rapid tyrosine phosphorylation of polypeptides of Mr 150,000, 130,000, and 90,000 that were detected with polyclonal and monoclonal antiphosphotyrosine (anti-P-Tyr) antibodies. The concentration of HBGF-1 required for half-maximal induction of tyrosine phosphorylation of the Mr-150,000 Mr-130...

  4. Tissue-dependent regulation of protein tyrosine kinase activity during embryonic development

    OpenAIRE

    1991-01-01

    Protein tyrosine kinase activity was assayed in a variety of chicken tissues during embryonic development and in the adult. In some tissues protein tyrosine kinase activity decreased during embryonic development; however, in other tissues it remained high throughout development, it contrast to the level of protein tyrosine phosphorylation, which decreased during development. The highest levels of tyrosine kinase activity were detected in 17-d embryonic brain although only low levels of protei...

  5. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances

    OpenAIRE

    Tilly, Bernard; Berghe, Nina; Tertoolen, L G; Edixhoven, Marcel; de Jonge, Hugo

    1993-01-01

    textabstractUsing the human Intestine 407 cell line as a model, we investigated a possible role for tyrosine kinase(s) in regulating the ion efflux pathways induced by hyposmotic stimulation (regulatory volume decrease, RVD). Pretreatment of 125I(-)-and 86Rb(+)-loaded cells with the phosphotyrosine phosphatase inhibitor sodium orthovanadate (200 microM) potentiated isotope efflux triggered by mild hypotonicity (10-20%) but did not further increase the efflux in response to more vigorous osmot...

  6. Protein tyrosine phosphatases expression during development of mouse superior colliculus

    OpenAIRE

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-01-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior col...

  7. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. (Imperial Cancer Research Fund, London (England))

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  8. Complete remission with tyrosine kinase inhibitors in renal cell carcinoma

    OpenAIRE

    Albiges, Laurence; Oudard, Stéphane; Negrier, Sylvie; Caty, Armelle; Gravis, Gwenaëlle; Joly, Florence; Duclos, Brigitte; Geoffrois, Lionel; Rolland, Frédéric; Guillot, Aline; Laguerre, Brigitte; Legouffe, Eric; Kohser, Frédéric; Dietrich, Pierre-Yves; Theodore, Christine A

    2012-01-01

    Complete remission (CR) is uncommon during treatment for metastatic renal cell carcinoma (mRCC) with tyrosine kinase inhibitors (TKIs), but it may occur in some patients. It remains a matter of debate whether therapy should be continued after CR.

  9. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish

    OpenAIRE

    Meng, Shi; Ryu, Soojin; Zhao, Bin; Zhang, Dao-Qi; Driever, Wolfgang; McMahon, Douglas G.

    2008-01-01

    Purpose Dopamine plays key roles in a variety of basic functions in the central nervous system. To study developmental and functional roles of dopaminergic cells in zebrafish, we have generated a transgenic line of zebrafish expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (th1) promoter. Methods A 12 kb gene fragment that contains the th1 promoter was isolated and ligated to the MmGFP coding sequence, linearized, microinjected into 1–2 cell stage embry...

  10. Modulation of protein tyrosine phosphorylation in gastric mucosa during re-epithelization processes

    Institute of Scientific and Technical Information of China (English)

    Olena; V; Bogdanova; Larysa; I; Kot; Kateryna; V; Lavrova; Volodymyr; B; Bogdanov; Erica; K; Sloan; Tetyana; V; Beregova; Ludmyla; I; Ostapchenko

    2010-01-01

    AIM:To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration. METHODS:Gastric lesions were induced in rats using restraint cold stress.To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair,total activity of protein tyrosine kinase(PTK),protein tyrosine phosphatase (PTP),antioxidant enzymes,nitric oxide synthase (NOS), 2’,5’-oligoadenylate synthetase,hydroxyl radical and zinc levels were assayed in parallel. RESULTS:Ulcer provocation induced an immediate decrease in tyrosine kinase(40% in plasma membranes and 56% in cytosol,(P<0.05) and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol),followed by 2.3-2.4-fold decrease (P<0.05) in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD) activity,30% increase (P<0.05) in catalase activity,2.3-fold inhibition (P<0.05) of glutathione peroxidase,3.3-fold increase (P<0.05) in hydroxyl radical content,and 2.3-fold decrease (P<0.05) in zinc level in gastric mucosa.NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration,PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase,P<0.05),but remained inhibited(1.6-3-fold decrease on days 3,4 and 5,P<0.05) in the cytosol.Tyrosine phosphatases remained inhibited both in membranes and cytosol(1.5-2.4-fold,P< 0.05).NOS activity remained increased on days 1,2 and 3(3.8-,2.6-,2.2-fold,respectively,P<0.05).Activity of SOD increased 1.6 times(P<0.05)days 4 and 5 after stress.Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3-and 2-fold,respectively,P<0.05)on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P<0.05) at the beginning,and 1.6-2.3-fold (P<0.05) during ulcer recuperation

  11. Modulation of protein tyrosine phosphorylation in gastric mucosa during re-epithelization processes

    Directory of Open Access Journals (Sweden)

    Olena V Bogdanova

    2010-11-01

    Full Text Available AIM: To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration.METHODS: Gastric lesions were induced in rats using restraint cold stress. To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair, total activity of protein tyrosine kinase (PTK, protein tyrosine phosphatase (PTP, antioxidant enzymes, nitric oxide synthase (NOS, 2’,5’-oligoadenylate synthetase, hydroxyl radical and zinc levels were assayed in parallel.RESULTS: Ulcer provocation induced an immediate decrease in tyrosine kinase (40% in plasma membranes and 56% in cytosol, P < 0.05 and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol, followed by 2.3-2.4-fold decrease (P < 0.05 in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD activity, 30% increase (P < 0.05 in catalase activity, 2.3-fold inhibition (P < 0.05 of glutathione peroxidase, 3.3-fold increase (P < 0.05 in hydroxyl radical content, and 2.3-fold decrease (P < 0.05 in zinc level in gastric mucosa. NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration, PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase, P < 0.05, but remained inhibited (1.6-3-fold decrease on days 3, 4 and 5, P < 0.05 in the cytosol. Tyrosine phosphatases remained inhibited both in membranes and cytosol (1.5-2.4-fold, P < 0.05. NOS activity remained increased on days 1, 2 and 3 (3.8-, 2.6-, 2.2-fold, respectively, P < 0.05. Activity of SOD increased 1.6 times (P < 0.05 days 4 and 5 after stress. Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3- and 2-fold, respectively, P < 0.05 on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P < 0.05 at the

  12. Tyrosine-selective protein alkylation using pi-allylpalladium complexes.

    Science.gov (United States)

    Tilley, S David; Francis, Matthew B

    2006-02-01

    A new protein modification reaction has been developed based on a palladium-catalyzed allylic alkylation of tyrosine residues. This technique employs electrophilic pi-allyl intermediates derived from allylic acetate and carbamate precursors and can be used to modify proteins in aqueous solution at room temperature. To facilitate the detection of modified proteins using SDS-PAGE analysis, a fluorescent allyl acetate was synthesized and coupled to chymotrypsinogen A and bacteriophage MS2. The tyrosine selectivity of the reaction was confirmed through trypsin digest analysis. The utility of the reaction was demonstrated by using taurine-derived carbamates as water solubilizing groups that are cleaved upon protein functionalization. This solubility switching technique was used to install hydrophobic farnesyl and C(17) chains on chymotrypsinogen A in water using little or no cosolvent. Following this, the C(17) alkylated proteins were found to associate with lipid vesicles. In addition to providing a new protein modification strategy targeting an under-utilized amino acid side chain, this method provides convenient access to synthetic lipoproteins. PMID:16433516

  13. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  14. Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61 ) levels.

    Science.gov (United States)

    Xu, Jian; Kurup, Pradeep; Azkona, Garikoitz; Baguley, Tyler D; Saavedra, Ana; Nairn, Angus C; Ellman, Jonathan A; Pérez-Navarro, Esther; Lombroso, Paul J

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in

  15. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148

    DEFF Research Database (Denmark)

    Whiteford, James R; Xian, Xiaojie; Chaussade, Claire; Vanhaesebroeck, Bart; Nourshargh, Sussan; Couchman, John R

    2011-01-01

    Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is ß1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine...... phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream ß1 integrin-mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of...

  16. Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease

    OpenAIRE

    Spalinger, Marianne R.; MCCOLE, DECLAN F.; Rogler, Gerhard; Scharl, Michael

    2016-01-01

    Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and...

  17. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  18. MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases, leads to an alternative phenotype of the TCR/CD3 zeta-chain, and induces apoptosis

    DEFF Research Database (Denmark)

    Skov, S; Bregenholt, S; Claesson, Mogens Helweg

    1997-01-01

    ZAP70 tyrosine kinase is tyrosine phosphorylated in Jurkat T cells and in purified peripheral T cells after MHC-I ligation. The tyrosine-phosphorylated ZAP70 kinase exhibits a particular phenotype with low affinities for proteins at 21, 40, 60, and 120 kDa, proteins normally co-precipitated with ZAP70...

  19. Solid-phase tyrosine-specific protein kinase assay in multiwell substrate-immobilized polyacrylamide gel

    International Nuclear Information System (INIS)

    Since tyrosine-specific protein kinase (TPK) is much less abundant than Ser/Thr-specific kinases in cells, determination of TPK activity in crude cell extracts or column chromatography eluates has been difficult. This is compounded by the absence of a rapid, economical method for the separation of high endogenous protein phosphorylation background from exogenously added tyrosine-containing substrates. We have developed a new solid-phase assay, which provides high sensitivity and efficiency at a low cost for assaying the TPK activity of crude enzyme preparations. This assay utilizes immobilized tyrosine-containing synthetic polymers such as (Glu:Tyr, 4:1)n in polyacrylamide gels. The kinase reaction is started by adding crude enzyme solutions and [tau-32P]ATP-metal ion mixtures into microtiter-size wells made in the gels. After the phosphorylation reaction, the reaction mixtures are removed and the gels are prewashed in water followed by electrophoresis to completely remove free radioactive ATP. 32P incorporation into the immobilized TPK-specific substrate can be detected by autoradiography and quantitated by cutting the gel pieces and counting them with a liquid scintillation counter. The simple, rapid method should facilitate screening of TPK inhibitors and activators as well as examining the substrate specificity of TPKs. Other enzymes, including Ser/Thr-specific protein kinases, can also be analyzed by this technique

  20. Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa M Y Ding

    Full Text Available The role of fibroblast growth factor-2 (FGF-2 in maintaining undifferentiated human embryonic stem cells (hESC was investigated using a targeted phosphoproteomics approach to specifically profile tyrosine phosphorylation events following FGF-2 stimulation. A cumulative total number of 735 unique tyrosine phosphorylation sites on 430 proteins were identified, by far the largest inventory to date for hESC. Early signaling events in FGF-2 stimulated hESC were quantitatively monitored using stable isotope dimethyl labeling, resulting in temporal tyrosine phosphorylation profiles of 316 unique phosphotyrosine peptides originating from 188 proteins. Apart from the rapid activation of all four FGF receptors, trans-activation of several other receptor tyrosine kinases (RTKs was observed as well as induced tyrosine phosphorylation of downstream proteins such as PI3-K, MAPK and several Src family members. Both PI3-K and MAPK have been linked to hESC maintenance through FGF-2 mediated signaling. The observed activation of the Src kinase family members by FGF-2 and loss of pluripotent marker expression post Src kinase inhibition may point to the regulation of cytoskeletal and actin depending processes to maintain undifferentiated hESC.

  1. Bruton tyrosine kinase inhibitors: a promising novel targeted treatment for B cell lymphomas

    OpenAIRE

    Aalipour, Amin; Advani, Ranjana H.

    2013-01-01

    Constitutive or aberrant signalling of the B cell receptor signalling cascade has been implicated in the propagation and maintenance of a variety of B cell malignancies. Small molecule inhibitors of Bruton tyrosine kinase (BTK), a protein early in this cascade and specifically expressed in B cells, have emerged as a new class of targeted agents. There are several BTK inhibitors, including ONO-WG-307, LFM-A13, dasatinib, CC-292, and PCI-32765 (ibrutinib), in preclinical and/or clinical develop...

  2. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras.

    OpenAIRE

    Bennett, A.M.; Tang, T. L.; SUGIMOTO, S; Walsh, C T; Neel, B G

    1994-01-01

    Protein-tyrosine-phosphatase SHPTP2 (Syp/PTP-1D/PTP2C) is the homologue of the Drosophila corkscrew (csw) gene product, which transmits positive signals from receptor tyrosine kinases. Likewise, SHPTP2 has been implicated in positive signaling from platelet-derived growth factor receptor beta (PDGFR). Upon PDGF stimulation, SHPTP2 binds to the PDGFR and becomes tyrosine-phosphorylated. We have identified tyrosine-542 (pY542TNI) as the major in vivo site of SHPTP2 tyrosine phosphorylation. The...

  3. High expression of FER tyrosine kinase predicts poor prognosis in clear cell renal cell carcinoma

    OpenAIRE

    Wei, Can; WU, SONG; Li, Xianxin; Wang, Yadong; Ren, Rui; LAI, YONGQING; YE, JIONGXIAN

    2012-01-01

    FER tyrosine kinase (FER) has been demonstrated to play a critical role in tumorigenesis and metastasis; however, its potential value as a novel prognostic marker for clear cell renal cell carcinoma (ccRCC) remains unclear. In 48 paired samples of ccRCCs and normal adjacent tissues (ADTs), real-time PCR was used to evaluate the expression of FER mRNA. The expression of FER protein was assessed in 87 ADTs and 206 samples of ccRCC using immunohistochemical methods. Statistical analysis was used...

  4. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  5. G1 cell cycle arrest due to the inhibition of erbB family receptor tyrosine kinases does not require the retinoblastoma protein

    International Nuclear Information System (INIS)

    The erbB receptor family (EGFr, erbB-2, erbB-3, and erbB-4) consists of transmembrane glycoproteins that transduce extracellular signals to the nucleus when activated. erbB family members are widely expressed in epithelial, mesenchymal, and neuronal cells and contribute to the proliferation, differentiation, migration, and survival of these cell types. The present study evaluates the effects of erbB family signaling on cell cycle progression and the role that pRB plays in regulating this process. ErbB family RTK activity was inhibited by PD 158780 in the breast epithelial cell line MCF10A. PD 158780 (0.5 μM) inhibited EGF-stimulated and heregulin-stimulated autophosphorylation and caused a G1 cell cycle arrest within 24 h, which correlated with hypophosporylation of pRB. MCF10A cells lacking functional pRB retained the ability to arrest in G1 when treated with PD 158780. Both cell lines showed induction of p27KIP1 protein when treated with PD 158780 and increased association of p27KIP1 with cyclin E-CDK2. Furthermore, CDK2 kinase activity was dramatically inhibited with drug treatment. Changes in other pRB family members were noted with drug treatment, namely a decrease in p107 and an increase in p130. These findings show that the G1 arrest induced through inhibition of erbB family RTK activity does not require functional pRB

  6. Family of receptor-linked protein tyrosine phosphatases in humans and Drosophila

    International Nuclear Information System (INIS)

    To understand the regulation of cell proliferation by tyrosine phosphorylation, characterization of protein tyrosine phosphatases is essential. The human genes LCA (leukocyte common antigen) and LAR encode putative receptor-linked PTPases. By using consensus sequence probes, two additional receptor-linked PTPase genes, DLAR and DPTP, were isolated from Drosophila melanogaster. The extra-cellular segments of both DLAR and DPTP are composed of multiple immunoglobulin-like domains and fibronectin type III-like domains. The cytoplasmic region of DLAR and DPTP, as well as human LCA and LAR, are composed of two tandemly repeated PTPase domains. PTPase activities of immunoprecipitated LCA and LAR were demonstrated by measuring the release of phosphate from a 32P-labeled [Tyr(P)]peptide. Furthermore, the cytoplasmic domains of LCA, LAR, DLAR, and DPTP, expressed in Escherichia coli, have PTPase activity. Site-directed mutagenesis showed that a conserved cysteine residue is essential for PTPase activity

  7. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    Energy Technology Data Exchange (ETDEWEB)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Iuliano, Rodolfo [Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro (Italy); Fusco, Alfredo [Dipartimento di Biologia e Patologia Cellulare e Molecolare, c/o Instituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facolta di Medicina e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Via Pansini 5, 80131 Naples (Italy); NOGEC (Naples Oncogenomocs Center)-CEINGE, Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples (Italy); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  8. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAsIII) and its intermediate metabolites such as monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMAIII and DMAIII) but not by iAsIII. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMAIII directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMAIII strongly inhibited activity of PTP1B. ► DMAIII directly bound to PTP1B, resulting in inhibition of enzyme

  9. Tyrosine phosphorylation of a 66KD soluble protein and augmentation of lectin induced mitogenesis by DMSO in human T lymphocytes

    International Nuclear Information System (INIS)

    The authors have demonstrated that induction of mitogenesis in human T lymphocytes is associated with the tyrosine phosphorylation of a 66KD soluble substrate-TPP 66. Since DMSO has been shown to be a non-specific stimulator of tyrosine protein kinases they have examined the effect of DMSO on both activation and tyrosine phosphorylation in human T cells. Human peripheral blood T lymphocytes were isolated by dextran sedimentation, Ficol/Paque centrifugation and nylon wool filtration. Phosphorylation was performed in cells incubated with [32P] orthophosphate followed by DMSO for 30 min. TPP 66 was identified by 2-D PAGE, autoradiography, and HV electrophoresis of the hydrolyzed protein. Concentrations of DMSO from 1% to 50% induced the tyrosine phosphorylation of TPP 66 with maximal stimulation seen at 20%. DMSO alone did not activate the T cells (measured by [3H] thymidine incorporation) when tested at high concentrations for 30 sec to 10 min. (longer incubations were markedly toxic) or low concentrations for 12 to 48 hrs. Low concentrations of DMSO 0.1%-0.5% did however, markedly augment [3H] thymidine incorporation induced by PHA or Con A. These data suggest that tyrosine phosphorylation of TPP 66 alone may not constitute sufficient signal for the activation sequence to begin but the phosphorylation of this soluble substrate may be a critical factor in the propagation of the activation sequence

  10. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus.

    OpenAIRE

    Lan, M S; Wasserfall, C; Maclaren, N K; Notkins, A L

    1996-01-01

    IA-2 is a 105,847 Da transmembrane protein that belongs to the protein tyrosine phosphatase family. Immunoperoxidase staining with antibody raised against IA-2 showed that this protein is expressed in human pancreatic islet cells. In this study, we expressed the full-length cDNA clone of IA-2 in a rabbit reticulocyte transcription/translation system and used the recombinant radiolabeled IA-2 protein to detect autoantibodies by immunoprecipitation. Coded sera (100) were tested: 50 from patient...

  11. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase: poten...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  12. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  13. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  14. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    Science.gov (United States)

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  15. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    Science.gov (United States)

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  16. Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans.

    Science.gov (United States)

    Mitchell, Christopher J; Kim, Min-Sik; Zhong, Jun; Nirujogi, Raja Sekhar; Bose, Anjun K; Pandey, Akhilesh

    2016-06-01

    The leukocyte antigen related (LAR) family of receptor-like protein tyrosine phosphatases has three members in humans - PTPRF, PTPRD and PTPRS - that have been implicated in diverse processes including embryonic development, inhibition of cell growth and axonal guidance. Mutations in the LAR family are associated with developmental defects such as cleft palate as well as various cancers including breast, neck, lung, colon and brain. Although this family of tyrosine phosphatases is important for many developmental processes, little is known of their substrates. This is partially due to functional redundancy within the LAR family, as deletion of a single gene in the LAR family does not have an appreciable phenotype, but a dual knockout is embryonically lethal in mouse models. To circumvent the inability to knockout multiple members of the LAR family in mouse models, we used a knockout of ptp-3, which is the only known ortholog of the LAR family in Caenorhabditis elegans and allows for the study of the LAR family at the organismal level. Using SILAC-based quantitative phosphoproteomics, we identified 255 putative substrates of ptp-3, which included four of the nine known annotated substrates of the LAR family. A motif analysis of the identified phosphopeptides allowed for the determination of sequences that appear to be preferentially dephosphorylated. Finally, we discovered that kinases were overrepresented in the list of identified putative substrates and tyrosine residues whose phosphorylation is known to increase kinase activity were dephosphorylated by ptp-3. These data are suggestive of ptp-3 as a potential negative regulator of several kinase families, such as the mitogen activated kinases (MAPKs), and multiple tyrosine kinases including FER, MET, and NTRK2. PMID:27067626

  17. Physical and functional association of the cbl protooncogen product with an src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling

    OpenAIRE

    1996-01-01

    To identify novel signal transducers involved in signaling mediated by the Src-family protein tyrosine kinases (PTKs), we used a yeast two- hybrid system with a probe corresponding to the regulatory region of p56lyn, a member of Src-family PTKs. One of the isolated clones contained the COOH-terminal 470 amino acid residues of p120c-cbl, the product of the cellular homologue of the v-cbl retroviral oncogene. p120c-cbl is a cytoplasmic protein with nuclear protein-like motifs. Here we show in v...

  18. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  19. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    Science.gov (United States)

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  20. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    Science.gov (United States)

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  1. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.;

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts as a gene......Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts...... as a general base. Most of our understanding of the role of Asp(181). is derived from studies with the Yersinia PTP and the mammalian PTP1B, and to some extent also TC (T-cell)-PTP and, the related PTPalpha and PTPepsilon. The neighbouring residue 182 is a phenylalanine in these four mammalian enzymes......, in comparison with Phe(182)-PTPs, have significantly decreased k(cat) values, and to a lesser degree, decreased k(cat)/K-m values. Combined enzyme kinetic, X-ray crystallographic and molecular dynamics studies indicate that the effect of His(182) is due to interactions with Asp(181) and with Gln(262). We...

  2. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  3. Angiotensin II-induced migration of vascular smooth muscle cells is mediated by p38 mitogen-activated protein kinase-activated c-Src through spleen tyrosine kinase and epidermal growth factor receptor transactivation.

    Science.gov (United States)

    Mugabe, Benon E; Yaghini, Fariborz A; Song, Chi Young; Buharalioglu, Cuneyt K; Waters, Christopher M; Malik, Kafait U

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 +/- 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as determined by Western blot analysis were minimized by the Syk inhibitor piceatannol (10 microM) and by transfecting VSMCs with dominant-negative but not wild-type Syk plasmid. Ang II-induced VSMC migration and Syk phosphorylation were attenuated by inhibitors of c-Src [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)], p38 mitogen-activated protein kinase (MAPK) [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB202190)], and extracellular signal-regulated kinase (ERK) 1/2 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126)]. SB202190 attenuated p38 MAPK and c-Src but not ERK1/2 phosphorylation, indicating that p38 MAPK acts upstream of c-Src and Syk. The c-Src inhibitor PP2 attenuated Syk and ERK1/2 phosphorylation, suggesting that c-Src acts upstream of Syk and ERK1/2. Ang II- and epidermal growth factor (EGF)-induced VSMC migration and EGFR phosphorylation were inhibited by the EGFR blocker 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) (2 microM). Neither the Syk inhibitor piceatannol nor the dominant-negative Syk mutant altered EGF-induced cell migration or Ang II- and EGF-induced EGFR phosphorylation. The c-Src inhibitor PP2 diminished EGF-induced VSMC migration and EGFR, ERK1/2, and p38 MAPK phosphorylation. The ERK1/2 inhibitor U0126 (10 microM) attenuated EGF-induced cell migration and ERK1/2 but not EGFR phosphorylation. These data suggest that Ang II stimulates VSMC migration via p38 MAPK-activated c

  4. Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets.

    Science.gov (United States)

    Stanley, William J; Litwak, Sara A; Quah, Hong Sheng; Tan, Sih Min; Kay, Thomas W H; Tiganis, Tony; de Haan, Judy B; Thomas, Helen E; Gurzov, Esteban N

    2015-07-01

    Type 1 diabetes (T1D) is the result of an autoimmune assault against the insulin-producing pancreatic β-cells, where chronic local inflammation (insulitis) leads to β-cell destruction. T cells and macrophages infiltrate into islets early in T1D pathogenesis. These immune cells secrete cytokines that lead to the production of reactive oxygen species (ROS) and T-cell invasion and activation. Cytokine-signaling pathways are very tightly regulated by protein tyrosine phosphatases (PTPs) to prevent excessive activation. Here, we demonstrate that pancreata from NOD mice with islet infiltration have enhanced oxidation/inactivation of PTPs and STAT1 signaling compared with NOD mice that do not have insulitis. Inactivation of PTPs with sodium orthovanadate in human and rodent islets and β-cells leads to increased activation of interferon signaling and chemokine production mediated by STAT1 phosphorylation. Furthermore, this exacerbated STAT1 activation-induced cell death in islets was prevented by overexpression of the suppressor of cytokine signaling-1 or inactivation of the BH3-only protein Bim. Together our data provide a mechanism by which PTP inactivation induces signaling in pancreatic islets that results in increased expression of inflammatory genes and exacerbated insulitis. PMID:25732191

  5. Involvement of Protein Tyrosine Phosphatases BcPtpA and BcPtpB in Regulation of Vegetative Development, Virulence and Multi-Stress Tolerance in Botrytis cinerea

    OpenAIRE

    Yang, Qianqian; Yu, Fangwei; Yin, Yanni; Ma, Zhonghua

    2013-01-01

    Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite fu...

  6. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases

    OpenAIRE

    Zhao, Zhongtao; Jin, Qiaojun; Liu, Huiquan; Xu, Jin-Rong

    2014-01-01

    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematical...

  7. The role for protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation

    OpenAIRE

    Spalinger, Marianne R.; MCCOLE, DECLAN F.; Rogler, Gerhard; Scharl, Michael

    2015-01-01

    Current hypothesis suggests that genetic, immunological and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease (IBD). Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of IBD. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signalling processes.Evidence emerges that expression levels of PTPN...

  8. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation

    OpenAIRE

    Spalinger, Marianne R.; MCCOLE, DECLAN F.; Rogler, Gerhard; Scharl, Michael

    2015-01-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that express...

  9. Enzymatic activation of Fujinami sarcoma virus gag-fps transforming proteins by autophosphorylation at tyrosine.

    OpenAIRE

    Meckling-Hansen, K; Nelson, R; Branton, P; Pawson, T

    1987-01-01

    Site-directed mutagenesis of the Fujinami sarcoma virus (FSV) genome has suggested that Tyr 1073 of the P130gag--fps protein-tyrosine kinase is a regulatory site. To investigate directly the ability of tyrosine phosphorylation to affect P130gag--fps kinase activity, the phosphotyrosyl phosphatase inhibitor orthovanadate and partially purified phosphotyrosyl phosphatases were used to manipulate the stoichiometry of P130gag--fps phosphorylation. Phosphorylation of P130gag--fps at Tyr 1073 corre...

  10. EFFECT OF ACTIVE COMPOUNDS ISOLATED FROM PTERIS SEMIPINNATA L ON DNA TOPOISOMERASES AND TYROSINE PROTEIN KINASE AND EXPRESSION OF C-MYC IN LUNG ADENOCARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    李金华; 梁念慈; 莫丽儿; 张晓; 何承伟

    2001-01-01

    Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.

  11. Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils

    International Nuclear Information System (INIS)

    Supernatants prepared from disrupted Coxiella burnetii posses acid phosphatase (ACP) activity that apparently accounts for the inhibition of the metabolic burst of formyl-Met-Leu-Phe(fMLP)-stimulated human neutrophils. Results are presented regarding purification and biochemical-biological characterization of the ACP. The highly purified enzyme, which exhibited an apparent M of 91 K and optimal activity at pH 5.0, also inhibited neutrophils. The enzyme retained full activity at pH 4.5, 5.5, and 7.4, when incubated overnight at 0 grad C and room temperature; at pH 5.5, it retained full activity after overnight incubation at 37 grad C. Apparently, the enzyme contains asparagine-linked but not serine- or threonine-liked glycan residues since its treatment with N-glycosidase F decreased its Mr to 87 K and no changes were detected with O-glycosidase. The enzyme's capacity to hydrolyze phosphate from a number of phosphate-containing compounds was examined; five phospho-compounds were significantly hydrolyzed: 5'-CMP > fructose 1,6-diphosphate > tyrosine phosphate > 3'-AMP >5'-AMP. The ACP also dephosphorylated 32P-Raytide, a phosphotyrosine-containing peptide. Dephosphorylation of Raytide was inhibited by the following phosphatase inhibitors: sodium molybdate, potassium fluoride, sodium ortho-vanadate and D2, a heteropolymolybdate compound. These results indicate that C.burnetii ACP may play a role in disrupting tyrosine phosphorylation/dephosphorylation reactions associated with the signal transduction pathway culminating in the metabolic burst. Interestingly, Western blot analysis of ACP-inhibited neutrophils showed a marked increase in tyrosine phosphorylation of a 44 K protein as compared to uninhibited cells. (author)

  12. 磷酸化蛋白质组学鉴定 PTPLAD1调控的结肠癌细胞酪氨酸磷酸化蛋白质%Phosphoproteomics to analyze PTPLAD1-regulated tyrosine-phosphoryla-ted proteins in colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    胡阳; 杨杰; 余汝媛; 汪洋

    2015-01-01

    目的:用磷酸化蛋白质组学的方法鉴定并分析结肠癌细胞中含蛋白酪氨酸磷酸酶样A结构域蛋白1( PTPLAD1)调控的酪氨酸磷酸化蛋白。方法:运用siRNA技术沉默PTPLAD1的表达,于细胞培养条件下运用氨基酸稳定同位素标记技术( stable lsotope labeling with amino acids in cell culture, SILAC)标记细胞,用酪氨酸磷酸化抗体免疫沉淀富集酪氨酸磷酸化蛋白,用LTQ-OrbitrapXL质谱鉴定因敲低PTPLAD1所出现的差异表达的酪氨酸磷酸化蛋白,进一步利用Ingenuity Pathway Analysis ( IPA)软件对这些差异蛋白进行生物信息学分析。结果:用real-time PCR筛选得到有效的siRNA干扰片段,Western blot验证其干扰效果及有效干扰时间。质谱鉴定PTPLAD1调控的差异酪氨酸磷酸化蛋白共20个,其中显著上调的8个,显著下调的10个,主要为转录因子及肿瘤标志物相关蛋白。 IPA软件的结果表明PTPLAD1调控的差异酪氨酸磷酸化蛋白的功能主要与器官发育分化、维持组织分化类型及细胞凋亡、增殖相关。结论:成功鉴定出PTPLAD1调控的差异酪氨酸磷酸化蛋白,可以为后续研究PTP-LAD1在结肠癌的发生发展中的作用及机理提供基础。%AIM:To identify and analyze tyrosine-phosphorylated proteins regulated by protein tyrosine phos-phatase-like A domain containing protein 1 ( PTPLAD1) in colon cancer cells by phosphoproteomics.METHODS: The expression of PTPLAD1 in colon cancer cell line HCT-116 was knocked down by small interfering RNAs, and the differenti-al expression of tyrosine-phosphorylated proteins in response to the konckdown of PTPLAD1 in HCT-116 cells was identified by stable isotope labeling with amino acid in cell culture ( SILAC) , coupled with the tyrosine phosphorylation antibody im-munoprecipitation and LC-MS/MS analysis.The Ingenuity Pathway Analysis ( IPA) software was employed for bioinformat-ics analysis on the

  13. Influence of berberine on protein tyrosine kinase of erythrocyte insulin receptors from type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Xianglei Deng; Xinrong Li; Chenggong Tian

    2005-01-01

    Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods: Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4 % and 47.2 %, respectively).After incubation with berberine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients (a 150% increase). Bererine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berberine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.

  14. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    Science.gov (United States)

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  15. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt

    Directory of Open Access Journals (Sweden)

    Eisuke Shibata

    2013-09-01

    Full Text Available Background/Aims: Accumulating evidence has suggested that free fatty acids (FFAs interact with protein kinases and protein phosphatases. The present study examined the effect of FFAs on protein phosphatases and Akt. Methods: Activities of protein phosphatase 1 (PP1, protein phosphatase 2A (PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Phosphorylation of Akt was monitored in MSTO-211H human malignant pleural mesothelioma cells without and with knocking-down phosphatidylinositol 3 kinase (PI3K or 3-phosphoinositide-dependent protein kinase-1 (PDK1. Results: In the cell-free assay, unsaturated FFAs (uFFAs such as oleic, linoleic and linolenic acid and saturated FFAs (sFFAs such as stearic, palmitic, myristic, and behenic acid markedly reduced PTP1B activity, with the potential for uFFAs greater than that for sFFAs. All the investigated sFFAs inhibited PP2A activity, but otherwise no inhibition was obtained with uFFAs. Both uFFAs and sFFAs had no effect on PP1 activity. Oleic acid phosphorylated Akt both on Thr308 and Ser473, while stearic acid phosphorylated Akt on Thr308 alone. The effects of oleic and stearic acid on Akt phosphorylation were abrogated by the PI3K inhibitor wortmannin or the PDK1 inhibitor BX912 and also by knocking-down PI3K or PDK1. Conclusion: The results of the present study indicate that uFFAs and sFFAs could activate Akt through a pathway along a PI3K/PDK1/Akt axis in association with PTP1B inhibition.

  16. High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays.

    Science.gov (United States)

    Gao, Liqian; Lee, Su Seong; Chen, Jun; Sun, Hongyan; Zhao, Yuliang; Chai, Zhifang; Hu, Yi

    2016-01-01

    Phosphatases are a family of enzymes responsible for the dephosphorylation of biomolecules. Phosphatases play essential roles in cell cycle regulation, signal transduction, and cellular communication. In recent years, one type of phosphatases, protein tyrosine phosphatases (PTPs), emerges as important therapeutic targets for complex and devastating diseases. Nevertheless, the physiological roles, substrate specificity, and downstream targets for PTPs remain largely unknown. To demonstrate how microarrays can be applied to characterizing PTPs, we describe here a phosphopeptide microarray strategy for activity-based high-throughput screening of PTPs substrate specificity. This is followed by a kinetic microarray assay and microplate assay to determine the rate constants of dephosphorylation by PTPs. This microarray strategy has been successfully applied to identifying several potent and selective substrates against different PTPs. These substrates could be used to design potent and selective PTPs inhibitors in the future. PMID:26614076

  17. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Science.gov (United States)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  18. Immunological characterization of proteins detected by phosphotyrosine antibodies in cells transformed by Rous sarcoma virus.

    OpenAIRE

    Linder, M E; Burr, J G

    1988-01-01

    Phosphotyrosine antibodies were used to identify tyrosine-phosphorylated proteins in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. A large number of tyrosine phosphoproteins were detected. A similar set of proteins was observed in RSV-transformed murine cells. An 85,000-dalton protein, however, was present in transformed avian cells but missing in transformed murine cells. Neither the 85,000-dalton protein nor any of the other tyrosine phosphoproteins appeared to be viral s...

  19. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease. PMID:25581833

  20. Spleen tyrosine kinase regulates mammary epithelial cell proliferation in mammary glands of dairy cows.

    Science.gov (United States)

    Hou, Xiaoming; Lin, Lin; Xing, Weinan; Yang, Yang; Duan, Xiaoyu; Li, Qingzhang; Gao, Xuejun; Lin, Ye

    2016-05-01

    Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that has been considered a hematopoietic cell-specific signal transducer involved in cell proliferation and differentiation. However, the role of SYK in normal mammary gland is still poorly understood. Here we show that SYK is expressed in mammary glands of dairy cows. Expression of SYK was higher in dry period mammary tissues than in lactating mammary tissues. Knockdown and overexpression of SYK affected dairy cow mammary epithelial cell proliferation as well as the expression of signal molecules involved in proliferation, including protein kinase B (PKB, also known as AKT1), p42/44 mitogen-activated protein kinase (MAPK), and signal transducer and activator of transcription 5 (STAT5). Dual-luciferase reporter assay showed that SYK increased the transcriptional activity of the AKT1 promoter, and cis-elements within the AKT1 promoter region from -439 to -84 bp mediated this regulation. These results suggest that SYK affects mammary epithelial cell proliferation by activating AKT1 at the transcriptional level in mammary glands of dairy cows, which is important for the mammary remodeling process in dry cows as well as for increasing persistency of lactation in lactating cows. PMID:26947307

  1. Expression and functional effects of Eph receptor tyrosine kinase A family members on Langerhans like dendritic cells

    Directory of Open Access Journals (Sweden)

    Finne Eivind

    2004-06-01

    Full Text Available Abstract Background The Eph receptors are the largest receptor tyrosine kinase family. Several family members are expressed in hematopoietic cells. Previously, the expression of a member of this family, EphA2, was identified on dendritic like cells in tonsils. We therefore specifically examined the expression of EphA2 on in vitro generated dendritic cells. Results In this study, expression of the EphA2 receptor was identified on in vitro generated Langerhans like dendritic cells compared to in vitro generated dendritic cells. We show that ligand induced engagement of the EphA2 receptor leads to receptor autophosphorylation indicating a functional receptor signaling pathway in these cells. We also observe phosphorylation and dephosphorylation of distinct proteins following ligand activation of EphA receptors. In co-stimulation assays, receptor-ligand interaction reduces the capacity of the Langerhans like dendritic cells to stimulate resting CD4+ T cells. Conclusion Engagement of EphA receptor tyrosine kinases on Langerhans like dendritic cells induces signaling as shown by tyrosine phosphorylation and dephosphorylation of distinct proteins. Furthermore this engagement renders the cells less capable of stimulating CD4+ T cells.

  2. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E;

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...... heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...... origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r...

  3. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  4. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3H] or L-[U-14C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  5. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B.

    Directory of Open Access Journals (Sweden)

    Kosuke Matsuo

    Full Text Available Protein-tyrosine phosphatase 1B (PTP1B is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A and sumoylation-resistant (K/R PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR and insulin receptor substrate 1 (IRS1 tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.

  6. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  7. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    Energy Technology Data Exchange (ETDEWEB)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-05-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn/sup 2 +/ and (..gamma..-/sup 32/P)ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes.

  8. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn2+ and [γ-32P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  9. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  10. Protein-protein interactions in crystals of the human receptor-type protein tyrosine phosphatase ICA512 ectodomain.

    Directory of Open Access Journals (Sweden)

    María E Primo

    Full Text Available ICA512 (or IA-2 is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512 and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.

  11. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1.

    OpenAIRE

    Weiss, A; Koretzky, G; Schatzman, R C; Kadlecek, T

    1991-01-01

    Stimulation of the T-cell antigen receptor (TCR), which itself is not a protein-tyrosine kinase (PTK), activates a PTK and phospholipase C (PLC). Using the human T-cell leukemic line Jurkat and normal peripheral blood lymphocytes, we demonstrate that stimulation of the TCR specifically induces the recovery of PLC activity in eluates from anti-phosphotyrosine immunoprecipitates. Stimulation of the human muscarinic receptor, subtype 1, when expressed in Jurkat activates PLC through a guanine nu...

  12. Mice Devoid of Fer Protein-Tyrosine Kinase Activity Are Viable and Fertile but Display Reduced Cortactin Phosphorylation

    OpenAIRE

    Craig, Andrew W. B.; Zirngibl, Ralph; Williams, Karen; Cole, Lesley-Ann; Greer, Peter A.

    2001-01-01

    The ubiquitous Fer protein-tyrosine kinase has been proposed to regulate diverse processes such as cell growth, cell adhesion, and neurite outgrowth. To gain insight into the biological function of Fer, we have targeted the fer locus with a kinase-inactivating missense mutation (ferD743R). Mice homozygous for this mutation develop normally, have no overt phenotypic differences from wild-type mice, and are fertile. Since these mice lack both Fer and the testis-specific FerT kinase activities, ...

  13. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is resistant to current cytotoxic therapies, in part because of enhanced DNA repair. Activation of the receptor tyrosine kinase c-Met has been shown to protect cancer cells from DNA damage. We hypothesized that inhibiting c-Met would decrease this protection and thus sensitize resistant tumor cells to the effects of radiation therapy. Eight human GBM cell lines were screened for radiosensitivity to the small-molecule c-Met inhibitor MP470 with colony-count assays. Double-strand (ds) DNA breaks was quantified by using antibodies to gamma H2AX. Western blotting demonstrate expression of RAD51, glycogen synthase kinase (GSK)-3β, and other proteins. A murine xenograft tumor flank model was used for in vivo radiosensitization studies. MP470 reduced c-Met phosphorylation and enhanced radiation-induced cell kill by 0.4 logs in SF767 cells. Cells pretreated with MP470 had more ds DNA damage than cells treated with radiation alone. Mechanistically, MP470 was shown to inhibit dsDNA break repair and increase apoptosis. MP470 influences various survival and DNA repair related proteins such as pAKT, RAD51 and GSK3β. In vivo, the addition of MP470 to radiation resulted in a tumor-growth-delay enhancement ratio of 2.9 over radiation alone and extended survival time. GBM is a disease site where radiation is often used to address both macroscopic and microscopic disease. Despite attempts at dose escalation outcomes remain poor. MP470, a potent small-molecule tyrosine kinase inhibitor of c-Met, radiosensitized several GBM cell lines both in vitro and in vivo, and may help to improve outcomes for patients with GBM

  14. Acid phosphatase purified from Mycoplasma fermentans has protein tyrosine phosphatase-like activity.

    OpenAIRE

    Shibata, K; Noda, M.; Sawa, Y; Watanabe, T.

    1994-01-01

    Acid phosphatase purified from Mycoplasma fermentans dephosphorylated phosphotyrosine-containing lysozyme and Raytide, a peptide substrate for protein tyrosine phosphatases. The optimum pH for Raytide was about 5.5. Raytide phosphatase activity was inhibited by potassium fluoride, sodium molybdate, and sodium orthovanadate and was found to exist in some mycoplasmas.

  15. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1.

    Science.gov (United States)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-10-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5. PMID:16930557

  16. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J;

    1999-01-01

    Receptor protein tyrosine phosphatases (RPTPs) comprise a family of proteins that feature intracellular phosphatase domains and an ectodomain with putative ligand-binding motifs. Several RPTPs are expressed in the brain, including RPTP-kappa which participates in homophilic cell-cell interactions...... developmental processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP......-kappa gene, the consequent loss of RPTP-kappa's enzymatic activity does not produce any obvious phenotypic defects [W.C. Skarnes, J.E. Moss, S.M. Hurtley, R.S.P. Beddington, Capturing genes encoding membrane and secreted proteins important for mouse development, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 6592...

  17. Cell contact-mediated regulation of tyrosine hydroxylase synthesis in cultured bovine adrenal chromaffin cells

    OpenAIRE

    1983-01-01

    The specific activity of tyrosine hydroxylase (TH) in bovine adrenal chromaffin cells can be controlled by changing cell density. Chromaffin cells initially plated at low density (2-3 X 10(4) cells/cm2), and subsequently replated at a 10-fold higher density showed a sixfold increase in specific TH activity within 48 h, resulting from enhanced synthesis (increased number of TH molecules as demonstrated by immunotitration and blockade by cycloheximide) rather than activation. The density-mediat...

  18. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B;

    2006-01-01

    Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search...... antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine...

  19. Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2016-01-21

    Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and adaptive immune responses. In particular, PTPN2 is involved in the regulation of inflammatory signalling cascades, and critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses, and finally for maintaining intestinal homeostasis. On one hand, dysfunction of PTPN2 has drastic effects on innate host defence mechanisms, including increased secretion of pro-inflammatory cytokines, limited autophagosome formation in response to invading pathogens, and disruption of the intestinal epithelial barrier. On the other hand, PTPN2 function is crucial for controlling adaptive immune functions, by regulating T cell proliferation and differentiation as well as maintaining T cell tolerance. In this way, dysfunction of PTPN2 contributes to the manifestation of IBD. The aim of this review is to present an overview of recent findings on the role of PTPN2 in intestinal homeostasis and the impact of dysfunctional PTPN2 on intestinal inflammation. PMID:26811645

  20. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    OpenAIRE

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. H...

  1. Enhanced Expression of Bruton's Tyrosine Kinase in B Cells Drives Systemic Autoimmunity by Disrupting T Cell Homeostasis.

    Science.gov (United States)

    Corneth, Odilia B J; de Bruijn, Marjolein J W; Rip, Jasper; Asmawidjaja, Patrick S; Kil, Laurens P; Hendriks, Rudi W

    2016-07-01

    Upon BCR stimulation, naive B cells increase protein levels of the key downstream signaling molecule Bruton's tyrosine kinase (BTK). Transgenic CD19-hBtk mice with B cell-specific BTK overexpression show spontaneous germinal center formation, anti-nuclear autoantibodies, and systemic autoimmunity resembling lupus and Sjögren syndrome. However, it remains unknown how T cells are engaged in this pathology. In this study, we found that CD19-hBtk B cells were high in IL-6 and IL-10 and disrupted T cell homeostasis in vivo. CD19-hBtk B cells promoted IFN-γ production by T cells and expression of the immune-checkpoint protein ICOS on T cells and induced follicular Th cell differentiation. Crosses with CD40L-deficient mice revealed that increased IL-6 production and autoimmune pathology in CD19-hBtk mice was dependent on B-T cell interaction, whereas IL-10 production and IgM autoantibody formation were CD40L independent. Surprisingly, in Btk-overexpressing mice, naive B cells manifested increased CD86 expression, which was dependent on CD40L, suggesting that T cells interact with B cells in a very early stage of immune pathology. These findings indicate that increased BTK-mediated signaling in B cells involves a positive-feedback loop that establishes T cell-propagated autoimmune pathology, making BTK an attractive therapeutic target in autoimmune disease. PMID:27226091

  2. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection.

    Science.gov (United States)

    Yue, Lei; Xie, Zhongping; Li, Hua; Pang, Zheng; Junkins, Robert D; Tremblay, Michel L; Chen, Xiaochun; Lin, Tong-Jun

    2016-05-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals. Mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Herein, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a critical negative regulator in P. aeruginosa infection. PTP1B-deficient mice display greatly enhanced bacterial clearance and reduced disease scores, which are accompanied by increased neutrophil infiltration and cytokine production. Interestingly, PTP1B deficiency mainly up-regulates the production of interferon-stimulated response elements-regulated cytokines and chemokines, including chemokine ligand 5 (regulated on activation normal T cell expressed and secreted), CXCL10 (interferon γ-inducible protein 10), and interferon-β production. Further studies reveal that PTP1B deficiency leads to increased interferon regulatory factor 7 (IRF7) expression and activation. These findings demonstrate a novel regulatory mechanism of the immune response to P. aeruginosa infection through PTP1B-IRF7 interaction. This novel PTP1B-IRF7-interferon-stimulated response elements pathway may have broader implications in Toll-like receptor-mediated innate immunity. PMID:27105736

  3. Tyrosine Phosphorylation of CD13 Regulates Inflammatory Cell-Cell Adhesion and Monocyte Trafficking

    OpenAIRE

    Subramani, Jaganathan; Ghosh, Mallika; Rahman, M. Mamunur; Caromile, Leslie A.; Gerber, Claire; Rezaul, Karim; David K. Han; Shapiro, Linda H.

    2013-01-01

    CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells important for homing to and resolving the damaged tissue at sites of injury. We have previously shown that crosslinking of human monocytic CD13 with activating antibodies induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cro...

  4. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene.

    Science.gov (United States)

    Norris, M L; Millhorn, D E

    1995-10-01

    We reported recently that the gene that encodes tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, is regulated by hypoxia in the dopaminergic cells of the mammalian carotid body (Czyzyk-Krzeska, M. F., Bayliss, D. A., Lawson, E. E. & Millhorn, D. E. (1992) J. Neurochem. 58, 1538-1546) and in pheochromocytoma (PC12) cells (Czyzyk-Krzeska, M. F., Furnari, B. A., Lawson, E. E. & Millhorn, D. E. (1994) J. Biol. Chem. 269, 760-764). Regulation of this gene during low O2 conditions occurs at both the level of transcription and RNA stability. Increased transcription during hypoxia is regulated by a region of the proximal promoter that extends from -284 to + 27 bases, relative to transcription start site. The present study was undertaken to further characterize the sequences that confer O2 responsiveness of the TH gene and to identify hypoxia-induced protein interactions with these sequences. Results from chloramphenicol acetyltransferase assays identified a region between bases -284 and -150 that contains the essential sequences for O2 regulation. This region contains a number of regulatory elements including AP1, AP2, and HIF-1. Gel shift assays revealed enhanced protein interactions at the AP1 and HIF-1 elements of the native gene. Further investigations using supershift and shift-Western analysis showed that c-Fos and JunB bind to the AP1 element during hypoxia and that these protein levels are stimulated by hypoxia. Mutation of the AP1 sequence prevented stimulation of transcription of the TH-chloramphenicol acetyltransferase reporter gene by hypoxia. PMID:7559551

  5. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    Science.gov (United States)

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  6. A Rapid Lateral Flow Immunoassay for the Detection of Tyrosine Phosphatase-Like Protein IA-2 Autoantibodies in Human Serum

    OpenAIRE

    Ingrid Kikkas; Roberto Mallone; Etienne Larger; Hervé Volland; Nathalie Morel

    2014-01-01

    Type 1 diabetes (T1D) results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As) are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA) based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is...

  7. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2

    OpenAIRE

    Saharinen, Pipsa; Kerkelä, Katja; Ekman, Niklas; Marron, Marie; Brindle, Nicholas; Lee, Gyun Min; Augustin, Hellmut; Koh, Gou Young; Alitalo, Kari

    2005-01-01

    The Tie1 receptor tyrosine kinase was isolated over a decade ago, but so far no ligand has been found to activate this receptor. Here, we have examined the potential of angiopoietins, ligands for the related Tie2 receptor, to mediate Tie1 activation. We show that a soluble Ang1 chimeric protein, COMP-Ang1, stimulates Tie1 phosphorylation in endothelial cells with similar kinetics and angiopoietin dose dependence when compared with Tie2. The phosphorylation of overexpressed Tie1 was weakly ind...

  8. Identification of the insulin receptor tyrosine residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells

    International Nuclear Information System (INIS)

    Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an M/sub r/ 95,000 protein (identified as the insulin receptor β subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) anti-sera) and an M/sub r/ 180,000 protein. After purification and tryptic digestion of the M/sub r/ 95,000 protein, tryptic peptides containing Tyr (P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. Approximately 80% of all β subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Try-Glu-Thr-Asp-Try-Try-Arg from the tyrosine kinase domain. A second tryptic peptide is located near the carboxyl terminus; this contains 20-30% of β subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. In a summary, the insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells involves at least 6 of the 13 tyrosine residues located on the β subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin

  9. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14C-leucine, 14C-phenylalanine, and 14C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  10. Pancreatic Protein Tyrosine Phosphatase 1B Deficiency Exacerbates Acute Pancreatitis in Mice.

    Science.gov (United States)

    Bettaieb, Ahmed; Koike, Shinichiro; Chahed, Samah; Bachaalany, Santana; Griffey, Stephen; Sastre, Juan; Haj, Fawaz G

    2016-08-01

    Acute pancreatitis (AP) is a common and devastating gastrointestinal disorder that causes significant morbidity. The disease starts as local inflammation in the pancreas that may progress to systemic inflammation and complications. Protein tyrosine phosphatase 1B (PTP1B) is implicated in inflammatory signaling, but its significance in AP remains unclear. To investigate whether PTP1B may have a role in AP, we used pancreas PTP1B knockout (panc-PTP1B KO) mice and determined the effects of pancreatic PTP1B deficiency on cerulein- and arginine-induced acute pancreatitis. We report that PTP1B protein expression was increased in the early phase of AP in mice and rats. In addition, histological analyses of pancreas samples revealed enhanced features of AP in cerulein-treated panc-PTP1B KO mice compared with controls. Moreover, cerulein- and arginine-induced serum amylase and lipase were significantly higher in panc-PTP1B KO mice compared with controls. Similarly, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B, IL-6, and tumor necrosis factor-α were increased in panc-PTP1B KO mice compared with controls. Furthermore, panc-PTP1B KO mice exhibited enhanced cerulein- and arginine-induced NF-κB inflammatory response accompanied with increased mitogen-activated protein kinases activation and elevated endoplasmic reticulum stress. Notably, these effects were recapitulated in acinar cells treated with a pharmacological inhibitor of PTP1B. These findings reveal a novel role for pancreatic PTP1B in cerulein- and arginine-induced acute pancreatitis. PMID:27461362

  11. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica.

    Science.gov (United States)

    Uddin, Mohammad Nasir; Sharma, Govinda; Yang, Jun-Li; Choi, Hong Seok; Lim, Seong-Il; Kang, Keon Wook; Oh, Won Keun

    2014-07-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role in metabolic signaling, thereby making it an exciting drug target for type 2 diabetes and obesity. Besides, there is substantial evidence that shows its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. As part of our continuous research on PTP1B inhibitors from medicinal plants, four oleanane-type triterpenes were isolated from an EtOAc-soluble extract of fruit peels of Camellia japonica (Theaceae), together with 6 previously known compounds of this class. Their structures were determined on the basis of spectroscopic data analysis (UV, IR, (1)H and (13)CNMR, HMBC, HSQC, NOESY, and MS). All isolates were evaluated for their inhibitory effects on PTP1B, as well as their cytotoxic effects against human breast cancer cell lines MCF7, MCF7/ADR, and MDA-MB-231. Several compounds with OH-3 or/and COOH-28 functionalities showed strong PTP1B inhibitory activity (IC50 values ranging from 3.77±0.11 to 6.40±0.81 μM) as well as significant cytotoxicity (IC50 values ranging from 0.51±0.05 to 13.55±1.44 μM). PMID:24815008

  12. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  13. Protein tyrosine phosphorylation in the cyanobacterium Anabaena sp. strain PCC 7120.

    OpenAIRE

    McCartney, B; Howell, L.D.; Kennelly, P J; Potts, M.

    1997-01-01

    Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several m...

  14. The expression andprognostic value ofprotein tyrosine kinase 6 inearly-stage cervical squamous cell cancer

    Institute of Scientific and Technical Information of China (English)

    XiaoJingWang; YingXiong; ZeBiaoMa; JianChuanXia; YanFangLi

    2016-01-01

    Background:Protein tyrosine kinase 6 (PTK6) is overexpressed in many epithelial tumors and predicts poor progno‑sis. However, PTK6 expression status and its role in cervical squamous cell cancer are unknown. This study aimed to investigate the expression level and clinical signiifcance of PTK6 in early‑stage cervical squamous cell cancer. Methods:Quantitative reverse transcription‑polymerase chain reaction (qRT‑PCR) and western blotting analysis were performed to detect PTK6 mRNA and protein expression levels in 10 freshly frozen, early‑stage cervical squamous cell cancer specimens and adjacent non‑tumorous cervical tissues. The expression of PTK6 was detected using immuno‑histochemical staining in 150 formalin‑ifxed, paraffn‑embedded, early‑stage cervical squamous cell cancer sections and 10 normal cervical tissue sections. Results:The mRNA and protein levels of PTK6 in cancer tissues were higher than those in adjacent non‑tumorous cervical tissues. Immunohistochemical analysis showed that PTK6 was not expressed in normal cervical tissues but was overexpressed in the cytoplasm of cervical squamous cell cancer cells. The level of PTK6 expression was signiif‑cantly associated with tumor grade (P=0.020). The 5‑year overall survival rate of patients with high PTK6 expression was lower than that of patients with low PTK6 expression (81.3% vs. 96.2%,P=0.008). Multivariate Cox regression analysis showed that the expression level of PTK6 in cervical squamous cell cancer was an independent prognostic factor for patient survival (hazard ratio=5.999, 95% conifdence interval 1.622–22.191,P Conclusions:PTK6 is overexpressed in cervical squamous cell cancer. Increased PTK6 expression is associated with reduced 5‑year overall survival. PTK6 expression is an independent prognostic predictor for cervical cancer.

  15. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex. PMID:15513966

  16. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    OpenAIRE

    Freeman, R. M.; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw...

  17. Antagonistic regulation of swelling-activated Cl− current in rabbit ventricle by Src and EGFR protein tyrosine kinases

    OpenAIRE

    Ren, Zuojun; Baumgarten, Clive M.

    2005-01-01

    Regulation of swelling-activated Cl− current (ICl,swell) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates ICl,swell and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). ICl,swell evoked ...

  18. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation

    OpenAIRE

    Song, Gyun Jee; Jung, Myungsu; Kim, Jong-Heon; Park, Hana; Rahman, Md. Habibur; Zhang, Sheng; Zhang, Zhong-Yin; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-01-01

    Background Protein tyrosine phosphatase 1B (PTP1B) is a member of the non-transmembrane phosphotyrosine phosphatase family. Recently, PTP1B has been proposed to be a novel target of anti-cancer and anti-diabetic drugs. However, the role of PTP1B in the central nervous system is not clearly understood. Therefore, in this study, we sought to define PTP1B’s role in brain inflammation. Methods PTP1B messenger RNA (mRNA) and protein expression levels were examined in mouse brain and microglial cel...

  19. Transgenic mice expressing yellow fluorescent protein under control of the human tyrosine hydroxylase promoter.

    Science.gov (United States)

    Choi, Eun Yang; Yang, Jae Won; Park, Myung Sun; Sun, Woong; Kim, Hyun; Kim, Seung U; Lee, Myung Ae

    2012-10-01

    Pathogenesis of Parkinson's disease and related catecholaminergic neurological disorders is closely associated with changes in the levels of tyrosine hydroxylase (TH). Therefore, investigation of the regulation of the TH gene system should assist in understanding the pathomechanisms involved in these neurological disorders. To identify regulatory domains that direct human TH expression in the central nervous system (CNS), we generated two transgenic mouse lines in which enhanced yellow fluorescent protein (EYFP) is expressed under the control of either 3.2-kb (hTHP-EYFP construct) human TH promoter or 3.2-kb promoter with 2-kb 3'-flanking regions (hTHP-ex3-EYFP construct) of the TH gene. In the adult transgenic mouse brain, the hTHP-EYFP construct directs neuron-specific EYFP expression in various CNS areas, such as olfactory bulb, striatum, interpeduncular nucleus, cerebral cortex, hippocampus, and particularly dentate gyrus. Although these EYFP-positive cells were identified as mature neurons, few EYFP-positive cells were TH-positive neurons. On the other hand, we could detect the EYFP mRNA expression in a subset of neurons in the olfactory bulb, midbrain, and cerebellum, in which expression of endogenous TH is enriched, with hTHP-ex3-EYFP transgenic mice. These results indicate that the 3.2-kb sequence upstream of the TH gene is not sufficient for proper expression and that the 2-kb sequence from the translation start site to exon 3 is necessary for expression of EYFP in a subset of catecholaminergic neurons. PMID:22714400

  20. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  1. The receptor protein tyrosine phosphatase (RPTP)β/ζ is expressed in different subtypes of human breast cancer

    International Nuclear Information System (INIS)

    Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP)β/ζ, leading to increased tyrosine phosphorylation of different substrate proteins of RPTPβ/ζ, including β-catenin, β-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTPβ/ζ signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusion protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTPβ/ζ is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTPβ/ζ furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTPβ/ζ changes as the breast cancer become more malignant. The data suggest that the PTN/RPTPβ/ζ signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer

  2. Effect of inhibition of tyrosine phosphatases on voltage-operated calcium channel currents in rabbit isolated ear artery cells

    OpenAIRE

    Wijetunge, S; Lymn, J S; Hughes, A.D.

    1998-01-01

    The effect of increasing cellular tyrosine phosphorylation by inhibiting endogenous tyrosine phosphatases was examined on voltage-operated calcium channel currents in vascular smooth muscle cells.In single ear artery smooth muscle cells of the rabbit, studied by the whole cell voltage clamp technique, intracellular application of the tyrosine phosphatase inhibitors, sodium orthovanadate (100 μM) and peroxyvanadate (100 μM orthovanadate+1 mM H2O2) increased voltage-operated calcium channel cur...

  3. Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.

    NARCIS (Netherlands)

    Lin, D.; Kamsteeg, E.J.; Zhang, Y.; Jin, Y.; Sterling, H.; Yue, P.; Roos, M.; Duffield, A.; Spencer, J.; Caplan, M.; Wang, W.H.

    2008-01-01

    In the present study, we tested the role of CD63 in regulating ROMK1 channels by protein-tyrosine kinase (PTK). Immunocytochemical staining shows that CD63 and receptor-linked tyrosine phosphatase alpha (RPTPalpha) are expressed in the cortical collecting duct and outer medulla collecting duct. Immu

  4. Solution structure of the Shc SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor.

    OpenAIRE

    M. M. Zhou; Meadows, R P; Logan, T. M.; Yoon, H S; Wade, W S; Ravichandran, K S; Burakoff, S J; Fesik, S W

    1995-01-01

    She is a widely expressed adapter protein that plays an important role in signaling via a variety of cell surface receptors and has been implicated in coupling the stimulation of growth factor, cytokine, and antigen receptors to the Ras signaling pathway. She interacts with several tyrosine-phosphorylated receptors through its C-terminal SH2 domain, and one of the mechanisms of T-cell receptor-mediated Ras activation involves the interaction of the Shc SH2 domain with the tyrosine-phosphoryla...

  5. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  6. Tyrosine phosphorylation modulates store-operated calcium entry in cultured rat epididymal basal cells.

    Science.gov (United States)

    Zuo, Wu-Lin; Du, Jian-Yang; Huang, Jie-Hong; Li, Sheng; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-04-01

    Store-operated calcium entry (SOCE) is essential for many cellular processes. In this study, we investigated modulation of SOCE by tyrosine phosphorylation in rat epididymal basal cells. The intracellular Ca(2+) ([Ca(2+)]i) measurement showed that SOCE occurred in rat epididymal basal cells by pretreating the cells with thapsigargin (Tg), the inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPase. To identify the role of Ca(2+) channels in this response, we examined the effects of transient receptor potential canonical channel blockers 2-aminoethoxydiphenyl borate (2-APB), 1-[β-[3-(4-methoxyphenyl)pro-poxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride(SKF96365), Gd(3+), and non-selective cation channel blocker Ni(2+) respectively on SOCE and found that these blockers could inhibit the Ca(2+) influx to different extent. Furthermore, we studied the regulation of SOCE by tyrosine kinase pathway. The inhibitor of tyrosine kinase genistein remarkably suppressed the SOCE response, whereas sodium orthovanadate, the inhibitor of tyrosine phosphatase, greatly enhanced it. The results suggest that tyrosine kinase pathway plays a significant role in the initiation of SOCE and positively modulates SOCE in epididymal basal cells. PMID:20857412

  7. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  8. Treatment of Breast Cancer Cells by IGF1R Tyrosine Kinase Inhibitor Combined with Conventional Systemic Drugs

    NARCIS (Netherlands)

    Hartog, H.; Van der Graaf, W. T. A.; Boezen, H. M.; Wesseling, J.

    2012-01-01

    Aim: Insulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase receptor mediating cell growth and survival of cancer cells. We studied responses to IGF1R tyrosine kinase inhibitor NVP-AEW541 combined with conventional systemic drugs in breast cancer cell lines of different clinical subtype.

  9. Treatment of breast cancer cells by IGF1R tyrosine kinase inhibitor combined with conventional systemic drugs.

    NARCIS (Netherlands)

    Hartog, H.; Graaf, W.T.A. van der; Boezen, H.M.; Wesseling, J.

    2012-01-01

    AIM: Insulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase receptor mediating cell growth and survival of cancer cells. We studied responses to IGF1R tyrosine kinase inhibitor NVP-AEW541 combined with conventional systemic drugs in breast cancer cell lines of different clinical subtype.

  10. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP

    Science.gov (United States)

    Lagoutte, Emilie; Villeneuve, Clémentine; Lafanechère, Laurence; Wells, Claire M.; Jones, Gareth E.; Chavrier, Philippe; Rossé, Carine

    2016-01-01

    During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion. PMID:27116935

  11. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    OpenAIRE

    Lu, T T; Yan, L G; Madri, J. A.

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell sprea...

  12. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    International Nuclear Information System (INIS)

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1

  13. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells

    DEFF Research Database (Denmark)

    Nakayama, Masaaki; Hisatsune, Jyunzo; Yamasaki, Eiki;

    2006-01-01

    Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of...... all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by...

  14. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    OpenAIRE

    Zhao Zhang; Yun Zhang; Zheng Mou; Shifeng Chu; Xiaoyu Chen; Wenbin He; Xiaofeng Guo; Yuhe Yuan; Masami Takahashi; Naihong Chen

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca²⁺ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and ce...

  15. A Cell-Based Protein-Protein Interaction Method Using a Permuted Luciferase Reporter

    OpenAIRE

    Eishingdrelo, Haifeng; Cai, Jidong; Weissensee, Paul; Sharma, Praveen; Tocci, Michael J; Wright, Paul S

    2011-01-01

    We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nucle...

  16. Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew.

    OpenAIRE

    Firth, L; Manchester, J; Lorenzen, J A; Baron, M.; Perkins, L A

    2000-01-01

    Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unamb...

  17. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.;

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...... the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules...

  18. A novel protein tyrosine phosphatase 1B inhibitor from Tinospora sinensis

    OpenAIRE

    Prasoon Gupta; Upasana Sharma; Gupta, Praveen K.; Rakesh Maurya

    2012-01-01

    Bioassay-directed fractionation led to the identification of a new compound, 4-hydroxy-heptadec-6-enoic acid ethyl ester (1) together with three known compounds (2-4) from Tinospora sinensis. The structure of 1 was determined by analysis of spectroscopic data. The isolated compounds were evaluated for their protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Compounds 1 and 2 displayed significant inhibitory activity with IC 50 values 61.1 and 74.2 μM, respectively

  19. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz;

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains......, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE....

  20. A Specific A/T Polymorphism in Western Tyrosine Phosphorylation B-Motifs Regulates Helicobacter pylori CagA Epithelial Cell Interactions

    OpenAIRE

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-01-01

    Abstract Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA...

  1. Identification of a Low Molecular Weight Protein Tyrosine Phosphatase and Its Potential Physiological Substrates in Synechocystis sp. PCC 6803

    OpenAIRE

    Mukhopadhyay, Archana

    2006-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the gross functional properties of this hypothetical protein, open reading frame slr0328 was cloned, and its predicted protein product was expressed in E. coli. The recombinant protein, SynPTP, was purified by metal ion column chromatography. The catalytic act...

  2. IDENTIFICATION OF SPECIFIC PEPTIDE LIGANDS FOR B-LYMPHOMA CELL AND ITS EFFECT ON TYROSINE PHOSPHORYLATION AND CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    宋良文; 马宪梅; 崔雪梅; 李扬; 王晓民

    2004-01-01

    Objective To search novel method for diagnosis and therapy of B-lymphoma, specific small molecular peptide ligands against binding site of tumor cells were screened and its effects on signal transduction and cell apoptosis were tested. Methods Specific peptide ligands were screened by binding with site of human B lymphoma cell (OC1LY8) using peptide-bead libraries. The identified peptides were characterized with responsible cells by rebinding test. The role of tyrosine phosphorylation of peptide ligand was tested by Western blot;and its apoptosispromoting role was observed by confocal fluorescent microscope. Results Specific peptide ligand was able to bind specifically to site on cell surface and enter into cytoplasm. Tetrameric peptide ligand was able to strongly trigger signal transduction resulting in tyrosine phosphorylation and cellular apoptosis in OC1LY8 cell line.Conclusion Screened peptide ligand can effectively bind with OC1LY8 cell, stimulate cellular tyrosine phosphorylation and induce cellular apoptosis.

  3. ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface.

    Directory of Open Access Journals (Sweden)

    Melisa C Monteleone

    Full Text Available PTP1B is an endoplasmic reticulum (ER anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC. Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.

  4. Targeting Bruton's tyrosine kinase signaling as an emerging therapeutic agent of B-cell malignancies

    OpenAIRE

    Xia, Bing; QU, FULIAN; Yuan, Tian; Zhang, Yizhuo

    2015-01-01

    It is becoming increasingly evident that B-cell receptor (BCR) signaling is central to the development and function of B cells. BCR signaling has emerged as a pivotal pathway and a key driver of numerous B-cell lymphomas. Disruption of BCR signaling can be lethal to malignant B cells. Recently, kinase inhibitors that target BCR signaling have induced notable clinical responses. These inhibitors include spleen tyrosine kinase, mammalian target of rapamycin, phosphoinositide 3′-kinase and Bruto...

  5. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Ali, Md Yousof; Jannat, Susoma; Jung, Hyun Ah; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-05-25

    In the present study, we investigated the anti-diabetic potential of six natural coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), decursinol (3), decursidin (4), umbelliferone 6-carboxylic acid (5), and 2'-isopropyl psoralene (6) isolated from Angelica decursiva and evaluated their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO(-)-mediated protein tyrosine nitration. Coumarins 1-6 showed potent PTP1B and α-glucosidase inhibitory activities with ranges of IC50 values of 5.39-58.90 μM and 65.29-172.10 μM, respectively. In the kinetic study for PTP1B enzyme inhibition, compounds 1, 5, and 6 were competitive, whereas 2 and 4 showed mixed type, and 3 displayed noncompetitive type inhibition. For α-glucosidase enzyme inhibition, compounds 1 and 3 exhibited good mixed-type, while 2, 5, and 6 showed noncompetitive and 4 displayed competitive type inhibition. Furthermore, these coumarins also effectively suppressed ONOO(-)-mediated tyrosine nitration in a dose-dependent manner. To further investigate PTP1B inhibition, we generated a 3D structure of PTP1B using Autodock 4.2 and simulated the binding of compounds 1-6. Docking simulations showed that different residues of PTP1B interacted with different functional groups of compounds 1-6 through hydrogen and hydrophobic interactions. In addition, the binding energies of compounds 1-6 were negative, suggesting that hydrogen bonding may stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, thereby resulting in more effective PTP1B inhibition. These results demonstrate that the whole plant of A. decursiva and its coumarins are useful as potential functional food ingredients for the prevention and treatment of type 2 diabetes. PMID:27085377

  6. Tyrosine Coupling Creates a Hyperbranched Multivalent Protein Polymer Using Horseradish Peroxidase via Bipolar Conjugation Points.

    Science.gov (United States)

    Minamihata, Kosuke; Yamaguchi, Sou; Nakajima, Kei; Nagamune, Teruyuki

    2016-05-18

    Protein polymers of covalently cross-linked protein monomers are highly attractive biomaterials because each monomer unit possesses distinct protein functions. Protein polymers often show enhancement effects on the function by integrating a large number of molecules into one macromolecule. The cross-linking site of component proteins should be precisely controlled to avoid diminishing the protein function. However, preparing protein polymers that are cross-linked site-specifically with a high cross-linking degree is a challenge. Here, we demonstrate the preparation of a site-specifically cross-linked protein polymer that has a hyperbranched polymer-like structure with a high cross-linking degree. A horseradish peroxidase (HRP) reaction was used to achieve the protein polymerization through a peptide tag containing a tyrosine residue (Y-tag). Y-tag sequences were introduced to both N- and C-termini of a model protein, protein G. The dual Y-tagged protein G (Y-pG-Y) was treated with HRP to form a Y-pG-Y polymer possessing average and maximum cross-linking degree of approximately 70-mer and 150-mer, respectively. The Y-pG-Y polymer shows the highest cross-linking degree among the protein polymers reported, which are completely soluble in water and cross-linked via covalent bonding. The Y-pG-Y was cross-linked site-specifically at the Tyr residue in the Y-tag, retaining its function, and the Y-pG-Y polymer showed extremely strong avidity against immunoglobulin G. The reactivities of N- and C-terminal Y-tags were evaluated, and we revealed that the difference in the radical formation rate by HRP was the key for yielding highly cross-linked protein polymers. PMID:27093089

  7. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein.

    Science.gov (United States)

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O

    2016-05-01

    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. PMID:26865271

  8. L-1-C-11-tyrosine PET in patients with laryngeal carcinomas : Comparison of standardized uptake value and protein synthesis rate

    NARCIS (Netherlands)

    de Boer, [No Value; Pruim, J; van der Laan, BFAM; Que, TH; Willemsen, ATM; Albers, FWJ; Vaalburg, W

    2003-01-01

    PET with L-1-C-11-tyrosine (TYR) can measure and quantify increased protein synthesis in tumor tissue in vivo. For quantification of the protein synthesis rate (PSR), arterial cannulation with repeated blood sampling to obtain the plasma input function and a dynamic TYR PET study to calculate a time

  9. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    OpenAIRE

    Linger, Rachel M.A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton; Graham, Douglas K.

    2013-01-01

    Mer tyrosine kinase is aberrantly expressed in ∼30% of pediatric pre–B-ALL patients, including most patients with an E2A-PBX1 translocation.Mer inhibition decreased B-ALL cell survival signal transduction, caused chemosensitization, and prolonged survival in a xenograft model.

  10. Overall survival after immunotherapy, tyrosine kinase inhibitors and surgery in treatment of metastatic renal cell cancer

    DEFF Research Database (Denmark)

    de Lichtenberg, Trine Honnens; Hermann, Gregers G.; Rorth, Mikael;

    2014-01-01

    Abstract Objective. The aim of this study was to evaluate overall survival (OS) after treatment of metastatic renal cell carcinoma (mRCC) following the introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors. Material and methods. One-hundred and fort...

  11. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  12. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    Science.gov (United States)

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  13. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  14. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    International Nuclear Information System (INIS)

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr174, Tyr183 and Tyr446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr174, Tyr183 and Tyr426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr426 following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation

  15. Role of Tyrosine Kinase Inhibitors in Indolent and Other Mature B-Cell Neoplasms

    Science.gov (United States)

    Kutsch, Nadine; Marks, Reinhard; Ratei, Richard; Held, Thomas K; Schmidt-Hieber, Martin

    2015-01-01

    Targeting tyrosine kinases represents a highly specific treatment approach for different malignancies. This also includes non-Hodgkin lymphoma since it is well known that these enzymes are frequently involved in the lymphomagenesis. Hereby, tyrosine kinases might either be dysregulated intrinsically or be activated within signal transduction pathways leading to tumor survival and growth. Among others, Bruton’s tyrosine kinase (Btk) is of particular interest as a potential therapeutic target. Btk is stimulated by B-cell receptor signaling and activates different transcription factors such as nuclear factor κB. The Btk inhibitor ibrutinib has been approved for the treatment of chronic lymphocytic leukemia and mantle-cell lymphoma recently. Numerous clinical trials evaluating this agent in different combinations (eg, with rituximab or classical chemotherapeutic agents) as a treatment option for aggressive and indolent lymphoma are under way. Here, we summarize the role of tyrosine kinase inhibitors in the treatment of indolent and other non-Hodgkin lymphomas (eg, mantle-cell lymphoma). PMID:26327780

  16. Recepteur d'Origine Nantais Tyrosine Kinase Is a Direct Target of Hypoxia-inducible Factor-1α-mediated Invasion of Breast Carcinoma Cells*S⃞

    OpenAIRE

    Thangasamy, Amalraj; Rogge, Jessica; Ammanamanchi, Sudhakar

    2009-01-01

    Hypoxia-inducible factor-1α (HIF-1α) overexpression was shown to be associated with invasion and metastasis of tumors and tumor cell lines. The identification of molecular targets that contribute to HIF-1α-mediated invasion is under intensive investigation. We have analyzed the role of recepteur d'origine nantais (RON), a tyrosine kinase receptor for macrophage-stimulating protein (MSP) that plays a role in breast cancer cell invasion as one of the molecular targets of...

  17. Non–lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells

    OpenAIRE

    Xu, Dan; Liu, Xia; Yu, Wen-Mei; Meyerson, Howard J.; Guo, Caiying; Gerson, Stanton L.; Qu, Cheng-Kui

    2011-01-01

    Activating mutations in protein tyrosine phosphatase 11 (Ptpn11) have been identified in childhood acute leukemias, in addition to juvenile myelomonocytic leukemia (JMML), which is a myeloproliferative disorder (MPD). It is not clear whether activating mutations of this phosphatase play a causal role in the pathogenesis of acute leukemias. If so, the cell origin of leukemia-initiating stem cells (LSCs) remains to be determined. Ptpn11E76K mutation is the most common and most active Ptpn11 mut...

  18. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    Science.gov (United States)

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways. PMID:9166697

  19. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  20. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrsflox/flox;mb1cre/+:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  1. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3.

    Science.gov (United States)

    Zhou, Yuehan; Skelton, Lara A; Xu, Lumei; Chandler, Margaret P; Berthiaume, Jessica M; Boron, Walter F

    2016-09-01

    Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis. PMID:26839367

  2. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    Directory of Open Access Journals (Sweden)

    Klopfleisch Robert

    2012-06-01

    Full Text Available Abstract Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect.

  3. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  4. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  5. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    Science.gov (United States)

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  6. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells.

    Science.gov (United States)

    Huang, Yuan-Li; Lin, Hsiao-Sheng; Chen, Shee-Uan; Lee, Hsinyu

    2009-12-01

    Sphingosine 1-phosphate (S1P), a lysophospholipid mediator, regulates diverse functions of many types of cells by binding to specific G protein-coupled receptors termed S1P(1)-S1P(5). In T-cells, tyrosine sulphation of S1P(1) is required for high-affinity binding of S1P and fully functional signalling. In this study, we showed that tyrosine sulphation of S1P(1) is necessary for S1P-induced Src phosphorylation and migration in human umbilical vein endothelial cells (HUVECs). Both substitution of phenylalanine (F) for tyrosine (Y) in S1P(1) and inhibition of tyrosine sulphation blocked c-Src phosphorylation and migration in HUVECs. In addition, overexpression of mutant (F19, 22F) S1P(1), lacking tyrosine sulphation sites, suppressed native S1P(1) effects on migration, actin rearrangement and lamellipodia formation. Therefore, tyrosine sulphation of S1P(1) is required for its optimal transduction of signals from S1P in HUVECs. PMID:19692429

  7. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27

    Institute of Scientific and Technical Information of China (English)

    Yejing Wang; Fanguo Meng; Yingmei Zhang

    2009-01-01

    The low-molecular-weight protein tyrosine phospha-tases (PTPase) exist ubiquitously in prokaryotes and eukaryotes and play important roles in the regulation of physiological activities. We report here the expression, purification and characterization of an active and soluble PTPase from Thermus thermophilus HB27 in Escherichia coli. This PTPase has an optimum pH range of 2.8-4.8 when using p-nitrophenyl phos-phate as the substrate. The thermal inactivation results indicate a high thermal stability of this enzyme, with the optimum temperature of 75℃ for activity. It can be activated by Mn2+, Mg2+, Ca2+, Ba2+, and Ni2+, but inhibited by Zn2+, Cu2+, Cl-, and SO2-4. These results suggest that this heat-resistant PTPase may play impor-tant roles in vivo in the adaptation of the microorgan-ism to extreme temperatures and specific nutritional conditions.

  8. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells.

    Directory of Open Access Journals (Sweden)

    Antonella Pantaleo

    Full Text Available BACKGROUND: While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs. METHODOLOGY/PRINCIPAL FINDINGS: Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM or divicine (0.5 mM causes: (1 an increase in the oxidation and tyrosine phosphorylation of AE1; (2 progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3 parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.

  9. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    International Nuclear Information System (INIS)

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na2CrO4), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints

  10. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dongsoon; Camilli, Tura C. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Chun, Gina; Lal, Madhu; Wright, Kristen [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); O' Brien, Travis J. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Department of Medicine, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States); Ceryak, Susan [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Department of Medicine, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States)], E-mail: phmsmc@gwumc.edu

    2009-01-15

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na{sub 2}CrO{sub 4}), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints.

  11. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation

    DEFF Research Database (Denmark)

    Kirkegaard, Signe Skyum; Lambert, Ian Henry; Gammeltoft, Steen; Hoffmann, Else Kay

    2010-01-01

    (K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a...... lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is...... demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in...

  12. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.;

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (S...

  13. Endogenous 3, 4- Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu; Monroe, Matthew E.; Chen, Baowei; Chin, Mark H.; Heibeck, Tyler H.; Schepmoes, Athena A.; Yang, Feng; Petritis, Brianne O.; Camp, David G.; Pounds, Joel G.; Jacobs, Jon M.; Smith, Desmond J.; Bigelow, Diana J.; Smith, Richard D.; Qian, Weijun

    2010-06-02

    Oxidative modifications of protein tyrosines have been implicated in multiple human diseases. Among these modifications, elevations in levels of 3, 4-dihydroxyphenylalanine (DOPA), a major product of hydroxyl radical addition to tyrosine, has been observed in a number of pathologies. Here we report the first global proteome survey of endogenous site-specific modifications, i.e, DOPA and its further oxidation product dopaquinone (DQ) in mouse brain and heart tissues. Results from LC-MS/MS analyses included 203 and 71 DOPA-modified tyrosine sites identified from brain and heart, respectively, with a false discovery rate of ~1%; while only a few nitrotyrosine containing peptides, a more commonly studied marker of oxidative stress, were detectable, suggesting the much higher abundance for DOPA modification as compared with tyrosine nitration. Moreover, 57 and 29 DQ modified peptides were observed from brain and heart, respectively; nearly half of these peptides were also observed with DOPA modification on the same sites. For both tissues, these modifications are preferentially found in mitochondrial proteins with metal-binding properties, consistent with metal catalyzed hydroxyl radical formation from mitochondrial superoxide and hydrogen peroxide. These modifications also link to a number of mitochondria-associated and other signaling pathways. Furthermore, many of the modification sites were common sites of previously reported tyrosine phosphorylation suggesting potential disruption of signaling pathways. Structural aspects of DOPA-modified tyrosine sequences are distinct from those of nitrotyrosines suggesting that each type of modifications provides a marker for different in vivo reactive chemistries and can be used to predict sensitive protein targets. Collectively, the results suggest that these modifications are linked with mitochondrially-derived oxidative stress, and may serve as sensitive markers for disease pathologies.

  14. Involvement of β3A Subunit of Adaptor Protein-3 in Intracellular Trafficking of Receptor-like Protein Tyrosine Phosphatase PCP-2

    Institute of Scientific and Technical Information of China (English)

    Hui DONG; Hong YUAN; Weirong JIN; Yan SHEN; Xiaojing XU; Hongyang WANG

    2007-01-01

    PCP-2 is a human receptor-like protein tyrosine phosphatase and a member of the MAM domain family cloned in human pancreatic adenocarcinoma cells. Previous studies showed that PCP-2 directly interacted with β-catenin through the juxtamembrane domain, dephosphorylated β-catenin and played an important role in the regulation of cell adhesion. Recent study showed that PCP-2 was also involved in the repression of β-catenin-induced transcriptional activity. Here we describe the interactions of PCP-2 with the β3A subunit of adaptor protein (AP)-3 and sorting nexin (SNX) 3. These protein complexes were detected using the yeast two-hybrid assay with the juxtamembrane and membrane-proximal catalytic domain of PCP-2 as "bait". Both AP-3 and SNX3 are molecules involved in intracellular trafficking of membrane receptors. The association between the β3A subunit of AP-3 and PCP-2 was further confirmed in mammalian cells. Our results suggested a possible mechanism of intracellular trafficking of PCP-2 mediated by AP-3 and SNX3 which might participate in the regulation of PCP-2 functions.

  15. Inhibition of Setaria cervi protein tyrosine phosphatases by Phenylarsine oxide: A proteomic and biochemical study.

    Science.gov (United States)

    Singh, Neetu; Wadhawan, Mohit; Tiwari, Savitri; Kumar, Ranjeet; Rathaur, Sushma

    2016-07-01

    Phenylarsine oxide (PAO), a specific protein tyrosine phosphatase (PTP) inhibitor significantly decreased the motility and viability of Setaria cervi ultimately leading to its death. The PTP activity present in the cytosolic and detergent soluble fractions as well as on surface of these parasites was significantly inhibited by PAO. A marked alteration in protein spots abundance after proteomic analysis showed 14 down-regulated and 9 upregulated spots in the treated parasites as compared to the control. The PTP inhibition led to increase in the cytosolic and mitochondrial calpain activity in these parasites. PAO also blocked the ATP generation in the parasite depicted by reduced activity of phosphoglycerate kinase and expression of enolase. An increased ROS level, induced lipid peroxidation/protein carbonyl formation and decreased activity of different antioxidant enzymes like thioredoxin reductase, glutathione reductase and glutathione transferases was also observed in the PAO treated parasites. PAO, thus disturbs the overall homeostasis of the filarial parasite by inhibiting PTPs. Thereby suggesting that these molecules could be used as a good chemotherapeutic target for lymphatic filariasis. PMID:26965172

  16. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    Science.gov (United States)

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  17. Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Raymond, R; Conforti, L; Zhu, W; Beitner-Johnson, D; Filisko, T; Genter, M B; Kobayashi, S; Peng, M

    1997-02-01

    Carotid body type I cells and the O2 sensitive pheochromocytoma (PC12) cells release dopamine during hypoxia. Reduced O2 tension causes inhibition of an outward rectifying the O2-sensitive potassium (K) channel in the O2-sensitive pheochromocytoma (PC12) cell line, which leads to membrane depolarization and increased intracellular free Ca2+. We found that removal of Ca2+ from the extracellular milieu, inhibition of voltage-dependent Ca2+ channels, and chelation of intracellular Ca2+ prevents full activation of the TH gene expression during hypoxia. These findings suggest that membrane depolarization and regulation of intracellular free Ca2+ are critical signal transduction events that regulate expression of the TH gene in PC12 cells during hypoxia. Gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by reduced O2 tension in both type I cells and PC12 cells. The increase in TH gene expression in PC12 cells during hypoxia is due to increases in both the rate of transcription and mRNA stability. Analysis of reporter-gene constructs revealed that increased transcription of the TH gene during hypoxia is regulated by a region of the proximal promoter that extends from -284 to -150 bases, relative to the transcription start site. This region of the gene contains a number of cis-acting regulatory elements including AP1, AP2 and hypoxia-inducible factor (HIF-1). Competition assays revealed that hypoxia-induced binding occurs at both the AP1 and HIF-1 sites. Results from super-shift and shift Western assays showed that a heterodimer consisting of c-Fos and JunB binds to the AP1 site during hypoxia. Mutagenesis experiments revealed that the AP1 site is required for increased transcription of the TH gene during hypoxia. We also found that the genes that encode the c-Fos and JunB transcription factor proteins are regulated by reduced O2 tension. PMID:9027733

  18. Ribosomal Protein S6 Kinase (RSK-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-05-01

    Full Text Available Abstract Background Epithelial to mesenchymal transition (EMT occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP has been implicated in cellular EMT program; however, the major signaling determinant(s responsible for MSP-induced EMT is unknown. Results The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.

  19. Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells

    OpenAIRE

    1986-01-01

    We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of lamini...

  20. Ligand-independent tyrosine kinase signalling in RTH 149 trout hepatoma cells: comparison among heavy metals and pro-oxidants.

    Science.gov (United States)

    Burlando, Bruno; Magnelli, Valeria; Panfoli, Isabella; Berti, Elena; Viarengo, Aldo

    2003-01-01

    Tyrosine phosphorylation depends on the activity of receptor and non-receptor tyrosine kinases and promote cell growth, differentiation and apoptosis. Different stressors are known to stimulate tyrosine kinase activities and this could explain a wide spectrum of effects that these agents produce on different organisms. We studied the effects of heavy metals and pro-oxidants on tyrosine kinase signalling in trout hepatoma cells (RTH 149) by Western immunoblotting. Use of antiphosphotyrosine showed that Hg(2+) and Cu(2+)in the microM range, and H(2)O(2) in the mM range, induced tyrosine phosphorylation. The effect of Cu(2+)was prevented by pre-incubation with genistein, while those of Hg(2+)and H(2)O(2) were only decreased, probably due to tyrosine kinase stimulation coupled to phosphatase inhibition. Phosphospecific antibodies against the three types of MAPKs showed that ERK is activated by heavy metals only, while p38 and SAPK/JNK are activated by H(2)O(2), Hg(2+), and Cu(2+) plus low H(2)O(2). Cell pre-incubation with p38 inhibitors indicated that ERK activation by H(2)O(2) is prevented by concomitant activation of p38. Phosphospecific STAT antibodies revealed activation by H(2)O(2) only. In conclusion, fish cell exposure to heavy metals and pro-oxidants produce specific tyrosine kinase responses, involving cross talk and redox modulatory effects. PMID:12876385

  1. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    Science.gov (United States)

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  2. Interleukin 2 regulates Raf-1 kinase activity through a tyrosine phosphorylation-dependent mechanism in a T-cell line.

    OpenAIRE

    Turner, B C; Tonks, N K; Rapp, U R; Reed, J. C.

    1993-01-01

    Previously we found that interleukin 2 (IL-2) induces tyrosine phosphorylation and activation of the serine/threonine-specific kinase encoded by the raf-1 protooncogene in a T-cell line, CTLL-2. Here we extended these findings by exploring the effects of selective removal of phosphate from tyrosines in p72-74-Raf-1 kinase that had been immunoprecipitated from IL-2-stimulated CTLL-2 cells. Treatment in vitro of IL-2-activated Raf-1 with the tyrosine-specific phosphatases CD45 and TCPTP (former...

  3. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates

    OpenAIRE

    Mukhopadhyay, Archana; Kennelly, Peter J.

    2011-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylate...

  4. Purification and Characterization of the Catalytic Domain of Protein Tyrosine Phosphatase SHP-1 and the Preparation of Anti-△SHP-1 Antibodies

    Institute of Scientific and Technical Information of China (English)

    LI Wan-nan; ZHUANG Yan; LI He; SUN Ying; FU Yao; WU Xiao-xia; ZHAO Zhi-zhuang; FU Xue-qi

    2008-01-01

    This study is focused on the expression of an SH2 domain-truncated form of protein tyrosine phosphatase SHP-1(designated △SHP-1) and the preparation of its polyelonal antibodies.A cDNA fragment encoding △SHP-1 was amplified by PCR and then cloned into the pT7 expression vector.The recombinant pT7-△SHP-1 plasmid was used to transform Rosetta(DE3) E.coll cells.△SHP-1 was distributed in the exclusion body of E.coll cell extracts and was purified through a two-column chromatographic procedure.The purified enzyme exhibited an expected molecular weight on SDS-gels and HPLC gel filtration columns.It possesses robust tyrosine phosphatase activity and shows typical enzymatic characteristics of classic tyrosine phosphatases.To generate polyclonal anti-△SHP-1 antibodies,purified recombinant △SHP-1 was used to immunize a rabbit.The resultant anti-serum was subjected to purification on △SHP-1 antigen affinity chromatography.The purified polyclonal antibody displayed a high sensitivity and specificity toward △SHP-1.This study thus provides the essential materials for further investigating the biological function and pathological implication of SHP-1 and screening the inhibitors and activators of the enzyme for therapeutic drug development.

  5. Tubulin tyrosine ligase expression corresponds to changes in the tyrosination/detyrosination status of alpha tubulin in prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Phung, A.D.; Bulinski, J.Ch.; Harper, R.W.; McManus, M.; Eiserich, J.P.

    2006-01-01

    Roč. 100, č. 5 (2006), s. 406-406. ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /6./. 14.06.2006-17.06.2006, Milovy] Institutional research plan: CEZ:AV0Z50040507 Keywords : prostate cancer * tubulin * tyrosination/detyrosination cycle Subject RIV: BO - Biophysics

  6. Bruton’s tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: focus on ibrutinib

    OpenAIRE

    Aalipour, Amin; Advani, Ranjana H.

    2014-01-01

    Aberrant signaling of the B-cell receptor pathway has been linked to the development and maintenance of B-cell malignancies. Bruton’s tyrosine kinase (BTK), a protein early in this pathway, has emerged as a new therapeutic target in a variety of such malignancies. Ibrutinib, the most clinically advanced small molecule inhibitor of BTK, has demonstrated impressive tolerability and activity in a range of B-cell lymphomas which led to its recent approval for relapsed mantle cell lymphoma and chr...

  7. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  8. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins.

    Science.gov (United States)

    Struck, Anna-Winona; Bennett, Matthew R; Shepherd, Sarah A; Law, Brian J C; Zhuo, Ying; Wong, Lu Shin; Micklefield, Jason

    2016-03-01

    Bioorthogonal chemistry enables a specific moiety in a complex biomolecule to be selectively modified in the presence of many reactive functional groups and other cellular entities. Such selectivity has become indispensable in biology, enabling biomolecules to be derivatized, conjugated, labeled, or immobilized for imaging, biochemical assays, or therapeutic applications. Methyltransferase enzymes (MTase) that accept analogues of the cofactor S-adenosyl methionine have been widely deployed for alkyl-diversification and bioorthogonal labeling. However, MTases typically possess tight substrate specificity. Here we introduce a more flexible methodology for selective derivatization of phenolic moieties in complex biomolecules. Our approach relies on the tandem enzymatic reaction of a fungal tyrosinase and the mammalian catechol-O-methyltransferase (COMT), which can effect the sequential hydroxylation of the phenolic group to give an intermediate catechol moiety that is subsequently O-alkylated. When used in this combination, the alkoxylation is highly selective for tyrosine residues in peptides and proteins, yet remarkably tolerant to changes in the peptide sequence. Tyrosinase-COMT are shown to provide highly versatile and regioselective modification of a diverse range of substrates including peptide antitumor agents, hormones, cyclic peptide antibiotics, and model proteins. PMID:26867114

  9. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  10. Visualisation and assessment of the protein synthesis rate of lung cancer using carbon-11 tyrosine and positron emission tomography

    International Nuclear Information System (INIS)

    This study evaluated the potential role of L-(1-11C)-tyrosine positron emission tomography (TYR PET) for visualisation and quantification of protein metabolism in lung cancer. Dynamic TYR PET scans of the thorax were performed in 17 patients with lung cancer. Protein synthesis rate (PSR in μmol/min.l) and standardised uptake value (SUV, corrected for body measurements) of tumour tissue and contralateral normal tissue were calculated before and after chemotherapy or radiotherapy. All tumours [11 non-small cell lung carcinomas (NSCLCs), five small cell lung carcinomas (SCLCs), and one pleural mesothelioma] were visualised as a hot spot. The median PSR in tumour tissue was higher than that in corresponding contralateral normal lung tissue before [1.88 μmol/min.l (range 1.10-3.42) vs 0.40 μmol/min.l (range 0.12-0.86); P=0.003] and after treatment [1.33 μmol/min.l (range 0.45-2.21) vs 0.28 μmol/min.l (range 0.18-0.51); P<0.02]. In contrast to PSR of normal lung tissue, PSR of tumour tissue decreased significantly after therapy (P=0.03). Before therapy, no significant difference in PSR between NSCLCs and SCLCs was observed, but after therapy the PSR differed significantly between the subgroups [1.69 μmol/min.l (range 0.63-2.78) for NSCLC vs 0.67 μmol/min.l (range 0.45-0.92) for SCLC; P=0.03], irrespective of the treatment modality. The median SUV of tumour tissue was higher than that in corresponding contralateral normal lung both before and after therapy. Only a weak correlation between PSR and SUV was found when the latter was corrected for body surface area or lean body mass. Carbon-11 labelled tyrosine appears to be a good tracer for visualising lung cancer. PSR of tumour tissue can be used to quantify reduction in the metabolic rate of the tumour. Future studies need to be performed to determine whether TYR PET will supply additional clinical information with treatment implications in patients with lung cancer. (orig.)

  11. Glycoxidised LDL induced the upregulation of Axl receptor tyrosine kinase and its ligand in mouse mesangial cells.

    Directory of Open Access Journals (Sweden)

    Young Sook Kim

    Full Text Available AIM/HYPOTHESIS: Low-density lipoprotein (LDL is subjected to glycoxidation in diabetes, and a novel signalling mechanism by which glycoxidised LDL functions in glomerular mesangial cells remains to be ascertained. METHODS: We performed gene expression analysis in mouse glomerular mesangial cells treated with LDL modified by glycation and oxidation (GO-LDL, 100 µg/ml for 48 h by using DNA microarray analysis and quantitative real-time PCR. We examined the GO-LDL-specific changes in gene and protein expression in mesangial cells and glomeruli of type 2 diabetic Zucker diabetic fatty (ZDF rats. RESULTS: By microarray profiling, we noted that GO-LDL treatment increased Axl receptor tyrosine kinase (Axl mRNA expression (∼2.5-fold, p<0.05 compared with normal LDL (N-LDL treatment in mesangial cells. Treatment with GO-LDL also increased the protein levels of Axl and its ligand Gas6 as measured by Western blotting. These increases were inhibited by neutralising Axl receptor-specific antibody. Silencing Gas6 by siRNA inhibited GO-LDL-induced Axl expression in mesangial cells. Axl and Gas6 protein were also increased in cells cultured in high glucose (30 mM or methylglyoxal (200 µM. Gas6 treatment increased the expression and secretion of TGF-β1 protein, a key regulator of extracellular matrix expression in the glomeruli of diabetic kidneys. Immunohistochemical analyses of glomeruli from 20-week-old ZDF rats exhibited increased Axl protein expression. Rottlerin, a selective PKC-δ inhibitor, completely blocked Gas6-induced TGF-β1 expression. CONCLUSIONS/INTERPRETATION: These data suggest that LDL modified by glycoxidation may mediate Axl/Gas6 pathway activation, and this mechanism may play a significant role in the pathogenesis of diabetic nephropathy.

  12. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells

    DEFF Research Database (Denmark)

    Chen, Yunhao; Low, Teck-Yew; Choong, Lee-Yee;

    2007-01-01

    With the completion of the human genome project, analysis of enriched phosphotyrosyl proteins from epidermal growth factor (EGF)-induced phosphotyrosine proteome permits the identification of novel downstream substrates of the EGF receptor (EGFR). Using cICAT-based LC-MS/MS method, we identified...... and relatively quantified the tyrosine phosphorylation levels of 21 proteins between control and EGF-treated A431 human cervical cancer cells. Of these, Endofin, DCBLD2, and KIAA0582 were validated to be novel tyrosine-phosphorylation targets of EGF signaling and Iressa, a highly selective inhibitor...... in recent years, our study is the first to identify and validate Endofin, DCBLD2, and KIAA0582 as part of a complex EGF phosphotyrosine signaling network. These novel data will provide new insights into the complex EGF signaling and may have implications on target-directed cancer therapeutics....

  13. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    OpenAIRE

    Stabel Silvia; Proikas-Cezanne Tassula; Riethmacher Dieter

    2002-01-01

    Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro....

  14. The role of oestrogen receptor {alpha} in human thyroid cancer: contributions from coregulatory proteins and the tyrosine kinase receptor HER2.

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2012-02-01

    Epidemiological, clinical, and molecular studies suggest a role for oestrogen in thyroid cancer. How oestrogen mediates its effects and the consequence of it on clinical outcome has not been fully elucidated. The participation of coregulatory proteins in modulating oestrogen receptor (ER) function and input of crosstalk with the tyrosine kinase receptor HER2 was investigated. Oestrogen induced cell proliferation in the follicular thyroid cancer (FTC)-133 cells, but not in the anaplastic 8305C cell line. Knockdown of the coactivator steroid receptor coactivator (SRC)-1 inhibited FTC-133 basal, but not oestrogen induced, cell proliferation. Oestrogen also increased protein expression of SRC-1 and the ER target gene cyclin D1 in the FTC-133 cell line. ERalpha, ERbeta, the coregulatory proteins SRC-1 and nuclear corepressor (NCoR), and the tyrosine kinase receptor HER2 were localised by immunohistochemistry and immnofluorescence in paraffin-embedded tissue from thyroid tumour patients (n=111). ERalpha was colocalised with both SRC-1 and NCoR to the nuclei of the tumour epithelial cells. Expression of ERalpha and NCoR was found predominantly in non-anaplastic tumours and was significantly associated with well-differentiated tumours and reduced incidence of disease recurrence. In non-anaplastic tumours, HER2 was significantly associated with SRC-1, and these proteins were associated with poorly differentiated tumours, capsular invasion and disease recurrence. Totally, 87% of anaplastic tumours were positive for SRC-1. Kaplan-Meier estimates of disease-free survival indicated that in thyroid cancer, SRC-1 strongly correlates with reduced disease-free survival (P<0.001), whereas NCoR predicted increased survival (P<0.001). These data suggest opposing roles for the coregulators SRC-1 and NCoR in thyroid tumour progression.

  15. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  16. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    International Nuclear Information System (INIS)

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation

  17. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  18. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.

    Science.gov (United States)

    Sarhan, Adil R; Patel, Trushar R; Creese, Andrew J; Tomlinson, Michael G; Hellberg, Carina; Heath, John K; Hotchin, Neil A; Cunningham, Debbie L

    2016-06-01

    Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling. PMID:27074791

  19. Surface-tuned electron transfer and electrocatalysis of hexameric tyrosine-coordinated heme protein.

    Science.gov (United States)

    Peng, Lei; Utesch, Tillmann; Yarman, Aysu; Jeoung, Jae-Hun; Steinborn, Silke; Dobbek, Holger; Mroginski, Maria Andrea; Tanne, Johannes; Wollenberger, Ulla; Scheller, Frieder W

    2015-05-11

    Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant ks values between 0.93 and 2.86 s(-1) and apparent formal potentials ${E{{0{^{\\prime }}\\hfill \\atop {\\rm app}\\hfill}}}$ between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. PMID:25825040

  20. Molecular dynamics simulations of interaction between protein-tyrosine phosphatase 1B and a bidentate inhibitor

    Institute of Scientific and Technical Information of China (English)

    Gui-xia LIU; Jin-zhi TAN; Chun-ying NIU; Jian-hua SHEN; Xiao-min LUO; Xu SHEN; Kai-xian CHEN; Hua-liang JIANG

    2006-01-01

    Aim: To investigate the dynamic properties of protein-tyrosine phosphatase (PTP)1B and reveal the structural factors responsible for the high inhibitory potency and selectivity of the inhibitor SNA for PTP1B. Methods: We performed molecular dynamics (MD) simulations using a long time-scale for both PTP1B and PTP1B complexed with the inhibitor SNA, the most potent and selective PTP1B inhibitor reported to date. The trajectories were analyzed by using principal component analysis. Results: Trajectory analyses showed that upon binding the ligand, the flexibility of the entire PTP1B molecule decreases. The most notable change is the movement of the WPD-loop. Our simulation results also indicated that electrostatic interactions contribute more to PTP1B-SNA complex conformation than the van der Waals interactions, and that Lys41, Arg47, and Asp48 play important roles in determining the conformation of the inhibitor SNA and in the potency and selectivity of the inhibitor. Of these, Arg47 contributed most. These results were in agreement with previous experimental results. Conclusion: The information presented here suggests that potent and selective PTP1B inhibitors can be designed by targeting the surface residues, for example the region containing Lys41,Arg47, and Asp48, instead of the second phosphate binding site (besides the active phosphate binding site).

  1. A study on the protein-tyrosine kinase inhibitor, Genistein against radiation mortality on Swiss albino mice

    International Nuclear Information System (INIS)

    Full text: The radioprotective effects of an acute administration of the isoflavone, Genistein (4', 5, 7-trihydroxyflavone) obtained from Soya foods has been investigated in adult mice. Genistein is also classified as a phytoestrogen. Genistein (4', 5, 7-trihydroxyflavone) is a naturally occurring isoflavone mainly found in legumes, such as soyabeans. Genistein has gained increasing attention because of its association with beneficial effects for treatment of cardiovascular disease, high blood pressure, osteoporosis, breast cancer, and prostate cancer. Genistein block protein-tyrosine kinase and other enzymes that trigger tumor formation. Genistein apparently reverse the process in which cancerous cells loose their individual identity. Mice were administered with different doses (100, 200, 300 and 400 mg/kg body weight) of Genistein before 8 Gy gamma radiations and optimum dose (200 mg/kg) was worked out for the experiment. The dose of Genistein (200 mg/kg) was administered intra peritoneally (I.P.; in 0.5 ml) to mice 15 minutes and 24 hrs before gamma irradiation. Mice treated with Genistein (200 mg/kg), 24 hr before irradiation demonstrated a significant increase in 30-day survival in contrast to mice treated with Genistein 15 minutes before irradiation

  2. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    International Nuclear Information System (INIS)

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM2.5. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC5 value of 18.7 μM. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells

  3. A rapid lateral flow immunoassay for the detection of tyrosine phosphatase-like protein IA-2 autoantibodies in human serum.

    Directory of Open Access Journals (Sweden)

    Ingrid Kikkas

    Full Text Available Type 1 diabetes (T1D results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity.

  4. Functional dissection of T. brucei Protein Tyrosine Phosphatase 1 and investigation of its development as a therapeutic target

    OpenAIRE

    Ruberto, Irene

    2011-01-01

    Trypanosoma brucei undergoes developmentally regulated morphological and biochemical changes during its life cycle, being transmitted between the mammalian host and the tsetse fly. It is generally recognized that cellular responses to environmental changes are mediated through signalling pathways, but our understanding of trypanosome signal transduction during differentiation is limited. Protein Tyrosine Phosphatase 1 (TbPTP1) is the one of the few factors identified to b...

  5. Identification and characterization of novel membrane-bound PRL protein tyrosine phosphatases from Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Yadav, Smita; Rathaur, Sushma

    2015-11-01

    A significant amount of protein tyrosine phosphatase (PTP) activity was detected in the detergent-soluble membrane-bound fraction of Setaria cervi, a bovine filarial parasite. The membrane-bound PTP activity was significantly inhibited when the adult parasites were exposed to compounds having antifilarial activity like aspirin and SK7 as well as phenylarsine oxide, a specific PTP inhibitor suggesting that this activity is stress regulated. Further, this enzyme was purified as a single protein of apparently 21 kDa using two different chromatographic techniques. The MALDI-MS/MS analysis of its peptides showed closest match with protein tyrosine phosphatase PRL (Aedes aegypti). This purified enzyme (named as PRL) showed maximum activity at pH 5.5/37 °C and hydrolysed para nitro phenyl phosphate (pNPP) at the highest rate followed by O-P-L-tyrosine and O-P-L-threonine. It showed significant inhibition by specific inhibitors of PTP such as sodium orthovanadate, phenylarsine oxide and ammonium molybdate and was activated by dithiothreitol (DTT). The active site modification studies suggested involvement of cysteine, arginine, histidine and aspartic acid in the catalytic activity of PRL. The activity of S. cervi PRL was also found to be resistant towards the external oxidative stress. Thus, S. cervi PRL could be taken as a potential target for the management of human lymphatic filariasis. PMID:26341797

  6. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    DEFF Research Database (Denmark)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-01-01

    , leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine...

  7. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    Energy Technology Data Exchange (ETDEWEB)

    Venkitachalam, Srividya; Chueh, Fu-Yu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States); Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.

  8. Protein modification in the post-mating spermatophore of the signal crayfish Pacifastacus leniusculus: insight into the tyrosine phosphorylation in a non-motile spermatozoon.

    Science.gov (United States)

    Niksirat, Hamid; Vancová, Marie; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2016-09-01

    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies. PMID:27481552

  9. Substrates of protein kinases involved in cell signal transduction

    International Nuclear Information System (INIS)

    In this study substrates for protein-tyrosine kinases and protein kinase C are examined to gain a better understanding of the conditions of their phosphorylation, their functions, and their potential involvement in intracellular signaling pathways. The tissue, cell type, and intracellular distributions of two protein-tyrosine kinase substrates, termed p36 and p81, are determined by immunoblotting of murine tissues, indirect immunofluorescence and immunoperoxidase staining of frozen rat tissue sections, and biochemical fractionation and indirect immunofluorescence staining of tissue culture cells. Both p36 and p81 are constitutively phosphorylated to low levels in tissue culture cells. In 32P-labeled A431 cells, pp81 contains both phosphoserine and phosphothreonine. Following brief epidermal growth factor treatment of A431 cells, pp81 is more heavily phosphorylated on threonine and approximately 10% of p81 molecules become phosphorylated on tyrosine. Treatment of A431 cells with the potent tumor promoter and protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), does not alter the phosphorylation state of p81. However, TPA treatment of A431 cells and certain other cell types leads to augmented serine phosphorylation of p36

  10. Molecular dynamics simulations of protein-tyrosine phosphatase 1B: II. Substrate-enzyme interactions and dynamics

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Frimurer, T. M.; Andersen, J. N.; Olsen, O. H.

    2000-01-01

    Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme and...... substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. in particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24...

  11. Dark rearing maintains tyrosine hydroxylase expression in retinal amacrine cells following optic nerve transection

    Institute of Scientific and Technical Information of China (English)

    Wei Wan; Zhenghai Liu; Xiaosheng Wang; Xuegang Luo

    2012-01-01

    The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle, reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5-7 days. The number of TH-positive synaptic particles correlated with the TH levels, indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5-7 days after optic nerve injury) in retinal amacrine cells.

  12. Effect of Src Tyrosine Kinase Inhibition on Secretion of MMP-2 and MMP-9 by Non-small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-01-01

    Full Text Available Background and objective Src tyrosine kinase and matrix metalloproteinase play the pivotal roles in lung cancer invasion and metastasis. The aim of this study is to evaluate the effect of Src tyrosine kinase inhibition on secretion of matrix metalloproteinase 2 (MMP-2 and matrix metalloproteinase 9 (MMP-9 by non-small cell lung cancer (NSCLC cells. Methods ELISA was used to examine the activity of MMP-2 and MMP-9 produced by NSCLC cells (PC14PE6, H226, PC-9, A549 as well as the effect of Src tyrosine kinase inhibition on secretion of MMP-2 and MMP-9 by NSCLC cells. Boyden chamber assay was used to assess the effect of Src tyrosine kinase inhibition on invasion of NSCLC cells in vitro. Results The levels of MMP-2 and MMP-9 in PC14PE6 and H226 cells were high, whereas the level of MMP-9 in A549 cell was low. MMP-2 and MMP-9 levels in PC-9 cell could not be detected. Src tyrosine kinase inhibitor obviously decreased the secretion of MMP-9 by PC14PE6, H226 and A549 cells, as well as MMP-2 by PC14PE6 cells in a dose-dependent manner. 10 μM Src tyrosine kinase inhibitor suppressed the secretion of MMP-9 by H226 and A549 cells, as wells as MMP-2 by PC14PE6 cells by more than 50%, while the same concentration of Src tyrosine kinase inhibitor almost had no effect on the level of MMP-2 in H226 cell. Invasiveness of NSCLC cells was suppressed by Src tyrosine kinase inhibitor in a dose-dependent manner, though there was minor difference in degree of the inhibition among four cell lines. 3 μM Src tyrosine kinase inhibitor suppressed the cell invasiveness of PC14PE6, H226, A549 and PC-9 cells by 79.1%, 68.09%, 90.96% and 96.98%, respectively (P < 0.001. Conclusion Inhibition of Src tyrosine kinase could suppress the invasion of NSCLC cells as well as the secretion of MMP-2 and MMP-9 by NSCLC cells in vitro. MMP-2 and MMP-9 were involved in regulating cell migration and invasion.

  13. Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin.

    Science.gov (United States)

    Bupesh, Munisamy; Vicario, Alba; Abellán, Antonio; Desfilis, Ester; Medina, Loreta

    2014-05-01

    Emotional and motivational dysfunctions observed in Parkinson's disease, schizophrenia, and drug addiction are associated to an alteration of the mesocortical and mesolimbic dopaminergic pathways, which include axons projecting to the prefrontal cortex, the ventral striatum, and the amygdala. Subpopulations of catecholaminergic neurons have been described in the cortex and striatum of several mammals, but the presence of such cells in the adult amygdala is unclear in murine rodents, and in other rodents appears to show variations depending on the species. Moreover, the embryonic origin of telencephalic tyrosine hydroxylase (TH) cells is unknown, which is essential for trying to understand aspects of their evolution, distribution and function. Herein we investigated the expression of TH mRNA and protein in cells of the striatum and amygdala of developing and adult mice, and analyzed the embryonic origin of such cells using in vitro migration assays. Our results showed the presence of TH mRNA and protein expressing cells in the striatum (including nucleus accumbens), central and medial extended amygdala during development, which are persistent in adulthood although they are less numerous, generally show weak mRNA expression, and some appear to lack the protein. Fate mapping analysis showed that these cells include at least two subpopulations with different embryonic origin in either the commissural preoptic area of the subpallium or the supraopto-paraventricular domain of the alar hypothalamus. These data are important for future studies trying to understand the role of catecholamines in modulation of emotion, motivation, and reward. PMID:23479178

  14. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  15. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    International Nuclear Information System (INIS)

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  16. Mandibular Jaw Bone Regeneration Using Human Dental Cell-Seeded Tyrosine-Derived Polycarbonate Scaffolds.

    Science.gov (United States)

    Zhang, Weibo; Zhang, Zheng; Chen, Shuang; Macri, Lauren; Kohn, Joachim; Yelick, Pamela C

    2016-07-01

    Here we present a new model for alveolar jaw bone regeneration, which uses human dental pulp cells (hDPCs) combined with tyrosine-derived polycarbonate polymer scaffolds [E1001(1k)] containing beta-tricalcium phosphate (β-TCP) [E1001(1k)/β-TCP]. E1001(1k)/β-TCP scaffolds (5 mm diameter × 1 mm thickness) were fabricated to fit a 5 mm rat mandibular ramus critical bone defect. Five experimental groups were examined in this study: (1) E1001(1k)/β-TCP scaffolds seeded with a high density of hDPCs, 5.0 × 10(5) hDPCs/scaffold (CH); (2) E1001(1k)/β-TCP scaffolds seeded with a lower density of hDPCs, 2.5 × 10(5) hDPCs/scaffold (CL); (3) acellular E1001(1k)/β-TCP scaffolds (SA); (4) acellular E1001(1k)/β-TCP scaffolds supplemented with 4 μg recombinant human bone morphogenetic protein-2 (BMP); and (5) empty defects (EDs). Replicate hDPC-seeded and acellular E1001(1k)/β-TCP scaffolds were cultured in vitro in osteogenic media for 1 week before implantation for 3 and 6 weeks. Live microcomputed tomography (μCT) imaging at 3 and 6 weeks postimplantation revealed robust bone regeneration in the BMP implant group. CH and CL groups exhibited similar uniformly distributed mineralized tissue coverage throughout the defects, but less than the BMP implants. In contrast, SA-treated defects exhibited sparse areas of mineralized tissue regeneration. The ED group exhibited slightly reduced defect size. Histological analyses revealed no indication of an immune response. In addition, robust expression of dentin and bone differentiation marker expression was observed in hDPC-seeded scaffolds, whereas, in contrast, BMP and SA implants exhibited only bone and not dentin differentiation marker expression. hDPCs were detected in 3-week but not in 6-week hDPC-seeded scaffold groups, indicating their survival for at least 3 weeks. Together, these results show that hDPC-seeded E1001(1k)/β-TCP scaffolds support the rapid regeneration of osteo

  17. Protein tyrosine phosphatase is possibly involved in cellular signal transduction and the regulation of ABA accumulation in response to water deficit in Maize L. coleoptile

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water deficit-induced ABA accumulation is an ideal model or "stimulus-response" system to investigate cellular stress signaling in plant cells, using such a model the cellular stress signaling triggered by water deficit was investigated in Maize L. coleoptile. Water deficit-induced ABA accumulation was sensitively blocked by NaVO3, a potent inhibitor both to plasma membrane H+-ATPase (PM-H+- ATPase) and protein tyrosine phosphatase (PTPase). However, while PM- H+-ATPase activity was unaffected under water deficit and PM- H+-ATPase activator did not induce an ABA accumulation instead of water deficit, water deficit induced an increase in the protein phosphatase activity, and furthermore, ABA accumulation was inhibited by PAO, a specific inhibitor of PTPase. These results indicate that protein phosphtases may be involved in the cellular signaling in response to water deficit. Further studies identified at least four species of protein phosphtase as assayed by using pNPP as substrate, among which one component was especially sensitive to NaVO3. The NaVO3-sensitive enzyme was purified and finally showed a protein band about 66 kD on SDS/PAGE. The purified enzyme showed a great activity to some specific PTPase substrates at pH 6.0. In addition to NaVO3, the enzyme was also sensitive to some other PTPase inhibitors such as Zn2+ and MO33+, but not to Ca2+ and Mg2+, indicating that it might be a protein tyrosine phosphatase. Interestingly, the purified enzyme could be deactivated by some reducing agent DTT, which was previously proved to be an inhibitor of water deficit-induced ABA accumulation. This result further proved that PTPase might be involved in the cellular signaling of ABA accumulation in response to water deficit.

  18. Apoptosis-related molecular differences for response to tyrosin kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2013-01-01

    Full Text Available Context: The epidermal growth factor receptor (EGFR family is reportedly overexpressed in bladder cancer, and tyrosine kinaseinhibitors (TKIs have been suggested as treatment. Gefitinib is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor. Both compounds compete with the binding of adenosine triphosphate (ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical problem. Aims: To compare the apoptosis signaling pathway(s induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive and UM-UC-14 (drug-resistant bladder cancer cells and to identify molecular differences that might be useful predictors of their efficacy. Materials and Methods: Cell proliferation, cell cycle and apoptosis assay were used to detect the effect of TKIs on UM-UC-5 and UM-UC-14 cells. Molecular differences for response to TKIs were examined by protein array. Results: TKIs strongly inhibited cell proliferation and induced cell cycle G1 arrest and apoptosis in UM-UC-5 cells. Most notable apoptosis molecular differences included decreased claspin, trail, and survivin by TKIs in the sensitive cells. In contrast, TKIs had no effect on resistant cells. Conclusions: Claspin, trail, and survivin might be used to determine the sensitivity of bladder cancers to TKIs.

  19. The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats

    DEFF Research Database (Denmark)

    Sarin, C T; Tack, B F; Kristensen, Torsten; Glenney Jr., J R; Hunter, T

    1986-01-01

    We have isolated and sequenced a full-length cDNA clone for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain). This sequence predicts a 339 amino acid (Mr 38,493) protein containing an N-terminal region of 20 amino acids, known to interact with a 10 kd protein (light chain), and...... A2 inhibitor lipocortin I were found to be 50% identical in sequence over the C-terminal 300 residues. The function of p36 and its relation to other proteins are discussed....

  20. Role(s) of IL-2 inducible T cell kinase and Bruton's tyrosine kinase in mast cell response to lipopolysaccharide.

    Science.gov (United States)

    Huang, Weishan; August, Avery

    2016-06-01

    Mast cells play critical roles during immune responses to the bacterial endotoxin lipopolysaccharide (LPS) that can lead to fatal septic hypothermia [1], [2], [3]. IL-2 inducible T cell kinase (ITK) and Bruton's tyrosine kinase (BTK) are non-receptor tyrosine kinases that act downstream of numerous receptors, and have been shown to modulate mast cell responses downstream of FcεRIα [4], however, their roles in regulating mast cell responses to endotoxic stimuli were unclear. We found that the absence of ITK and BTK alters the mast cell response to LPS, and leads to enhanced pro-inflammatory cytokine production by mast cells and more severe LPS-induced hypothermia in mice [5]. Here, we detail our investigation using microarray analysis to study the transcriptomic profiles of mast cell responses to LPS, and the roles of ITK and/or BTK expression in this process. Mouse whole genome array data of WT, Itk (-/-) , Btk (-/-) , and Itk (-/-)  Btk (-/-) bone marrow-derived mast cells (BMMCs) stimulated by PBS (control) or LPS for 1 h were used in our latest research article [5] and is available in the Gene Expression Omnibus under accession number GSE64287. PMID:27081634

  1. pH regulation of an egg cortex tyrosine kinase.

    Science.gov (United States)

    Jiang, W P; Veno, P A; Wood, R W; Peaucellier, G; Kinsey, W H

    1991-07-01

    Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer. PMID:2060713

  2. The alternative splice variant of protein tyrosine kinase 6 negatively regulates growth and enhances PTK6-mediated inhibition of β-catenin.

    Directory of Open Access Journals (Sweden)

    Patrick M Brauer

    Full Text Available Protein tyrosine kinase 6 (PTK6, also called breast tumor kinase (BRK, is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and β-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence β-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of β-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the β-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6

  3. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-d...

  4. Mobilisation of store Ca2+ activates tyrosine hydroxylase in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Full text: Many receptor agonists are able to activate tyrosine hydroxylase (TOH) in bovine adrenal chromaffin cells. The majority of these are dependent on extracellular Ca2+ for this action. Entry of extracellular Ca2+ through voltage-operated Ca2+ channels is very effective at activating TOH. The contribution of the intracellular Ca2+ stores to TOH activation however is not known. Previous studies have shown that mobilisation of intracellular Ca2+ stores is effective at increasing phosphorylation of TOH, but its effect on TOH activity has not been studied. Therefore, in the present study, the effect of mobilisation of store Ca2+ on TOH activity was investigated using primary cultures of bovine adrenal chromaffin cells. Cells were prepared from abattoir tissue and cultured for 3-6 days. TOH activity was determined over 10 minutes, measuring the 14CO2 produced following the hydroxylation and rapid decarboxylation of 14C-tyrosine offered to intact cells. Caffeine increased TOH activity in a concentration-dependent manner with a maximum response of 100% increase at 20mM. This effect was not due to osmolarity since 20mM sucrose had no effect.Nor was it due to inhibition of phosphodiesterases, since the effect of caffeine was still seen in the presence of 1mM IBMX. However,caffeine-induced TOH activation was substantially reduced in the absence of extracellular Ca2+. The results suggest that TOH activity can be increased by mobilising intracellular Ca2+ stores, but that this effect involves extracellular Ca2+ influx, possibly through store-operated channels. Copyright (2001) Australian Neuroscience Society

  5. Targeting the MET receptor tyrosine kinase in non-small cell lung cancer: emerging role of tivantinib

    International Nuclear Information System (INIS)

    MET receptor tyrosine kinase and its natural ligand, hepatocyte growth factor, have been implicated in a variety of cancers, including non-small cell lung cancer (NSCLC). Mechanisms by which cellular deregulation of MET occurs include overexpression, genomic amplification, mutation, or alternative splicing. MET overexpression or activation is a known cause of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in NSCLC. Inhibition of MET signaling in these EGFR tyrosine kinase inhibitor-resistant cells may potentially restore sensitivity to EGFR inhibitors. Tivantinib (ARQ 197), reported as a small-molecule MET inhibitor, has demonstrated antitumor activity in early clinical studies. This review focuses on MET and lung cancer, the clinical development of tivantinib, the clinical trials of tivantinib in NSCLC to date, its current/emerging role in the management of NSCLC, and future directions

  6. Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine-rich sequence in the 3'-untranslated region of rat tyrosine hydroxylase mRNA.

    Science.gov (United States)

    Czyzyk-Krzeska, M F; Dominski, Z; Kole, R; Millhorn, D E

    1994-04-01

    Reduced oxygen tension (hypoxia) induces a 3-fold increase in stability of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, in the pheochromocytoma (PC12) clonal cell line. To investigate the possibility that RNA-protein interactions are involved in mediating this increase in stability, RNA gel shift assays were performed using different fragments of labeled TH mRNA and the S-100 fraction of PC12 cytoplasmic protein extracts. We identified a sequence within the 3'-untranslated region of TH mRNA that binds cytoplasmic protein. RNase T1 mapping revealed that the protein was bound to a 28 nucleotide long sequence that is located between bases 1551-1579 of TH mRNA. Moreover, protein binding to this fragment was prevented with an antisense oligonucleotide directed against bases 1551-1579 and subsequent RNase H digestion. This fragment of the 3'-untranslated region of TH mRNA is rich in pyrimidine nucleotides, and the binding of cytoplasmic protein to this fragment was reduced by competition with other polypyrimidine sequences including poly(C) but not poly(U) polymers. The binding of the protein to TH mRNA was increased when cytoplasmic proteins were extracted from PC12 cells exposed to hypoxia (5% O2) for 24 h. Electrophoresis of the UV cross-linked RNA-protein complex on SDS-polyacrylamide gel electrophoresis revealed a complex of 74 kDa. The potential role of this protein-TH mRNA interaction in regulation of TH mRNA stability during hypoxia is discussed. PMID:7908289

  7. Uptake mechanisms of L-3-[I-125]iodo-alpha-methyl-tyrosine in a human small-cell lung cancer cell line : comparison with L-1-[C-14]tyrosine

    NARCIS (Netherlands)

    Jager, PL; De Vries, EGE; Piers, DA; Timmer-Bosscha, H

    2001-01-01

    The radiolabelled amino acid analogue L-3-[I-125]iodo-alpha-methyl-tyrosine (IMT) is under evaluation in brain tumours, where it reflects amino acid transport activity, but is also taken up in many other tumour types. This study investigated the uptake mechanism of IMT in tumour cells not derived fr

  8. Improved Glucose Homeostasis in Mice with Muscle-Specific Deletion of Protein-Tyrosine Phosphatase 1B▿

    OpenAIRE

    Delibegovic, Mirela; Bence, Kendra K.; Mody, Nimesh; Hong, Eun-Gyoung; Ko, Hwi Jin; Jason K Kim; Kahn, Barbara B.; Neel, Benjamin G

    2007-01-01

    Obesity and type 2 diabetes are characterized by insulin resistance. Mice lacking the protein-tyrosine phosphatase PTP1B in all tissues are hypersensitive to insulin but also have diminished fat stores. Because adiposity affects insulin sensitivity, the extent to which PTP1B directly regulates glucose homeostasis has been unclear. We report that mice lacking PTP1B only in muscle have body weight and adiposity comparable to those of controls on either chow or a high-fat diet (HFD). Muscle trig...

  9. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6+ tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6+ tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  10. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness.

    Science.gov (United States)

    Ha, Jacqueline R; Siegel, Peter M; Ursini-Siegel, Josie

    2016-09-01

    Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc. PMID:27392311

  11. Epidermal growth factor receptor tyrosine kinase regulates the human inward rectifier potassium K IR2.3 channel, stably expressed in HEK 293 cells

    OpenAIRE

    ZHANG, DE-YONG; Zhang, Yan-Hui; Sun, Hai-Ying; Lau, Chu-Pak; Li, Gui-Rong

    2011-01-01

    Background and Purpose The detailed molecular modulation of inward rectifier potassium channels (including the K IR2.3 channel) is not fully understood. The present study was designed to determine whether human K IR2.3 (K IR2.3) channels were regulated by protein tyrosine kinases (PTKs). Experimental Approach Whole-cell patch voltage-clamp, immunoprecipitation, Western blot analysis and site-directed mutagenesis were employed to determine the potential PTK phosphorylation of Kir2.3 current in...

  12. Enzymic sulphation of dopa and tyrosine isomers by HepG2 human hepatoma cells: stereoselectivity and stimulation by Mn2+.

    Science.gov (United States)

    Suiko, M; Sakakibara, Y; Nakajima, H; Sakaida, H; Liu, M C

    1996-02-15

    HepG2 human hepatoma cells, labelled with [35S]sulphate in media containing L-3,4-dihydroxyphenylalanine (L-dopa), (D-dopa), DL-m-tyrosine or D-p-tyrosine, were found to produce the [35S]sulphated forms of these compounds. Addition to the labelling media of m-hydroxybenzylhydrazine, an aromatic amino acid decarboxylase inhibitor, greatly enhanced the production of L-dopa O-[35S]sulphate and DL-m-tyrosine O-[35S]sulphate, with a concomitant decrease in the formation of dopamine O-[35S]sulphate and m-tyramine O-[35S]sulphate. With 3'-phosphoadenosine 5'-phospho[35S]sulphate as the sulphate donor., HepG2-cell cytosol was shown to contain enzymic activity catalysing the sulphation of L-dopa, D-dopa, L-m-tyrosine, D-m-tyrosine, L-p-tyrosine and D-p-tyrosine. The pH optimum of the enzyme, designated dopa/tyrosine sulphotransferase, was determined to be 8.75 with D-m-tyrosine as the substrate. The enzyme exhibited stereoselectivity for the D-form of dopa or tyrosine isomers. Addition of 10mM MnCl2 to the reaction mixture resulted in a remarkable stimulation of dopa/tyrosine sulphotransferase activity, being as high as 267.8 times with D-p-tyrosine as the substrate. Quantitative assays revealed L-dopa, D-dopa and D-m-tyrosine to be better substrates than L-p-tyrosine. When the HepG2-cell cytosol was subjected to DEAE Bio-Gel and hydroxyapatite column chromatography, dopa/tyrosine sulphotransferase was co-eluted with the thermolabile 'M-form' phenol sulphotransferase. Furthermore dopa/tyrosine sulphotransferase displayed properties similar to that of the M-form phenol sulphotransferase with respect to thermostability and sensitivity to 2,6-dichloro-4-nitrophenol. Whether the M-form phenol sulphotransferase is truly (solely) responsible for the dopa/tyrosine sulphotransferase activity present in HepG2 cells remains to be clarified. PMID:8660277

  13. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid

    OpenAIRE

    Meredith, M. Elizabeth; May, James M.

    2013-01-01

    Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorb...

  14. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    Science.gov (United States)

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  15. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  16. Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein.

    Science.gov (United States)

    Trincone, Anna; Schwegmann-Weßels, Christel

    2015-04-16

    The spike protein S of transmissible gastroenteritis virus, an Alphacoronavirus, contains a tyrosine-based sorting signal that is responsible for ERGIC retention and may be important for a correct viral assembly process. To find out whether the S protein interacts with cellular proteins via this sorting signal, a pulldown assay with GST fusion proteins was performed. Filamin A has been identified as a putative interaction candidate. Immunofluorescence assays confirmed a co-localization between the TGEV S protein and filamin A. Further experiments have to be performed to prove a significant impact of filamin A on TGEV infection. Different approaches of several researchers for the identification of cellular interaction candidates relevant for coronavirus replication are summarized. These results may help in the future to identify the role of cellular proteins during coronavirus assembly at the ER-Golgi intermediate compartment. PMID:25481285

  17. Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: regulated release of dopamine in mouse anterior pituitary AtT-20 cells.

    OpenAIRE

    Horellou, P; Guibert, B; Leviel, V; Mallet, J

    1989-01-01

    Little is known about the molecular events mediating neurotransmitter release, a crucial step in synaptic transmission. In this paper, the biosynthesis and release of L-beta-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine were analyzed in three heterologous cell lines after retroviral-mediated gene transfer of tyrosine hydroxylase (EC 1.14.16.2), the rate-limiting enzyme in catecholamine synthesis. A recombinant retrovirus encoding human tyrosine hydroxylase type I as well as neomycin-resist...

  18. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  19. Stimulation of 125I-3-iodo-α-methyl-L-tyrosine uptake in Chinese hamster ovary (CHO-K1) cells by tyrosine esters

    International Nuclear Information System (INIS)

    Introduction: Transport of the amino acid analog 123I-3-iodo-α-methyl-L-tyrosine, which is used in clinical SPECT imaging, occurs mainly via L-type amino acid transporter type 1 (LAT1; an amino acid exchanger). As LAT1 is highly expressed in actively proliferating tumors, we made a preliminary investigation of the effects of amino acid esters on enhancement of 125I-3-iodo-α-methyl-L-tyrosine (IMT) uptake via LAT1 in Chinese hamster ovary (CHO-K1) cells. Methods: Because the sequence of the CHO-K1 LAT1 gene is not available, we confirmed LAT1 expression through IMT (18.5 kBq) uptake mechanisms using specific inhibitors. L-Gly, L-Ser, L-Leu, L-Phe, L-Met, L-Tyr, D-Tyr, L-Val and L-Lys ethyl/methyl esters were tested in combination with IMT. Time-course studies over a 3-h period were conducted, and the concentration dependence of L-Tyr ethyl and methyl esters (0.001 to 10 mM) in combination with IMT was also examined. For a proof of de-esterification of L- and D-Tyr ethyl and methyl esters in the cells (by enzymatic attack or other cause), the concentration of L- and D-Tyr was analyzed by high-performance liquid chromatography of the esters in phosphate buffer (pH 7.4) and cell homogenates at 37 deg. C or under ice-cold conditions. Results: Inhibition tests suggested that LAT1 is involved in IMT uptake by CHO-K1 cells. Co-administration of 1 mM of L-Tyr ethyl or methyl ester with IMT produced the greatest enhancement. The de-esterification reaction was stereo selective and temperature dependent in the homogenate. De-esterification kinetics were very fast in the homogenate and very slow in the phosphate buffer. Conclusions: The L-Tyr ethyl or methyl esters were the most effective enhancers of IMT uptake into CHO-K1 cells and acted by trans-stimulation of the amino acid exchange function of LAT1. This result suggests that de-esterification in the cells may be caused by enzymatic attack. We will use IMT and L-Tyr ethyl or methyl esters to examine LAT1 function in tumor

  20. Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate.

    Science.gov (United States)

    Kumaresan, A; Siqueira, A P; Hossain, M S; Bergqvist, A S

    2011-12-01

    Previous studies have shown that boar sperm quality after cryopreservation differs depending on the ejaculate fraction used and that spermatozoa contained in the first 10mL (P1) of the sperm-rich fraction (SRF) show better cryosurvival than those in the SRF-P1. Since protein tyrosine phosphorylation (PTP) in spermatozoa is related with the tolerance of spermatozoa to frozen storage and cryocapacitation, we assessed the dynamics of cryopreservation-induced PTP and intracellular calcium ([Ca(2+)]i) in spermatozoa, using flow cytometry, from P1 and SRF-P1 of the boar ejaculate at different stages of cryopreservation. Sperm kinetics, assessed using a computer-assisted semen analyzer, did not differ between P1 and SRF-P1 during cryopreservation but the decrease in sperm velocity during cryopreservation was significant (Psemen. A higher (Pboar ejaculate. However at any given step during cryopreservation the percentage of spermatozoa with PTP was comparatively higher in SRF-P1 than P1. A 32kDa tyrosine phosphorylated protein, associated with capacitation, appeared after cooling suggesting that cooling induces capacitation-like changes in boar spermatozoa. In conclusion, the study has shown that the cryopreservation process induced PTP in spermatozoa and their proportions were similar between portions of SRF. PMID:21893053

  1. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S;

    1998-01-01

    , and 76 kDa were specifically recognized by anti-eps15R sera. The 125-kDa species is a bona fide product of the eps15R gene, whereas p108 and p76 are most likely products of alternative splicing events. Eps15R protein(s) are tyrosine-phosphorylated following epidermal growth factor receptor activation...

  2. Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells

    International Nuclear Information System (INIS)

    An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-napthalenylmethyl)phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa β-subunit of the insulin receptor. The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 μM, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa β-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. The data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases

  3. Cross talk of tyrosine kinases with the DNA damage signaling pathways.

    Science.gov (United States)

    Mahajan, Kiran; Mahajan, Nupam P

    2015-12-15

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  4. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer.

    Science.gov (United States)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad; Webb, Brian; Puri, Neelu

    2016-09-01

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. PMID:27396618

  5. Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region

    DEFF Research Database (Denmark)

    Jiang, Y P; Wang, H; D'Eustachio, P; Musacchio, J M; Schlessinger, J; Sap, J

    1993-01-01

    We describe a new member of the receptor protein tyrosine phosphatase family, R-PTP-kappa, cDNA cloning predicts that R-PTP-kappa is synthesized from a precursor protein of 1,457 amino acids. Its intracellular domain displays the classical tandemly repeated protein tyrosine phosphatase homology, ...

  6. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination

    International Nuclear Information System (INIS)

    Background and purpose: RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR. Materials and methods: Protein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay. Results: Amuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells. Conclusions: Amuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.

  7. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases.

    Science.gov (United States)

    Gaudet, Elizabeth A; Huang, Kuo-Sen; Zhang, Yan; Huang, Wei; Mark, David; Sportsman, J Richard

    2003-04-01

    Recently, a new technology for high-throughput screening has been developed, called IMAP(patent pending). IMAP technology has previously been implemented in an assay for cyclic nucleotide phosphodiesterases (PDE). The authors describe the development of a homogeneous, non-antibody-based fluorescence polarization (FP) assay for a variety of protein kinases. In this assay, fluorescently labeled peptide substrate phosphorylated by the kinase is captured on modified nanoparticles through interactions with immobilized metal (M(III)) coordination complexes, resulting in a change from low to high polarization values. This assay is applicable to protein kinases that phosphorylate serine, threonine, or tyrosine residues. The IMAP platform is very compatible with high-throughput robotics and can be applied to the 1536-well format. As there are hundreds of different kinases coded for in the human genome, the assay platform described in this report is a valuable new tool in drug discovery. PMID:12844437

  8. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Linger, Rachel M. A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre–B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  9. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Linger, Rachel M A; Lee-Sherick, Alisa B; DeRyckere, Deborah; Cohen, Rebecca A; Jacobsen, Kristen M; McGranahan, Amy; Brandão, Luis N; Winges, Amanda; Sawczyn, Kelly K; Liang, Xiayuan; Keating, Amy K; Tan, Aik Choon; Earp, H Shelton; Graham, Douglas K

    2013-08-29

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  10. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R.

    Science.gov (United States)

    de Munnik, Sabrina M; van der Lee, Rosan; Velders, Daniëlle M; van Offenbeek, Jody; Smits-de Vries, Laura; Leurs, Rob; Smit, Martine J; Vischer, Henry F

    2016-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth factor (IGF)-1 receptor, a receptor tyrosine kinase, also plays an essential role in Kaposi's sarcoma growth and survival. In this study we examined the effect of the constitutively active viral receptor ORF74 on human IGF-1R signaling. Constitutive and CXCL1-induced ORF74 signaling did not transactivate IGF-1R. In contrast, IGF-1 stimulated phospholipase C (PLC) activation in an ORF74-dependent manner without affecting chemokine binding to ORF74. Inhibition of constitutive ORF74 activity by mutagenesis or the inverse agonist CXCL10, or neutralizing IGF-1R with an antibody or silencing IGF-1R expression using siRNA inhibited PLC activation by IGF-1. Transactivation of ORF74 in response to IGF-1 occurred independently of Src, PI3K, and secreted ORF74 ligands. Furthermore, tyrosine residues in the carboxyl-terminus and intracellular loop 2 of ORF74 are not essential for IGF-1-induced PLC activation. Interestingly, PLC activation in response to IGF-1 is specific for ORF74 as IGF-1 was unable to activate PLC in cells expressing the constitutively active human cytomegalovirus (HCMV)-encoded GPCR US28. Interestingly, IGF-1 does not induce β-arrestin recruitment to ORF74. The proximity ligation assay revealed close proximity between ORF74 and IGF-1R on the cell surface, but a physical interaction was not confirmed by co-immunoprecipitation. Unmasking IGF-1R signaling to PLC in response to IGF-1 is a previously unrecognized action of ORF74. PMID:26931381

  11. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans.

    Science.gov (United States)

    Au, Audrey C; Hernandez, Paolo A; Lieber, Ernest; Nadroo, Ali M; Shen, Yu-Ming; Kelley, Kevin A; Gelb, Bruce D; Diaz, George A

    2010-09-10

    The lymphatic vasculature is essential for the recirculation of extracellular fluid, fat absorption, and immune function and as a route of tumor metastasis. The dissection of molecular mechanisms underlying lymphangiogenesis has been accelerated by the identification of tissue-specific lymphatic endothelial markers and the study of congenital lymphedema syndromes. We report the results of genetic analyses of a kindred inheriting a unique autosomal-recessive lymphedema-choanal atresia syndrome. These studies establish linkage of the trait to chromosome 1q32-q41 and identify a loss-of-function mutation in PTPN14, which encodes a nonreceptor tyrosine phosphatase. The causal role of PTPN14 deficiency was confirmed by the generation of a murine Ptpn14 gene trap model that manifested lymphatic hyperplasia with lymphedema. Biochemical studies revealed a potential interaction between PTPN14 and the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. These results suggest a unique and conserved role for PTPN14 in the regulation of lymphatic development in mammals and a nonconserved role in choanal development in humans. PMID:20826270

  12. The FER gene is evolutionarily conserved and encodes a widely expressed member of the FPS/FES protein-tyrosine kinase family.

    OpenAIRE

    Pawson, T; Letwin, K; T. Lee; Hao, Q L; Heisterkamp, N; Groffen, J

    1989-01-01

    We have recently isolated human and rat cDNAs (designated FER and flk, respectively) which encode nonreceptor protein-tyrosine kinases which are very similar to one another and related in sequence and domain structure to the c-fps/fes gene product. We show that FER and flk are human and rat counterparts of an evolutionarily conserved gene, hereafter termed FER regardless of species. The human and rat FER genes encode a widely expressed 94-kilodalton protein-tyrosine kinase which is antigenica...

  13. Insulin Phosphorylates Tyrosine Residue 464 of Tub and Translocates Tubby into the Nucleus in HIRcB Cells

    OpenAIRE

    Kim, Jin Wook; Kim, Hyeon Soo; Kim, Sang Dae; Park, Jung Yul

    2014-01-01

    Background The tubby protein has a motif that might be relevant for its action in the insulin signaling pathway. Previous studies have indicated that tubby undergoes phosphorylation on tyrosine residues in response to several stimuli and is known to localize in the nucleus as well as in the plasma membrane. However, the relationship between phosphorylation and nuclear translocation is not well understood. Here, we report that insulin directly phosphorylates tubby, which translocates into the ...

  14. EGFR Tyrosine kinase regulates small conductance Ca2+-activated K+ (hSKCa1) channels expressed in HEK 293 cells

    OpenAIRE

    Wu, W.; H. Sun; Deng, XL; Li, GR

    2013-01-01

    SKCa (small-conductance Ca(2+)-activated K(+)) channels are widely distributed in different tissues, including the brain, pancreatic islets and myocardium and play an important role in controlling electrical activity and cellular functions. However, intracellular signal modulation of SKCa channels is not fully understood. The present study was designed to investigate the potential regulation of hSKCa1 (human SKCa1) channels by PTKs (protein tyrosine kinases) in HEK (human embryonic kidney)-29...

  15. Effect of Src Tyrosine Kinase Inhibition on Secretion of MMP-2 and MMP-9 by Non-small Cell Lung Cancer Cells

    OpenAIRE

    ZHENG, Rui; Qin, Xiaosong; Li, Wenjie; Kang, Jian

    2011-01-01

    Background and objective Src tyrosine kinase and matrix metalloproteinase play the pivotal roles in lung cancer invasion and metastasis. The aim of this study is to evaluate the effect of Src tyrosine kinase inhibition on secretion of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) by non-small cell lung cancer (NSCLC) cells. Methods ELISA was used to examine the activity of MMP-2 and MMP-9 produced by NSCLC cells (PC14PE6, H226, PC-9, A549) as well as the effect of ...

  16. Electroacupuncture Improves Insulin Resistance by Reducing Neuroprotein Y/Agouti-Related Protein Levels and Inhibiting Expression of Protein Tyrosine Phosphatase 1B in Diet-induced Obese Rats.

    Science.gov (United States)

    Liu, Xia; He, Jun-Feng; Qu, Ya-Ting; Liu, Zhi-Jun; Pu, Qing-Yang; Guo, Sheng-Tong; Du, Jia; Jiang, Peng-Fei

    2016-04-01

    Electroacupuncture (EA) has been shown to exert beneficial effects on obesity, but the mechanism is unclear. This study investigated the effects of EA on diet-induced obese (DIO) rats. Fifty male Sprague-Dawley rats were randomly divided into low-fat diet (LFD, 10 rats) and high-fat diet (HFD, 40 rats) groups. After the DIO models had been established, successful model rats were randomly divided into HFD, EA, and orlistat (OLST) groups. The EA group received EA at Zusanli (ST36) and Quchi (LI11) for 20 minutes once per day for 28 days. The OLST group was treated with orlistat by gavage. The body weight, homeostasis model assessment-insulin resistance index, adipocyte diameters, and neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B levels were significantly lower in the EA group than in the HFD group. The rats of the OLST group showed watery stools and yellow hairs whereas those of the EA group had regular stools and sleek coats. The effect of EA on weight loss may be related to improved insulin resistance caused by changes in the adipocyte size and by reductions in the expressions of neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B. This study indicates that EA may be a better method of alternative therapy for treating obesity and other metabolic diseases. PMID:27079226

  17. Tyrosine phosphorylation of the asialoglycoprotein receptor

    International Nuclear Information System (INIS)

    The asialoglycoprotein (ASGP) receptor undergoes constitutive endocytosis through the coated pit/coated vesicle pathway in hepatocytes. Studies on HepG2 cells have shown that the receptor is phosphorylated at serine under control conditions and following protein kinase C stimulation. This study examined whether the ASGP receptor could also serve as a substrate for a tyrosine kinase in HepG2 cells. 32P labeling was performed in membrane preparations, in permeabilized cells at 4 degrees C, and in intact cells at 37 degrees C. The phosphorylated ASGP receptor was isolated by immunoprecipitation, hydrolyzed in 6 N HCl at 110 degrees C, and analyzed by two-dimensional high voltage electrophoresis. The receptor isolated from a membrane preparation incubated in vitro with [gamma-32P]ATP incorporated radiolabel predominantly (greater than 90%) into phosphotyrosine. ASGP receptor phosphorylation at both tyrosine and serine was detected in intact cells incubated with phosphatase inhibitors for 60 min at 37 degrees C. The presence of both phenylarsine oxide (20 microM) and sodium orthovanadate (200 microM) was required for tyrosine phosphorylation. Use of these inhibitors together resulted in a 16.4-fold increase in phosphorylation of the immunoprecipitated ASGP receptor, whereas phosphorylation of total HepG2 membrane proteins was not significantly augmented by this procedure. Selective proteolytic digestion of ASGP receptors in isolated vesicles demonstrated that the phosphorylation site identified in these studies is located at tyrosine 5 in the cytoplasmic tail

  18. A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells

    Directory of Open Access Journals (Sweden)

    Witte Owen N

    2001-06-01

    Full Text Available Abstract Background Bruton's tyrosine kinase (Btk is essential for B cell development and function. Mutations of Btk elicit X-linked agammaglobulinemia in humans and X-linked immunodeficiency in the mouse. Btk has been proposed to participate in B cell antigen receptor-induced signaling events leading to activation of phospholipase C-γ2 (PLCγ2 and calcium mobilization. However it is unclear whether Btk activation is alone sufficient for these signaling events, and whether Btk can activate additional pathways that do not involve PLCγ2. To address such issues we have generated Btk:ER, a conditionally active form of the kinase, and expressed it in the PLCγ2-deficient DT40 B cell line. Results Activation of Btk:ER was sufficient to induce multiple B cell signaling pathways in PLCγ2-sufficient DT40 cells. These included tyrosine phosphorylation of PLCγ2, mobilization of intracellular calcium, activation of extracellular signal-regulated kinase (ERK and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinase (MAPK pathways, and apoptosis. In DT40 B cells deficient for PLCγ2, Btk:ER activation failed to induce the signaling events described above with the consequence that the cells failed to undergo apoptosis. Conclusions These data suggest that Btk:ER regulates downstream signaling pathways primarily via PLCγ2 in B cells. While it is not known whether activated Btk:ER precisely mimics activated Btk, this conditional system will likely facilitate the dissection of the role of Btk and its family members in a variety of biological processes in many different cell types.

  19. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  20. Protein phosphorylation on tyrosine restores expression and glycosylation of cyclooxygenase-2 by 2-deoxy-D-glucose-caused endoplasmic reticulum stress in rabbit articular chondrocyte

    Directory of Open Access Journals (Sweden)

    Seon-Mi Yu

    2012-05-01

    Full Text Available 2-deoxy-D-glucose(2DG-caused endoplasmic reticulum (ERstress inhibits protein phosphorylation at tyrosine residues.However, the accurate regulatory mechanisms, which determinethe inflammatory response of chondrocytes to ER stress via proteintyrosine phosphorylation, have not been systematicallyevaluated. Thus, in this study, we examined whether proteinphosphorylation at tyrosine residues can modulate the expressionand glycosylation of COX-2, which is reduced by 2DG-inducedER stress. We observed that protein tyrosine phosphatase (PTP inhibitors,sodium orthovanadate (SOV, and phenylarsine oxide(PAO significantly decreased expression of ER stress inducibleproteins, glucose-regulated protein 94 (GRP94, and CCAAT/ enhancer-binding-protein- related gene (GADD153, which was inducedby 2DG. In addition, we demonstrated that SOV and PAOnoticeably restored the expression and glycosylation of COX-2 aftertreatment with 2DG. These results suggest that protein phosphorylationof tyrosine residues plays an important role in theregulation of expression and glycosylation during 2DG-inducedER stress in rabbit articular chondrocytes. [BMB reports 2012;45(5: 317-322

  1. Protein tyrosine phosphatase 1B (PTP1B)-inhibiting constituents from the leaves of Syzygium polyanthum.

    Science.gov (United States)

    Saifudin, Azis; Tanaka, Ken; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2012-08-01

    A methanol extract of the leaves of Syzygium polyanthum (Wight) Walp. afforded four new acylbenzene derivatives (1-4) together with seven known compounds (5-11). The structures of 1-11 were elucidated by extensive spectroscopic methods and comparison with the literature data. The new compounds 1-3 and a known compound, campest-4-en-3-one (10), exhibited a significant protein tyrosine phosphatase 1B inhibitory activity with IC₅₀ values of 13.1 ± 0.1, 5.77 ± 0.15, 4.01 ± 0.26, and 10.4 ± 0.5 µM, respectively. The inhibitory potency of the new compounds 2 and 3 was comparable to that of a positive control RK-682 (IC₅₀, 5.51 ± 0.04 µM). PMID:22763740

  2. Use of an Anaerobic Chamber Environment for the Assay of Endogenous Cellular Protein-Tyrosine Phosphatase Activities

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2002-01-01

    Full Text Available Protein-tyrosine phosphatases (PTPases have a catalytic cysteine residue whose reduced state is integral to the reaction mechanism. Since exposure to air can artifactually oxidize this highly reactive thiol, PTPase assays have typically used potent reducing agents to reactivate the enzymes present; however, this approach does not allow for the measurement of the endogenous PTPase activity directly isolated from the in vivo cellular environment. Here we provide a method for using an anaerobic chamber to preserve the activity of the total PTPase complement in a tissue lysate or of an immunoprecipitated PTPase homolog to characterize their endogenous activation state. Comparison with a sample treated with biochemical reducing agents allows the determination of the activatable (reducible fraction of the endogenous PTPase pool.

  3. Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2 (Jak2): Two major non-receptor tyrosine signaling proteins involved in inflammatory events

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Wang, Shu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Medicinal Chemistry and Pharmaceutical Analysis, Logistics College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Dong, Xin; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-03-15

    Non-receptor protein tyrosine kinases (NRPTKs)-dependent inflammatory signal transduction cascades play key roles in immunoregulation. However, drug intervention through NRPTKs-involved immunoregulation mechanism in microglia (the major immune cells of the central nervous system) has not been widely investigated. A main aim of the present study is to elucidate the contribution of two major NRPTKs (Syk and Jak2) in neuroinflammation suppression by a bioactive sesquiterpene dimmer (DSF-27). We found that LPS-stimulated BV-2 cells activated Syk and further initiated Akt/NF-κB inflammatory pathway. This Syk-dependent Akt/NF-κB inflammatory pathway can be effectively ameliorated by DSF-27. Moreover, Jak2 was activated by LPS, which was followed by transcriptional factor Stat3 activation. The Jak2/Stat3 signal was suppressed by DSF-27 through inhibition of Jak2 and Stat3 phosphorylation, promotion of Jak/Stat3 inhibitory factors PIAS3 expression, and down-regulation of ERK and p38 MAPK phosphorylation. Furthermore, DSF-27 protected cortical and mesencephalic dopaminergic neurons against neuroinflammatory injury. Taken together, our findings indicate NRPTK signaling pathways including Syk/NF-κB and Jak2/Stat3 cascades are potential anti-neuroinflammatory targets in microglia, and may also set the basis for the use of sesquiterpene dimmer as a therapeutic approach for neuroinflammation via interruption of these pathways. - Highlights: • Sesquiterpene dimmer DSF-27 inhibits inflammatory mediators' production in microglia. • Syk-dependent Akt/NF-κB pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 pathway is important for DSF-27's anti-inflammation activity. • Jak2/Stat3 signaling pathway is partly regulated by ERK and p38 MAPKs and PIAS3. • DSF-27 protects neurons against microglia-mediated neuroinflammatory injury.

  4. The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of Burkholderia contaminans are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line.

    Science.gov (United States)

    Ferreira, Ana S; Silva, Inês N; Fernandes, Fábio; Pilkington, Ruth; Callaghan, Máire; McClean, Siobhán; Moreira, Leonilde M

    2015-02-01

    Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response. PMID:25486990

  5. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.

    Science.gov (United States)

    Hainzl, Eva; Stockinger, Silvia; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit; Müller, Mathias

    2015-11-15

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. PMID:26432894

  6. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X;

    1997-01-01

    phosphorylated GST-GH receptor fusion proteins specifically bound to Stat5 in extracts from COS 7 cells transfected with Stat5 cDNA. This binding could be inhibited by tyrosine phosphorylated peptides derived from the GH receptor. This study thus demonstrated that specific GH receptor tyrosine residues, in their...

  7. Site-specific Incorporation of 3-Iodo-L-tyrosine into Proteins and Single-wavelength Anomalous Dispersion Phasing with Soft X-ray in Protein Crystallography

    Science.gov (United States)

    Murayama, Kazutaka; Sakamoto, Kensaku

    Iodine is a good anomalous scatter for radiations from in-house X-ray generators (Cu/CrKα). Non-natural amino acid, 3-iodo-L-tyrosine, is able to be site-specifically incorporated into proteins with amber suppresser tRNA and mutated TyrRS from M. jannaschii in the E. coli expression system. To determine the crystal structure of acetyl transferase from T. thermophilus, iodotyrosine-containing proteins were prepared and crystallized. Structure determination was successfully conducted with the protein variant with iodotyrosine at position 111. Anomalous signals from iodotyrosine with Cu/CrKα radiations were both sufficient to calculate clear electron density map. In the crystal structure, iodotyrosine did not significantly disturb the native structure.

  8. Molecular predictors of response to tyrosine kinase inhibitors in patients with Non-Small-Cell Lung Cancer

    OpenAIRE

    Murray Samuel; Karavasilis Vasilios; Bobos Mattheos; Razis Evangelia; Papadopoulos Savvas; Christodoulou Christos; Kosmidis Paris; Fountzilas George

    2012-01-01

    Abstract Introduction Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become a treatment option in non-small-cell lung cancer (NSCLC) patients. However, despite their use in this disease, a significant number of patients will eventually develop resistance and relapse. In this study, we aimed to characterize several molecular events involved in potential resistance mechanisms to anti-EGFR treatment and correlate our findings with clinical outcome. Material and me...

  9. Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib

    OpenAIRE

    Xie, Shengzhi; Li, Yongwu; Li, Xiaoyan; WANG, LINXIONG; Yang, Na; Wang, Yadi; Wei, Huafeng

    2015-01-01

    Mer is a receptor tyrosine kinase (RTK) with oncogenic properties that is often overexpressed or activated in various malignancies. Using both immunohistochemistry and microarray analyses, we demonstrated that Mer was overexpressed in both tumoral and stromal compartments of about 70% of non-small cell lung cancer (NSCLC) samples relative to surrounding normal lung tissue. This was validated in freshly harvested NSCLC samples; however, no associations were found between Mer expression and pat...

  10. Regulation of Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication by Stem Cell-Derived Tyrosine Kinase

    OpenAIRE

    Carol R. Gardner; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increas...

  11. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  12. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

    International Nuclear Information System (INIS)

    Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and

  13. Expression of the recepteur d'originenantais receptor tyrosine kinase in non-small cell lung cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-li; LI Wei-dong; HU Jian; RUSIDANMU Aizemaiti; CHEN Ling-fang; SHEN Ling; ZHENG Shu-sen

    2012-01-01

    Background Recepteur d'originenantais (RON) is a receptor tyrosine kinase (RTK) that belongs to the MET proto-oncogene family.The aim of this study was to investigate the expression of RON receptor tyrosine kinase in human non-small cell lung cancer (NSCLC) and its relationship with clinical pathology of NSCLC and prognosis.Methods RON protein expression by immunohistochemistry (IHC) in 96 NSCLC specimens was evaluated and compared with the clinical pathology and prognosis,and 20 para-neoplastic tissues were included as controls.RON mRNA and protein expression in 25 fresh tissue samples of lung cancer and 10 normal lung tissues were also analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.Results The rate of positive RON expression differed significantly between NSCLC tissues (55.2%,53/96) and para-neoplastic tissues (5%,1/20) (P <0.001).RON protein expression was not found to be associated with gender or age.However,RON expression positively correlated with clinical TNM stage (P=0.004),histological types (P=0.001),lymph node metastasis (P=0.012) and differentiation (P=0.035).RT-PCR and Western blotting analysis also confirmed that the expression of RON mRNA and protein was significantly increased in the NSCLC tissues versus normal tissues.In addition,RON expression was associated with a poor prognosis for patients with NSCLC (P=0.045).Conclus1ons The expression of RON protein and mRNA is significant in human NSCLC and low in para-neoplastic and normal tissues.Elevated RON expression may contribute to the occurrence,progression and metastasis of NSCLC,inferring that it could be useful as a new prognostic indicator for patients with NSCLC.

  14. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic.

    Science.gov (United States)

    Wagner, Stefan; Schütz, Anja; Rademann, Jörg

    2015-06-15

    Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT). PMID:25907367

  15. Progress in protein tyrosine phosphates (PTPs) related to insulin signaling pathway%蛋白酪氨酸磷酸酶在胰岛素信号转导通路中的作用

    Institute of Scientific and Technical Information of China (English)

    董敏; 刘昭前

    2011-01-01

    蛋白酪氨酸磷酸酶(protein tyrosine phosphates,PTPs)是调节胰岛素信号转导的关键酶.PTPs通过对胰岛素受体和胰岛素受体底物蛋白磷酸化和去磷酸化调控胰岛素信号转导.PTPs抑制剂是潜在的治疗糖尿病和肥胖症的靶点药物,可以延长胰岛素信号的转导,加速葡萄糖的吸收,使血糖降低.本文主要概述PTPs在胰岛素信号转导通路中的作用及其作为新的治疗糖尿病药物靶点的研究进展.%Protein tyrosine phosphates(PTPs) are key regulators of the insulin receptor signal transduction pathway. Insulin signaling is tightly regulated by the balance of IR tyrosine phosphorylation and dephosphorylat-ing. Several PTPs expressed in the major human insulin target tissues or cells and could attenuate insulin action by dephosphorylating the IR. Inhibiting several PTPs would prolong insulin sig-naling and facilitate glucose uptake and decrease blood glucose. Inhibitors of several PTPs are predicted to be the novel drug targets for type 2 diabetes and obesity treatment.

  16. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    International Nuclear Information System (INIS)

    Highlights: → We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. → Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. → Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. → Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  17. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen2,5]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory Gi/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the Gq/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  18. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  19. Tyrosine kinase inhibitors improve parenchymal findings of liver cirrhosis in a patient exhibiting concomitant hepatocellular carcinoma and renal cell cancer

    Science.gov (United States)

    KUS, TULAY; AKTAS, GOKMEN; SEVINC, ALPER; OKTAY, CEMIL; KALENDER, MEHMET EMIN; CAMCI, CELALETDIN

    2016-01-01

    Hepatocellular carcinoma (HCC) and renal cell cancer (RCC) are malignancies, which are chemotherapy resistant and fatal at the advanced stages. Previously developed tyrosine kinase inhibitors are used in the treatment of advanced stage disease. In the present case study, a patient using sunitinib for stage IV RCC presented with HCC following 2 years of treatment. A patient who exhibited Child-Pugh class C cirrhosis initially, exhibited a marked improvement of hepatocellular parenchyma findings following treatment with sunitinib. Sunitinib is suggested to have preventive effects on the pathogenesis of liver fibrosis and cirrhosis in vitro, via an anti-vascular endothelial growth factor and anti-platelet-derived growth factor mechanism. However, no clinical supportive study has been performed until now. Improvement of liver functions may be explained in this manner. Therefore, investigations are required with different doses of sunitinib and other tyrosine kinase inhibitors in order to evaluate the efficacy on treatment of cirrhosis progression. PMID:26893877

  20. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition.

    Science.gov (United States)

    Shi, Xiarong; Sousa, Leiliane P; Mandel-Bausch, Elizabeth M; Tome, Francisco; Reshetnyak, Andrey V; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-08-16

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  1. Murine germinal center B cells require functional Fms-like tyrosine kinase 3 signaling for IgG1 class-switch recombination.

    Science.gov (United States)

    Svensson, Mattias N D; Andersson, Karin M E; Wasén, Caroline; Erlandsson, Malin C; Nurkkala-Karlsson, Merja; Jonsson, Ing-Marie; Brisslert, Mikael; Bemark, Mats; Bokarewa, Maria I

    2015-12-01

    Switched antibody classes are important for efficient immune responses. Aberrant antibody production to otherwise harmless antigens may result in autoimmunity. The protein kinase fms-like tyrosine kinase 3 receptor (Flt3) has an important role during early B-cell development, but the role of Flt3 in peripheral B cells has not been assessed before. Herein we describe a previously unappreciated role for Flt3 in IgG1 class-switch recombination (CSR) and production. We show that Flt3 is reexpressed on B-cell lymphoma 6(+) germinal center B cells in vivo and following LPS activation of peripheral B cells in vitro. Absence of Flt3 signaling in Flt3 ligand-deficient mice results in impaired IgG1 CSR and accumulation of IgM-secreting plasma cells. On activated B cells, Flt3 is coexpressed and functions in synergy with the common-gamma chain receptor family. B cells from Flt3 ligand-deficient mice have impaired IL-4R signaling, with reduced phosphorylation of signal transducer and activator of transcription (Stat) 6, and demonstrate a failure to initiate CSR to IgG1 with low expression of γ1 germ-line transcripts, resulting in impaired IgG1 production. Thus, functional synergy between Flt3 and IL-4R signaling is critical for Stat-mediated regulation of sterile γ1 germ-line transcripts and CSR to IgG1. PMID:26627255

  2. Phase I Dose Escalation Study of Sodium Stibogluconate (SSG, a Protein Tyrosine Phosphatase Inhibitor, Combined with Interferon Alpha for Patients with Solid Tumors

    Directory of Open Access Journals (Sweden)

    Aung Naing, James M. Reuben, Luis H. Camacho, Hui Gao, Bang-Ning Lee, Evan N. Cohen, Claire Verschraegen, Saneese Stephen, Joann Aaron, David Hong, Jennifer Wheler, Razelle Kurzrock

    2011-01-01

    Full Text Available Purpose: Sodium stibogluconate (SSG, a small molecule inhibitor of protein tyrosine phosphatases, combined with IFN-alpha-2b (IFN-α inhibited solid tumor cell line growth in vitro. We conducted a phase I clinical trial with SSG plus IFN-α in advanced cancer patients to assess tolerance, maximum tolerated dose (MTD and immune system effects.Experimental Design: SSG was administered intravenously alone for five days of week 1, cycle 1 (21 days per cycle and together with IFN-α 2b s (3 million units sc TIW in week 2, and after a rest during week 3, on a 2-week on/1-week off cycle. SSG dose levels were 400, 600, 900, 1125, and 1350 mg/m2.Results: Twenty-four patients were studied. Common toxicities included asymptomatic elevated serum lipase, thrombocytopenia, fatigue, fever, chills and anemia. The dose-limiting toxicities (DLT were hypokalemia, thrombocytopenia, fatigue, pancreatitis and skin rash. The MTD was 900 mg/m2 SSG and IFN-α, 3 million units TIW. At this dose, patients had a significantly lower number of regulatory T cells (TR Cells (p = 0.012, myeloid dendritic cells (mDC (p = 0.028; higher percentage of natural killer (NK cells that synthesized perforin (p = 0.046 and of plasmacytoid dendritic cells (pDC that secreted IFN-α (p = 0.018 in response to activation through toll-like receptor (TLR 7 and TLR 8 by CL097, the highly water-soluble derivative of the imidazoquinoline compound R848.Conclusions: SSG in combination with IFN-α 2b was well tolerated and augmented cellular immune parameters.

  3. Mapping of the receptor protein-tyrosine kinase 10 to human chromosome 1q21-q23 and mouse chromosome 1H1-5 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Edelhoff, S.; Disteche, C.M. [Univ. of Washington School of Medicine, Seattle, WA (United States); Lai, C. [Scripps Research Inst., LaJolla, CA (United States)

    1995-01-01

    Receptor protein-tyrosine kinases (PTKs) play a critical role in the transduction of signals important to cell growth, differentiation, and survival. Mutations affecting the expression of receptor PTK genes have been associated with a number of vertebrate and invertebrate developmental abnormalities, and the aberrant regulation of tyrosine phosphorylation is implicated in a variety of neoplasias. One estimate suggests that approximately 100 receptor PTK genes exist in the mammalian genome, about half of which have been identified. The tyro-10 receptor protein-tyrosine kinase, first identified in a PCR-based survey for novel tyrosine kinases in the rat nervous system, defines a new subfamily of PTKs. It exhibits a catalytic domain most closely related to those found in the trk PTK receptor subfamily, which transduces signals for nerve growth factor and the related molecules brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4 (NT-3 and NT-4). Trk and the related PTK receptors trkB and trkC play a critical role in the neurotrophin-dependent survival of subsets of sensory and motor neurons. The predicted tyro-10 extracellular region is, however, distinct from that of the trk subfamily and is unique except for a domain shared with the blood coagulation factors V and VIII, thought to be involved in phospholipid binding. Although tyro-10 RNA is most abundant in heart and skeletal muscle in the adult rat, it is expressed in a wide variety of tissues, including the developing and mature brain. Tyro-10 appears identical to the murine TKT sequence reported by Karn et al. and exhibits a high degree of similarity with the CaK, DDR, and Nep PTKs. A ligand for tyro-10 has not yet been identified. 10 refs., 1 fig.

  4. Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular proteins.

    OpenAIRE

    Cooper, J A; Hunter, T

    1981-01-01

    Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine a...

  5. Imatinib-dependent tyrosine phosphorylation profiling of Bcr-Abl-positive chronic myeloid leukemia cells

    OpenAIRE

    Preisinger, C.; Schwarz, J. P.; Bleijerveld, O.B.; et al

    2012-01-01

    Bcr-Abl is the major cause and pathogenetic principle of chronic myeloid leukemia (CML). Bcr-Abl results from a chromosomal translocation that fuses the bcr and abl genes, thereby generating a constitutively active tyrosine kinase, which stimulates several signaling networks required for proliferation and survival. peer-reviewed

  6. Tubulin tyrosine ligase expression corresponds to changes in the tyrosination/detyrosination status of alpha-tubulin in prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Phung, A.D.; Bulinski, J.C.; Harper, R.W.; McManus, M.T.; Eserich, J.P.

    Quebec City: ISAC, 2006 - (Robinson, J.). s. 134-134 [ISAC XXIII International Congress. 20.05.2006-24.05.2006, Québec City] Institutional research plan: CEZ:AV0Z50040507 Keywords : prostate cancer * tubulin * tyrosination/detyrosination cycle Subject RIV: BO - Biophysics

  7. Selective Accumulation of Raft-Associated Membrane Protein Lat in T Cell Receptor Signaling Assemblies

    OpenAIRE

    Harder, Thomas; Kuhn, Marina

    2000-01-01

    Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly conc...

  8. Changes in protein phosphorylation in Rous sarcoma virus-transformed chicken embryo cells.

    OpenAIRE

    Cooper, J A; Hunter, T

    1981-01-01

    Rous sarcoma virus encodes a tyrosine-specific protein kinase (p60src) which is necessary for cell transformation. To identify substrates for this kinase, we set out to detect phosphotyrosine-containing proteins in Rous sarcoma virus-transformed chicken embryo cells, making use of the known alkali stability of phosphotyrosine. 32P-labeled phosphoproteins were separated by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gels were then incubated in alkali...

  9. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival

    Science.gov (United States)

    Vajkoczy, Peter; Knyazev, Pjotr; Kunkel, Andrea; Capelle, Hans-Holger; Behrndt, Sandra; von Tengg-Kobligk, Hendrik; Kiessling, Fabian; Eichelsbacher, Uta; Essig, Marco; Read, Tracy-Ann; Erber, Ralf; Ullrich, Axel

    2006-01-01

    Malignant gliomas remain incurable brain tumors because of their diffuse-invasive growth. So far, the genetic and molecular events underlying gliomagenesis are poorly understood. In this study, we have identified the receptor tyrosine kinase Axl as a mediator of glioma growth and invasion. We demonstrate that Axl and its ligand Gas6 are overexpressed in human glioma cell lines and that Axl is activated under baseline conditions. Furthermore, Axl is expressed at high levels in human malignant glioma. Inhibition of Axl signaling by overexpression of a dominant-negative receptor mutant (AXL-DN) suppressed experimental gliomagenesis (growth inhibition >85%, P 72 days). A detailed analysis of the distinct hallmarks of glioma pathology, such as cell proliferation, migration, and invasion and tumor angiogenesis, revealed that inhibition of Axl signaling interfered with cell proliferation (inhibition 30% versus AXL-WT), glioma cell migration (inhibition 90% versus mock and AXL-WT, P < 0.05), and invasion (inhibition 62% and 79% versus mock and AXL-WT, respectively; P < 0.05). This study describes the identification, functional manipulation, in vitro and in vivo validation, and preclinical therapeutic inhibition of a target receptor tyrosine kinase mediating glioma growth and invasion. Our findings implicate Axl in gliomagenesis and validate it as a promising target for the development of approaches toward a therapy of these highly aggressive but, as yet, therapy-refractory, tumors. PMID:16585512

  10. Study of Mutation in Tyrosine Protein Kinase of Insulin Receptor Gene in Patients with Polycystic Ovarian Syndrome

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hong-yu QIU; Yong-yu SUN; Hong-fa LI; Yong-li CHU

    2003-01-01

    Objective To explore the molecular mechanism of insulin resistance in the patients with polycystic ovarian syndrome (PCOS)Methods Polymerase chain reaction, silver staining-single strand conformation polymorphism(PCR-SSCP) and DNA direct sequencing were used to detect the mutation of insulin receptor(INSR) gene in exon 17~21 with the abdominal wall adipose tissue from 31 patients with PCOS (PCOS Group) and 30 patients with pure hysteromyoma in reproductive lift (Control Group).Results Twenty-two variant SSCP patterns in exon 17 of INSR gene were detected. Direct sequence analysis of exon 17 showed that homozygous nonsense mutation was two alleles single nucleotide polymorphism(SNP) at the codon 1058 (CAC→CAT). Exons 18~21 were not detected with any significantly mutation. The INSR gene His1058C→T substitution collecting rate and insulin resistance were significantly higher in the PCOS group than in the control group (P=0.0293, P<0.05, P<0.01).Conclusion It is suggested that the SNP in codon 1058 of the INSR gene might be related with the insulin resistance in PCOS patients, which has hereditary tendency. And the missense mutation,nonsense mutation and frameshift mutation at exons 18~21 in tyrosine protein kinase region of INSR gene for PCOS patients were not frequently observed.

  11. Synthesis and protein tyrosine phosphatase 1B inhibition activities of two new synthetic bromophenols and their methoxy derivatives

    Science.gov (United States)

    Cui, Yongchao; Shi, Dayong; Hu, Zhiqiang

    2011-11-01

    3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol ( 1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from 1H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3″,4″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 2), 2,3-dibromo-1-(2'-bromo-6'-(2″-bromo-4″,5″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 3), 3,4-dibromo-5-(2'-bromo-6'-(2″-bromo-4″,5″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 4) and 3,4-dibromo-5-(2'-bromo-6'-(3″,4″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.

  12. Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases

    OpenAIRE

    Yim, Yeong Shin; Kwon, Younghee; Nam, Jungyong; Yoon, Hong In; Lee, Kangduk; Kim, Dong Goo; Kim, Eunjoon; Kim, Chul Hoon; Ko, Jaewon

    2013-01-01

    The balance between excitatory and inhibitory synaptic inputs, which is governed by multiple synapse organizers, controls neural circuit functions and behaviors. Slit- and Trk-like proteins (Slitrks) are a family of synapse organizers, whose emerging synaptic roles are incompletely understood. Here, we report that Slitrks are enriched in postsynaptic densities in rat brains. Overexpression of Slitrks promoted synapse formation, whereas RNAi-mediated knockdown of Slitrks decreased synapse dens...

  13. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor.

    OpenAIRE

    Kasuga, M.; Fujita-Yamaguchi, Y; Blithe, D L; Kahn, C. R.

    1983-01-01

    Highly purified human placental insulin receptors were obtained by sequential affinity chromatography on wheat germ agglutinin and insulin-agarose. The preparation had an insulin binding capacity of 4,700 pmol/mg of protein approaching theoretical purity. The purified receptor revealed three major bands of Mr 135,000, 95,000, and 52,000 in NaDodSO4/polyacrylamide gel electrophoresis after reduction by dithiothreitol. All three bands were immunoprecipitated by anti-insulin-receptor antibodies....

  14. Major substrate for growth factor-activated protein-tyrosine kinases is a low-abundance protein.

    OpenAIRE

    Cooper, J A; Hunter, T

    1985-01-01

    A scarce, soluble, conserved protein was identified as the nonphosphorylated precursor of two related 42-kilodalton phosphoproteins that contain phosphotyrosine in mitogen-stimulated but not control fibroblasts.

  15. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    International Nuclear Information System (INIS)

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK−/− mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK−/− mice. Whereas F4/80+ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK−/− mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK−/− mice treated with acetaminophen. These data

  16. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  17. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase.

    Science.gov (United States)

    Gardner, Carol R; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D; Laskin, Debra L

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK⁻/⁻ mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK⁻/⁻ mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK⁻/⁻ mice. Whereas F4/80⁺ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK⁻/⁻ mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK⁻/⁻ mice treated with acetaminophen. These data

  18. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. PMID:27132865

  19. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  20. Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product.

    OpenAIRE

    Crews, C M; Erikson, R L

    1992-01-01

    We report the purification to near homogeneity of a 45-kDa phorbol ester-stimulated protein kinase that phosphorylates and activates the Erk-1 gene product. This kinase, which we provisionally denote MEK for MAPK/Erk kinase, phosphorylated kinase-inactive Erk-1 protein primarily on a tyrosine residue and, to a lesser extent, on a threonine. We extend our previous results and show that two forms of purified MEK activated the myelin basic protein kinase encoded by Erk-1. MEK was inactivated by ...

  1. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. Ligand-induced changes in the protein motions

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Frimurer, T.M.; Andersen, J.N.;

    1999-01-01

    the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by similar to 10%. The largest effect is found...

  2. Influence of the O-phosphorylation of serine, threonine and tyrosine in proteins on the amidic N-15 chemical shielding anisotropy tensors

    Czech Academy of Sciences Publication Activity Database

    Emmer, J.; Vavrinská, A.; Sychrovský, Vladimír; Benda, Ladislav; Kříž, Z.; Koča, J.; Boelens, R.; Sklenář, V.; Trantírek, L.

    2013-01-01

    Roč. 55, č. 1 (2013), s. 59-70. ISSN 0925-2738 R&D Projects: GA ČR GAP205/10/0228 Grant ostatní: CEITEC(XE) CZ.1.05/1.1.00/02.0068 Institutional support: RVO:61388963 Keywords : CSA * phosphorylation * amidic nitrogen * serine * threonine * tyrosine * protein * NMR Subject RIV: CE - Biochemistry Impact factor: 3.305, year: 2013

  3. Investigation of Catalytic Loop Structure, Dynamics and Function Relationship of Yersinia Protein Tyrosine Phosphatase by Temperature-Jump Relaxation Spectroscopy and X-ray Structural Determination

    OpenAIRE

    Ke, Shan; Ho, Meng-Chiao; Zhadin, Nickolay; Deng, Hua; Callender, Robert

    2012-01-01

    Yersinia Protein Tyrosine Phosphatase (YopH) is the most efficient enzyme amongst all PTPases and YopH is hyperactive compared to human PTPases, interferes with mammalian cellular pathways to achieve the pathogenicity of Yersinia. Two properties related to the catalytic loop structure differences have been proposed to affect its dynamics and enzyme efficiency. One is the ability of the loop to form stabilizing interactions to bound ligand after loop closure, which has long been recognized. In...

  4. Potential Utility of Sodium Selenate as an Adjunct to Metformin in Treating Type II Diabetes Mellitus in Rats: A Perspective on Protein Tyrosine Phosphatase

    OpenAIRE

    Rania M. Salama; Schaalan, Mona F; Elkoussi, Alaaeldin A.; Khalifa, Amani E.

    2013-01-01

    Metformin is widely regarded as the standard first-line antidiabetic agent, in terms of efficacy and safety profiles. However, in most patients with type II diabetes mellitus (T2DM), it was found that metformin alone is not enough to adequately control hyperglycemia. Thus, we designed this study with the aim to investigate the effect of sodium selenate, a protein tyrosine phosphatase (PTP) inhibitor, individually and as an adjunct to metformin, on a rat model that simulates the metabolic char...

  5. Cloning, purification, crystallization and preliminary X-ray analysis of two low-molecular-weight protein tyrosine phosphatases from Vibrio cholerae

    International Nuclear Information System (INIS)

    Two protein tyrosine phosphatases, namely VcLMWPTP-1 and VcLMWPTP-2, from V. cholerae have been cloned, expressed, purified and crystallized. Low-molecular-weight protein tyrosine phosphatases (LMWPTPs) are small cytoplasmic enzymes of molecular weight ∼18 kDa that belong to the large family of protein tyrosine phosphatases (PTPs). Despite their wide distribution in both prokaryotes and eukaryotes, their exact biological role in bacterial systems is not yet clear. Two low-molecular-weight protein tyrosine phosphatases (VcLMWPTP-1 and VcLMWPTP-2) from the Gram-negative bacterium Vibrio cholerae have been cloned, overexpressed, purified by Ni2+–NTA affinity chromatography followed by gel filtration and used for crystallization. Crystals of VcLMWPTP-1 were grown in the presence of ammonium sulfate and glycerol and diffracted to a resolution of 1.6 Å. VcLMWPTP-2 crystals were grown in PEG 4000 and diffracted to a resolution of 2.7 Å. Analysis of the diffraction data showed that the VcLMWPTP-1 crystals had symmetry consistent with space group P31 and that the VcLMWPTP-2 crystals had the symmetry of space group C2. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient for the VcLMWPTP-1 crystals was estimated to be 1.97 Å3 Da−1, corresponding to a solvent content of 37.4%. The corresponding values for the VcLMWPTP-2 crystals, assuming the presence of two molecules in the asymmetric unit, were 2.77 Å3 Da−1 and 55.62%, respectively

  6. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect of...... tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... inactivation of the c-src gene. In response to adhesion on a fibronectin substrate, RPTPalpha-/- fibroblasts also exhibited characteristic deficiencies in integrin-mediated signalling responses, such as decreased tyrosine phosphorylation of the c-Src substrates Fak and p 130(cas), and reduced activation of...

  7. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  8. Comparative evaluation of bone marrow cells morpho-functional activity in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors of the first and second generation

    Directory of Open Access Journals (Sweden)

    I. O. Zhaleyko

    2014-07-01

    Full Text Available The efficiency of using the culture techniques of research for monitoring the patient’s response to the treatment by tyrosine kinase inhibitors of the first and second generation is shown. Thus, the functional activity of bone marrow cells in patients having the optimal treatment response to inhibitors of tyrosine kinases was significantly lower compared with patients with the acquired resistance to the drug, and patients who had CML diagnosed for first time. Furthermore, for patients with the optimal response to the nilotinib therapy, numbers of colonies in semi-solid agar in vitro was lower, than in patients with the optimal response to imatinib. When the leukaemic cell clone becomes resistant to tyrosine kinase inhibitors, the prevalence of early cells of granulocyte-macrophage hematopoietic stem cells is observed in CFU culture which can be an important prognostic factor for choosing the appropriate treatment strategy.

  9. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2012-03-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is a validated therapeutic target in non-small cell lung cancer (NSCLC. However, current single agent receptor targeting does not achieve a maximal therapeutic effect, and some mutations confer resistance to current available agents. In the current study we have examined, in different NSCLC cell lines, the combined effect of RNA interference targeting the EGFR mRNA, and inactivation of EGFR signaling using different receptor tyrosine kinase inhibitors (TKIs or a monoclonal antibody cetuximab. Methods NSCLC cells (cell lines HCC827, H292, H358, H1650, and H1975 were transfected with EGFR siRNA and/or treated with the TKIs gefitinib, erlotinib, and afatinib, and/or with the monoclonal antibody cetuximab. The reduction of EGFR mRNA expression was measured by real-time quantitative RT-PCR. The down-regulation of EGFR protein expression was measured by western blot, and the proliferation, viability, caspase3/7 activity, and apoptotic morphology were monitored by spectrophotometry, fluorimetry, and fluorescence microscopy. The combined effect of EGFR siRNA and different drugs was evaluated using a combination index. Results EGFR-specific siRNA strongly inhibited EGFR protein expression almost equally in all cell lines and inhibited cell growth and induced cell apoptosis in all NSCLC cell lines studied, albeit with a different magnitude. The effects on growth obtained with siRNA was strikingly different from the effects obtained with TKIs. The effects of siRNA probably correlate with the overall oncogenic significance of the receptor, which is only partly inhibited by the TKIs. The cells which showed weak response to TKIs, such as the H1975 cell line containing the T790M resistance mutation, were found to be responsive to siRNA knockdown of EGFR, as were cell lines with downstream TKI resistance mutations. The cell line HCC827, harboring an exon 19 deletion mutation, was more than 10-fold

  10. Receptor protein tyrosine kinase EphB4 is up-regulated in colon cancer

    Directory of Open Access Journals (Sweden)

    Hewett Peter J

    2001-12-01

    Full Text Available Abstract Background We have used commercially available cDNA arrays to identify EphB4 as a gene that is up-regulated in colon cancer tissue when compared with matched normal tissue from the same patient. Results Quantitative RT-PCR analysis of the expression of the EphB4 gene has shown that its expression is increased in 82% of tumour samples when compared with the matched normal tissue from the same patient. Using immunohistochemistry and Western analysis techniques with an EphB4-specific antibody, we also show that this receptor is expressed in the epithelial cells of the tumour tissue and either not at all, or in only low levels, in the normal tissue. Conclusion The results presented here supports the emerging idea that Eph receptors play a role in tumour formation and suggests that further elucidation of this signalling pathway may identify useful targets for cancer treatment therapies.

  11. The conformational control inhibitor of tyrosine kinases DCC-2036 is effective for imatinib-resistant cells expressing T674I FIP1L1-PDGFRα.

    Directory of Open Access Journals (Sweden)

    Yingying Shen

    Full Text Available The cells expressing the T674I point mutant of FIP1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRα in hypereosinophilics syndrome (HES are resistant to imatinib and some second-generation tyrosine kinase inhibitors (TKIs. There is a desperate need to develop therapy to combat this acquired drug resistance. DCC-2036 has been synthesized as a third-generation TKI to combat especially the Bcr-Abl T315I mutant in chronic myeloid leukemia. This study evaluated the effect of DCC-2036 on FIP1L1-PDGFRα-positive cells, including the wild type (WT and the T674I mutant. The in vitro effects of DCC-2036 on the PDGFRα signal pathways, proliferation, cell cycling and apoptosis of FIP1L1-PDGFRα-positive cells were investigated, and a nude mouse xenograft model was employed to assess the in vivo antitumor activity. We found that DCC-2036 decreased the phosphorylated levels of PDGFRα and its downstream targets without apparent effects on total protein levels. DCC-2036 inhibited proliferation, and induced apoptosis with MEK-dependent up-regulation of the pro-apoptotic protein Bim in FIP1L1-PDGFRα-positive cells. DCC-2036 also exhibited in vivo antineoplastic activity against cells with T674I FIP1L1-PDGFRα. In summary, FIP1L1-PDGFRα-positive cells are sensitive to DCC-2036 regardless of their sensitivity to imatinib. DCC-2036 may be a potential compound to treat imatinib-resistant HES.

  12. Proliferation of Ewing sarcoma cell lines is suppressed by the receptor tyrosine kinase inhibitors gefitinib and vandetanib

    Directory of Open Access Journals (Sweden)

    Åman Pierre

    2008-01-01

    Full Text Available Abstract Background Tyrosine kinase inhibitors (TKIs have gained much attention in recent years as targeted agents for the treatment of a wide range of human cancers. We have investigated the effect of the TKIs gefitinib and vandetanib on tumor cell lines derived from Ewing sarcoma, a highly malignant tumor affecting bone and soft tissue in children and young adults. Gefitinib is an inhibitor of epidermal growth factor receptor tyrosine kinase activity (EGFR and vandetanib selectively targets vascular endothelial growth factor receptor-2 (VEGFR-2 with additional activity against VEGFR-3, EGFR and RET kinase receptors. Results Two Ewing sarcoma cell lines investigated showed high levels of nuclear EGFR expression as well as moderate expression in plasma membrane and cytoplasm. When treated with concentrations of 5 μM and more of either gefitinib or vandetanib, we observed a significant decrease in cell proliferation. However, there were no detectable changes in p44/42 MAPK and Akt-1 phosphorylation, or in the expression of cyclin D1 or c-Myc following gefitinib or vandetanib treatment. Conclusion We conclude that Ewing sarcoma tumor cell proliferation is not highly sensitive to inhibition of EGFR signaling alone or the simultaneous inhibition of VEGFR receptors, EGFR and RET kinase. Decreased tumor cell proliferation could be achieved with gefitinib and vandetanib, but only at higher doses where non-specific effects of the compounds may be overriding. As Ewing tumor cells do not seem to depend on EGFR and VEGFR pathways for survival, other key factors in the cellular signaling of Ewing sarcoma should be targeted in order to obtain a potent therapeutic response.

  13. Role of PAX8 in the regulation of MET and RON receptor tyrosine kinases in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Non-small cell lung cancers (NSCLC) are highly heterogeneous at the molecular level and comprise 75% of all lung tumors. We have previously shown that the receptor tyrosine kinase (RTK) MET frequently suffers gain-of-function mutations that significantly promote lung tumorigenesis. Subsequent studies from our lab also revealed that PAX5 transcription factor is preferentially expressed in small cell lung cancer (SCLC) and promotes MET transcription. PAX8, however, is also expressed in NSCLC cell lines. We therefore investigated the role of PAX8 in NSCLC. Using IHC analysis, PAX8 protein expression was determined in archival NSCLC tumor tissues (n = 254). In order to study the effects of PAX8 knockdown on NSCLC cellular functions such as apoptosis and motility, siRNA against PAX8 was used. Confocal fluorescence microscopy was used to monitor the localization of MET, RON and PAX8. The combinatorial effect of PAX8 knockdown and MET inhibition using SU11274 was investigated in NSCLC cell viability assay. Relative levels of PAX8 protein were elevated (≥ + 2 on a scale of 0–3) in adenocarcinoma (58/94), large cell carcinoma (50/85), squamous cell carcinoma (28/47), and metastatic NSCLC (17/28; lymph node). Utilizing early progenitors isolated from NSCLC cell lines and fresh tumor tissues, we observed robust overexpression of PAX8, MET, and RON. PAX8 knockdown A549 cells revealed abrogated PAX8 expression with a concomitant loss in MET and the related RON kinase expression. A dramatic colocalization between the active form of MET (also RON) and PAX8 upon challenging A549 cells with HGF was visualized. A similar colocalization of MET and EGL5 (PAX8 ortholog) proteins was found in embryos of C. elegans. Most importantly, knockdown of PAX8 in A549 cells resulted in enhanced apoptosis (~6 fold) and decreased cell motility (~45%), thereby making PAX8 a potential therapeutic target. However, the combinatorial approach of PAX8 knockdown and treatment with MET inhibitor, SU

  14. Fully automated synthesis of (phosphopeptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization

    Directory of Open Access Journals (Sweden)

    Goldstein David J

    2005-01-01

    Full Text Available Abstract Background Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src. Results The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR autophosphorylation site (pY1173 antibody ELISA (9H2 was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phosphopeptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of

  15. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification.

    Science.gov (United States)

    Miao, Xiangmin; Li, Zongbing; Zhu, Aihua; Feng, Zhaozhong; Tian, Jun; Peng, Xue

    2016-09-15

    We present here an ultrasensitive and simple strategy for protein tyrosine kinase-7 (PTK7) detection based on the recognition-induced structure change of sgc8 aptamer, and the signal change of methylene blue (MB) that interacted with sandwiched DNA complex. To construct such a sensor, an homogeneous nano-surface was formed firstly on the glass carbon electrode (GCE) by using negatively charged Nafion (Nf) as the inner layer and positively charged gold nanoparticles ((+)AuNPs) as the outer layer, followed by the immobilization of sgc8 aptamer based on Au-S bond. In the presence of helper probe (HP), sandwiched DNA complex was formed between the sgc8 aptamer and the DNA modified gold nanoparticle probe (DNA-AuNPs). Then, a strong current signal was produced due to the capture of abundant MB molecules by both the sandwiched DNA complex and the multiple DNAs that modified on AuNPs surface. However, the specific binding of sgc8 aptamer with PNK7 would trigger a structure transition of it, and directly prevented the following formation of sandwiched structure and the capture of MB. Thus, PTK7 detection could be realized based on monitoring the signal reduction of MB upon incubation of sgc8 aptamer with PTK7. Under optimal conditions, a low detection limit of 372 fM was obtained for PNK7 detection. Due to the employment of sgc8 aptamer, the proposed biosensor exhibited high selectivity to PNK7. Moreover, satisfactory results were obtained when the proposed method was applied for PNK7 detection in cellular debris. PMID:27101533

  16. 蛋白酪氨酸磷酸酶相互作用蛋白51的研究进展%Research progress on protein tyrosine phosphatase interacting protein 51

    Institute of Scientific and Technical Information of China (English)

    肖玉霞

    2012-01-01

    蛋白酪氨酸磷酸酶相互作用蛋白(PTPIP)51是一种进化保守的蛋白质,在人类和多种哺乳动物中具有同源性.PTPIP51蛋白表达十分广泛,在不同的组织可有不同的相对分子质量:在不同组织中可与相应的细胞因子结合,具有不同的功能;与多种受体复合物结合.触发和启动多种信号通路的级联反应,参与细胞的代谢、增殖和分化以及功能活动、程序性死亡和迁移等过程.本文就PTPIP51的生物学特性、表达及其调节、信号配体和生理功能以及与肿瘤的关系等研究进展作一综述.%The protein tyrosine phosphatase interacting protein 51 (PTPIP51) was a conserved protein whose amino acid sequence of human was found sequence homology with several other mammalian species. The expression profile of PTPIP51 protein were widely found in human and there were several different calculated molecular masses of the protein in a tissue-specific manner. The protein interacted with different signaling partners playing variety functions in human tissues. Interacting with its receptor complexes, signaling cascades of different pathways were activated and promoted mediating cells proliferation, differentiation, apoptosis and motility. In this paper, we will review the biological characteristics, and gene expression, regulation, signal ligands and the physiological functions and relationship with human tumors of PTPIP51.

  17. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN⁻ ligands derive from tyrosine.

    Directory of Open Access Journals (Sweden)

    Jon M Kuchenreuther

    Full Text Available [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO and two cyanide (CN⁻ ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN⁻ ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation.

  18. Activating Mutations and/or Expression Levels of Tyrosine Kinase Receptors GRB7, RAS, and BRAF in Testicular Germ Cell Tumors

    Directory of Open Access Journals (Sweden)

    Alan McIntyre

    2005-12-01

    Full Text Available Amplification and/or overexpression of genes encoding tyrosine kinase receptors KIT and ERBB2 have been reported in testicular germ cell tumors (TGCTs. These receptors can bind the adaptor molecule GRB7 encoded by a gene adjacent to ERBB2 at 17q12, a region also frequently gained in TGCTs. GRB7 binding may be involved in the activation of RAS signaling and KRAS2 maps to 12p, which is constitutively gained in TGCT and lies within a minimum overlapping region of amplification at 12pl1.2–12.1, a region we have previously defined. RAS proteins activate BRAF, and activating mutations of genes encoding these proteins have been described in various tumors. Here we determine the relationships between expression levels and activating mutations of these genes in a series of 65 primary TGCTs and 4 TCGT cell lines. High levels of expression and activating mutations in RAS were mutually exclusive events, and activating mutations in RAS were only identified in the seminoma subtype. Mutations in BRAF were not identified. Increased ERBB2 expression was associated with differentiated nonseminoma histology excised from lymph nodes postchemotherapy. Mutation, elevated expression, and correlations between expression levels of KRAS2, GRB7, and KIT are consistent with their involvement in the development of TGCTs.

  19. The Molecular Details of WPD-Loop Movement Differ in the Protein-Tyrosine Phosphatases YopH and PTP1B†

    OpenAIRE

    Brandão, Tiago A. S.; Johnson, Sean J.; Hengge, Alvan C.

    2012-01-01

    The movement of a conserved protein loop (the WPD-loop) is important in catalysis by protein tyrosine phosphatases (PTPs). Using kinetics, isotope effects, and X-ray crystallography, the different effects arising from mutation of the conserved tryptophan in the WPD-loop were compared in two PTPs, the human PTP1B, and the bacterial YopH from Yersinia. Mutation of the conserved tryptophan in the WPD-loop to phenylalanine has a negligible effect on kcat in PTP1B and full loop movement is maintai...

  20. Retinoids arrest breast cancer cell proliferation: retinoic acid selectively reduces the duration of receptor tyrosine kinase signaling

    OpenAIRE

    Tighe, Ann P.; Talmage, David A

    2004-01-01

    Retinoic acid (RA) induces cell cycle arrest of hormone-dependent human breast cancer (HBC) cells. Previously, we demonstrated that RA-induced growth arrest of T-47D HBC cells required the activity of the RA-induced protein kinase, protein kinase Cα (PKCα) [J. Cell Physiol. 172 (1997) 306]. Here, we demonstrate that RA treatment of T-47D cells interfered with growth factor signaling to downstream, cytoplasmic and nuclear targets. RA treatment did not inhibit epidermal growth factor (EGF) rece...

  1. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    International Nuclear Information System (INIS)

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO2, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression.. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO2. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after

  2. Asymmetric Wnt Pathway Signaling Facilitates Stem Cell-Like Divisions via the Nonreceptor Tyrosine Kinase FRK-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Mila, Danielle; Calderon, Adriana; Baldwin, Austin T; Moore, Kelsey M; Watson, McLane; Phillips, Bryan T; Putzke, Aaron P

    2015-11-01

    Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway. PMID:26358719

  3. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation.

    Science.gov (United States)

    Huang, Amin; Ju, Huai-Qiang; Liu, Kaiyan; Zhan, Guilian; Liu, Daolu; Wen, Shijun; Garcia-Manero, Guillermo; Huang, Peng; Hu, Yumin

    2016-07-28

    Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation. PMID:27132990

  4. Levels of circulating CD45dimCD34+VEGFR2+ progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors

    OpenAIRE

    Farace, F.; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N.; Jacques, N; Billiot, F.; Mauguen, A.; Hill, C.; Escudier, B

    2011-01-01

    Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) a...

  5. Tyrosine receptor kinase B silencing inhibits anoikis‑resistance and improves anticancer efficiency of sorafenib in human renal cancer cells.

    Science.gov (United States)

    Zhang, Peng; Xing, Zengshu; Li, Xuechao; Song, Yarong; Zhao, Jun; Xiao, Yajun; Xing, Yifei

    2016-04-01

    Renal cell carcinoma (RCC) is the most common solid neoplasm of adult kidney, and the major treatment for metastatic RCC (mRCC) is molecular targeted therapy. Sorafenib, as a multi-targeted tyrosine kinase inhibitor (TKI), has significantly improved clinical outcomes of mRCC patients. However, complete or long-term remissions are rarely achieved due to intolerance to dose-related adverse effects. It is therefore, necessary to explore novel target molecules for treatment or to enhance the therapeutic efficiency of present TKI for mRCC treatment. Anoikis is a specific type of apoptosis that plays a vital physiological role in regulating tissue homoeostasis. Anoikis-resistance is of critical importance for metastasis of various human cancers including mRCC. However, the precise mechanisms on anoikis-resistance in mRCC are still unclear. Tyrosine receptor kinase B (TrkB) belongs to the Trk family of neurotrophin receptors. Previous investigations have implied that activation or overexpression of TrkB promoted proliferation, survival, angiogenesis, anoikis-resistance and metastasis in human cancers. Yet, the correlation between TrkB and anoikis-resistance in mRCC has rarely been reported. The aim of the present study was to explore the impact of TrkB on anoikis-resistance and targeted therapy in mRCC. Our data revealed that anoikis-resistant ACHN cells presented with tolerance to detachment-induced apoptosis, excessive proliferation and aggressive invasion, accompanied by upregulation of TrkB expression in contrast to parental cells. Furthermore, TrkB silencing caused apoptosis, inhibited proliferation, retarded invasion as well as improved anticancer efficiency of sorafenib in anoikis-resistant ACHN cells through inactivation of PI3K/Akt and MEK/ERK pathways. Our data may offer a novel potential therapeutic strategy for mRCC. PMID:26820170

  6. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation.

    OpenAIRE

    Nicholson, S. E.; Oates, A. C.; Harpur, A G; Ziemiecki, A; Wilks, A F; Layton, J E

    1994-01-01

    Granulocyte-colony-stimulating factor (G-CSF) stimulates the proliferation and differentiation of cells of the neutrophil lineage by interaction with a specific receptor. Early signal transduction events following G-CSF receptor activation were studied. We detected tyrosine phosphorylation of both the G-CSF receptor and the protein tyrosine kinase JAK1 following G-CSF binding to the human G-CSF receptor. In vitro, the kinase activity of JAK1 was increased by G-CSF stimulation. Coimmunoprecipi...

  7. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    Directory of Open Access Journals (Sweden)

    Xue-Song Zhang

    2015-02-01

    Full Text Available Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.

  8. Phosphorylation of insulin-like growth factor I receptor by insulin receptor tyrosine kinase in intact cultured skeletal muscle cells

    International Nuclear Information System (INIS)

    The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]-orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identifies of the insulin and IGF I receptor β-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the β-subunit of the insulin receptor correlated with the occupancy of the β-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the β-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the β-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells

  9. Phosphorylation of insulin-like growth factor I receptor by insulin receptor tyrosine kinase in intact cultured skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Beguinot, F.; Smith, R.J.; Kahn, C.R.; Maron, R.; Moses, A.C.; White, M.F.

    1988-05-03

    The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of (/sup 32/P)-orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identifies of the insulin and IGF I receptor ..beta..-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the ..beta..-subunit of the insulin receptor correlated with the occupancy of the ..beta..-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the ..beta..-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the ..beta..-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.

  10. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells.

    Science.gov (United States)

    Castoria, G; Giovannelli, P; Lombardi, M; De Rosa, C; Giraldi, T; de Falco, A; Barone, M V; Abbondanza, C; Migliaccio, A; Auricchio, F

    2012-11-15

    We report that in breast cancer cells, tyrosine phosphorylation of the estradiol receptor alpha (ERalpha) by Src regulates cytoplasmic localization of the receptor and DNA synthesis. Inhibition of Src or use of a peptide mimicking the ERalpha p-Tyr537 sequence abolishes ERalpha tyrosine phosphorylation and traps the receptor in nuclei of estradiol-treated MCF-7 cells. An ERalpha mutant carrying a mutation of Tyr537 to phenylalanine (ER537F) persistently localizes in nuclei of various cell types. In contrast with ERalpha wt, ER537F does not associate with Ran and its interaction with Crm1 is insensitive to estradiol. Thus, independently of estradiol, ER537F is retained in nuclei, where it entangles FKHR-driving cell cycle arrest. Chromatin immunoprecipitation analysis reveals that overexpression of ER537F in breast cancer cells enhances FKHR interaction with cyclin D1 promoter. This mutant also counteracts cell transformation by the activated forms of Src or PI3-K. In conclusion, in addition to regulating receptor localization, ERalpha phosphorylation by Src is required for hormone responsiveness of DNA synthesis in breast cancer cells. PMID:22266855

  11. Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Samadi Abbas K

    2011-10-01

    Full Text Available Abstract Background Withaferin A (WA, a naturally occurring withanolide, induces apoptosis in both estrogen-responsive MCF-7 and estrogen-independent MDA-MB-231 breast cancer cell lines with higher sensitivity in MCF-7 cells, but the underlying mechanisms are not well defined. The purpose of this study was to determine the anti-cancer effects of WA in MCF-7 breast cancer cells and explore alterations in estrogen receptor alpha (ERα and its associated molecules in vitro as novel mechanisms of WA action. Methods The effects of WA on MCF-7 viability and proliferation were evaluated by 3-(4, 5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay and trypan blue exclusion assays. Apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC/propidium iodide (PI flow cytometry and Western blot analysis of poly (ADP-ribose polymerase (PARP cleavage. Cell cycle effects were analyzed by PI flow cytometry. Western blotting was also conducted to examine alterations in the expression of ERα and pathways that are associated with ERα function. Results WA resulted in growth inhibition and decreased viability in MCF-7 cells with an IC50 of 576 nM for 72 h. It also caused a dose- and time-dependent apoptosis and G2/M cell cycle arrest. WA-induced apoptosis was associated with down-regulation of ERα, REarranged during Transfection (RET tyrosine kinase, and heat shock factor-1 (HSF1, as well as up-regulation of phosphorylated p38 mitogen-activated protein kinase (phospho-p38 MAPK, p53 and p21 protein expression. Co-treatment with protein synthesis inhibitor cycloheximide or proteasome inhibitor MG132 revealed that depletion of ERα by WA is post-translational, due to proteasome-dependent ERα degradation. Conclusions Taken together, down-regulation of ERα, RET, HSF1 and up-regulation of phospho-p38 MAPK, p53, p21 are involved in the pro-apoptotic and growth-inhibitory effects of WA in MCF-7 breast cancer cells in

  12. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  13. Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum.

    Science.gov (United States)

    Saifudin, Azis; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2013-04-01

    We screened water and methanol extracts of 28 Indonesian medicinal plants for their protein tyrosine phosphatase 1B (PTP1B) inhibitory activities. Nine water extracts, i.e., Alstonia scholaris leaf, Blumea balsamifera, Cinnamomum burmannii, Cymbopogon nardus, Melaleuca leucadendra, Phyllanthus niruri, Piper nigrum, Syzygium aromaticum, and Sy. polyanthum, exhibited ≥70 % inhibition at 25 μg/mL, whereas 11 methanol extracts, i.e., Als. scholaris, Andrographis paniculata, B. balsamifera, Ci. burmannii, Curcuma heyneana, Glycyrrhiza glabra, M. leucadendra, Punica granatum, Rheum palmatum, Sy. polyanthum, and Z. aromaticum, exhibited ≥70 % inhibition at 25 μg/mL. Water extracts of B. balsamifera (IC50, 2.26 μg/mL) and M. leucadendra (IC50, 2.05 μg/mL), and methanol extracts of Ci. burmannii (IC50, 2.47 μg/mL), Pu. granatum (IC50, 2.40 μg/mL), and Sy. polyanthum (IC50, 1.03 μg/mL) exhibited strong inhibitory activity, which was comparable with that of the positive control, RK-682 (IC50, 2.05 μg/mL). The PTP1B inhibitory activity of the constituents of Ci. burmannii and Z. aromaticum was then evaluated. 5'-Hydroxy-5-hydroxymethyl-4″,5″-methylenedioxy-1,2,3,4-dibenzo-1,3,5-cycloheptatriene (2; IC50, 29.7 μM) and trans-cinnamaldehyde (5; IC50, 57.6 μM) were the active constituents of Ci. burmannii, while humulatrien-5-ol-8-one (21; IC50, 27.7 μM), kaempferol-3,4'-di-O-methyl ether (32; IC50, 17.5 μM), and (S)-6-gingerol (33; IC50, 28.1 μM) were those of Z. aromaticum. These results suggest that these medicinal plants may contribute to the treatment and/or prevention of type II diabetes and/or obesity through PTP1B inhibition. PMID:22645080

  14. Novel Mechanism for Suppression of Hyperpolarization-activated Cyclic Nucleotide-gated Pacemaker Channels by Receptor-like Tyrosine Phosphatase-α*

    OpenAIRE

    Huang, Jianying; Huang, Aijie; Zhang, Qi; Lin, Yen-Chang; Yu, Han-Gang

    2008-01-01

    We have previously reported an important role of increased tyrosine phosphorylation activity by Src in the modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we provide evidence showing a novel mechanism of decreased tyrosine phosphorylation on HCN channel properties. We found that the receptor-like protein-tyrosine phosphatase-α (RPTPα) significantly inhibited or eliminated HCN2 channel expression in HEK293 cells. Biochemical eviden...

  15. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    International Nuclear Information System (INIS)

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, we showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo

  16. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Zhou, Yajuan [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Cheng, Long [Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215001 (China); Hu, Desheng; Zhou, Xiaoyi; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: ZhouFuxiangwuhan@126.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2015-09-11

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, we showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.

  17. Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Floriana Morgillo

    Full Text Available Treatment of non small cell lung cancer (NSCLC and colorectal cancer (CRC have substantially changed in the last years with the introduction of epidermal growth factor receptor (EGFR inhibitors in the clinical practice. The understanding of mechanisms which regulate cells sensitivity to these drugs is necessary for their optimal use.An in vitro model of acquired resistance to two tyrosine kinase inhibitors (TKI targeting the EGFR, erlotinib and gefitinib, and to a TKI targeting EGFR and VEGFR, vandetanib, was developed by continuously treating the human NSCLC cell line CALU-3 and the human CRC cell line HCT116 with escalating doses of each drug. MTT, western blot analysis, migration, invasion and anchorage-independent colony forming assays were conducted in vitro and experiments with established xenografts in athymic nude mice were performed in vivo in sensitive, wild type (WT and TKI-resistant CALU-3 and HCT116 cell lines.As compared to WT CALU-3 and HCT116 human cancer cells, TKI-resistant cell lines showed a significant increase in the levels of activated, phosphorylated AKT, MAPK, and of survivin. Considering the role of RAS and RAF as downstream signals of both the EGFR and VEGFR pathways, we treated resistant cells with sorafenib, an inhibitor of C-RAF, B-RAF, c-KIT, FLT-3, RET, VEGFR-2, VEGFR-3, and PDGFR-β. Sorafenib reduced the activation of MEK and MAPK and caused an inhibition of cell proliferation, invasion, migration, anchorage-independent growth in vitro and of tumor growth in vivo of all TKI-resistant CALU-3 and HCT116 cell lines.These data suggest that resistance to EGFR inhibitors is predominantly driven by the RAS/RAF/MAPK pathway and can be overcame by treatment with sorafenib.

  18. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo

    OpenAIRE

    Ponader, Sabine; Chen, Shih-Shih; Buggy, Joseph J.; Balakrishnan, Kumudha; Gandhi, Varsha; William G Wierda; Michael J Keating; O'Brien, Susan; Chiorazzi, Nicholas; Burger, Jan A.

    2012-01-01

    B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in ...

  19. Activity of Bruton's tyrosine-kinase inhibitor ibrutinib in patients with CD117-positive acute myeloid leukaemia: a mechanistic study using patient-derived blast cells

    OpenAIRE

    Rushworth, Stuart; Pillinger, Genevra; Abdul-Aziz, Amina; Piddock, Rachel; Shafat, Manar S.; Murray, Megan Y; Zaitseva, Lyubov; Lawes, Matthew J.; MacEwan, David J.; Bowles, Kristian M.

    2015-01-01

    Summary Background Roughly 80% of patients with acute myeloid leukaemia have high activity of Bruton's tyrosine-kinase (BTK) in their blast cells compared with normal haemopoietic cells, rendering the cells sensitive to the oral BTK inhibitor ibrutinib in vitro. We aimed to develop the biological understanding of the BTK pathway in acute myeloid leukaemia to identify clinically relevant diagnostic information that might define a subset of patients that should respond to ibrutinib treatment. M...

  20. Expression profiling of receptor tyrosine kinases in high-grade neuroendocrine carcinoma of the lung: a comparative analysis with adenocarcinoma and squamous cell carcinoma

    OpenAIRE

    MATSUMURA, YUKI; Umemura, Shigeki; Ishii, Genichiro; Tsuta, Koji; Matsumoto, Shingo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Ohe, Yuichiro; Suzuki, Hiroyuki; Ochiai, Atsushi; Goto, Koichi; Nagai, Kanji; Tsuchihara, Katsuya

    2015-01-01

    Background As the comprehensive genomic analysis of small cell lung cancer (SCLC) progresses, novel treatments for this disease need to be explored. With attention to the direct connection between the receptor tyrosine kinases (RTKs) of tumor cells and the pharmacological effects of specific inhibitors, we systematically assessed the RTK expressions of high-grade neuroendocrine carcinomas of the lung [HGNECs, including SCLC and large cell neuroendocrine carcinoma (LCNEC)]. Patients and method...

  1. SILAC-based quantification of changes in protein tyrosine phosphorylation induced by Interleukin-2 (IL-2) and IL-15 in T-lymphocytes

    DEFF Research Database (Denmark)

    Osinalde, Nerea; Sánchez-Quiles, Virginia; Akimov, Vyacheslav;

    2015-01-01

    This data article presents the first large-scale quantitative phosphoproteomics dataset generated to decipher the signaling networks initiated by IL-2 and IL-15 in T-lymphocytes. Data was collected by combining immunoprecipitation of tyrosine phosphorylated proteins and TiO2-based phosphopeptide....... The data supplied in this article is related to the research work entitled "Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics" [1]. All mass spectrometry data have been deposited in the ProteomeXchange with the identifier PXD001129....

  2. The structural insights of stem cell factor receptor (c-Kit interaction with tyrosine phosphatase-2 (Shp-2: An in silico analysis

    Directory of Open Access Journals (Sweden)

    Gurudutta Gangenahalli U

    2010-01-01

    Full Text Available Abstract Background Stem cell factor (SCF receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1 deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state, in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit and full length crystal structure of Shp-2, a close structural counterpart of Shp-1. Findings Study revealed a stretch of conserved amino acids (Lys818 to Ser821 in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain. Conclusions This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.

  3. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  4. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Czyzyk-Krzeska, M F; Furnari, B A; Lawson, E E; Millhorn, D E

    1994-01-01

    Reduced arterial oxygen tension (i.e. hypoxia) is a powerful physiological stimulus that induces synthesis and release of dopamine from O2-sensitive (type I) cells in the mammalian carotid bodies. We reported recently that hypoxia stimulates gene expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis in type I cells of the carotid body. Efforts to identify the mechanisms regulating TH gene expression in O2-sensitive cells during hypoxia have been hampered by the lack of an appropriate model cell culture system. Here we report that TH gene expression in the rat pheochromocytoma cell line (PC12) is regulated during hypoxia in a manner similar to that measured in carotid body type I cells. PC12 cells might therefore be useful as an experimental model for identifying the molecular mechanisms that regulate TH gene expression during hypoxia. Nuclear runoff assays revealed that transcription of the wild type TH gene was enhanced during exposures to hypoxia lasting 12 h. Chloramphenicol acetyltransferase assays with constructs that contained different fragments of TH promoter revealed that the regulatory sequences that mediate the hypoxia-induced increase in transcription are located between bases -272 and +27 of the TH gene. Findings from experiments in which transcription was inhibited either with actinomycin D or 5,6-dichloro-1-D-ribofuranosylbenzimidazole, as well as pulse-chase experiments using 4-thiouridine showed that the half-life of TH mRNA was substantially increased during hypoxia. Thus, in the present paper we show that TH gene expression in PC12 cells during hypoxia is regulated by increases in both the rate of TH gene transcription and TH mRNA stability. PMID:7903970

  5. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States); Wang, Shao-Chun, E-mail: shao-chun.wang@uc.edu [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  6. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    International Nuclear Information System (INIS)

    Highlights: ► Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. ► Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. ► MCE during adipogenesis is abolished in the lack of the phosphorylation. ► Homozygous Y114F mice are resistant to high fat diet induced obesity. ► Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNAF/F) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNAF/F MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNAF/F mice. This study identifies a critical role for PCNA in adipose

  7. SILAC-based quantification of changes in protein tyrosine phosphorylation induced by Interleukin-2 (IL-2 and IL-15 in T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Nerea Osinalde

    2015-12-01

    Full Text Available This data article presents the first large-scale quantitative phosphoproteomics dataset generated to decipher the signaling networks initiated by IL-2 and IL-15 in T-lymphocytes. Data was collected by combining immunoprecipitation of tyrosine phosphorylated proteins and TiO2-based phosphopeptide enrichment with SILAC-based quantitative mass spectrometry. We report all the proteins and phosphotyrosine-containing peptides identified and quantified in IL-2- and IL-15-stimulated T-lymphocytes. The gene ontology analysis of IL-2 and IL-15 effector proteins detected in the present work is also included. The data supplied in this article is related to the research work entitled “Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics” [1]. All mass spectrometry data have been deposited in the ProteomeXchange with the identifier PXD001129.

  8. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein.

    OpenAIRE

    Shuba, L. M.; Asai, T.; Pelzer, S.; McDonald, T. F.

    1996-01-01

    1. Genistein (GST), an inhibitor of protein tyrosine kinase (PTK), Na3VO4 (VO4), an inhibitor of phosphotyrosine phosphatase (PTPase), and forskolin (FSK), an activator of the cyclic AMP-dependent, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, were applied to guinea-pig ventricular myocytes to probe for a possible role of tyrosine phosphorylation in the regulation of cardiac Cl- channels. 2. Myocytes in the standard whole-cell configuration were pulsed to various pot...

  9. The V Protein of Canine Distemper Virus Is Required for Virus Replication in Human Epithelial Cells

    OpenAIRE

    Noriyuki Otsuki; Yuichiro Nakatsu; Toru Kubota; Tsuyoshi Sekizuka; Fumio Seki; Kouji Sakai; Makoto Kuroda; Ryoji Yamaguchi; Makoto Takeda

    2013-01-01

    Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at posit...

  10. QSAR AND PHARMACOPHORE MODELING BASED DRUG DESIGNING FOR SPLEEN TYROSINE KINASE (SYK PROTEIN FOR HUMAN USING ACCELRYS DISCOVERY STUDIO SOFTWARE IN LINUX SERVER

    Directory of Open Access Journals (Sweden)

    Kuldeep Sahu

    2013-11-01

    Full Text Available From this current research, Syk (spleen tyrosine kinase protein and gene information is analyzed by different genomics, proteomics tools & databases. One crystal ligand 4DFL was collected from protein data bank (pdb. From different literature review 131 syk protein inhibitors were collected. Molecular modeling of these 131 molecules was done through Accelrys discovery studio (ADS. Choose appropriate force-field & minimization (Smart, Stephent Descent, and Conjugate Gradient according to selected molecules. Then collected crystal ligand is purified by protein purification method and used appropriate conformation (BEST, FAST, and CAESAR. Docking methods were analyzed with protein, crystal ligand and similar inhibitors to know the best protein-ligand interaction. Pharmacophore research is done through HIPHOP and HYPOGEN method. Protein with final compound docking method is done after completion of virtual screening method. Pharmacophore research with final molecule was done. Quantitative structure activity relationship (qsar method is analyzed to know the correlation between the above selective structures. From virtual screening method, best and final compound is analyzed. So, final molecule can be a drug molecule for SYK protein abnormality diseases. However, the scope for fine tuning and optimizing this potent class of syK inhibitors could lead to the generation of new therapeutic agents.

  11. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    International Nuclear Information System (INIS)

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor β (PDGFR-β), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-β. Active PDGFR-β was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-β and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling

  12. p66Shc longevity protein regulates the proliferation of human ovarian cancer cells.

    Science.gov (United States)

    Muniyan, Sakthivel; Chou, Yu-Wei; Tsai, Te-Jung; Thomes, Paul; Veeramani, Suresh; Benigno, Benedict B; Walker, L DeEtte; McDonald, John F; Khan, Shafiq A; Lin, Fen-Fen; Lele, Subodh M; Lin, Ming-Fong

    2015-08-01

    p66Shc functions as a longevity protein in murine and exhibits oxidase activity in regulating diverse biological activities. In this study, we investigated the role of p66Shc protein in regulating ovarian cancer (OCa) cell proliferation. Among three cell lines examined, the slowest growing OVCAR-3 cells have the lowest level of p66Shc protein. Transient transfection with p66Shc cDNA expression vector in OVCAR-3 cells increases cell proliferation. Conversely, knock-down of p66Shc by shRNA in rapidly growing SKOV-3 cells results in decreased cell growth. In estrogen (E2)-treated CaOV-3 cells, elevated p66Shc protein level correlates with ROS level, ErbB-2 and ERK/MAPK activation, and cell proliferation. Further, the E2-stimulated proliferation of CaOV-3 cells was blocked by antioxidants and ErbB-2 inhibitor. Additionally, in E2-stimulated cells, the tartrate-sensitive, but not the tartrate-resistant, phosphatase activity decreases; concurrently, the tyrosine phosphorylation of ErbB-2 increases. Conversely, inhibition of phosphatase activity by L(+)-tartrate treatment increases p66Shc protein level, ErbB-2 tyrosine phosphorylation, ERK/MAPK activation, and cell growth. Further, inhibition of the ERK/MAPK pathway by PD98059 blocks E2-induced ERK/MAPK activation and cell proliferation in CaOV-3 cells. Moreover, immunohistochemical analyses showed that the p66Shc protein level was significantly higher in cancerous cells than in noncancerous cells in archival OCa tissues (n = 76; P = 0.00037). These data collectively indicate that p66Shc protein plays a critical role in up-regulating OCa progression. PMID:24395385

  13. Effect of ionizing radiation on receptor tyrosine kinases and p16 expression in human malignant melanoma cell lines

    International Nuclear Information System (INIS)

    Receptor tyrosine kinases (RTK) of subclass I are a group of cell surface receptors which upon binding of a ligand excert signal transduction processes. They are involved in the pathogenesis of different types of cancer, such as malignant melanoma or mammary carcinoma. p16, a cell cycle regulator has been shown to be a decisive tumor suppressor gene in human malignant melanoma. Since the effect of UV-radiation on melanoma cells has been demonstrated, a possible effect of ionizing radiation on the expression of RTK and p16 was studied in melanoma cell lines by Northern blot analysis and RT-PCR. The expression of the Epidermal Growth Factor Receptor, her2/neu and a human homologous exon of Xmrk, the causative oncogene in melanoma formation in the teleost fish Xiphophorus was studied in human malignant melanoma cell lines after exposure to 1 - 6 Gy of ionizing radiation (240 kV x-ray, FOD 40 cm, dose rate 1 Gy/min). It could be demonstrated that the expression levels of these RTK are upregulated after exposure to ionizing radiation, showing a maximum at 6 Gy for the Xmrk homologous exon and her2/neu whereas EGFR reached a maximum at 1 Gy. p16 expression is altered in a similar way by ionizing radiation. These data clearly indicate that oncogene and tumor suppressor gene expression are affected by ionizing radiation in melanoma cell lines, providing an explanation for the lack of radiosensitivity of many primary malignant melanomas and melanoma metastases. On the contrary, the upregulated RTK expression, e.g. the EGFR expression could be utilized for a targeted radiation-gene therapy

  14. Change of glutamic acid decarboxylase antibody and protein tyrosine phosphatase antibody in Chinese patients with acute-onset type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    CHAO Chen; HUANG Gan; LI Xia; YANG Lin; LIN Jian; JIN Ping; LUO Shuo-ming

    2013-01-01

    Background Glutamic acid decarboxylase antibody (GADA) and protein tyrosine phosphatase antibody (IA-2A) are two major autoantibodies,which exert important roles in the process of type 1 diabetes mellitus (T1D).Our study aimed to investigate the changes in positivity and titers of GADA and IA-2A during the course of Chinese acute-onset T1D patients and their relationships with clinical features.Methods Two hundreds and forty-seven Chinese newly diagnosed acute-onset T1D patients were consecutively recruited.GADA and IA-2A were detected at the time of diagnosis,one year later,3-5 years later after diagnosis during the follow-up; all the clinical data were recorded and analyzed as well.Results During the course of acute-onset T1D,the majority of patients remained stable for GADA or IA-2A,however,a few patients changed from positivity to negativity and fewer patients converted from negativity to positivity.The prevalence of GADA was 56.3% at diagnosis,decreasing to 50.5% one year later,and 43.3% 3-5 years later while the corresponding prevalence of IA-2A were 32.8%,31.0% and 23.3%,respectively.The median GADA titers were 0.0825 at diagnosis,declining to 0.0585 one year later and 0.0383 3-5 years later (P <0.001),while the corresponding median titers were 0.0016,0.0010,0.0014 for IA-2A,respectively.Fasting C-peptide (FCP) and postprandial C-peptide 2 hours (PCP2h)levels of GADA or IA-2A negativity persistence patients were higher than those of positivity persistence and negativity conversion patients (P <0.05) which indicated GADA or IA-2A negativity persistence T1D patients had a less loss of β cell function.Conclusion Our data suggest that repeated detection of GADA and IA-2A are necessary for differential diagnosis of autoimmune diabetes and the indirect prediction of the β cell function in Chinese patients.

  15. HIGH-THROUGHPUT SCREENING OF GLIOMA STEM CELL LINES FOR DRUG STRUCTURE- AND GENOTYPE-CORRELATED SENSITIVITY TO A PANEL OF TYROSINE KINASE INHIBITORS

    OpenAIRE

    de Groot, John; Thomas, C.; Piao, Y.; Nguyen, N; Drewry, D.; Zuercher, B.; Verhaak, R.; Stephan, C.; Sulman, E.P.; Lang, F.; Yung, A

    2014-01-01

    BACKGROUND: There is substantial genetic heterogeneity among glioblastoma tumors from different patients. To develop an accurate depiction of the molecular determinants of response to therapy, we used a large collection of glioma stem cell lines (GSCs) to study the impact of this heterogeneity on response to tyrosine kinase inhibition. Twelve glioma stem cell (GSC) lines, which are representative of TCGA molecular subtypes, were utilized in a high-throughput compound-screening assay to identi...

  16. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K;

    2007-01-01

    study. We were unable to identify any striking phenotypes related to control of UDP-glucose dehydrogenases, natural competence and DNA lesion repair; however, a very strong phenotype of ΔptkA emerged with respect to DNA replication and cell cycle control, as revealed by flow cytometry and fluorescent...... microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period....... previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. This promiscuity towards substrates is reminiscent of eukaryal kinases and has prompted us to investigate possible physiological effects of ptkA and ptpZ gene inactivations in this...

  17. Effects of Tyrosine Kinase inhibitor Imatinib (Glivec) on PDGFR-positive primary and metastatic melanoma cells

    International Nuclear Information System (INIS)

    In summary these preliminary results indicate that Imatinib is able to induce apoptosis in metastatic cells and to sensitize these cells to pro-apoptotic agents commonly used in melanoma therapy, e.g. radiation or Cisplatin. Conversely, primary melanoma cells seem to be intrinsically resistant either to Imatinib given alone or in combination with Cisplatin or radiation. By contrast, these cells underwent autophagy and replicative senescence boostering their survival. Interestingly, the use of Imatinib in combination with anti-CD95/Fas antibodies sensitizes primary melanoma cells to apoptosis

  18. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    OpenAIRE

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2010-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transect...

  19. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion

    International Nuclear Information System (INIS)

    E7080 is an orally active multi-targeted kinase inhibitor whose targets include vascular endothelial growth factor receptors (VEGFR), fibroblast growth factor receptor (FGFR) and platelet derived growth factor receptors (PDGFR). It has been shown to inhibit tumor angiogenesis by targeting endothelial cells. A number of the targets of E7080 are also expressed on tumor cells and here we have looked at the direct effects of E7080 on tumor cell behavior. Using a panel of human tumor cell lines we determined the effect of E7080 on cell proliferation, migration and invasion. Inhibition of FGFR and PDGFR signaling in the cells was measured. E7080 had little effect on tumor cell proliferation. However, it blocked migration and invasion at concentrations that inhibited FGFR and PDGFR signaling. Knock-down of PDGFR-β in U2OS osteosarcoma cells also inhibited cell migration which, could not be further inhibited in the presence of E7080. Furthermore, E7080 could not inhibit the migration of a PDGFR negative cell line. E7080 does not significantly affect tumor cell proliferation but can inhibit their migration and invasion at concentrations that both inhibit its known targets and are achievable clinically

  20. Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor

    International Nuclear Information System (INIS)

    Purpose: Overexpression of the ErbB family of growth factor receptors is present in a wide variety of human tumors and is correlated with poor prognosis. The purpose of this study was to determine the effects of a novel small molecule ErbB tyrosine kinase inhibitor, CI-1033, in combination with ionizing radiation on breast cancer cell growth and survival. Materials and Methods: Growth assays were performed on ErbB-overexpressing human breast cancer cells developed in our laboratory in the presence of 0.1-1.0 μM CI-1033 (Parke Davis). Clonogenic survival assays were performed in the presence of ionizing radiation with or without CI-1033. For some experiments, clonogen numbers, defined as the product of surviving fraction and total number of cells, were calculated at each time point during a course of multifraction radiation. Results: CI-1033 potently inhibited the growth of ErbB-overexpressing breast cancer cells. A single 48-h exposure of 1 μM CI-1033 resulted in growth inhibition for 7 days, whereas three times weekly administration resulted in sustained growth inhibition. Clonogenic survival was modestly decreased after a 7-day exposure to CI-1033. Exposure to both CI-1033 and radiation (6 Gy) yielded a 23-fold decrease in clonogenic survival compared to radiation alone. In a multifraction experiment, exposure to CI-1033 and three 5-Gy fractions of gamma radiation decreased the total number of clonogens in the population by 65-fold compared to radiation alone. Conclusion: CI-1033 results in potent growth inhibition and modest cytotoxicity of ErbB-overexpressing breast cancer cells, and has synergistic effects when combined with ionizing radiation. These data suggest that CI-1033 may have excellent clinical potential both alone and in combination with radiation therapy.

  1. Molecular Mechanisms Contributing to Resistance to Tyrosine Kinase-Targeted Therapy for Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    One of the most important pathways in non-small cell lung cancer (NSCLC) is the epidermal growth factor receptor (EGFR) pathway. This pathway affects several crucial processes in tumor development and progression, including tumor cell proliferation, apoptosis regulation, angiogenesis, and metastatic invasion. Targeting EGFR is currently being intensely explored. We are witnessing the development of a number of potential molecular-inhibiting treatments for application in clinical oncology. In the last decade, the tyrosine kinase (TK) domain of the EGFR was identified in NSCLC patients, and it has responded very well with a dramatic clinical improvement to TK inhibitors such are gefitinib and erlotinib. Unfortunately, there were primary and/or secondary resistance to these treatments, as shown by clinical trials. Subsequent molecular biology studies provided some explanations for the drug resistance phenomenon. The molecular mechanisms of resistance need to be clarified. An in-depth understanding of these targeted-therapy resistance may help us explore new strategies for overcoming or reversing the resistance to these inhibitors for the future of NSCLC treatment

  2. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering

    Science.gov (United States)

    Fu, Dan; Zhou, Jing; Zhu, Wenjing Suzanne; Manley, Paul W.; Wang, Y. Karen; Hood, Tami; Wylie, Andrew; Xie, X. Sunney

    2014-07-01

    ABL1 tyrosine-kinase inhibitors (TKI) are front-line therapy for chronic myelogenous leukaemia and are among the best-known examples of targeted cancer therapeutics. However, the dynamic uptake into cells of TKIs of low molecular weight and their intracellular behaviour is unknown because of the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs (imatinib and nilotinib) inside living cells using hyperspectral stimulated Raman scattering imaging. Concentrations of both drugs were enriched over 1,000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced more than tenfold when chloroquine is used simultaneously, which suggests that chloroquine may increase the efficacy of TKIs through lysosome-mediated drug-drug interaction in addition to the commonly proposed autophagy-inhibition mechanism.

  3. Non small-cell lung cancer and treatment options after tyrosine kinase inhibitors failure in the first line

    International Nuclear Information System (INIS)

    Introduction: Advanced non-small cell lung cancer with present epidermal growth factor receptor (EGFR) sensitising mutation is standardly treated with tyrosine kinase inhibitors (TKI). During treatment a resistance to TKI develops, disease progresses. We differ primary and secondary resistance. The most effective treatment after TKI failure is not definitively proven. Standard chemotherapy is usually introduced, eventually it is possible to use other TKI in the next lines. Case: The author presents a case of 60-year old patient with lung adenocarcinoma with EGFR sensitising mutation, where primary resistance to TKI was observed. Chemotherapy after progression was introduced. Planned therapy with afatnib was not carried out due to deterioration of patient´s condition. Conclusion: Presented case of EGFR mutation-positive patient represents an example of not very frequent primary resistance to TKI. Mechanisms of primary resistance are not well understood. Treatment after first line TKI failure in non-small cell lung cancer with EGFR mutation represents a challenge for medical research. (author)

  4. Enediyne lidamycin enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib, in epidermoid carcinoma A431 cells and lung carcinoma H460 cells.

    Science.gov (United States)

    Liu, Hong; Li, Liang; Li, Xing-Qi; Liu, Xiu-Jun; Zhen, Yong-Su

    2009-01-01

    Gefitinib, a low-molecular-weight epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is effective in a wide variety of tumor types. Preclinical studies have shown potentiated antitumor efficacies of this agent in combination with chemotherapy or radiotherapy. The antitumor antibiotic lidamycin (LDM) showed extremely potent cytotoxicity in vitro and marked therapeutic effect in vivo. In this report, the cytotoxic and biochemical activity of LDM and gefitinib on human epidermoid carcinoma A431 cells and human large cell lung cancer H460 cells as a single agent or in combination has been evaluated. In the MTT assay, LDM showed much more potent cytotoxicity than gefitinib to both cell lines. A431 cells with a highly EGFR-expressing level were more sensitive to gefitinib than H460 cells, which expressed EGFR at an intermediate level. LDM plus gefitinib showed potentiation of antiproliferative activity and apoptosis induction, which were associated with downregulation of EGFR signaling pathway and nuclear factor-kappa B expression, and the increase of cleaved poly (adenosine diphosphate-ribose) polymerase in the two cell lines, although to a lesser degree in H460 cells. Combined treatment induced G1 phase arrest similar to that of gefitinib alone in A431 cells and intensified G2/M phase accumulation in H460 cells. The above results indicate that LDM potentiates the effects of gefitinib in both gefitinib sensitive and less sensitive cells in association with enhanced inhibition of EGFR-dependent signaling. PMID:19342999

  5. The Mertk Receptor Tyrosine Kinase Promotes T-B interaction Stimulated by IgD B-cell Receptor Cross-linking

    OpenAIRE

    Shao, Wen-Hai; Zhen, Yuxuan; Finkelman, Fred D.; Cohen, Philip L.

    2014-01-01

    The Mertk receptor tyrosine kinase facilitates macrophage and DC apoptotic-cell clearance and regulates immune tolerance. Mertk may also contribute to B-cell activation, because Mertk-KO mice fail to develop autoantibodies when allo-activated by T cells. We investigated this possibility with a well-characterized model in which injection of mice with goat anti-IgD antibody causes membrane IgD cross-linking that induces T-independent B cell activation and antigen presentation to T cells. Goat a...

  6. Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis.

    Directory of Open Access Journals (Sweden)

    Belén Morón

    Full Text Available BACKGROUND: Spermidine is a dietary polyamine that is able to activate protein tyrosine phosphatase non-receptor type 2 (PTPN2. As PTPN2 is known to be a negative regulator of interferon-gamma (IFN-γ-induced responses, and IFN-γ stimulation of immune cells is a critical process in the immunopathology of inflammatory bowel disease (IBD, we wished to explore the potential of spermidine for reducing pro-inflammatory effects in vitro and in vivo. METHODS: Human THP-1 monocytes were treated with IFN-γ and/or spermidine. Protein expression and phosphorylation were analyzed by Western blot, cytokine expression by quantitative-PCR, and cytokine secretion by ELISA. Colitis was induced in mice by dextran sodium sulfate (DSS administration. Disease severity was assessed by recording body weight, colonoscopy and histology. RESULTS: Spermidine increased expression and activity of PTPN2 in THP-1 monocytes and reduced IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 1 and 3, as well as p38 mitogen-activated protein kinase (MAPK in a PTPN2 dependent manner. Subsequently, IFN-γ-induced expression/secretion of intracellular cell adhesion molecule (ICAM-1 mRNA, monocyte chemoattractant protein (MCP-1, and interleukin (IL-6 was reduced in spermidine-treated cells. The latter effects were absent in PTPN2-knockdown cells. In mice with DSS-induced colitis, spermidine treatment resulted in ameliorated weight loss and decreased mucosal damage indicating reduced disease severity. CONCLUSIONS: Activation of PTPN2 by spermidine ameliorates IFN-γ-induced inflammatory responses in THP-1 cells. Furthermore, spermidine treatment significantly reduces disease severity in mice with DSS-induced colitis; hence, spermidine supplementation and subsequent PTPN2 activation may be helpful in the treatment of chronic intestinal inflammation such as IBD.

  7. Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Pick, Anne; Wiese, Michael

    2012-04-01

    Multidrug resistance observed in cancer chemotherapy is commonly attributed to overexpression of efflux transporter proteins. These proteins act as ATP-dependent drug efflux pumps, actively extruding chemotherapeutic agents from cells and causing a decrease in intracellular drug accumulation. Besides the well-recognized role of P-glycoprotein (P-gp, ABCB1), the breast cancer resistance protein (BCRP, ABCG2) is becoming increasingly accepted as playing an important role in multidrug resistance. In contrast to P-glycoprotein, only a few inhibitors of ABCG2 are known. According to the literature, tyrosine kinase inhibitors (TKIs) can be considered to be broad-spectrum inhibitors, interacting with ABCB1, ABCC1 and ABCG2. Here, we investigated seven different TKIs, gefitinib, erlotinib, AG1478, PD158780, PD153035, nilotinib and imatinib, for their potential to restore ABCG2 sensitivity to cells. Furthermore, we analyzed the alteration of ABCG2 expression caused by TKIs and demonstrated that EGFR inhibitors such as gefitinib and PD158780 reduced both total and surface expression of ABCG2 in EGRF-positive MDCK BCRP cells by interaction with the PI3K/Akt signaling pathway. The reduced ABCG2 content led to an increased effect of XR9577, a well-known ABCG2 modulator, lowering the concentration required for half maximal inhibition. On the other hand, BCR-ABL inhibitors had no influence on ABCG2 expression and modulator activity. Interestingly, a combination of an EGFR inhibitor with the PI3K/Akt inhibitor LY294002 led to a significant reduction of ABCG2 expression at low concentrations of the drugs. Based on our results, we assume that EGFR exerts a post-transcriptional enhancing effect on ABCG2 expression via the PI3K/Akt signaling pathway, which can be attenuated by EGFR inhibitors. Blocking the key signaling pathway regulating ABCG2 expression with EGFR inhibitors, combined with the inhibition of ABCG2 with potent modulators might be a promising approach to circumvent MDR

  8. Axl Phosphorylates Elmo Scaffold Proteins To Promote Rac Activation and Cell Invasion

    OpenAIRE

    Abu-Thuraia, Afnan; Gauthier, Rosemarie; Chidiac, Rony; Fukui, Yoshinori; Screaton, Robert A; Gratton, Jean-Philippe; Côté, Jean-François

    2014-01-01

    The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenes...

  9. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  10. Characteristics and overall survival of EGFR mutation-positive non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors: a retrospective analysis for 1660 Japanese patients

    Science.gov (United States)

    Inoue, Akira; Yoshida, Kazushi; Morita, Satoshi; Imamura, Fumio; Seto, Takashi; Okamoto, Isamu; Nakagawa, Kazuhiko; Yamamoto, Nobuyuki; Muto, Satoshi; Fukuoka, Masahiro

    2016-01-01

    Background The Japan Guidelines of Lung Cancer Therapy recommend epidermal growth factor receptor-tyrosine kinase inhibitors as a first-line therapy for advanced/recurrent non-small cell lung cancer patients with epidermal growth factor receptor mutation. Although survival periods in recent reports of epidermal growth factor receptor-tyrosine kinase inhibitor treatment have been getting longer, the reasons why are unclear. We investigated the survival, prognostic factors and real-world treatment of non-small cell lung cancer patients with epidermal growth factor receptor mutation in clinical practice. Methods Non-small cell lung cancer patients (n = 1660) who started first-line treatment from January 2008 to December 2012 were enrolled. Patients were diagnosed with epidermal growth factor receptor mutation-positive advanced/recurrent non-small cell lung cancer by histology or cytology samples. The primary objective was to estimate overall survival. The secondary objectives were to determine prognostic factors, real-world treatment patterns and efficacy of gefitinib treatment. We calculated the treatment exposure rate for each treatment category using the following formula: exposure rate = person-years for the treatment category/total person-years × 100. Results The median overall survival was 30.8 months. Sex, age, histology, epidermal growth factor receptor mutation type, clinical stage and performance status affected overall survival. The exposure rates for all epidermal growth factor receptor-tyrosine kinase inhibitors, gefitinib and platinum-doublet chemotherapy were 62.1, 46.4 and 8.5% respectively. Overall 56.1% of patients were administered gefitinib as first-line therapy, and 39.0% were treated with ≥2 epidermal growth factor receptor-tyrosine kinase inhibitor regimens. The median progression-free survival in the first-line gefitinib group was 11.4 months. Factors affecting prognosis were sex, histology, clinical stage and performance status. Conclusion

  11. Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice.

    Science.gov (United States)

    Tsujimura, T; Morii, E; Nozaki, M; Hashimoto, K; Moriyama, Y; Takebayashi, K; Kondo, T; Kanakura, Y; Kitamura, Y

    1996-08-15

    The mi locus of mice encodes a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors (hereafter called MITF). Cultured mast cells of mi/mi genotype (mi/mi CMCs) did not normally respond to stem cell factor (SCF), a ligand for the c-kit receptor tyrosine kinase. The poor response of mi/mi CMCs to SCF was attributed to the deficient expression of c-kit both the mRNA and protein levels. The purpose of the present study is to investigate the effect of MITF on the transcription of the c-kit gene. First, we introduced cDNA encoding normal (+) MITF or mutant (mi) MITF into mi/mi CMCs using the retroviral vector. Overexpression of (+)-MITF but not mi-MITF normalized the expression of the c-kit and the poor response of mi/mi CMCs to SCF, indicating the involvement of (+)-MITF in the c-kit gene transactivation. Second, we analyzed the promoter of the c-kit gene. Three CANNTG motifs recognized by bHLH-Zip-type transcription factors were conserved between the mouse and human c-kit promoters. Among these three CANNTG motifs, only the CACCTG motif (nt -356 to -351) was specifically bound by (+)-MITF. When the luciferase gene under the control of the c-kit promoter was contransfected into NIH/3T3 fibroblasts with cDNA encoding (+)-MITF or mi-MITF, the luciferase activity significantly increased only when (+)-MITF cDNA was cotransfected. The deletion of the promoter region containing the CACCTG motif or the mutation of the CACCTG to CTCCAG abolished the transactivation effect of (+)-MITF, indicating that (+)-MITF transactivated the c-kit gene through the CACCTG motif. When the luciferase gene under the control of the c-kit promoter was introduced into the FMA3 mastocytoma and FEC-P1 myeloid cell lines, remarkable luciferase activity was observed only in FMA3 cells. Thus, the involvement of (+)-MITF in the c-kit transactivation appeared to be specific to the mast cell lineage. PMID:8695840

  12. Receptor tyrosine kinase targeting in multicellular spheroids.

    Science.gov (United States)

    Breslin, Susan; O'Driscoll, Lorraine

    2015-01-01

    While growing cells as a monolayer is the traditional method for cell culture, the incorporation of multicellular spheroids into experimental design is becoming increasingly popular. This is due to the understanding that cells grown as spheroids tend to replicate the in vivo situation more reliably than monolayer cells. Thus, the use of multicellular spheroids may be more clinically relevant than monolayer cell cultures. Here, we describe methods for multicellular 3D spheroid generation that may be used to provide samples for receptor tyrosine kinase (and other protein) detection. Methods described include the forced-floating poly-HEMA method, the hanging-drop method, and the use of ECM to form multicellular 3D spheroids. PMID:25319898

  13. The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC50=6 nℳ), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human megakaryoblastic leukemia cell line overexpressing KIT. In a panel of 17 cell lines, AKN-028 showed cytotoxic activity in all five AML cell lines included. AKN-028 triggered apoptosis in MV4-11 by activation of caspase 3. In primary AML samples (n=15), AKN-028 induced a clear dose-dependent cytotoxic response (mean IC50 1 μℳ). However, no correlation between antileukemic activity and FLT3 mutation status, or to the quantitative expression of FLT3, was observed. Combination studies showed synergistic activity when cytarabine or daunorubicin was added simultaneously or 24 h before AKN-028. In mice, AKN-028 demonstrated high oral bioavailability and antileukemic effect in primary AML and MV4-11 cells, with no major toxicity observed in the experiment. In conclusion, AKN-028 is a novel TKI with significant preclinical antileukemic activity in AML. Possible sequence-dependent synergy with standard AML drugs and good oral bioavailability has made it a candidate drug for clinical trials (ongoing)

  14. Tau protein function in living cells

    OpenAIRE

    1986-01-01

    Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The i...

  15. Intrinsic resistance to tyrosine kinase inhibitors is associated with poor clinical outcome in metastatic renal cell carcinoma

    International Nuclear Information System (INIS)

    Data on sequential therapy in patients with metastatic renal cell carcinoma (mRCC) and intrinsic resistance to receptor tyrosine kinase inhibitor (rTKI) treatment remains vague. We retrospectively studied treatment characteristics and outcome of mRCC patients refractory to first rTKI therapy. Thirty-five mRCC patients (male, 18; female, 11) with primary resistance to first rTKI therapy (sunitinib, n = 28; sorafenib, n = 7) and a median treatment interval of 2.4 months (1 - 4.6) were identified. In 22 patients, progressive disease (PD) was determined by a new metastatic lesion. Of these, 16 patients received subsequent therapy with 12 patients remaining refractory and 4 patients achieving disease stabilization. In 13 patients continuous growth of existing metastatic lesions determined PD. Of these, 9 received sequential therapy with 6 achieving disease stabilization. Altogether, 25 patients were treated sequentially (rTKI: n = 15; mTOR-inhibitor: n = 10) and achieved a median PFS of 3.2 months (range, 1-16.6). Fifteen patients failed to respond to either line of therapy. Disease control was not associated with type of subsequent therapy. Median OS was 14.9 months (CI: 5.5-24.4). Intrinsic resistance to rTKI is associated with a low chance of response to sequential therapy and a poor prognosis in mRCC patients

  16. The distribution and morphological characteristics of catecholaminergic cells in the brain of monotremes as revealed by tyrosine hydroxylase immunohistochemistry.

    Science.gov (United States)

    Manger, P R; Fahringer, H M; Pettigrew, J D; Siegel, J M

    2002-01-01

    The present study describes the distribution and cellular morphology of catecholaminergic neurons in the CNS of two species of monotreme, the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these neurons. The standard A1-A17, C1-C3 nomenclature was used for expediency, but the neuroanatomical names of the various nuclei have also been given. Monotremes exhibit catecholaminergic neurons in the diencephalon (A11, A12, A13, A14, A15), midbrain (A8, A9, A10), rostral rhombencephalon (A5, A6, A7), and medulla (A1, A2, C1, C2). The subdivisions of these neurons are in general agreement with those of other mammals, and indeed other amniotes. Apart from minor differences, those being a lack of A4, A3, and C3 groups, the catecholaminergic system of monotremes is very similar to that of other mammals. Catecholaminergic neurons outside these nuclei, such as those reported for other mammals, were not numerous with occasional cells observed in the striatum. It seems unlikely that differences in the sleep phenomenology of monotremes, as compared to other mammals, can be explained by these differences. The similarity of this system across mammalian and amniote species underlines the evolutionary conservatism of the catecholaminergic system. PMID:12476055

  17. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Elderly Patients with Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    A. Zaniboni

    2010-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality in both men and women and approximately 219,440 new cases of nonsmall cell lung cancer (NSCLC were estimated to occur in the USA in 2009, which caused 159,390 NSCLC-related deaths. More than 50% of cases of advanced NSCLC are diagnosed in patients older than age 65, and recent Surveillance Epidemiology and End Results (SEERs data suggest that the median age at diagnosis is 70 years. Until recently, the disease has been undertreated in this patient population, with a perception among many clinicians that elderly patients do not tolerate chemotherapy or radiotherapy. So, single agent chemotherapy is the recommended approach by the ASCO and International Expert Panels in unselected patients. The introduction of novel targeted therapies, such as Epidermal Growth Factor Receptor (EGFR Tyrosine Kinase Inhibitors (TKIs which improved survival versus placebo in patients who had previously failed on chemotherapy, gives clinicians new, effective, and better tolerated options to consider when treating NSCLC in elderly patients. This paper describes the advances of EGFR TKIs for elderly patients with advanced NSCLC.

  18. Photooxidation of Tryptophan and Tyrosine Residues in Human Serum Albumin Sensitized by Pterin: A Model for Globular Protein Photodamage in Skin.

    Science.gov (United States)

    Reid, Lara O; Roman, Ernesto A; Thomas, Andrés H; Dántola, M Laura

    2016-08-30

    Human serum albumin (HSA) is the most abundant protein in the circulatory system. Oxidized albumin was identified in the skin of patients suffering from vitiligo, a depigmentation disorder in which the protection against ultraviolet (UV) radiation fails because of the lack of melanin. Oxidized pterins, efficient photosensitizers under UV-A irradiation, accumulate in the skin affected by vitiligo. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to induce structural and chemical changes in HSA under UV-A irradiation. Our results showed that Ptr is able to photoinduce oxidation of the protein in at least two amino acid residues: tryptophan (Trp) and tyrosine (Tyr). HSA undergoes oligomerization, yielding protein structures whose molecular weight increases with irradiation time. The protein cross-linking, due to the formation of dimers of Tyr, does not significantly affect the secondary and tertiary structures of HSA. Trp is consumed in the photosensitized process, and N-formylkynurenine was identified as one of its oxidation products. The photosensitization of HSA takes place via a purely dynamic process, which involves the triplet excited state of Ptr. The results presented in this work suggest that protein photodamage mediated by endogenous photosensitizers can significantly contribute to the harmful effects of UV-A radiation on the human skin. PMID:27500308

  19. Reprogramming cells with synthetic proteins.

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  20. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  1. Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface

    OpenAIRE

    Hansen, Tania M.; Singh, Harprit; Tahir, Tariq A.; Nicholas P J Brindle

    2010-01-01

    Angiopoietin-1 (Ang1) and Ang2 are ligands for the receptor tyrosine kinase Tie2. Structural data suggest that the two ligands bind Tie2 similarly. However, in endothelial cells Ang1 activates Tie2 whereas Ang2 can act as an apparent antagonist. In addition, each ligand exhibits distinct kinetics of release following binding. These observations suggest that additional factors influence function and binding of angiopoietins with receptors in the cellular context. Previous work has shown that A...

  2. Nomogram Predicting Clinical Outcomes in Non-small Cell Lung Cancer Patients Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

    OpenAIRE

    Keam, Bhumsuk; Kim, Dong-Wan; Park, Jin Hyun; Lee, Jeong-Ok; Kim, Tae Min; Lee, Se-Hoon; Chung, Doo Hyun; Heo, Dae Seog

    2014-01-01

    Purpose The aim of this study was to develop a pragmatic nomogram for prediction of progressionfree survival (PFS) for the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in EGFR mutant non-small cell lung cancer (NSCLC). Materials and Methods A total of 306 recurred or metastatic NSCLC patients with EGFR mutation, who received EGFR TKIs, were enrolled in this study. We developed the nomogram, using a Cox proportional hazard regression model for PFS. Results The median...

  3. Interleukin 2 induces a transient downregulation of protein phosphatase 1 and 2A activity in human T cells

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Dobson, P; Geisler, C; Röpke, C; Svejgaard, A; Odum, N

    Stimulation of human CD4+ T cell lines with interleukin 2 (IL-2) induces tyrosine, serine and threonine phosphorylation of a series of proteins involved in the IL-2 receptor (IL-2R) signaling pathway. Here, we examined whether IL-2 induces changes in the activity of protein serine/threonine phosp......Stimulation of human CD4+ T cell lines with interleukin 2 (IL-2) induces tyrosine, serine and threonine phosphorylation of a series of proteins involved in the IL-2 receptor (IL-2R) signaling pathway. Here, we examined whether IL-2 induces changes in the activity of protein serine...... activity (p < 0.0005, n = 17) and a seven percent decrease in PP1 activity (p < 0.00005, n = 17). Cytokine-induced downregulation of PP2A activity reaches a maximum 60 min after IL-2R ligation, and returns to baseline levels within two hours. Downregulation of PPI activity reaches a maximum after 30 min...

  4. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and {beta}{sub 1}-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, N.; Beinke, C.; Beuningen, D. van [Inst. of Radiobiology, German Armed Forces, Munich (Germany); Plasswilm, L. [Dept. of Radiation Oncology, Univ. Hospital Basel (Swaziland)

    2004-03-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 {mu}M), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 {mu}M). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-{beta}{sub 1}-integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC{sub 50} for irradiation (2 Gy; IC{sub 50} = 2.2 Gy), cisplatin (2 {mu}M), paclitaxel (5 nM), or mitomycin (7 {mu}M) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of {beta}{sub 1}-integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following {beta}{sub 1}-integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC{sub 50} of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of {beta}{sub 1}-integrins could be shown. This event is a

  5. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S;

    1994-01-01

    stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that...... IL-2 induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  6. Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants.

    Directory of Open Access Journals (Sweden)

    Hanjie He

    Full Text Available Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain, inhibited the accumulation of hydrogen peroxide (H(2O(2 and suppressed the expression of pathogenesis-related (PR genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, reduced accumulation of H(2O(2 and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants.

  7. Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes : The Diabetes Autoimmunity Study in the Young (DAISY)

    NARCIS (Netherlands)

    Frederiksen, B.; Liu, E.; Romanos, J.; Steck, A. K.; Yin, X.; Kroehl, M.; Fingerlin, T. E.; Erlich, H.; Eisenbarth, G. S.; Rewers, M.; Norris, J. M.

    2013-01-01

    The present study investigated the association between variants in the vitamin D receptor gene (VDR) and protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2), as well as an interaction between VDR and PTPN2 and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D). T

  8. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release.

    Directory of Open Access Journals (Sweden)

    Zhao Zhang

    Full Text Available Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca²⁺ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2, in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402 in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F. In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402.

  9. Endocytosis of the ASGP receptor H1 is reduced by mutation of tyrosine-5 but still occurs via coated pits

    OpenAIRE

    Fuhrer, C; Geffen, I; Spiess, M.

    1991-01-01

    The clustering of plasma membrane receptors in clathrin-coated pits depends on determinants within their cytoplasmic domains. In several cases, individual tyrosine residues were shown to be necessary for rapid internalization. We have mutated the single tyrosine at position 5 in the cytoplasmic domain of the major subunit H1 of the asialoglycoprotein receptor to alanine. Expressed in fibroblasts cells, the mutant protein was accumulated in the plasma membrane, and its rate of internalization ...

  10. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    Science.gov (United States)

    Chung, Clement

    2016-06-01

    The presence of activating gene mutations in the epidermal growth factor receptor of non-small cell lung cancer patients is predictive (improved progression-free survival and improved response rate) when treated with small molecule tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib. The two most common mutations that account for greater than 85% of all EGFR gene mutations are in-frame deletions in exon 19 (LREA deletions) and substitution in exon 21 (L858R). Exon 18 mutations occur much less frequently at about 4% of all EGFR gene mutations. Together, exon 19 deletion and exon 21 L858R gene substitution are present in about 10% of Caucasian patients and 20-40% of Asian patients with non-small cell lung cancer. T790M gene mutation at exon 20 is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Early studies showed that activating EGFR gene mutations are most common in patients with adenocarcinoma histology, women, never smokers and those of Asian ethnicity. A recent multi-center phase III trial suggested that frontline epidermal growth factor receptor tyrosine kinase inhibitor therapy with afatinib is associated with improved progression-free survival compared to chemotherapy regardless of race. Moreover, guidelines now suggest EGFR gene mutation testing should be conducted in all patients with lung adenocarcinoma or mixed lung cancers with an adenocarcinoma component, regardless of characteristics such as smoking status, gender or race. The success of targeted therapies in non-small cell lung cancer patients has changed the treatment paradigm in metastatic non-small cell lung cancer. However, despite a durable response of greater than a year, resistance to epidermal growth factor receptor tyrosine kinase inhibitors inevitably occurs. This mini-review describes the clinically relevant EGFR gene mutations and the efficacy/toxicity of small molecule epidermal growth factor receptor tyrosine kinase

  11. Identification of Fer Tyrosine Kinase Localized on Microtubules as a Platelet Endothelial Cell Adhesion Molecule-1 Phosphorylating Kinase in Vascular Endothelial CellsV⃞

    OpenAIRE

    Kogata, Naoko; Masuda, Michitaka; Kamioka, Yuji; Yamagishi, Akiko; Endo, Akira; Okada, Masato; Mochizuki, Naoki

    2003-01-01

    Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phospho...

  12. Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion.

    Science.gov (United States)

    Abu-Thuraia, Afnan; Gauthier, Rosemarie; Chidiac, Rony; Fukui, Yoshinori; Screaton, Robert A; Gratton, Jean-Philippe; Côté, Jean-François

    2015-01-01

    The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases. PMID:25332238

  13. Conversion of 3-nitrotyrosine to 3-aminotyrosine residues facilitates mapping of tyrosine nitration in proteins by electrospray ionization-tandem mass spectrometry using electron capture dissociation.

    Science.gov (United States)

    Guo, Jia; Prokai, Laszlo

    2012-12-01

    Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron-based dissociation has not been applicable, however, to nitrotyrosine-containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top-down and bottom-up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom-up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography-electrospray ionization tandem mass spectrometry using both collision-induced dissociation (CID) and ECD. PMID:23280749

  14. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    Energy Technology Data Exchange (ETDEWEB)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se [Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Green, Anna, E-mail: Anna.green@liu.se [Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Green, Henrik, E-mail: Henrik.green@liu.se [Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Joensson, Jan-Ingvar, E-mail: Jan-ingvar.jonsson@liu.se [Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Hallbeck, Anna-Lotta, E-mail: Anna-Lotta.Hallbeck@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Walz, Thomas M., E-mail: Thomas.Walz@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden)

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects are however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.

  15. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    International Nuclear Information System (INIS)

    Highlights: → Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. → Canertinib mediates activation of the intrinsic apoptotic pathway. → Canertinib induces apoptosis in an ErbB receptor independent manner. → Lymphocyte specific proteins as well as survival kinases are inhibited. → Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects are however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 μM caused accumulation of Jurkat cells in the G1 cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.

  16. Novel Tyrosine Phosphorylation Sites in Rat Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    OpenAIRE

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun; Meyer, Christian; Thangiah, Geetha; Yi, Zhengping

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (

  17. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS

    DEFF Research Database (Denmark)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun; Meyer, Christian; Geetha, Thangiah; Yi, Zhengping

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (...

  18. Inhibitory Activities of Epidermal Growth Factor Receptor Tyrosine Kinase-Targeted Dihydroxyisoflavone and Trihydroxydeoxybenzoin Derivatives on Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum Development

    OpenAIRE

    Gargala, G.; Baishanbo, A.; Favennec, L; François, A; Ballet, J J; Rossignol, J.-F.

    2005-01-01

    Several gene sequences of parasitic protozoa belonging to protein kinase gene families and epidermal growth factor (EGF)-like peptides, which act via binding to receptor tyrosine kinases of the EGF receptor (EGFR) family, appear to mediate host-protozoan interactions. As a clue to EGFR protein tyrosine kinase (PTK) mediation and a novel approach for identifying anticoccidial agents, activities against Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum grown in BM and HCT-8 cell...

  19. Effect of siRNA-induced silencing of cellular prion protein on tyrosine hydroxylase expression in the substantia nigra of a rat model of Parkinson's disease.

    Science.gov (United States)

    Wang, X; Yang, H A; Wang, X N; Du, Y F

    2016-01-01

    The most significant pathological feature of Parkinson's disease (PD) is the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. Currently, available treatments for PD cannot prevent the loss of DA neurons. Tyrosine hydroxylase (TH) expressed in substantia nigra neurons catalyzes the conversion of tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), which is the rate-limiting step of DA biosynthesis. Major reasons for PD occurrence include decreased TH activity in the substantia nigra and secondary DA suppression. Decreased TH activity and the resulting suppression of DA synthesis (or neurotransmission) in the substantia nigra are key factors underlying the development of PD. Cellular prion protein (PRP) is a membrane glycoprotein expressed in the central nervous system. Although the sequence of PRP is highly conserved, its physiological function is unclear. The purpose of this study was to investigate the effect of PRP-targeted small interfering RNA (siRNA) on TH expression in a rat model of PD. Thirty male Wistar rats were injected with 6-hydroxydopamine (6-OHDA) to generate a model of PD. The rats then received injections of PRP-siRNA or nonsense siRNA in the lateral ventricles. Substantia nigra samples were collected for quantification of PRP and TH expression using real-time polymerase chain reaction and western blotting. PRP-siRNA decreased PRP expression in the substantia nigra. TH expression was decreased in PD model rats but was increased after PRP silencing. We conclude that PRP-siRNA may increase TH expression in vivo and may therefore exert protective effects on neurons in a model of PD. PMID:27173342

  20. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells

    Science.gov (United States)

    Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K.; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  1. Carbohydrate/protein selection in a single meal correlated with plasma tryptophan and tyrosine ratios to neutral amino acids in fasting individuals.

    Science.gov (United States)

    Møller, S E

    1986-01-01

    Plasma ratios of tryptophan (Trp) and tyrosine (Tyr) to their respective competing large neutral amino acids (LNAA) for brain uptake, serum insulin and plasma glucose concentrations were determined in 31 fasting healthy female subjects, and in two smaller groups of smokers and oral contraceptive users, who were subsequently allowed to compose individual breakfast meals from a selection of 25 dietary products. Additional blood samples were collected at 2 hr after the meal. Smokers consumed less carbohydrate (-22%) and total calories (-23%) and showed decreased basal serum insulin level, when compared to controls on the same age. Females on oral contraceptives consumed significantly more carbohydrate (+54%) and total calories (+32%) than comparable controls. In the 31 females there was no significant correlation between any of the biological variables and the intake of fat or total calories. The ratio of carbohydrate/protein eaten was significantly and directly correlated with age and with the sum of plasma ratios Trp/LNAA and Tyr/LNAA, and these independent variables associated with 37% of the variance in the ratio carbohydrate/protein consumed, as evaluated by multiple regression analysis. After the meal, the plasma ratio Tyr/LNAA was increased, whereas the ratio Trp/LNAA was decreased in subjects whose ratio carbohydrate/protein consumed was below the mean of the full sample, whereas subjects who consumed meals with a high ratio carbohydrate/protein showed an increase in plasma ratio Trp/LNAA. It is concluded that biological variables in man are significantly associated with the choice between nutrients with different carbohydrate and protein contents for breakfast. The changes in the plasma ratios Trp/LNAA and Tyr/LNAA after consumption were generally moderate. PMID:3797484

  2. L-3-[I-123]iodo-alpha-methyl-tyrosine SPECT in non-small cell lung cancer : Preliminary observations

    NARCIS (Netherlands)

    Jager, PL; Groen, HJM; van der Leest, A; van Putten, JWG; Pieterman, RM; de Vries, EGE; Piers, DA

    2001-01-01

    L-3-[(123)]iodo-alpha -methyl-tyrosine (IMT) is a modified amino acid that is avidly taken up by many tumors. Uptake is based on the increased transmembrane transport of amino acids in malignancies. IMT is the only amino acid tracer suitable for SPECT. The aim of this study was to determine the feas

  3. Proline-rich tyrosine kinase 2 (Pyk2 promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Chris K Sun

    Full Text Available AIMS: Proline-rich tyrosine kinase 2 (Pyk2, a non-receptor tyrosine kinase of the focal adhesion kinase (FAK family, is up-regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC patients. Forced overexpression of Pyk2 can promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism of Pyk2-mediated cell migration of HCC cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT, signified by the up-regulation of membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin as well as promotion of cell motility in presence of lysophosphatidic acid (LPA. Suppression of Pyk2 by overexpression of dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization. CONCLUSION: These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells through regulation of genes associated with EMT.

  4. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts

    OpenAIRE

    1992-01-01

    Rat 3Y1 cells acquire metastatic potential when transformed with v-src, and this potential is enhanced by double transformation with v-src and v-fos (Taniguchi, S., T. Kawano, T. Mitsudomi, G. Kimura, and T. Baba. 1986. Jpn. J. Cancer Res. 77:1193-1197). We compared the activity of cadherin cell adhesion molecules of normal 3Y1 cells with that of v-src transformed (SR3Y1) and v-src and v-fos double transformed (fosSR3Y1) 3Y1 cells. These cells expressed similar amounts of P-cadherin, and show...

  5. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  6. Protein profile screening: reduced expression of Sord in the mouse epididymis induced by nicotine inhibits tyrosine phosphorylation level in capacitated spermatozoa.

    Science.gov (United States)

    Dai, Jingbo; Xu, Wangjie; Zhao, Xianglong; Zhang, Meixing; Zhang, Dong; Nie, Dongsheng; Bao, Min; Wang, Zhaoxia; Wang, Lianyun; Qiao, Zhongdong

    2016-03-01

    Many studies have revealed the hazardous effects of cigarette smoking and nicotine exposure on male fertility, but the actual, underlying molecular mechanism remains relatively unclear. To evaluate the detrimental effects of nicotine exposure on the sperm maturation process, two-dimensional gel electrophoresis and mass spectrometry analyses were performed to screen and identify differentially expressed proteins from the epididymal tissue of mice exposed to nicotine. Data mining analysis indicated that 15 identified proteins were mainly involved in the molecular transportation process and the polyol pathway, indicating impaired epididymal secretory functions. Experiments in vitro confirmed that nicotine inhibited tyrosine phosphorylation levels in capacitated spermatozoa via the downregulated seminal fructose concentration. Sord, a key gene encoding sorbitol dehydrogenase, was further investigated to reveal that nicotine induced hyper-methylation of the promoter region of this gene. Nicotine-induced reduced expression of Sord could be involved in impaired secretory functions of the epididymis and thus prevent the sperm from undergoing proper maturation and capacitation, although further experiments are needed to confirm this hypothesis. PMID:26647419

  7. Estrogen Regulates MAPK-Related Genes through Genomic and Nongenomic Interactions between IGF-I Receptor Tyrosine Kinase and Estrogen Receptor-Alpha Signaling Pathways in Human Uterine Leiomyoma Cells.

    Science.gov (United States)

    Yu, Linda; Moore, Alicia B; Castro, Lysandra; Gao, Xiaohua; Huynh, Hoang-Long C; Klippel, Michelle; Flagler, Norris D; Lu, Yi; Kissling, Grace E; Dixon, Darlene

    2012-01-01

    Estrogen and growth factors play a major role in uterine leiomyoma (UtLM) growth possibly through interactions of receptor tyrosine kinases (RTKs) and estrogen receptor-alpha (ERα) signaling. We determined the genomic and nongenomic effects of 17β-estradiol (E(2)) on IGF-IR/MAPKp44/42 signaling and gene expression in human UtLM cells with intact or silenced IGF-IR. Analysis by RT(2) Profiler PCR-array showed genes involved in IGF-IR/MAPK signaling were upregulated in UtLM cells by E(2) including cyclin D kinases, MAPKs, and MAPK kinases; RTK signaling mediator, GRB2; transcriptional factors ELK1 and E2F1; CCNB2 involved in cell cycle progression, proliferation, and survival; and COL1A1 associated with collagen synthesis. Silencing (si)IGF-IR attenuated the above effects and resulted in upregulation of different genes, such as transcriptional factor ETS2; the tyrosine kinase receptor, EGFR; and DLK1 involved in fibrosis. E(2) rapidly activated IGF-IR/MAPKp44/42 signaling nongenomically and induced phosphorylation of ERα at ser118 in cells with a functional IGF-IR versus those without. E(2) also upregulated IGF-I gene and protein expression through a prolonged genomic event. These results suggest a pivotal role of IGF-IR and possibly other RTKs in mediating genomic and nongenomic hormone receptor interactions and signaling in fibroids and provide novel genes and targets for future intervention and prevention strategies. PMID:23094148

  8. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted. PMID:26028028

  9. Antitumor activity of F90,an epidermal growth factor receptor tyrosine kinase inhibitor,on glioblastoma cell line SHG-44

    Institute of Scientific and Technical Information of China (English)

    LIU Fang-jun; GUI Song-bai; LI Chu-zhong; SUN Ze-lin; ZHANG Ya-zhuo

    2008-01-01

    Background Over-expression of epidermal growth factor receptor (EGFR) is thought to be related to cell proliferation,invasion,metastasis,resistance to chemoradiotherapy and poor prognosis of various human cancers.Forty percent to fifty percent of glioblastoma multiforme (GBM) possess deregulated EGFR,which may contribute to the aggressive and refractory course of GBM.Therefore,blockade of EGFR signal transduction may be a promising treatment strategy for GBM.Methods MIT assay,cell growth curve assay and tumor xenograft model were used to evaluate the antitumor activity of F90 against SHG-44 in vitro and in vivo.Western blot assay was applied to evaluate the expression of p-EGFR,p-ERK1,p-JNK,p-P38,Bcl2 and P53 proteins.Results F90 inhibited the cell proliferation in a dose-dependent manner in vitro.The growth of SHG-44 tumor xenografts was suppressed by F90 at a high dose level (100 mg.kg-1.d-1).Phosphorylation of EGFR and activated downstream signaling proteins,such as ERK1,JNK and P38,were found to be depressed after incubation with F90 for 48 hours in vitro.Down-regulated Bcl2 protein and up-regulated P53 protein were also observed.Conclueions The results demonstrate that F90 is effective in inhibiting the proliferation of SHG-44 cells in vitro and tumor growth in vivo,suggesting that F90 may be a new therapeutic option for treatment of GBM.

  10. Rapid tyrosine phosphorylation of Lck following ligation of the tumor-associated cell surface molecule A6H

    DEFF Research Database (Denmark)

    Labuda, T; Gerwien, J; Ødum, Niels; Dohlsten, M

    1999-01-01

    mitogenesis. In addition, A6H ligation induced an up-regulation of CD3-mediated phosphorylation of the 23 kDa high mol. wt form of TCR zeta and the zeta-associated protein, ZAP-70. Co-precipitation of Lck and ZAP-70 was only seen in T cells activated by combined A6H and anti-CD3 stimulation. In contrast...

  11. Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells.

    OpenAIRE

    Tang, P.; Rosenshine, I.; Finlay, B B

    1994-01-01

    Protein tyrosine phosphorylation is an important regulatory mechanism for many cellular processes in eucaryotic cells. During the invasion of the gram-positive pathogen, Listeria monocytogenes, into host epithelial cells, two host proteins become tyrosine phosphorylated. We have identified these major tyrosine phosphorylated species to be two isoforms of mitogen-activated protein (MAP) kinase, the 42 and 44 kDa MAP kinases. This activation begins within 5 to 15 min of bacterial infection. The...

  12. The additional loss of Bak and not the lack of the protein tyrosine kinase p56/Lck in one JCaM1.6 subclone caused pronounced apoptosis resistance in response to stimuli of the intrinsic pathway.

    Science.gov (United States)

    Rudner, J; Mueller, A-C; Matzner, N; Huber, S M; Handrick, R; Belka, C; Jendrossek, V

    2009-05-01

    Ionising radiation, hypoxia, and the cyclooxygenase-2 inhibitor Celecoxib are known agonists of the intrinsic apoptosis pathway that involves mitochondrial damage upstream of caspase activation. Mitochondrial integrity is regulated by the pro-apoptotic Bcl-2 protein family members Bak and Bax. Upstream of the mitochondria, many kinases and phosphatases control the apoptotic response. However, the role of the non-receptor tyrosine kinase p56/Lck during apoptosis is controversial. The present investigation demonstrate the existence of two JCaM1.6 subclones, one expressing and one deficient for Bak. The lack of p56/Lck expression in JCaM1.6 cells per se did hardly affect apoptosis induced by ionising radiation, hypoxia, or Celecoxib. Only the additional loss of Bak expression, as observed in one JCaM1.6 subclone, rendered the cells resistant. siRNA-mediated downregulation of Bak and p56/Lck mimicked the observed effects in the subclones. Earlier experiments performed with the Bak-negative clone might have lead to the wrong assumption that lack of p56/Lck alone, and not the additonal loss of Bak, was responsible for reduced sensitivity towards stimuli of the intrinsic apoptosis pathway. PMID:19343496

  13. The Mertk receptor tyrosine kinase promotes T-B interaction stimulated by IgD B-cell receptor cross-linking.

    Science.gov (United States)

    Shao, Wen-Hai; Zhen, Yuxuan; Finkelman, Fred D; Cohen, Philip L

    2014-09-01

    The Mertk receptor tyrosine kinase facilitates macrophage and DC apoptotic-cell clearance and regulates immune tolerance. Mertk may also contribute to B-cell activation, because Mertk-KO mice fail to develop autoantibodies when allo-activated by T cells. We investigated this possibility with a well-characterized model in which injection of mice with goat anti-IgD antibody causes membrane IgD cross-linking that induces T-independent B cell activation and antigen presentation to T cells. Goat anti-mouse IgD antibody-injected C57BL/6 Mertk-KO mice had normal initial B cell activation and proliferation, but significantly lower T cell activation and proliferation, as well as lower IgE and IgG anti-goat IgG responses, as compared to C57BL/6 WT controls. B cell antigen processing, analyzed by evaluating B cell fluorescence following injection of monoclonal anti-IgD antibody labeled with biotin or FITC, was comparable between Mertk-KO mice and WT mice. IgD Ab primed B cells from Mertk-KO mice exhibited significantly lower ability in activating memory T cells isolated from WT mice injected with the same antigen 10 days before. These observations suggest that Mertk expression is required for optimal B-cell antigen presentation, which is, in turn, required in this model for optimal T cell activation and subsequent T cell-dependent B cell differentiation. PMID:24768065

  14. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche;

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  15. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  16. Molecular predictors of response to tyrosine kinase inhibitors in patients with Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Murray Samuel

    2012-09-01

    Full Text Available Abstract Introduction Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs have become a treatment option in non-small-cell lung cancer (NSCLC patients. However, despite their use in this disease, a significant number of patients will eventually develop resistance and relapse. In this study, we aimed to characterize several molecular events involved in potential resistance mechanisms to anti-EGFR treatment and correlate our findings with clinical outcome. Material and methods The medical records of patients with NSCLC who received anti-EGFR TKIs in any line within the participating centers were reviewed and available paraffin embedded tissue was retrieved. Mutational analysis for EGFR, KRAS, BRAF and intron-exon 14 deletions of MET; FISH analysis for chromosomal gain or amplification for EGFR, MET and the deletion marker D7S486 were performed. Furthermore, the expression of EGFR and MET were analysed by immunohistochemistry. All results were correlated with treatment outcomes. Results Between 10/2001 and 12/2009 from an initial cohort of 72 treated patients, 59 cases (28 gefitinib/ 31 erlotinib were included in the analysis. The majority had adenocarcinoma histology (68%, and received treatment in the second line setting (56%. Disease control rate (DCR was 25.4% for all patients. EGFR and RAS mutational rates were 33% and 10% respectively, no other mutations were identified. High EGFR expressing tumors were found in 7 of 45 cases and pEGFR positivity (IHC was found in 56% of the cases; MET expression was found in 48% of tumors. EGFR gene amplification was found in 4 cases, two cases showed high polysomy; overall, 13% cases were FISH positive for EGFR. High polysomy of MET gene was detected in 1/43 cases tested. D7S486 locus deletion was detected in 15/37 (40% of cases. EGFR mutational status and gene gain were both associated with more favorable DCR. No other associations between examined biomarkers and DCR or survival were

  17. Research Progress on Resistance Mechanisms of Epidermal Growth Factor Receptor 
Tyrosine Kinase Inhibitors in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuan LI

    2012-02-01

    Full Text Available With a greater understanding of tumor biology, novel molecular-targeted strategies that block cancer progression pathways have been evaluated as a new therapeutic approach for treating non-small cell lung cancer (NSCLC. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib and erlotinib, show favorable response to EGFR mutant lung cancer in some populations of NSCLC patients. However, the efficacy of EGFR-TKIs is limited by either primary (de novo or acquired resistance after therapy. This review will focus on recently identified mechanisms of primary and acquired resistance to EGFR TKIs and strategies currently being employed to overcome resistance.

  18. Central Role of the Threonine Residue within the p+1 Loop of Receptor Tyrosine Kinase in STAT3 Constitutive Phosphorylation in Metastatic Cancer Cells

    OpenAIRE

    Yuan, Zheng-long; Guan, Ying-jie; Wang, Lijuan; Wei, Wenyi; Kane, Agnes B.; Chin, Y. Eugene

    2004-01-01

    The receptor tyrosine kinases (RTKs) RET, MET, and RON all carry the Metp+1loop→Thr point mutation (i.e., 2B mutation), leading to the formation of tumors with high metastatic potential. Utilizing a novel antibody array, we identified constitutive phosphorylation of STAT3 in cells expressing the 2B mutation but not wild-type RET. MET or RON with the 2B mutation also constitutively phosphorylated STAT3. Members of the EPH, the only group of wild-type RTK that carry Thrp+1loop residue, are ofte...

  19. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    Full Text Available Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68 in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%. Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-, a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3 and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements. The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%. To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

  20. Angiotensin II type 1 receptors stimulate protein synthesis in human cardiac fibroblasts via a Ca2+-sensitive PKC-dependent tyrosine kinase pathway

    DEFF Research Database (Denmark)

    Hou, M; Pantev, E; Möller, S;

    2000-01-01

    ) was obtained at a concentration of 10 nM. There were no significant alterations of cell number or total protein content, suggesting that Ang II stimulated protein synthesis but did not induce hypertrophy. The accumulation of 3H-leucine was blocked by the AT1 receptor antagonist candesartan but not by...

  1. Protein tyrosine nitration in chronic intramuscular parasitism: immunohistochemical evaluation of relationships between nitration, and fiber type-specific responses to infection

    Directory of Open Access Journals (Sweden)

    Ted H. Elsasser

    2011-05-01

    Full Text Available The present study was conducted to determine whether preferential muscle catabolism [psoas major (PM > rectus femoris (RF] observed during the chronic intramuscular stage of Sarcocystis cruzi infection could be associated with the pathological consequences of increased protein tyrosine nitration in fibers characteristically more metabolically active due to higher mitochondrial density. Holstein calves were assigned to control (C, or S. cruzi-infected (I groups, n=5/group. Calves were euthanized on day 63 of infection. Samples of RF and PM were prepared for metabolic fiber typing (MFT: slow oxidative, SO – Type I; fast oxidative glycolytic, FOG - Type IIa; fast glycolytic, FG – Type IIb, fiber area, and immunohistochemical localization of fast myosin heavy chain 2a and 2b, nitrotyrosine (NT, and mitochondrial Complex V ATP-synthase. MFT analysis documented that PM contained twice the number of SO fibers compared to RF (32 v 16%, P<0.002. SO and FOG fibers (Both higher in mitochondrial density than FG fibers in both PM and RF were significantly smaller in area in I calves with mean FG areas not different between C and I. Muscle NT content (Western blot of myofibrillar protein fraction increased with infection; NT was immunohistochemically localized into three distinct patterns in fibers: i sparse fiber staining, ii dense punctuate intrafiber staining, and iii pericystic staining. By image analysis, the greatest punctuate intrafiber pixel density of NT was associated with SO fibers from I calves with the NT colocalizing with mitochondrial Complex V – F1F0 ATP synthase. More fibers were positive for the colocalization in PM than RF (P<0.04. The data are consistent with the concept that fibers rich in mitochondria possessing more inherent oxidative energy capacity generate more nitrated proteins than glycolytic fibers and as such are more affected by the proinflammatory response to infections like Sarcocystosis.

  2. The tyrosine kinase c-Met contributes to the pro-tumorigenic function of the p38 kinase in human bile duct cholangiocarcinoma cells.

    Science.gov (United States)

    Dai, Rongyang; Li, Juanjuan; Fu, Jing; Chen, Yao; Wang, Ruoyu; Zhao, Xiaofang; Luo, Tao; Zhu, Junjie; Ren, Yibin; Cao, Jie; Qian, Youwen; Li, Ning; Wang, Hongyang

    2012-11-16

    Pro-tumorigenic function of the p38 kinase plays a critical role in human cholangiocarcinogenesis. However, the underlying mechanism remains incompletely understood. Here, we report that c-Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), contributes to the pro-tumorigenic ability of p38 in human cholangiocarcinoma cells. Both p38 and c-Met promote the proliferation and invasion of human cholangiocarcinoma cells. Importantly, inhibition or knockdown of p38 decreased the basal activation of c-Met. Tyrosine phosphatase inhibitor studies revealed that p38 promotes the activity of c-Met, at least in part, by inhibiting dephosphorylation of the receptor. Moreover, density enhanced phosphatase-1 (DEP-1) is involved in p38-mediated inhibiting dephosphorylation of c-Met. Furthermore, p38 inhibits the degradation of c-Met. Taken together, these data provide a potential mechanism to explain how p38 promotes human cholangiocarcinoma cell proliferation and invasion. We propose that the link between p38 and c-Met is implicated in the progression of human cholangiocarcinoma. PMID:23024367

  3. Brk/Protein tyrosine kinase 6 phosphorylates p27KIP1, regulating the activity of cyclin D-cyclin-dependent kinase 4.

    Science.gov (United States)

    Patel, Priyank; Asbach, Benedikt; Shteyn, Elina; Gomez, Cindy; Coltoff, Alexander; Bhuyan, Sadia; Tyner, Angela L; Wagner, Ralf; Blain, Stacy W

    2015-05-01

    Cyclin D and cyclin-dependent kinase 4 (cdk4) are overexpressed in a variety of tumors, but their levels are not accurate indicators of oncogenic activity because an accessory factor such as p27(Kip1) is required to assemble this unstable dimer. Additionally, tyrosine (Y) phosphorylation of p27 (pY88) is required to activate cdk4, acting as an "on/off switch." We identified two SH3 recruitment domains within p27 that modulate pY88, thereby modulating cdk4 activity. Via an SH3-PXXP interaction screen, we identified Brk (breast tumor-related kinase) as a high-affinity p27 kinase. Modulation of Brk in breast cancer cells modulates pY88 and increases resistance to the cdk4 inhibitor PD 0332991. An alternatively spliced form of Brk (Alt Brk) which contains its SH3 domain blocks pY88 and acts as an endogenous cdk4 inhibitor, identifying a potentially targetable regulatory region within p27. Brk is overexpressed in 60% of breast carcinomas, suggesting that this facilitates cell cycle progression by modulating cdk4 through p27 Y phosphorylation. p27 has been considered a tumor suppressor, but our data strengthen the idea that it should also be considered an oncoprotein, responsible for cyclin D-cdk4 activity. PMID:25733683

  4. MET Receptor Tyrosine Kinase

    Science.gov (United States)

    Faoro, Leonardo; Cervantes, Gustavo M.; El-Hashani, Essam; Salgia, Ravi

    2010-01-01

    MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor (HGF) have become important therapeutic target in oncology, especially lung cancer. MET RTK is involved in cancer cell growth/survival, motility/migration, invasion/metastasis, and in angiogenesis. MET can be overexpressed in lung cancer, sometimes mutated, and sometimes amplified. Not only can MET be overexpressed, there are subsets of lung cancer tumors that have HGF overexpression. The mutations of MET can occur in the semaphorin and/or juxtamembrane domain in a majority of times. Amplification of MET can occur de novo in primary/metastatic tumors, as well arise in the context of therapeutic inhibition. There are a number of clinical inhibitors that have been developed against MET/HGF. Small molecule inhibitors such as XL184 and PF02341066 have come to clinical fruition, as well as antibodies against MET (such as MetMAb). These inhibitors will be discussed. PMID:19861919

  5. Activation of the neu tyrosine kinase induces the fos/jun transcription factor complex, the glucose transporter and ornithine decarboxylase

    OpenAIRE

    1989-01-01

    We have studied the ability of the neu tyrosine kinase to induce a signal for the activation of cell growth-regulated genes. Serum-starved NIH 3T3 cells expressing an epidermal growth factor receptor (EGF- R)/neu construct encoding a hybrid receptor protein were stimulated with EGF and the activation of the neu tyrosine kinase and stimulation of growth factor inducible genes were followed at the mRNA, protein, and activity levels, and compared to the corresponding responses in the neu proto-o...

  6. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

    Science.gov (United States)

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick P L; Christodoulou, John

    2015-09-01

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype. PMID:25424712

  7. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease

    Energy Technology Data Exchange (ETDEWEB)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S. [FNL

    2013-06-05

    Chagas’ disease, a neglected tropical affliction transmitted by the flagellated protozoan Trypanosoma cruzi, is prevalent in Latin America and affects nearly 18 million people worldwide, yet few approved drugs are available to treat the disease. Moreover, the currently available drugs exhibit severe toxicity or are poorly effective in the chronic phase of the disease. This limitation, along with the large population at risk, underscores the urgent need to discover new molecular targets and novel therapeutic agents. Recently, the T. cruzi protein tyrosine phosphatase TcPTP1 has been implicated in the cellular differentiation and infectivity of the parasite and is therefore a promising target for the design of novel anti-parasitic drugs. Here, we report the X-ray crystal structure of TcPTP1 refined to a resolution of 2.18 Å, which provides structural insights into the active site environment that can be used to initiate structure-based drug design efforts to develop specific TcPTP1 inhibitors. Potential strategies to develop such inhibitors are also discussed.

  8. Potential Utility of Sodium Selenate as an Adjunct to Metformin in Treating Type II Diabetes Mellitus in Rats: A Perspective on Protein Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Rania M. Salama

    2013-01-01

    Full Text Available Metformin is widely regarded as the standard first-line antidiabetic agent, in terms of efficacy and safety profiles. However, in most patients with type II diabetes mellitus (T2DM, it was found that metformin alone is not enough to adequately control hyperglycemia. Thus, we designed this study with the aim to investigate the effect of sodium selenate, a protein tyrosine phosphatase (PTP inhibitor, individually and as an adjunct to metformin, on a rat model that simulates the metabolic characteristics of human T2DM. T2DM model was achieved by feeding the rats with high-fat, high-fructose diet (HFFD for 8 weeks followed by a low dose of streptozotocin (STZ (35 mg/kg/day, i.p.. Changes in serum glucose, insulin, adiponectin, homeostasis model assessment of insulin resistance (HOMA-IR index, and the lipid profile were assessed. In addition, the level of reduced glutathione (GSH and the activity of PTP were determined in the liver. Results showed that the addition of sodium selenate to metformin was able to restore hepatic GSH back to normal levels. Also, this combination therapy corrected the altered serum total cholesterol (TC, triglycerides (TG, and adiponectin levels. In conclusion, additive therapeutic effect was recorded when sodium selenate was used as an adjunct to metformin.

  9. Versatile protein tagging in cells with split fluorescent protein

    OpenAIRE

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Jonathan S Weissman; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respec...

  10. Levels of circulating CD45dimCD34+VEGFR2+ progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors

    Science.gov (United States)

    Farace, F; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N; Jacques, N; Billiot, F; Mauguen, A; Hill, C; Escudier, B

    2011-01-01

    Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) and day 14 during treatment (46 pts received sunitinib and 9 pts received sorafenib). Circulating endothelial cells (CD45−CD31+CD146+7-amino-actinomycin (7AAD)− cells) were measured in 1 ml whole blood using four-color flow cytometry (FCM). Circulating CD45dimCD34+VEGFR2+7AAD− progenitor cells were measured in progenitor-enriched fractions by four-color FCM. Plasma VEGF, sVEGFR2, SDF-1α and sVCAM-1 levels were determined by ELISA. Correlations between baseline CEC, CD45dimCD34+VEGFR2+7AAD− progenitor cells, plasma factors, as well as day 1–day 14 changes in CEC, CD45dimCD34+VEGFR2+7AAD− progenitor, plasma factor levels, and response to TKI, progression-free survival (PFS) and overall survival (OS) were examined. Results: No significant correlation between markers and response to TKI was observed. No association between baseline CEC, plasma VEGF, sVEGFR-2, SDF-1α, sVCAM-1 levels with PFS and OS was observed. However, baseline CD45dimCD34+VEGFR2+7AAD− progenitor cell levels were associated with PFS (P=0.01) and OS (P=0.006). Changes in this population and in SDF-1α levels between day 1 and day 14 were associated with PFS (P=0.03, P=0.002). Changes in VEGF and SDF-1α levels were associated with OS (P=0.02, P=0.007). Conclusion: Monitoring CD45dimCD34+VEGFR2+ progenitor cells, plasma VEGF and SDF-1α levels could be of clinical interest in TKI-treated mRCC pts to predict outcome. PMID:21386843

  11. Development of Novel Triazolo-Thiadiazoles from Heterogeneous “Green” Catalysis as Protein Tyrosine Phosphatase 1B Inhibitors

    Science.gov (United States)

    Baburajeev, C. P.; Dhananjaya Mohan, Chakrabhavi; Ananda, Hanumappa; Rangappa, Shobith; Fuchs, Julian E.; Jagadish, Swamy; Sivaraman Siveen, Kodappully; Chinnathambi, Arunachalam; Ali Alharbi, Sulaiman; Zayed, M. E.; Zhang, Jingwen; Li, Feng; Sethi, Gautam; Girish, Kesturu S.; Bender, Andreas; Basappa; Rangappa, Kanchugarakoppal S.

    2015-01-01

    Condensed-bicyclic triazolo-thiadiazoles were synthesized via an efficient “green” catalyst strategy and identified as effective inhibitors of PTP1B in vitro. The lead compound, 6-(2-benzylphenyl)-3-phenyl-[1,2,4]triazolo[3][1,3,4]thiadiazole (BPTT) was most effective against human hepatoma cells, inhibits cell invasion, and decreases neovasculature in HUVEC and also tumor volume in EAT mouse models. This report describes an experimentally unidentified class of condensed-bicyclic triazolo-thiadiazoles targeting PTP1B and its analogs could be the therapeutic drug-seeds. PMID:26388336

  12. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences

    DEFF Research Database (Denmark)

    Su, J; Yang, L T; Sap, J

    1996-01-01

    binding site in RPTPalpha was studied further by expression of wild type or mutant RPTPalpha proteins in PC12 cells. In these cells, wild type RPTPalpha interferes with acidic fibroblast growth factor-induced neurite outgrowth; this effect requires both the catalytic activity and the Grb2 binding Tyr798...

  13. Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers.

    Science.gov (United States)

    Liersch-Löhn, Britta; Slavova, Nadia; Buhr, Heinz J; Bennani-Baiti, Idriss M

    2016-03-01

    Transmembrane tyrosine-kinase Ephrin receptors promote tumor progression and/or metastasis of several malignancies including leukemia, follicular lymphoma, glioma, malignant pleural mesothelioma, papillary thyroid carcinoma, sarcomas and ovarian, breast, bladder and non-small cell lung cancers. They also drive intestinal stem cell proliferation and positioning, control intestinal tissue boundaries and are involved in liver, pancreatic and colorectal cancers, indicating involvement in additional digestive system malignancies. We investigated the role of Ephrin-B4 receptor (EPHB4), and its ligand EFNB2, in gastric and gastroesophageal junction cancers in patient cohorts through computational, mathematical, molecular and immunohistochemical analyses. We show that EPHB4 is upregulated in preneoplastic gastroesophageal lesions and its expression further increased in gastroesophageal cancers in several independent cohorts. The closely related EPHB6 receptor, which also binds EFNB2, was downregulated in all tested cohorts, consistent with its tumor-suppressive properties in other cancers. EFNB2 expression is induced in esophageal cells by acidity, suggesting that gastroesophageal reflux disease (GERD) may constitute an early triggering event in activating EFNB2-EPHB4 signaling. Association of EPHB4 to both Barrett's esophagus and to advanced tumor stages, and its overexpression at the tumor invasion front and vascular endothelial cells intimate the notion that EPHB4 may be associated with multiple steps of gastroesophageal tumorigenesis. Analysis of oncogenomic signatures uncovered the first EPHB4-associated gene network (false discovery rate: 7 × 10(-90) ) composed of a five-transcription factor interconnected gene network that drives proliferation, angiogenesis and invasiveness. The EPHB4 oncogenomic network provides a molecular basis for its role in tumor progression and points to EPHB4 as a potential tumor aggressiveness biomarker and drug target in gastroesophageal

  14. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.<