WorldWideScience

Sample records for cell proliferation rate

  1. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle.

    Science.gov (United States)

    Coles, Chantal A; Wadeson, Jenny; Leyton, Carolina P; Siddell, Jason P; Greenwood, Paul L; White, Jason D; McDonagh, Matthew B

    2015-01-01

    Muscling in cattle is largely influenced by genetic background, ultimately affecting beef yield and is of major interest to the beef industry. This investigation aimed to determine whether primary skeletal muscle cells isolated from different breeds of cattle with a varying genetic potential for muscling differ in their myogenic proliferative capacity. Primary skeletal muscle cells were isolated and cultured from the Longissimus muscle (LM) of 6 month old Angus, Hereford and Wagyu X Angus cattle. Cells were assessed for rate of proliferation and gene expression of PAX7, MYOD, MYF5, and MYOG. Proliferation rates were found to differ between breeds of cattle whereby myoblasts from Angus cattle were found to proliferate at a greater rate than those of Hereford and Wagyu X Angus during early stages of growth (5-20 hours in culture) in vitro (P cattle (P cattle (P cattle.

  2. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture.

    Science.gov (United States)

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.

  3. Co-cultivation of human aortic smooth muscle cells with epicardial adipocytes affects their proliferation rate.

    Science.gov (United States)

    Ždychová, J; Čejková, S; Králová Lesná, I; Králová, A; Malušková, J; Janoušek, L; Kazdová, L

    2014-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte- CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs.

  4. Effects of aging on mouse tongue epithelium focusing on cell proliferation rate and morphological aspects.

    Science.gov (United States)

    Carrard, Vinicius Coelho; Pires, Aline Segatto; Badauy, Cristiano Macabu; Rados, Pantelis Varvaki; Lauxen, Isabel Silva; Sant'Ana Filho, Manoel

    2008-11-01

    The aim of this study was to investigate cell proliferation rate and certain morphological features of mouse epithelium as aging progresses. Tongue biopsies were performed on female mice (Mus domesticus domesticus) at 2, 8, 14 and 20 months of age as indicative of adolescence, adulthood, early senescence and senescence, respectively. Histological sections of tongue were stained with hematoxylin-eosin and subjected to silver staining for active nucleolar organizer region counting. Cell proliferation rate and epithelial thickness analysis were carried out. Analysis of variance detected no differences between the groups in terms of numbers of silver-stained dots associated with nucleolar proteins. There was an increase in mean epithelial thickness in adult animals, followed by a gradual reduction until senescence. Mean keratin thickness presented an increase at 8 and 20 months of age. This difference is probably related to puberty, growth or dietary habits. Aging has no influence on oral epithelial proliferation rate in mice. A gradual reduction in epithelial thickness is a feature of aging in mammals. A conspicuous increase in the keratin layer was observed in senescence as an adaptative response to the reduction in epithelial thickness. These results suggest that aging affects the oral epithelium maturation process through a mechanism that is not related to cell proliferation.

  5. Population differences in the rate of proliferation of international HapMap cell lines.

    Science.gov (United States)

    Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen

    2010-12-10

    The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p HapMap panels into discovery and replication sets must take this into consideration.

  6. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    Science.gov (United States)

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.

  7. Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Im

    2012-02-01

    Full Text Available The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs. Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM, which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748 of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs. The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.

  8. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, María Soledad [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Fernandez-Alvarez, Ana [Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE (Argentina); Cucarella, Carme [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Casado, Marta, E-mail: mcasado@ibv.csic.es [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain)

    2014-04-25

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remain unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation.

  9. Bcl11b mutations identified in murine lymphomas increase the proliferation rate of hematopoietic progenitor cells

    Directory of Open Access Journals (Sweden)

    Söderkvist Peter

    2007-10-01

    Full Text Available Abstract Background The telomeric region of mouse chromosome 12 has previously shown frequent allelic loss in murine lymphoma. The Bcl11b gene has been identified and suggested as a candidate tumor suppressor gene within this region. In this study, we aimed to elucidate whether Bcl11b is mutated in lymphomas with allelic loss, and whether the mutations we detected conferred any effect on cell proliferation and apoptosis. Methods Mouse lymphomas induced by 1,3-butadiene or 2',3'-dideoxycytidine were analysed for mutations in the Bcl11b gene using single strand conformation analysis and direct DNA sequencing. Effects on cell proliferation by the detected mutations were studied by expressing wild-type and mutant Bcl11b in the cytokine-dependent hematopoietic progenitor cell line FDC-P1, lacking endogenous Bcl11b expression. Results Missense and frameshift (FS mutations were identified in 7 of 47 tumors (15%. Interestingly, all mutations were found between amino acids 778–844 which encode the three C-terminal DNA-binding zinc fingers. In FDC-P1 cells, wild-type Bcl11b suppressed cell proliferation, whereas the mutated versions (S778N, K828T, Y844C and FS823 enhanced proliferation several-fold. Conclusion The genetic alterations detected in this study suggest that the three C-terminal zinc fingers of Bcl11b are important for the DNA-binding. Cell proliferation was suppressed by overexpression of wild-type Bcl11b but enhanced by mutant Bcl11b, indicating that these mutations may be an important contributing factor to lymphomagenesis in a subset of tumors.

  10. Arabidopsis SMALL ORGAN 4, a homolog of yeast NOP53, regulates cell proliferation rate during organ growth

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ran Zhang; Zhixiang Qin; Xiao Zhang; Yuxin Hu

    2015-01-01

    Cel proliferation is a fundamental event essential for plant organogenesis and contributes greatly to the final organ size. Although the control of cel proliferation in plants has been extensively studied, how the plant sets the cel number required for a single organ is largely elusive. Here, we describe the Arabidopsis SMALL ORGAN 4 (SMO4) that functions in the regulation of cell proliferation rate and thus final organ size. The smo4 mutant exhibits a reduced size of organs due to the decreased cell number, and further analysis reveals that such phenotype results from a retardation of the cell cycle progression during organ development. SMO4 encodes a homolog of NUCLEOLAR PROTEIN 53 (NOP53) in Saccharomy-ces cerevisiae and is expressed primarily in tissues undergoing cel proliferation. Nevertheless, further complementation tests show that SMO4 could not rescue the lethal defect of NOP53 mutant of S. cerevisiae. These results define SMO4 as an important regulator of cell proliferation during organ growth and suggest that SMO4 might have been evolutionarily divergent from NOP53.

  11. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability.

    Science.gov (United States)

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-01-01

    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.

  12. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability

    Directory of Open Access Journals (Sweden)

    Pietro Randelli

    2016-01-01

    Full Text Available Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.

  13. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability

    Science.gov (United States)

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-01-01

    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient. PMID:27057170

  14. Proliferation rate but not mismatch repair affects the long-term response of colon carcinoma cells to 5FU treatment.

    Science.gov (United States)

    Choudhary, B; Hanski, M L; Zeitz, M; Hanski, C

    2012-07-01

    The role of mismatch repair (MMR) in the response of colon carcinoma cells to 5-fluorouracil (5FU) is not well understood. In most of the in vitro studies only short-term response was investigated. We focussed here on the influence of MMR status on the mechanism of the short- and long-term response to clinically relevant 5FU concentrations by using isogenic or semiisogenic cell line pairs expressing/nonexpressing the hMLH1 protein, an important component of the MMR system. We show that the lower survival of MMR-proficient than of MMR-deficient cells in the clonogenic survival assay is due to a more frequent early cell arrest and to subsequent senescence. By contrast, the long-term cell growth after treatment, which is also affected by long-term arrest and senescence, is independent from the MMR status. The overall effect on the long-term cell growth is a cumulative result of cell proliferation rate-dependent growth inhibition, apoptosis and necrotic cell death. The main long-term cytotoxic effect of 5FU is the inhibition of growth while apoptosis and the necrotic cell death are minor contributions.

  15. Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2

    Directory of Open Access Journals (Sweden)

    Przybyt Ewa

    2013-02-01

    Full Text Available Abstract Background Experimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI. The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditions may negatively affect administered stem cells. As postnatal cardiomyocytes have a poor proliferation rate, while induction of proliferation seems even more rare. Thus stimulation of their proliferation rate is essential after aMI. In metaplastic disease, the pro-inflammatory cytokine interleukin-6 (IL-6 has been identified as potent mediators of the proliferation rate. We hypothesized that IL-6 could augment the proliferation rate of (slow-dividing cardiomyocytes. Methods To mimic the behavior of therapeutic cells in the post-infarct cardiac microenvironment, human Adipose Derived Stromal Cells (ADSC were cultured under hypoxic (2% O2 and pro-inflammatory conditions (IL-1β for 24h. Serum-free conditioned medium from ADSC primed with hypoxia and/or IL-1β was added to rat neonatal cardiomyocytes and adult cardiomyocytes (HL-1 to assess paracrine-driven changes in cardiomyocyte proliferation rate and induction of myogenic signaling pathways. Results We demonstrate that ADSC enhance the proliferation rate of rat neonatal cardiomyocytes and adult HL-1 cardiomyocytes in a paracrine fashion. ADSC under hypoxia and inflammation in vitro had increased the interleukin-6 (IL-6 gene and protein expression. Similar to conditioned medium of ADSC, treatment of rat neonatal cardiomyocytes and HL-1 with recombinant IL-6 alone also stimulated their proliferation rate. This was corroborated by a strong decrease of cardiomyocyte proliferation after addition of IL-6 neutralizing antibody to conditioned medium of ADSC. The stimulatory effect of ADSC conditioned media or IL-6 was accomplished through activation of both Janus Kinase-Signal Transducer and

  16. Connection between Proliferation Rate and Temozolomide Sensitivity of Primary Glioblastoma Cell Culture and Expression of YB-1 and LRP/MVP.

    Science.gov (United States)

    Moiseeva, N I; Susova, O Yu; Mitrofanov, A A; Panteleev, D Yu; Pavlova, G V; Pustogarov, N A; Stavrovskaya, A A; Rybalkina, E Yu

    2016-06-01

    Glioblastomas (GBL) are the most common and aggressive brain tumors. They are distinguished by high resistance to radiation and chemotherapy. To find novel approaches for GBL classification, we obtained 16 primary GBL cell cultures and tested them with real-time PCR for mRNA expression of several genes (YB-1, MGMT, MELK, MVP, MDR1, BCRP) involved in controlling cell proliferation and drug resistance. The primary GBL cultures differed in terms of proliferation rate, wherein a group of GBL cell cultures with low proliferation rate demonstrated higher resistance to temozolomide. We found that GBL primary cell cultures characterized by high proliferation rate and lower resistance to temozolomide expressed higher mRNA level of the YB-1 and MDR1 genes, whereas upregulated expression of MVP/LRP mRNA was a marker in the group of GBL with low proliferation rate and high resistance. A moderate correlation between expression of YB-1 and MELK as well as YB-1 and MDR1 was found. In the case of YB-1 and MGMT expression, no correlation was found. A significant negative correlation was revealed between mRNA expression of MVP/LRP and MELK, MDR1, and BCRP. No correlation in expression of YB-1 and MVP/LRP genes was observed. It seems that mRNA expression of YB-1 and MVP/LRP may serve as a marker for GBL cell cultures belonging to distinct groups, each of which is characterized by a unique pattern of gene activity.

  17. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    Science.gov (United States)

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  18. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy.

    Science.gov (United States)

    Breitfeld, J; Scholl, C; Steffens, M; Brandenburg, K; Probst-Schendzielorz, K; Efimkina, O; Gurwitz, D; Ising, M; Holsboer, F; Lucae, S; Stingl, J C

    2016-11-15

    The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.

  19. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy

    Science.gov (United States)

    Breitfeld, J; Scholl, C; Steffens, M; Brandenburg, K; Probst-Schendzielorz, K; Efimkina, O; Gurwitz, D; Ising, M; Holsboer, F; Lucae, S; Stingl, J C

    2016-01-01

    The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin—a gene involved in neuronal stem cell regeneration—were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy. PMID:27845776

  20. Cell proliferation in gastrointestinal mucosa.

    OpenAIRE

    Wong, W M; Wright, N A

    1999-01-01

    Gastrointestinal cell proliferation plays an important role in the maintenance of the integrity of the gastrointestinal system. The study of gastrointestinal proliferation kinetics allows a better understanding of the complexity of the system, and also has important implications for the study of gastrointestinal carcinogenesis. Gastrointestinal stem cells are shown to be pluripotential and to give rise to all cell lineages in the epithelium. Carcinogenesis in the colon occurs through sequenti...

  1. Recombiant DNA and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, G.S.; Stein, J.L.

    1984-01-01

    This book contains 13 chapters. Some of the chapter titles are: Expression of Dihydrofolate Reductase and Thymidylate Synthase Genes in Mammalian Cells; Expression of Histone Genes during the Cell Cycle in Human Cells; Regulation of Nonmuscle Actin Gene Expression during Early Development; and Recombinant DNA Approaches to Studying Control of Cell Proliferation: An Overview.

  2. Characteristics of smooth muscle cells' shape and proliferation rate in novel short-term thermal angioplasty ex vivo and in vitro.

    Science.gov (United States)

    Kunio, Mie; Shimazaki, Natsumi; Ito, Arisa; Hayashi, Tomoaki; Arai, Tsunenori

    2010-01-01

    We investigated the influences on the smooth muscle cells of temporally heated arterial walls in both ex vivo and in vitro study to determine the optimum heat parameter of novel short-term thermal angioplasty, Photo-thermo Dynamic Balloon Angioplasty (PTDBA). Arterial heating dilatation was performed by the prototype PTDBA balloon ex vivo. We found that the smooth muscle cells in the vessel wall were stretch-fixed after the heating dilatation ex vivo. The stretch-fixing rate of these cells was increased with the temperature rise in the balloon of PTDBA from 60 °C to 70 °C. We measured the proliferation rate of the stretch-fixed smooth muscle cells, which were extracted from porcine arteries, on specially designed culture equipment in vitro. It was observed that the proliferation rate was inhibited at 20 % stretching compared to 10 % stretching. We think the stretch-fixing of the smooth muscle cells might not be harmful for PTDBA performances.

  3. Chromosome Damage and Cell Proliferation Rates in In Vitro Irradiated Whole Blood as Markers of Late Radiation Toxicity After Radiation Therapy to the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, Lindsay A., E-mail: Lindsay.Beaton@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Ferrarotto, Catherine; Marro, Leonora [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Samiee, Sara; Malone, Shawn; Grimes, Scott; Malone, Kyle [The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON (Canada); Wilkins, Ruth C. [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada)

    2013-04-01

    Purpose: In vitro irradiated blood samples from prostate cancer patients showing late normal tissue damage were examined for lymphocyte response by measuring chromosomal aberrations and proliferation rate. Methods and Materials: Patients were selected from a randomized trial evaluating the optimal timing of dose-escalated radiation and short-course androgen deprivation therapy. Of 438 patients, 3% experienced grade 3 late radiation proctitis and were considered to be radiosensitive. Blood samples were taken from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated at 6 Gy and, along with control samples, were analyzed for dicentric chromosomes and excess fragments per cell. Cells in first and second metaphase were also enumerated to determine the lymphocyte proliferation rate. Results: At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for 3 endpoints: the mean number of dicentric chromosomes per cell (3.26 ± 0.31, 2.91 ± 0.32; P=.0258), the mean number of excess fragments per cell (2.27 ± 0.23, 1.43 ± 0.37; P<.0001), and the proportion of cells in second metaphase (0.27 ± 0.10, 0.46 ± 0.09; P=.0007). Conclusions: These results may be a valuable indicator for identifying radiosensitive patients and for tailoring radiation therapy.

  4. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  5. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis.

    Directory of Open Access Journals (Sweden)

    Jane Ru Choi

    Full Text Available Adipose tissue-derived stromal cells (ASCs natively reside in a relatively low-oxygen tension (i.e., hypoxic microenvironment in human body. Low oxygen tension (i.e., in situ normoxia, has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2 or in situ normoxia (2% O2. We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.

  6. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute...

  7. Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V

    2013-01-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM......) supplemented with either pooled human platelet lysate (pHPL) or clinical-grade fetal bovine serum (FBS) (DMEM(pHPL) versus DMEM(FBS))....

  8. Mutation of EMG1 causing Bowen-Conradi syndrome results in reduced cell proliferation rates concomitant with G2/M arrest and 18S rRNA processing delay.

    Science.gov (United States)

    Armistead, Joy; Hemming, Richard; Patel, Nehal; Triggs-Raine, Barbara

    2014-06-01

    Bowen-Conradi syndrome (BCS) is a lethal autosomal recessive disorder caused by a D86G substitution in the protein, Essential for Mitotic Growth 1 (EMG1). EMG1 is essential for 18S rRNA maturation and 40S ribosome biogenesis in yeast, but no studies of its role in ribosome biogenesis have been done in mammals. To assess the effect of the EMG1 mutation on cell growth and ribosomal biogenesis in humans, we employed BCS patient cells. The D86G substitution did not interfere with EMG1 nucleolar localization. In BCS patient lymphoblasts, cells accumulated in G2/M, resulting in reduced proliferation rates; however, patient fibroblasts showed normal proliferation. The rate of 18S rRNA processing was consistently delayed in patient cells, although this did not lead to a difference in the levels of 40S ribosomes, or a change in protein synthesis rates. These results demonstrate that as in yeast, EMG1 in mammals has a role in ribosome biogenesis. The obvious phenotype in lymphoblasts compared to fibroblasts suggests a greater need for EMG1 in rapidly dividing cells. Tissue-specific effects have been seen in other ribosomal biogenesis disorders, and it seems likely that the impact of EMG1 deficiency would be larger in the rapidly proliferating cells of the developing embryo.

  9. Mutation of EMG1 causing Bowen–Conradi syndrome results in reduced cell proliferation rates concomitant with G2/M arrest and 18S rRNA processing delay

    Directory of Open Access Journals (Sweden)

    Joy Armistead

    2014-06-01

    Full Text Available Bowen–Conradi syndrome (BCS is a lethal autosomal recessive disorder caused by a D86G substitution in the protein, Essential for Mitotic Growth 1 (EMG1. EMG1 is essential for 18S rRNA maturation and 40S ribosome biogenesis in yeast, but no studies of its role in ribosome biogenesis have been done in mammals. To assess the effect of the EMG1 mutation on cell growth and ribosomal biogenesis in humans, we employed BCS patient cells. The D86G substitution did not interfere with EMG1 nucleolar localization. In BCS patient lymphoblasts, cells accumulated in G2/M, resulting in reduced proliferation rates; however, patient fibroblasts showed normal proliferation. The rate of 18S rRNA processing was consistently delayed in patient cells, although this did not lead to a difference in the levels of 40S ribosomes, or a change in protein synthesis rates. These results demonstrate that as in yeast, EMG1 in mammals has a role in ribosome biogenesis. The obvious phenotype in lymphoblasts compared to fibroblasts suggests a greater need for EMG1 in rapidly dividing cells. Tissue-specific effects have been seen in other ribosomal biogenesis disorders, and it seems likely that the impact of EMG1 deficiency would be larger in the rapidly proliferating cells of the developing embryo.

  10. Effect of cell proliferation status on apoptostic rate of vascular smooth muscle cells induced by laser%细胞增殖状态对激光诱导血管平滑肌细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    刘爱琴; 顾瑛; 刘凡光; 陆亚彬; 司晋红; 朱建国; 唐建民

    2001-01-01

    Objective:to investgate the effect of vascular smooth muscle cells(VSMCs)proliferation activity and cell cycle on apoptostic rate induced by Copper Vapor laser irradiation.Methods:VSMCs were synchronized and divided into 3 groups:①10%NCS,②PDGF(10%NCS+20ng/PDGF),③40%FBS,then different growth factors were added into each group.MTT assay and FCM were used to measure SMC proliferation status and cell cycle respectively.At the same time,apoptostic rate of each group was analyzed by TUNNEL assay after irradiated with Cooper Vapor laser.Results:The cells that are at the proliferation stage is easy to be apoptosized under the induction of laser,while the apoptostic rate of relatively atable cells is low.conclusion:apoptotic rate of VSMC induced by copper vapor laser conelates to the proliferative activity and cell cycle phases of VSMC stimulated by different stinmulators.%目的:探讨细胞的增殖状态及细胞周期分布对体外培养的血管平滑肌细胞(VSMC)凋亡的激光诱导率的影响。方法:组织贴块法体外培养VSMC,饥饿法同步化,VSMC在不同的刺激因子作用之后,亚甲基噻唑蓝比色(MTT)法检测细胞增殖状况,流式细胞仪(FCM)检测细胞的周期分布,510.6nm的铜蒸汽激光照射后,TUNEL染色法记数细胞凋亡率。结果:生长活跃,处于增殖期的细胞,在激光的诱导下易发生凋亡;相反,增殖相对不活跃、处于静止期的细胞,凋亡诱导率较低。结论:经不同生长因子刺激后VSMC的增殖状态及细胞的周期分布不同,对激光的凋亡诱导率产生影响。

  11. Neural and Oligodendrocyte Progenitor Cells: Transferrin Effects on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucas Silvestroff

    2013-02-01

    Full Text Available NSC (neural stem cells/NPC (neural progenitor cells are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone of the mammalian CNS (central nervous system. These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres to evaluate the effects of Tf (transferrin on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein, Nestin and Sox2 and the OL (oligodendrocyte progenitor markers NG2 (nerve/glia antigen 2 and PDGFRα (platelet-derived growth factor receptor α. The results of this study indicate that aTf (apoTransferrin is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1. Since OPCs (oligodendrocyte progenitor cells represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.

  12. Electrospun fiber membranes enable proliferation of genetically modified cells

    Directory of Open Access Journals (Sweden)

    Borjigin M

    2013-02-01

    Full Text Available Mandula Borjigin*, Chris Eskridge*, Rohina Niamat, Bryan Strouse, Pawel Bialk, Eric B KmiecDepartment of Chemistry, Delaware State University, Dover, DE, USA *These authors contributed equally to this work Abstract: Polycaprolactone (PCL and its blended composites (chitosan, gelatin, and lecithin are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher. Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. Keywords: nanofibers, PCL-biomaterial blends, miscibility, gene editing, cell proliferation

  13. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  14. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  15. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    Science.gov (United States)

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  16. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  17. Insulin and glucagon regulate pancreatic α-cell proliferation.

    Directory of Open Access Journals (Sweden)

    Zhuo Liu

    Full Text Available Type 2 diabetes mellitus (T2DM results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s regulate α-cell turnover. Lepr(db/Lepr(db (db/db mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.

  18. Microfluidic devices for cell cultivation and proliferation

    OpenAIRE

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell cul...

  19. Seasonal proliferation rates and the capacity to express genes involved in cell cycling and maintenance in response to seasonal and experimental food shortage in Laternula elliptica from King George Island.

    Science.gov (United States)

    Husmann, G; Philipp, E E R; Abele, D

    2016-07-01

    Melting of coastal glaciers at the West Antarctic Peninsula (WAP) causes shorter winter sea ice duration, intensified ice scouring, sediment erosion and surface freshening in summer, which alters coastal productivity and feeding conditions for the benthos. The soft shell clam Laternula elliptica is a fast growing and abundant filter feeder in coastal Antarctica and a key element for bentho-pelagic carbon recycling. Our aim was to assess the cellular growth and maintenance capacity of small and large clams during natural winter food shortage (seasonal sampling) and in response to experimental starvation exposure. We measured tissue specific proliferation rates, the expression of cell cycling genes, and the iron binding protein Le-ferritin in freshly collected specimens in spring (Nov 2008) and at the end of summer (March 2009). For the experimental approach, we focused on 14 cell cycling and metabolic genes using the same animal size groups. Mantle tissue of young bivalves was the only tissue showing accelerated proliferation in summer (1.7% of cells dividing per day in March) compared to 0.4% dividing cells in animals collected in November. In mantle, siphon and adductor muscle proliferation rates were higher in younger compared to older individuals. At transcript level, Le-cyclin D was upregulated in digestive gland of older animals collected in spring (Nov) compared to March indicating initiation of cell proliferation. Likewise, during experimental starvation Le-cyclin D expression increased in large clam digestive gland, whereas Le-cyclin D and the autophagic factor beclin1 decreased in digestive gland of smaller starved clams. The paper corroborates earlier findings of size and age dependent differences in the metabolic response and gene expression patterns in L. elliptica under energetic deprivation. Age structure of shallow water populations can potentially change due to differences in cellular response between young and old animals as environmental stress

  20. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  1. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    Science.gov (United States)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  2. Investigation on the effect of static magnetic field up to 30 mT on viability percent, proliferation rate and IC50 of HeLa and fibroblast cells.

    Science.gov (United States)

    Zafari, Jaber; Javani Jouni, Fatemeh; Abdolmaleki, Parviz; Jalali, Amir; Khodayar, Mohammad Javad

    2015-09-01

    We have investigated the effects of static magnetic field (SMF) on the viability of the human cervical cancer (HeLa) cell line and fibroblast cells. The cells were cultured in DMEM medium and treated several times (24, 48,72 and 96 h) and at several intensities (5, 10, 20 and 30 mT) of magnetic field (MF). The cytotoxicity and cell viability percent in treated cells were performed using MTT assay by evaluating mitochondrial dehydrogenase activity. The MF ability on inducing cell death or inhibiting biochemical function was reported as cell death percent. The results showed that the increase of MF intensity and the time that cells were exposed to this treatment increased sharply cell death percent and proliferation rate in HeLa cell compare to fibroblast cells. Our data suggest that SMF biological effects on cell death were different in our selected targets. Cell type and time of exposure have been therefore found to be significant factors. These findings could be used to improve new effective method using SMF in conjunction with the common therapeutic approaches.

  3. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  4. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  5. Menin represses tumorigenesis via repressing cell proliferation

    OpenAIRE

    Wu, Ting; Hua, Xianxin

    2011-01-01

    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in the tumor suppressor gene, MEN1, which encodes nuclear protein menin. Menin is important for suppressing tumorigenesis in various endocrine and certain non-endocrine tissues. Although menin suppresses MEN1 through a variety of mechanisms including regulating apoptosis and DNA repair, the role of menin in regulating cell proliferation is one of the best-studied functions. Here, we focus on reviewing various mechanisms underly...

  6. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    Science.gov (United States)

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  7. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  8. Impaired TGF-beta induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53

    DEFF Research Database (Denmark)

    Kumar, P.; Naumann, U.; Aigner, L.;

    2015-01-01

    Gliomas have been classified according to their histological properties. However, their respective cells of origin are still unknown. Neural progenitor cells (NPC) from the subventricular zone (SVZ) can initiate tumors in murine models of glioma and are likely cells of origin in the human disease...

  9. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  10. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  11. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  12. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  13. Evaluation of germ-cell kinetics in infertile patients with proliferating cell nuclear antigen proliferating index

    Institute of Scientific and Technical Information of China (English)

    Li ZENG; Xiang-Tian KONG; Jin-Wei SU; Tong-Li XIA; Yan-Qun NA; Ying-Lu GUO

    2001-01-01

    To explore the usefulness of proliferating cell nuclear antigen proliferating index (PCNA PI) in the pathological diagnosis and treatment of male infertility. Methods: Testicular biopsy specimen obtained from 48 cases of male infertility and 2 normal controls were fixed and embedded. The sections were stained with anti-PCNA monoclonal antibodies or haematoxylin/eosin. Proliferating index (PI), expressed as the percentage of germ-cell nuclei positively stained with PCNA antibody, was assessed from more than 20 seminiferous tubules or 600 germ-cells. Results: The infertile patients were divided into 4 groups: Group 1, normal spermatogenesis ( 14 cases); Group 2, hypospermatogenesis (16 cases); Group 3, germinal arrest (10 cases); Group 4, Sertoli cell only syndrome (8 cases). The PCNA PI of normal control testis was 86.5% (mean value). Group 3 had a significantly lower PCNA PI (29.8%) than normal testis; Group 1 and 2 had similar Pis (82.3% and 82.3%, respectively) as the control testis. PI of the negative control (Group 4) was 0 as no germ-cells were found. Conclusion: PCNA PI is useful for assessing germ-cell kinetics, especially for pathological diagnosis of germinal arrest which is difficult to differentiate by routine HE staining technique. In germinal arrest, there is a significantly lowered PCNA PI, which is an indication of DNA synthesis deterioration, suggesting the use of therapies be different from those for hypospermatogenesis.

  14. Proliferation of normal and malignant human epithelial cells post irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Seymour, C.B.; O' Brien, A.; Hennessy, T. (Saint James Hospital, Dublin (Ireland). Radiobiological Research Group Dublin Inst. of Tech. (Ireland). Physics Dept.)

    1991-01-01

    Fragments of human oesophageal mucosa, urothelium, squamous and adenocarcinoma of the oesophagus and carcinoma of the bladder have been plated in culture and irradiated. The cells growing from the explanted tissues have then been studied for four weeks post irradiation to assess the overall rate of growth from the irradiated explants and the fraction of profilerating cells. Th results show that when using cell number as an endpoint it is possible to derive growth curves from this type of data which permit a doubling time to be obtained for the cell population surviving different doses. In an attempt to determine the proliferating fraction of the cell population, cultures were labelled at appropriate intervals with tritiated thymidine and were also stained with Ki-67 antiproliferating antigen. The results show an interesting relationship between the dose response obtained for cell labelling with tritiated thymidine and area of cellular outgrowth. Ki-67 staining when used carefully and analysed as described was a useful indicator of proliferating cells. The results provid a means of determining the post irradiation growth potential of fragments of tissue from human organs and may be important for determined overall response of the tumour bulk to proposed treatment. (orig.).

  15. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  16. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  17. The selection of light emitting diode irradiation parameters for stimulation of human mesenchymal stem cells proliferation

    Science.gov (United States)

    Lewandowski, Rafał; Trafny, ElŻbieta A.; Stepińska, Małgorzata; Gietka, Andrzej; Kotowski, Paweł; Dobrzyńska, Monika; Łapiński, Mariusz P.

    2016-12-01

    Human mesenchymal stem cells (hMSCs) with their vast differentiation potential are very useful for cell-based regenerative medicine. To achieve sufficient numbers of cells for tissue engineering, many different methods have been used to reach the effective increase of cell proliferation. Low-energy red light provided by light emitting diodes (LEDs) have been recently introduced as a method that promoted biomodulation and proliferation of hMSCs in vitro. The purpose of this study was to find the optimum stimulatory dosimetric parameters of LED (630 nm) irradiation on the hMSCs proliferation. The energy density was 2, 3, 4, 10, 20 J/cm2 and the power density used was 7, 17 or 30 mW/cm2. Human MSCs were irradiated with single or triple exposures daily at room temperature and the cell proliferation rate was evaluated during nine days after irradiation. The results showed that after irradiation 4 J/cm2 and 17 mW/cm2 at a single dose the proliferation rate of hMSCs increased on day 5 and 9 (13% and 7%, respectively) when compared to nonirradiated cells. However, triple LED irradiation under the same parameters resulted in the decline in the cell proliferation rate on day 5, but the proliferation rate was at the same level on day 9, when compared with the cell proliferation after irradiation with a single dose. The effect of a single dose irradiation with 4 J/cm2 and 17 mW/cm2 on the proliferation of cells was the highest when the cells were irradiated in phosphate-buffered saline (PBS) instead of MSCGM culture medium.

  18. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  19. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  20. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation

    Science.gov (United States)

    Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    2016-01-01

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism. PMID:27657916

  1. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-12-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required.

  2. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  3. Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels.

    Science.gov (United States)

    Schuhmacher, Marino; Eick, Dirk

    2013-01-01

    The proto-oncogene c-myc encodes a basic helix-loop-helix leucine zipper transcription factor (c-Myc). c-Myc plays a crucial role in cell growth and proliferation. Here, we examined how expression of c-Myc target genes and cell proliferation depend on variation of c-Myc protein levels. We show that proliferation rates, the number of cells in S-phase, and cell size increased in a dose-dependent manner in response to increasing c-Myc levels. Likewise, the mRNA levels of c-Myc responsive genes steadily increased with rising c-Myc levels. Strikingly, steady-state mRNA levels of c-Myc target genes did not saturate even at highest c-Myc concentrations. These characteristics predestine c-Myc levels as a cellular rheostat for the control and fine-tuning of cell proliferation and growth rates.

  4. Glutamine enhances glucose-induced mesangial cell proliferation.

    Science.gov (United States)

    Lagranha, Claudia J; Doi, Sonia Q; Pithon-Curi, Tania C; Curi, Rui; Sellitti, Donald F

    2008-05-01

    The proliferation of mesangial cells (MC) in the presence of glutamine (0-20 mM) was determined in both low (5 mM) and high (25 mM) glucose-containing medium. Glutamine in a high glucose (HG) environment increased cell proliferation in a dose-dependent manner. Inhibition of glutamine:fructose 6-phosphate amidotransferase (GFAT) and of phosphodiesterase significantly reduced glutamine-induced proliferation. Supraphysiologic levels of glutamine increase MC proliferation in a HG milieu via GFAT and cAMP-dependent pathways, suggesting that glutamine could pose a risk for diabetic nephropathy.

  5. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  6. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  7. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  8. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Olga García-Martínez

    Full Text Available In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63 proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis in adulthood and the elderly.

  9. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  10. Evaluation of the Cell Proliferation Process of Ovarian Follicles in Hypothyroid Rats by Proliferation Cell Nuclear Antigen Immunohistochemical Technique

    Directory of Open Access Journals (Sweden)

    M. Moghaddam Dorafshani

    2012-10-01

    Full Text Available Introduction & Objective: The normal females reproductive function , needs hypothalamus-hypophysis-ovarian extensive hormonal messages. Primary hypothyroidism is characterized by reduced production and secretion of thyroid hormones. During follicular growth PCNA (Proliferating Cell Nuclear Antigen and cycklin D complex play an important role in regulating cell proliferation .This study aimed to determine the cell proliferation index and how this process changes induced by thyroid hormone decreased in rat ovarian follicles.Materials & Methods: In this experimental study, 20 Wistar female rats were divided into experimental and control groups. Experimental group was chemically thyroidectomized by administering propylthiouracil (PTU (500 mg per liter of drinking water. The control group received normal drinking water. After three weeks rats were killed and their ovaries dissected and fixed for the histological preparation. Cell proliferation was determined by PCNA and stereological methods were used for counting cells.Results: Cell proliferation index showed a significant decrease in the frequency of follicular growth from prenatal to graafian follicles in hypothyroidism groups(P0.05 . PCNA expression determined that Primary follicle growth begins earlier. Positive PCNA cells were not observed in primordial follicles of the groups.Conclusion: According to the results of our study, this hypothesis is raised that granulosa cells in growing follicles may be increased by follicle adjacent cells in ovarian stroma . Hormonal changes following the reduction of thyroid hormones may greatly affect the cell proliferation index and lead to faster follicle degeneration.(Sci J Hamadan Univ Med Sci 2012; 19 (3:5-15

  11. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  12. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  13. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  14. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  15. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  16. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  17. Mechanism of Suppression on Proliferation of QGY Cell by Oxaliplatin

    Institute of Scientific and Technical Information of China (English)

    HE Song; ZUO Guo-qing; ZHANG Yan; TANG Wei-xue; LIU Chang-an

    2007-01-01

    Objective: To observe the effects of oxaliplatin(L-OHP) on proliferation of human hepatoma cell line QGY in vitro and to investigate the mechanism. Methods: The inhibition of proliferation in QGY cell was assayed by MTT-test. Morphologic changes were observed under light microscope and electronic microscope. Distribution of cell cycle and apoptosis were analyzed using flow cytometry. The expressions of cell cycle proteins and apoptosis-associated proteins were detected with immuno-histochemical technique. Results: Oxaliplatin could inhibit the proliferation of QGY cells and the inhibition depended on the exposure time and dose. The cells showed morphologic changes of the early stage of apoptosis under the light microscope: the shrunk round cells, condensed cytoplasma and pycnosis of nucleus. Apoptotic cells and apoptotic body could be found under the transmission electronic microscope. The analysis of cell cycle indicated that oxaliplatin blocked cells at S and G2/M phases and the cells of G0/Gl phase reduced. When treated with oxaliplatin for 72h, the expressions of cyclin A and Bax were up-regulated, mutant type P53, Bcl-2 and Myc were down-regulated, and Fas was not changed. Conclusion: Oxaliplatin could inhibit the proliferation of the hepatoma cell lines. Cells were blocked at S and G2/M phases. The apoptosis was related to the up-regulation of Bax and down-regulation of mutant type P53, Bcl-2 and Myc. Oxaliplatin could not induce apoptosis through the Fas pathway.

  18. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells.

    Directory of Open Access Journals (Sweden)

    Souheil-Antoine Younes

    2011-10-01

    Full Text Available Memory phenotype (CD44(bright, CD25(negative CD4 spleen and lymph node T cells (MP cells proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non-T-cell receptor (TCR-driven proliferation. Such proliferation is partially inhibited by anti-IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion.

  19. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation.

    Science.gov (United States)

    Millena, Ana Cecilia; Vo, BaoHan T; Khan, Shafiq A

    2016-08-19

    TGF-β inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-β. The intracellular signaling mechanisms involved in differential effects of TGF-β during different stages are largely unknown. Using cell line models, we have shown that TGF-β inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-β effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-β treatment. TGF-β effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-β induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-β treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-β, and inhibition of cell proliferation by TGF-β requires degradation of JunD protein.

  20. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun

    2005-01-01

    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  1. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  2. Germination of arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation

    NARCIS (Netherlands)

    Manzano, A.I.; Matia, I.; Gonzalez-Camacho, F.; Carnero-Diaz, E.; van Loon, J.J.W.A.; Dijkstra, C.; Larkin, O.; Anthony, P.; Davey, M.R.; Marco, R.; Medina, F.J.

    2009-01-01

    Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of ce

  3. Proliferation and differentiation of rat bone marrow stem cells by 400μT electromagnetic field.

    Science.gov (United States)

    Safari, Manouchehr; Jadidi, Majid; Baghian, Atefeh; Hasanzadeh, Hadi

    2016-01-26

    The interaction between environment electromagnetic field (EMF) and cells can effect on various physiological processes. EMF as an external inducing factor, could effect on proliferation or differentiation of cells. The purpose of this study was to evaluate the influence of the electromagnetic field on the viability, proliferation and differentiation rate of bone marrow stem cells (BMSCs) to neuron. BMSCs were obtained from 42 adult male rats. The cells incubated and cultured in 96-wells and 6-wells plates and exposed to electromagnetic field (40 or 400μT) with a selected waveform: AC (alternative current), rectified half wave (RHW) and rectified full wave (RFW), for a week. To assess the viability and proliferation rate of treated cells, MTT assay was done, and then immunocytochemistry staining Neu N was used to evaluate cell differentiation to neuron. Results showed that EMF decreases the viability and proliferation in treated groups. But in AC group's reduction was significant. Minimum viability and proliferation rate was observed in RHW 400μT group compared with sham. Immunocytochemistry showed that EMF can induce BMSC differentiation into neuron in AC 400μT and RFW 400μT. Evidences of this research support the hypothesis that EMF can induce differentiation of BMSCs to neuron.

  4. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  5. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

    Science.gov (United States)

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  6. Cholesterol induces proliferation of chicken primordial germ cells.

    Science.gov (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  7. Inflammation and proliferation act together to mediate intestinal cell fusion.

    Directory of Open Access Journals (Sweden)

    Paige S Davies

    Full Text Available Cell fusion between circulating bone marrow-derived cells (BMDCs and non-hematopoietic cells is well documented in various tissues and has recently been suggested to occur in response to injury. Here we illustrate that inflammation within the intestine enhanced the level of BMDC fusion with intestinal progenitors. To identify important microenvironmental factors mediating intestinal epithelial cell fusion, we performed bone marrow transplantation into mouse models of inflammation and stimulated epithelial proliferation. Interestingly, in a non-injury model or in instances where inflammation was suppressed, an appreciable baseline level of fusion persisted. This suggests that additional mediators of cell fusion exist. A rigorous temporal analysis of early post-transplantation cellular dynamics revealed that GFP-expressing donor cells first trafficked to the intestine coincident with a striking increase in epithelial proliferation, advocating for a required fusogenic state of the host partner. Directly supporting this hypothesis, induction of augmented epithelial proliferation resulted in a significant increase in intestinal cell fusion. Here we report that intestinal inflammation and epithelial proliferation act together to promote cell fusion. While the physiologic impact of cell fusion is not yet known, the increased incidence in an inflammatory and proliferative microenvironment suggests a potential role for cell fusion in mediating the progression of intestinal inflammatory diseases and cancer.

  8. Cholinergic Enhancement of Cell Proliferation in the Postnatal Neurogenic Niche of the Mammalian Spinal Cord.

    Science.gov (United States)

    Corns, Laura F; Atkinson, Lucy; Daniel, Jill; Edwards, Ian J; New, Lauryn; Deuchars, Jim; Deuchars, Susan A

    2015-09-01

    The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non-α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox-2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging.

  9. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    OpenAIRE

    Ela Alcántara-Flores; Alicia Enriqueta Brechú-Franco; Patricia García-López; Leticia Rocha-Zavaleta; Rebeca López-Marure; Mariano Martínez-Vázquez

    2015-01-01

    Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senes...

  10. Interferon-Gamma-Induced Nitric Oxide Inhibits the Proliferation of Murine Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    David J. Tate Jr., John R. Patterson, Cruz Velasco-Gonzalez, Emily N. Carroll, Janie Trinh, Daniel Edwards, Ashok Aiyar, Beatriz Finkel-Jimenez, Arnold H. Zea

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs has not improved significantly. It is likely that the lack of responses can be due to the tumor's ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ, indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS protein, resulting in a sustained elevation of nitric oxide (NO and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.

  11. GABA Regulates Stem Cell Proliferation before Nervous System Formation.

    OpenAIRE

    Wang, Doris,; Kriegstein, Arnold; Ben-Ari, Yehezkel

    2008-01-01

    International audience; HISTONE H2AX-DEPENDENT GABAA RECEPTOR REGULATION OF STEM CELL PROLIFERATION: Andäng M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibañez CF, Ernfors P. Nature20084517177:460-46418185516 Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differenc...

  12. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  13. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis.

    Science.gov (United States)

    Pagotto, Romina Maria; Pereyra, Elba Nora; Monzón, Casandra; Mondillo, Carolina; Pignataro, Omar Pedro

    2014-04-01

    Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

  14. Novel cAMP targets in cell proliferation

    NARCIS (Netherlands)

    Kuiperij, Hinke Bertha

    2004-01-01

    cAMP is a second messenger that plays a role in a wide variety of biological processes, one of which is the regulation of cell proliferation. Adenylate cyclases generate cAMP in the cell upon activation, followed by binding to and activation of its direct targets, PKA and Epac. PKA is a protein kina

  15. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  16. Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Frech Moritz J

    2010-12-01

    Full Text Available Abstract Background Hypoxia plays a critical role in various cellular mechanisms, including proliferation and differentiation of neural stem and progenitor cells. In the present study, we explored the impact of lowered oxygen on the differentiation potential of human neural progenitor cells, and the role of erythropoietin in the differentiation process. Results In this study we demonstrate that differentiation of human fetal neural progenitor cells under hypoxic conditions results in an increased neurogenesis. In addition, expansion and proliferation under lowered oxygen conditions also increased neuronal differentiation, although proliferation rates were not altered compared to normoxic conditions. Erythropoietin partially mimicked these hypoxic effects, as shown by an increase of the metabolic activity during differentiation and protection of differentiated cells from apoptosis. Conclusion These results provide evidence that hypoxia promotes the differentiation of human fetal neural progenitor cells, and identifies the involvement of erythropoietin during differentiation as well as different cellular mechanisms underlying the induction of differentiation mediated by lowered oxygen levels.

  17. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  18. Interleukin-2 expression and glioma cell proliferation following Vaceinia vector gene transfection in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiaogang Wang; Xuezhong Wei; Jiangqiu Liu

    2008-01-01

    BACKGROUND: The effectiveness of gene therapy is closely related to the efficiency of vector transfection and expression.OBJECTIVE: This study was designed to transfect a human brain glioma cell line with recombinant Vaccinia virus expressing the interleukin-2 (rVV-IL-2) gene, and to observe IL-2 expression and glioma cell proliferation potential after transfection. DESIGN: Experimental observation. SETTING: Department of Neurosurgery, Shenyang Military Area Command of Chinese PLA. MATERIALS: The rVV-IL-2 vectors were obtained through homologous recombination and screening in the Second Military Medical University of Chinese PLA. The human brain glioma cell line and IL-2-dependent cells were produced by the Second Military Medical University of Chinese PLA. Human IL-2 was produced by Genzyme Corporation. MAIN OUTCOME MEASURES: IL-2 expression at different time points after transfection of human brain glioma cells with varying MOI of Vaccinia viral vectors; in vitro proliferation capacity of human brain glioma cells among the 4 groups. RESULTS: IL-2 expression was detectable 4 hours after Vaccinia viral vector transfection and reached 300 kU/L by 8 hours. There was no significant difference in the proliferating rate of human brain glioma cells among the 4 groups (P > 0.05).CONCLUSION: Vaccinia viral vectors can transfect human brain glioma cells in vitro and express high levels of IL-2. Vaccinia virus and high IL-2 expression do not influence the proliferation rate of human brain glioma cells in vitro.

  19. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  20. Tetrahydrouridine inhibits cell proliferation through cell cycle regulation regardless of cytidine deaminase expression levels.

    Directory of Open Access Journals (Sweden)

    Naotake Funamizu

    Full Text Available Tetrahydrouridine (THU is a well characterized and potent inhibitor of cytidine deaminase (CDA. Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299 exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells.

  1. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  2. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  3. Increased Cell Proliferation in Chronic Helicobacter pylori Positive Gastritis and Gastric Carcinoma – Correlation between Immuno-Histochemistry and Tv Image Cytometry

    Directory of Open Access Journals (Sweden)

    Erika Szaleczky

    2000-01-01

    Full Text Available Backgound: Epithelial cell proliferation activity has been reported both to be unaltered and increased in Helicobacter pylori (H. pylori associated chronic gastritis. The proliferation rate decreased following H. pylori eradication, but results are controversial whether this change is dependent on the success of eradication. We compared the cell proliferation activity of H. pylori positive and negative gastric epithelial biopsies in chronic gastritis with and without intestinal metaplasia (IM and gastric cancer by the expression of proliferation cell nuclear antigen (PCNA and Tv image cytometry, and assessed the effect of H. pylori eradication on the cell proliferation rate in the gastric epithelium.

  4. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  5. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  6. Fluidic control over cell proliferation and chemotaxis

    Science.gov (United States)

    Groisman, Alex

    2006-03-01

    Microscopic flows are almost always stable and laminar that allows precise control of chemical environment in micro-channels. We describe design and operation of several microfluidic devices, in which various types of environments are created for different experimental assays with live cells. In a microfluidic chemostat, colonies of non-adherent bacterial and yeast cells are trapped in micro-chambers with walls permeable for chemicals. Fast chemical exchange between the chambers and nearby flow-through channels creates essentially chemostatic medium conditions in the chambers and leads to exponential growth of the colonies up to very high cell densities. Another microfluidic device allows creation of linear concentration profiles of a pheromone (α-factor) across channels with non-adherent yeast cells, without exposure of the cells to flow or other mechanical perturbation. The concentration profile remains stable for hours enabling studies of chemotropic response of the cells to the pheromone gradient. A third type of the microfluidic devices is used to study chemotaxis of human neutrophils exposed to gradients of a chemoattractant (fMLP). The devices generate concentration profiles of various shapes, with adjustable steepness and mean concentration. The ``gradient'' of the chemoattractant can be imposed and reversed within less than a second, allowing repeated quantitative experiments.

  7. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  8. Prostate progenitor cells proliferate in response to castration

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    2014-07-01

    Full Text Available Androgen-deprivation is a mainstay of therapy for advanced prostate cancer but tumor regression is usually incomplete and temporary because of androgen-independent cells in the tumor. It has been speculated that these tumor cells resemble the stem/progenitor cells of the normal prostate. The purpose of this study was to examine the response of slow-cycling progenitor cells in the adult mouse prostate to castration. Proliferating cells in the E16 urogenital sinus were pulse labeled by BrdU administration or by doxycycline-controlled labeling of the histone-H2B GFP mouse. A small population of labeled epithelial cells in the adult prostate localized at the junction of the prostatic ducts and urethra. Fluorescence-activated cell sorting (FACS showed that GFP label-retaining cells were enriched for cells co-expressing stem cell markers Sca-1, CD133, CD44 and CD117 (4- marker cells; 60-fold enrichment. FACS showed, additionally, that 4-marker cells were androgen receptor positive. Castration induced proliferation and dispersal of E16 labeled cells into more distal ductal segments. When naïve adult mice were administered BrdU daily for 2 weeks after castration, 16% of 4-marker cells exhibited BrdU label in contrast to only 6% of all epithelial cells (P < 0.01. In sham-castrated controls less than 4% of 4-marker cells were BrdU labeled (P < 0.01. The unexpected and admittedly counter-intuitive finding that castration induced progenitor cell proliferation suggests that androgen deprivation therapy in men with advanced prostate cancer could not only exert pleiotrophic effects on tumor sub-populations but may induce inadvertent expansion of tumor stem cells.

  9. Transcription of the SCL/TAL1 interrupting Locus (Stil) is required for cell proliferation in adult Zebrafish Retinas.

    Science.gov (United States)

    Sun, Lei; Li, Ping; Carr, Aprell L; Gorsuch, Ryne; Yarka, Clare; Li, Jingling; Bartlett, Michael; Pfister, Delaney; Hyde, David R; Li, Lei

    2014-03-07

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb(+/-) retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway.

  10. Transcription of the SCL/TAL1 Interrupting Locus (Stil) Is Required for Cell Proliferation in Adult Zebrafish Retinas*

    Science.gov (United States)

    Sun, Lei; Li, Ping; Carr, Aprell L.; Gorsuch, Ryne; Yarka, Clare; Li, Jingling; Bartlett, Michael; Pfister, Delaney; Hyde, David R.; Li, Lei

    2014-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb+/− retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway. PMID:24469449

  11. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  12. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  13. Effects of the Spider Venom on proliferation of Human Lung Adenocarcinoma Cell A549

    Directory of Open Access Journals (Sweden)

    Zengxiang HU

    2010-10-01

    Full Text Available Background and objective The spider venom may inspire new drugs to treat cancer. The aim of this study is to investigate the effects and mechanisms of spider venom on lung adenocarcinoma cell A549. Methods The proliferation of lung adenocarcinoma A549 cells was detected by MTT. The apoptosis rate was observed with MTT assay and flow cytometer. The activity of catalase was detected by colorimetry. The malondialdehyde (MDA content was determined by improved thiobarbituric acid fluorometric method. The expression of P38MAPK protein was analyzed with Western blot. Results Spider venom can remarkably inhibite the proliferation of lung adenocarcinoma A549 cells, increased activity of catalase and MDA content, down-regulated expression of P38MAPK compared with the control group. Conclusion The reduced proliferation of lung adenocarcinoma A549 cells by spider venom is may be associated with the increased of activity of catalase and MDA content and decreased expression of P38MAPK.

  14. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  15. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Abir Mukherjee

    2015-09-01

    Full Text Available Lysophosphatidic acid (LPA, a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2 was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1 and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  16. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  17. c-Myc regulates cell proliferation during lens development.

    Directory of Open Access Journals (Sweden)

    Gabriel R Cavalheiro

    Full Text Available Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.

  18. Increased nuclear ploidy, not cell proliferation, is sustained in the peroxisome proliferator-treated rat liver.

    Science.gov (United States)

    Lalwani, N D; Dethloff, L A; Haskins, J R; Robertson, D G; de la Iglesia, F A

    1997-01-01

    Peroxisome proliferators are believed to induce liver tumors in rodents due to sustained increase in cell proliferation and oxidative stress resulting from the induction of peroxisomal enzymes. The objective of this study was to conduct a sequential analysis of the early changes in cell-cycle kinetics and the dynamics of rat liver DNA synthesis after treatment with a peroxisome proliferator. Immunofluorescent detection of proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) incorporation into DNA during S phase we used to assess rat hepatocyte proliferation in vivo during dietary administration of Wy-14,643, a known peroxisome proliferator and hepatocarcinogen in rodents. Rats were placed on diet containing 0.1% WY-14,643 and implanted subcutaneously with 5-bromo-2'deoxyuridine containing osmotic pumps 4 days prior to being sacrificed on days 4, 11, and 25 of treatment. Isolated liver nuclei labeled with fluorscein isothiocyanate (FITC)-anti-BrdU/PI and FITC-anti-PCNA/PI were analyzed for S-phase kinetics using flow cytometry. Morphometric analysis was performed to evaluate nuclear and cell size and enumeration of BrdU labeled cells, binucleated hepatocytes, and mitotic index. The BrdU labeling index increased 2-fold in livers of Wy-14,643-treated rats at day 4, but distribution of cells in G1, S phase, and G2-M did not differ significantly from controls. PCNA-positive cells decreased from 36% on day 4 to 17% on day 25, whereas the percentage of PCNA-positive cells in controls increased 2-fold from day 4 to day 11 and remained unchanged up to day 25. The differences in the number of PCNA-positive nuclei between control and Wy-14,643-treated groups were statistically significant only on day 4. Binucleated hepatocytes, determined by morphometric analysis, increased slightly on day 25 in treated rats parallel to an increase in the percentage of cells in G2-M phase. Significant shifts were noted in nuclear diameter and nuclear area after 11 and 25

  19. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation.

    Science.gov (United States)

    De Preter, Géraldine; Neveu, Marie-Aline; Danhier, Pierre; Brisson, Lucie; Payen, Valéry L; Porporato, Paolo E; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard

    2016-01-19

    Glucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines. To further investigate the link between glycolysis and proliferation, a pharmacological inhibitor of the pentose phosphate pathway (PPP) was used. We demonstrated that reduction of PPP activity decreases cancer cells proliferation, with a profound effect in Warburg-phenotype cancer cells. The crucial role of the PPP in sustaining cancer cells proliferation was confirmed using siRNAs against glucose-6-phosphate dehydrogenase, the first and rate-limiting enzyme of the PPP. In addition, we found that dichloroacetate (DCA), a new clinically tested compound, induced a switch of glycolytic cancer cells to a more oxidative phenotype and decreased proliferation. By demonstrating that DCA decreased the activity of the PPP, we provide a new mechanism by which DCA controls cancer cells proliferation.

  20. Opioid-induced proliferation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Sandra Leo

    2009-05-01

    Full Text Available Sandra Leo1,2, Rony Nuydens1, Theo F Meert11Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium; 2Laboratory of Biological Psychology, University of Leuven, Leuven, BelgiumAbstract: Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3, to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings. Keywords: endothelial cells, morphine, cell proliferation, MAPK, nitric oxide, μ3 opioid receptor, angiogenesis

  1. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  2. Cell proliferation dynamics and morphological differentiation during regeneration in Dorvillea bermudensis (Polychaeta, Dorvilleidae).

    Science.gov (United States)

    Paulus, Tanja; Müller, Monika C M

    2006-04-01

    Although some species of Annelida have an enormous capacity to regenerate, it is not yet known whether reestablishment of lost body parts is performed by stem cells, depends on preceding dedifferentiation of somatic cells, or is a combination of both. In order to clarify how, in the case of epimorphic regeneration, the blastemas are formed, we applied the thymidine analog 5'-bromo-2'-deoxyuridine (BrdU) in the dorvilleid polychaete Dorvillea bermudensis to identify cells in the S-phase of the cell cycle. Regeneration pulse-chase experiments were carried out to determine onset and dynamics of the proliferation process, and BrdU pulse-chase experiments were undertaken to follow cell fate. We found irregularly distributed S-phase cells throughout the body of adult specimens. Subsequent to amputation, these cells do not migrate from the amputee towards the wound site, where proliferation activity was documented no earlier than 16 h after fragmentation. In the initial phase, the proliferation rate at the anterior end exceeds the rate at the posterior end. Observance of identity could be demonstrated for the ectoderm and can be assumed for the two other germ layers. The anterior blastema transforms into the head, while the posterior forms the pygidium and persists as a proliferation zone; four or numerous segments are formed by intercalation between the former anterior or posterior blastema and the amputee.

  3. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Congjun; Evans, Chheng-Orn [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States); Stevens, Victoria L. [Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia (United States); Owens, Timothy R. [Emory University, School of Medicine, Atlanta, Georgia (United States); Oyesiku, Nelson M., E-mail: noyesik@emory.edu [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States)

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  4. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  5. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  6. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  7. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    NARCIS (Netherlands)

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/E

  8. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  9. MicroRNA-126 inhibits the proliferation of lung cancer cell line A549

    Institute of Scientific and Technical Information of China (English)

    Xun Yang; Bei-Bei Chen; Ming-Hua Zhang; Xin-Rong Wang

    2015-01-01

    Objective:To study the role of microRNA-126 in the development of lung cancer.Methods:The biological function of microRNA-126 was detected using EdU assay and CCK-8 assay;the target gene of microRNA-126 was analyzed using real time RT-PCR and Western blot assay.Results: In A549 cell line, overexpression of microRNA-126 inhibits the proliferation rate; VEGF is the target gene of microRNA-126; microRNA-126 exerts its function via regulating VEGF protein level.Conclusions: microRNA-126 inhibits the proliferation in A549 cell line.

  10. Predicting rare events in chemical reactions: Application to skin cell proliferation.

    Science.gov (United States)

    Lee, Chiu Fan

    2010-08-01

    In a well-stirred system undergoing chemical reactions, fluctuations in the reaction propensities are approximately captured by the corresponding chemical Langevin equation. Within this context, we discuss in this work how the Kramers escape theory can be used to predict rare events in chemical reactions. As an example, we apply our approach to a recently proposed model on cell proliferation with relevance to skin cancer [P. B. Warren, Phys. Rev. E 80, 030903 (2009)]. In particular, we provide an analytical explanation for the form of the exponential exponent observed in the onset rate of uncontrolled cell proliferation.

  11. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    Science.gov (United States)

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP(+) memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP(+) memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.

  12. Study on Taxol in Inhibiting Human Leukemia Cell Proliferation and Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵小英; 张晓红; 徐磊; 张行

    2004-01-01

    Objective: To explore the effects of Taxol in inhibiting human leukemia k562 cell proliferation and inducing apoptosis in vitro. Methods: Human leukemia K562 cells were treated with Taxol of different concentrations for 12-72 hrs. Cell proliferation was evaluated by MTT assay and morphological changes of apoptosis were examined by microscopy. Cell apoptosis was determined by flow cytometry (FCM) and DNA gel electrophoresis. Results: Growth of K562 cells was inhibited by Taxol with an IC50 value of 0.84 μg/mi.Typical nuclear condensation and apoptosis bodies were observed as early as 24 hrs after a 0.5 μg/ml Taxol treatment; Apoptotic rate of the Taxol-treated K562 cells increased from 3.7% to 24.0% in 24 hrs. No DNA ladder was observed by DNA gel electrophoresis. Conclusion: Taxol could inhibit K562 cell growth and induce apoptosis in vitro.

  13. In vitro invasion efficiency and intracellular proliferation rate comprise virulence-related phenotypic traits of Neospora caninum

    Directory of Open Access Journals (Sweden)

    Regidor-Cerrillo Javier

    2011-02-01

    Full Text Available Abstract In this study, we examined the in vitro invasion and proliferation capacities of the Nc-Liv and ten Spanish Neospora caninum isolates (Nc-Spain 1 H - Nc-Spain 10. The invasion rate was determined as the number of tachyzoites that completed their internalisation into MARC-145 cells at 2, 4, and 6 h post-inoculation (pi. The proliferation rate was evaluated by determining the doubling time during the exponential proliferation period. Significant differences in the invasion rates of these isolates were detected at 2 and 4 h pi (P P = 0.0016, ANOVA test. Tachyzoite yield, which combines invasion and proliferation data, was also assessed and confirmed marked differences between the highly and less prolific isolates. Interestingly, a direct correlation between the invasion rates and tachyzoite yields, and the severity of the disease that was exhibited by infected pregnant mice in previous works could be established for the isolates in this study (Spearman's coefficient > 0.62, P

  14. Erythropoietin-induced proliferation of gastric mucosal cells

    Institute of Scientific and Technical Information of China (English)

    Kazuro Itoh; Masato Higuchi; Fumio Ishihata; Yushi Sudoh; Soichiro Miura; Yoshio Sawasaki; Kyoko Takeuchi; Shingo Kato; Nobuhiro Imai; Yoichiro Kato; Noriyuki Shibata; Makio Kobayashi; Yoshiyuki Moriguchi

    2006-01-01

    AIM: To analyze the localization of erythropoietin receptor on gastric specimens and characterize the effects of erythropoietin on the normal gastric epithelial proliferation using a porcine gastric epithelial cell culture model.METHODS: Erythropoietin receptor was detected by RT-PCR, Western blotting and immunohistochermistry.Growth stimulation effects of erythropoietin on cultured gastric mucosal cells were determined by ELISA using bromodeoxyuridine (BrdU).RESULTS: Erythropoietin receptor was detected on cultured porcine gastric mucosal epithelial cells.Erythropoietin receptor was also detected histochemically at the base of gastric mucosal epithelium. BrdU assay demonstrated a dose-dependent increase in growth potential of cultured porcine gastric mucosal epithelial cells by administration of erythropoietin, as well as these effects were inhibited by administration of antierythropoietin antibody (P< 0.01).CONCLUSION: These findings indicate that erythropoietin has a potential to proliferate gastric mucosal epithelium via erythropoietin receptor.

  15. [Identification of proliferating cells in Taenia solium cysts].

    Science.gov (United States)

    Orrego-Solano, Miguel Ángel; Cangalaya, Carla; Nash, Theodore E; Guerra-Giraldez, Cristina

    2014-01-01

    Neoblasts are totipotent cells, solely responsible for the proliferation and maturation of tissues in free-living flatworms. Similar cells have been isolated from parasitic flatworms such as Echinococcus. Taenia solium causes human taeniasis (intestinal) and cysticercosis in humans and pigs. Brain infection with larvae (cysts) of T. solium results in neurocysticercosis which is hyperendemic in Peru, and its treatment is associated with serious neurological symptoms. The proliferative capacity and development stages of T. solium have not been described and the neoblasts of this parasite have not been characterized We looked for cell proliferation in T. solium cysts collected from an infected pig, which were identified when replicating and incorporating bromodeoxyuridine nucleotide detected with a monoclonal antibody. A stable cell line of neoblasts would be useful for systematic in vitro studies on drug efficacy and the biology of T. solium.

  16. Mal/SRF is dispensable for cell proliferation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Barry J Thompson

    Full Text Available The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing--where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development.

  17. Fhit Nuclear Import Following EGF Stimulation Sustains Proliferation of Breast Cancer Cells.

    Science.gov (United States)

    Bianchi, Francesca; Sasso, Marianna; Turdo, Federica; Beretta, Giovanni L; Casalini, Patrizia; Ghirelli, Cristina; Sfondrini, Lucia; Ménard, Sylvie; Tagliabue, Elda; Campiglio, Manuela

    2015-11-01

    The tumor-suppressor protein fragile histidine triad (Fhit) exerts its functions in the cytoplasm, although some reports suggest that it may also act in the nucleus. We previously showed that cytosolic Fhit protein levels in cancer cell lines stimulated to proliferate were reduced by proteasomal degradation. Here, we demonstrate that Fhit is physiologically present in the nucleus of breast cancer cell lines and tissues at a low level and that proliferative stimulation increases nuclear levels. Breast cancer cells expressing the FhitY114F mutant, which do not undergo proteasomal degradation, contained mutated Fhit in the nucleus, while cells treated with a proteasome inhibitor accumulated nuclear Fhit during proliferation. Thus, Fhit nuclear shuttling and proteasome degradation phenomena occur independently. When Fhit was coupled to a nuclear localization sequence, the proliferation rate of the transfected cells increased together with levels of proliferation pathway mediators cyclin D1, phospho-MAPK, and phospho-STAT3. Fhit nuclear translocation upon mitogenic stimulation may represent a new regulatory mechanism that allows rapid restoration of Fhit cytoplasmic levels and promotes the proliferation cascade activated by mitogenic stimulation.

  18. Effects of caffeic acid phenethyl ester on proliferation of vascular smooth muscle cells in rats

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Chao Chang; YuQing Wang; Yibo Feng; ShuLing Rong

    2006-01-01

    Objective: To investigate the inhibitory effect of caffeic acid phenethyl ester(CAPE) on the proliferation of vascular smooth muscle cells (VSMC) activated by lipopolysaccharide (LPS) and to clarify its mechanism. Methods: VSMC activated by LPS (1 mg·L-1) were treated with CAPE at different concentrations. The inhibitory effects of CAPE on the proliferation of VSMC were determined by methabenzthiazuron(MTT) colorimetry. The effects of CAPE on the expression of proliferating cell nuclear antigen (PCNA) and Survivin protein in VSMC were evaluated by immunocytochemistry staining technique (SABC method). Cell cycle was analyzed by flow cytometry(FCM) with propidium iodide (PI) labeling method. The relative expression level of Survivin mRNA was measured with real-time quantified RT-PCR technique. Results: CAPE exerted significant inhibitory effects on. proliferation of VSMC at concentrations ranging from 5 mg·L-1 to 80 mg·L-1, decreased the rate of cells positive for PCNA and Survivin protein and repressed the expression of Survivin mRNA in a dose- and time-dependent manner (P < 0.05).FCM analysis displayed that CAPE up-regulated the ratio of G0/G1 stages and reduced the percentage of VSMC in S stage (P <0.05). Conclusion: CAPE can significantly inhibit the proliferation of VSMC activated by LPS in a dose- and time-dependent manner, which may be carried out through regulating cell cycle and repressing the expression of PCNA and Survivin.

  19. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-l) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation,we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector.The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-l, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.

  20. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    Science.gov (United States)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  1. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation.

    Science.gov (United States)

    Wang, Entong; Yin, Yili; Zhao, Min; Forrester, John V; McCaig, Colin D

    2003-03-01

    Vascular endothelial cell (VEC) proliferation is a key event in angiogenesis and is tightly regulated. Electric potential differences exist around the vascular endothelium and give rise to endogenous electric fields (EFs), whether these EFs influence VEC proliferation is unclear. We exposed cultured VECs to applied EFs of physiological strengths for up to 72 h. EF at 50 or 100 mV/mm did not influence cell proliferation, but at 200 mV/mm, cell density, cell growth rate, and mitosis index decreased significantly. EF-induced reduction in VEC proliferation was not due to increased apoptosis, because caspase apoptosis inhibitor Z-VAD-FMK (20 microM), had no effect on this response. Rather, EF responses were mediated via decreased entry of cells into S phase from G1 phase, as shown by flow cytometry. Western blot showed that EFs decreased G1-specific cyclin E expression and increased cyclin/cyclin-dependent kinase complex inhibitor p27kipl expression. Thus EFs controlled VEC proliferation through induction of cell cycle arrest at G1 by down-regulation of cyclin E expression and up-regulation of p27kipl expression, rather than by promoting apoptosis. If control of the cell cycle by endogenous EFs extends beyond VECs, this would be of widespread biological significance in vivo.

  2. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  3. Adipogenesis licensing and execution are disparately linked to cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Kun-Ming Zhang; Kang Tu; Yi-Xue Li; Li Zhu; Hua-Sheng Xiao; Ying Yang; Jia-Rui Wu

    2009-01-01

    Coordination of cell differentiation and proliferation is a key issue in the development process of multi-cellular organisms and stem cells. Here we provide evidence that the establishment of adipocyte differentiation of 3T3-LI cells requires two processes: the licensing of an adipogenesis gene-expression program within a particular growth-arrest stage, i.e., the contact-inhibition stage, and then the execution of this program in a cell-cycle-independent manner,by which the licensed progenitors are differentiated into adipocytes in the presence of inducing factors. Our results showed that differentiation licensing of 3T3-L1 cells during the contact-inhibition stage involved epigenetic modifications such as DNA methylation and histone modifications, whereas disturbing these epigenetic modifications by DNA methylation inhibitors or RNAi during the contact-inhibition stage significantly reduced adipogenesis efficiency.More importantly, when these licensed 3T3-LI cells were re-cultured under non-differentiating conditions or treated only with insulin, this adipogenesis commitment could be maintained from one cell generation to the next, whereby the licensed program could be activated in a cell-cycle-independent manner once these cells were subjected to adipogenesis-inducing conditions. This result suggests that differentiation licensing and differentiation execution can be uncoupled and disparately linked to cell proliferation. Our findings deliver a new concept that cell-fate decision can be subdivided into at least two stages, licensing and execution, which might have different regulatory relationships with cell proliferation, in addition, this new concept may provide a clue for developing new strategies against obesity.

  4. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    Science.gov (United States)

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  5. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  6. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    Science.gov (United States)

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  7. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  8. Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation.

    Science.gov (United States)

    Biswal, Dibyajyoti; Anupriya, B; Uvanesh, K; Anis, Arfat; Banerjee, Indranil; Pal, Kunal

    2016-01-01

    The present study was aimed to explore the effect of the mechanical and the electrical properties of the gelatin hydrogels on the mammalian cell proliferation and drug release properties. FTIR analysis of the hydrogels suggested that gelatin retained its secondary protein structure. A decrease in the diffusion constant of the water molecules was observed with the increase in the gelatin concentration in the hydrogels. The mechanical and the electrical stabilities of the hydrogels were enhanced with the increase in the gelatin content. Stress relaxation and creep studies were modeled using Weichert and Burger׳s models, respectively. The relaxation time (stress relaxation study) did not follow a concentration-dependent relationship and was found to affect the MG-63 cell (human osteoblast) proliferation. The impedance profile of the hydrogels was modeled using a (RQ)Q model. Release of ciprofloxacin from the hydrogels was inversely dependent on the rate of swelling. The release of the drug was not only dependent on the Fickian diffusion but also on the relaxation process of the gelatin chains. The inhomogeneous constant of the constant phase element representing the hydrogel-electrode interface indicated improved cell proliferation rate with a decrease in the inhomogeneous constant. In gist, the rate of cell proliferation could be related to the relaxation time (stress relaxation) and the inhomogeneous constant of the sample-electrode constant phase element (electrical study) properties, whereas, the drug release properties can be related to the bulk resistance of the formulations.

  9. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    Science.gov (United States)

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.

  10. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  11. Onychin inhibits proliferation of vascular smooth muscle cells by regulating cell cycle

    Institute of Scientific and Technical Information of China (English)

    Ming YANG; Hong-lin HUANG; Bing-yang ZHU; Qin-hui TUO; Duan-fang LIAO

    2005-01-01

    Aim: To investigate the effects of onychin on the proliferation of cultured rat artery vascular smooth muscle cells (VSMCs) in the presence of 10% new-borncalf serum (NCS). Methods: Rat VSMCs were incubated with onychin 1-50 μmol/L or genistein 10 μmol/L in the presence of 10% NCS for 24 h. The proliferation of VSMCs was measured by cell counting and MTS/PMS colorimetric assays. Cell cycle progression was evaluated by flow cytometry. Retinoblastoma (Rb) phosphorylation, and expression of cyclin D1 and cyclin E were measured by Western blot assays. The tyrosine phosphorylation of ERK1/2 was examined by immunoprecipitation techniques using anti-phospho-tyrosine antibodies. Results: The proliferation of VSMCs was accelerated significantly in the presence of 10% NCS. Onychin reduced the metabolic rate of MTS and the cell number of VSMCs in the presence of 10% NCS in a dose-dependent manner. Flow cytometry analy sis revealed that the G1-phase fraction ratio in the onychin group was higher than that in the 10% NCS group (85.2% vs 70.0%, P<0.01), while the S-phase fraction ratio in the onychin group was lower than that in 10% NCS group (4.3% vs 16.4%, P<0.01). Western blot analysis showed that onychin inhibited Rb phos phorylation and reduced the expression of cyclin D1 and cyclin E. The effects of onychin on proliferation, the cell cycle and the expression of cyclins in VSMCs were similar to those of genistein, an inhibitor of tyrosine kinase. Furthermore immunoprecipitation studies showed that both onychin and genistein markedly inhibited the tyrosine phosphorylation of ERK1/2 induced by 10% NCS.Conclusion: Onychin inhibits the proliferation of VSMCs through G1 phase cell cycle arrest by decreasing the tyrosine phosphorylation of ERK1/2, and the expression of cyclin D1 and cyclin E, and sequentially inhibiting Rb phosphorylation.

  12. Cell proliferation as a long-term prognostic factor in diffuse large-cell lymphomas.

    Science.gov (United States)

    Silvestrini, R; Costa, A; Boracchi, P; Giardini, R; Rilke, F

    1993-05-01

    The relevance of cell proliferation rate--defined as the 3H-thymidine labeling index (3H-dT LI)--in predicting response to treatment (complete remission, CR), freedom from progression (FFP) and overall survival (OS) was evaluated in 86 patients with diffuse large-cell lymphoma (DLCL). The biologic variable was not associated with most of the established clinical factors, such as gender and age of the patient, performance status, B symptoms, tumor bulk, or extranodal disease, but was directly related to stage. 3H-dT LI significantly predicted short- and long-term clinical outcome. In fact, more patients with slowly proliferating DLCL reached CR and had longer median FFP and OS than patients with rapidly proliferating DLCL. Multiple-regression analysis to evaluate the relative contribution of the different biologic and clinical variables in predicting CR, FFP and OS showed that 3H-dT LI and Ann Arbor stage were the only 2 stable factors, which retained their prognostic significance even in the presence of other conventional factors, and that 3H-dT LI was the most powerful as an indicator of risk of death in DLCL patients.

  13. Aging and Immortality in a Cell Proliferation Model

    CERN Document Server

    Antal, T; Trugman, S A; Redner, S

    2007-01-01

    We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomeres become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.

  14. Altered expression of cell proliferation-related and interferon-stimulated genes in colon cancer cells resistant to SN38.

    Science.gov (United States)

    Gongora, Céline; Candeil, Laurent; Vezzio, Nadia; Copois, Virginie; Denis, Vincent; Breil, Corinne; Molina, Franck; Fraslon, Caroline; Conseiller, Emmanuel; Pau, Bernard; Martineau, Pierre; Del Rio, Maguy

    2008-06-01

    Irinotecan is a topoisomerase I inhibitor widely used as an anticancer agent in the treatment of metastatic colon cancer. However, its efficacy is often limited by the development of resistance. We have isolated a colon carcinoma cell line, HCT116-SN6, which displays a 6-fold higher resistance to SN38, the active metabolite of irinotecan. In this paper, we studied the molecular mechanisms that cause resistance to SN38 in the HCT116-SN6 cell line. First, we analyzed proliferation, cell cycle distribution, apoptosis, topoisomerase I expression and activity in SN38-resistant (HCT116-SN6) and sensitive (HCT116-s cells). We showed that the SN38-induced apoptosis and the SN38-activated cell cycle checkpoints leading to G(2)/M cell cycle arrest were similar in both cell lines. Topoisomerase I expression and catalytic activity were also unchanged. Then, we compared mRNA expression profiles in the two cell lines using the Affymetrix Human Genome GeneChip arrays U133A and B. Microarray analysis showed that among the genes, which were differentially expressed in HCT116-s and HCT116-SN6 cells, 27% were related to cell proliferation suggesting that proliferation might be the main target in the development of resistance to SN38. This result correlates with the phenotypic observation of a reduced growth rate in HCT116-SN6 resistant cells. Furthermore, 29% of the overexpressed genes were Interferon Stimulated Genes and we demonstrate that their overexpression is, at least partially, due to endogenous activation of the p38 MAP kinase pathway in SN38 resistant cells. In conclusion, a slower cell proliferation rate may be a major cause of acquired resistance to SN38 via a reduction of cell cycle progression through the S phase which is mandatory for the cytotoxic action of SN38. This lower growth rate could be due to the endogenous activation of p38.

  15. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    Science.gov (United States)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

  16. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    Science.gov (United States)

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  17. Effect of diglycine mutant FAT10 on the proliferation and apoptosis of cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Cui LI

    2015-01-01

    Full Text Available Objective To investigate the effects of FAT10ΔGG, a carboxyl-terminal diglycine deficient mutant, on the proliferation and apoptosis of cervical cancer cell line HeLa. Methods Specimens of cervical carcinoma in situ and normal cervix tissue, 5 each, were collected. The expressive levels of FAT10 protein in these specimens were detected by Western blotting. Sitedirected mutagenesis was applied to construct the mutant pcDNA3.0-flag-FAT10ΔGG plasmid. The HeLa cells were then transiently transfected with wild-type FAT10, FAT10ΔGG and empty vector (used as negative control, and the wild-type HeLa cells served as blank control. The transfection efficiency of FAT10 or FAT10ΔGG was detected by Western blotting, and cell proliferation was determined by CCK-8 assay. Cisplatin was used to induce cell apoptosis after cells were transfected for 24h, and the cell apoptotic rates of all groups were determined by flow cytometry. Results Western blotting showed a significantly increased expression of FAT10 protein in cervical carcinoma tissues compared with that in normal cervical tissue. Over-expression of wild FAT10 in HeLa cells obviously promoted cell proliferation, but this promotion was significantly inhibited in cells transfected with its diglycine mutant. Compared with blank control group (22.7%±4.2% and negative control group (24.1%±3.8%, the apoptotic rate was significantly reduced in wild FAT10 group (10.9%±2.0%, P0.05. Conclusion FAT10 can promote cell proliferation and inhibit cell apoptosis through its carboxyl-terminal diglycine motif, and it may play an essential role in carcinogenesis and development of cancer. DOI: 10.11855/j.issn.0577-7402.2014.12.01

  18. The Effect of Deproteinized Bovine Bone Mineral on Saos-2 Cell Proliferation

    Science.gov (United States)

    Khojasteh, Arash; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Eslami, Mohammad; Motahhary, Pourya; Morad, Golnaz; Shidfar, Shireen

    2013-01-01

    Introduction Deproteinized bovine bone mineral (Bio-Oss) is a xenogenic bone substitute, widely used in maxillofacial bone regeneration. The aim of this in vitro study was to investigate its influence on the growth behavior of human osteosarcoma cell line, Saos-2 culture, and compare it with the physiologic dose of Dexamethasone, an inductive factor for osteoblasts. Materials and Methods Human osteosarcoma cells, Saos-2, were cultured on Bio-Oss and their growth rate was compared to Saos-2 cultures treated with Dexamethasone 10-7 M in contrast to cells cultivated in PBS, in the control group. Assessment of proliferation was performed after 24, 36, and 48 hours by counting cells using trypan blue exclusion method. Alkaline phosphatase was measured spectrophotometrically at 405 nm with paranitrophenol buffer. Results After 48 hours, the number of Saos-2 cells increased significantly when subcultured with Bio-Oss. Bio-Oss was more effective on the enhancement of proliferation of Saos-2 cells when compared to the physiologic dose of Dexamethasone (P<0.05). Alkaline phosphatase activity increased in cells grown on Bio-Oss and dexamethasone 10-7 M in contrast to cells cultivated in PBS control group. The greatest level of activity was observed in the group containing Bio-Oss after 48 hour. Conclusion The significant increase of cell proliferation and alkaline phosphatase activity in cells cultured on Bio-Oss, compared to Dexamethasone-treated cells, suggests the important role of this bone substitute in promoting bone regeneration. PMID:23922573

  19. Epigallocatechin gallate inhibits the proliferation of colorectal cancer cells by regulating Notch signaling

    Directory of Open Access Journals (Sweden)

    Jin H

    2013-03-01

    Full Text Available Heiying Jin,1,* Wei Gong,2,* Chunxia Zhang,1,* Shuiming Wang1 1National Center of Colorectal Surgery, the Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China; 2Department of Surgery, Jiangyin Hospital of Traditional Chinese Medicine, Jiangsu, People's Republic of China*These authors contributed equally to this workAims: To explore the inhibitory effects of epigallocatechin gallate (EGCG on the proliferation of colorectal cancer cells and on the gene expression of Notch signaling.Methods: The colorectal cancer cells and orthotopic colorectal cancer transplant model were treated with EGCG, and MTT assay was used to test the inhibitory role of EGCG in the proliferation of colorectal cancer cells. Results: MTT assay indicated that EGCG inhibited the proliferation of these four cell lines when the time and concentration increased, and EGCG enhanced the apoptotic rate of these four cell lines. The dosage was positively correlated to the apoptotic rate, and EGCG inhibited the proliferation of colorectal cancer cells by influencing cell cycle. In-vivo study suggested that on the seventh day, the volume of tumors reduced after administrating with 5, 10 and 20 mg/kg of EGCG. At the twenty-eighth day, the volume of tumors was significantly different in three EGCG treatment groups as compared to the control group (P < 0.05, and TUNEL assay indicated that the apoptosis of cancer cells in EGCG treated groups was markedly higher than that in the control group (P < 0.05. In these cell lines, the expressions of HES1 and Notch2 in EGCG treated groups were remarkably lower than that in the control group (P < 0.05. The expression of JAG1 decreased in SW480 cells (P = 0.019, HT-29 cells and HCT-8 cells, but increased in LoVo cells at mRNA level. The expression of Notch1 was upregulated in these four cell lines, but its expression was significantly upregulated only in LoVo and SW480 cells (P < 0

  20. Biciliated ependymal cell proliferation contributes to spinal cord growth.

    Science.gov (United States)

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2012-10-15

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

  1. Nuclear anomalies, chromosomal aberrations and proliferation rates in cultured lymphocytes of head and neck cancer patients.

    Science.gov (United States)

    George, Alex; Dey, Rupraj; Bhuria, Vikas; Banerjee, Shouvik; Ethirajan, Sivakumar; Siluvaimuthu, Ashok; Saraswathy, Radha

    2014-01-01

    Head and neck cancers (HNC) are extremely complex disease types and it is likely that chromosomal instability is involved in the genetic mechanisms of its genesis. However, there is little information regarding the background levels of chromosome instability in these patients. In this pilot study, we examined spontaneous chromosome instability in short-term lymphocyte cultures (72 hours) from 72 study subjects - 36 newly diagnosed HNC squamous cell carcinoma patients and 36 healthy ethnic controls. We estimated chromosome instability (CIN) using chromosomal aberration (CA) analysis and nuclear level anomalies using the Cytokinesis Block Micronucleus Cytome Assay (CBMN Cyt Assay). The proliferation rates in cultures of peripheral blood lymphocytes (PBL) were assessed by calculating the Cytokinesis Block Proliferation Index (CBPI). Our results showed a significantly higher mean level of spontaneous chromosome type aberrations (CSAs), chromatid type aberration (CTAs) dicentric chromosomes (DIC) and chromosome aneuploidy (CANEUP) in patients (CSAs, 0.0294±0.0038; CTAs, 0.0925±0.0060; DICs, 0.0213±0.0028; and CANEUPs, 0.0308±0.0035) compared to controls (CSAs, 0.0005±0.0003; CTAs, 0.0058±0.0015; DICs, 0.0005±0.0003; and CANEUPs, 0.0052±0.0013) where pnuclear anomalies showed significantly higher mean level of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) among cases (MNi, 0.01867±0.00108; NPBs, 0.01561±0.00234; NBUDs, 0.00658±0.00068) compared with controls (MNi, 0.00027±0.00009; NPBs, 0.00002±0.00002; NBUDs, 0.00011±0.00007).The evaluation of CBPI supported genomic instability in the peripheral blood lymphocytes showing a significantly lower proliferation rate in HNC patients (1.525±0.005552) compared to healthy subjects (1.686±0.009520 ) (pproliferation in the cultured peripheral lymphocytes of solid tumors could be biomarkers to predict malignancy in early stages.

  2. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    Science.gov (United States)

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  3. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    Directory of Open Access Journals (Sweden)

    Yoko Endo

    Full Text Available Quiescent hepatic stem cells (HSCs can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1, an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  4. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  5. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  6. GENISTEIN INHIBITS PROLIFERATION OF HUMAN ENDOMETRIAL ENDOTHELIAL CELL IN VITRO

    Institute of Scientific and Technical Information of China (English)

    Gui-hua Sha; Shou-qing Lin

    2008-01-01

    Objective To explore the effect of genistein on proliferation of human endometrial endothefial cells (HEECs) and glandular epithelium.Methods In vitro HEECs and human endometrial cancer-1B cell (HEC-1B) were cultured with 0, 1, 10, 50,100, and 200 μmol/L of genistein alone or indicated concentrations of genistein combined with 0.2 or 1 nmol/L 17β- estradiol (17β-E2 ). Cell proliferation was determined by [ 3H ]-thymidine incorporation and cell cycle was measured by flow cytometry.Results After 96 hours of treatment, genistein inhibited the proliferation of HEECs in a dose-dependent manner.The stimulation index reduced from 100% (without genistein treatment ) to about 1% (200 μmol/L genistein).HEECs were arrested at G1/0 and G2/M phase when treated with genistein for 96 hours. When the concentration of genistein was 200 μmol/L, the percentages of HEECs at GI/0, G2/M, and S phase were 96.0%, 2. 1%, and 1.9%,respectively. However, when HEECs were treated without genistein, the percentages of HEECs at G1/0, G2/M, and S phase were 76. 7%, 8.5%, and 14. 7%, respectively. 17β-E2 could not influence the effects of genistein on the prolif-eration of HEECs. Meanwhile, genistein could suppress the proliferation of HEC-1B. If the stimulation index of HEC-1B was defined as 100% when HEC-1B was treated with different doses of 1713-E2 ( without genistein), it was 67%,19, as well as 32% when cell was supplemented with 200 μmoi/L genistein combined with 0, 0.2, or 1 nmol/L 17β-E2, respectively.Conclusion Genistein at the concentration of 200 μmol/L can sufficiently inhibit the proliferation of HEECs and endometrial glandular epithelium simultaneously in vitro.

  7. SDF-1 promotes ox-LDL induced vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Li, Ling-Xing; Zhang, Xian-Feng; Bai, Xue; Tong, Qian

    2013-09-01

    The mechanism of the regulatory roles of stromal cell derived factor-1 (SDF-1)/C-X-C motif receptor 4 (CXCR4) on cell proliferation and apoptosis in vascular smooth muscle cells (VSMCs) via the protein kinase C (PKC) and nuclear factor-kappa B (NF-κB) signalling pathways have been investigated. Rat aortic VSMCs were treated with control or an oxidised low-density lipoprotein (ox-LDL) atherosclerosis (AS) model. Cells exposed to the AS model were treated with SDF-1 plus inhibitors specific for PKC (Ro31-8220), CXCR4 (12G5) or NF-κB (pyrrolidine dithiocarbamate, PDTC). Cell proliferation was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis by flow cytometry. NF-κB protein expression was analysed using Western blotting. The proliferation rate in the AS model group was significantly higher than the control group, but lower than the SDF-1 group (P SDF-1 group was significantly lower than the normal control group (P SDF-1 group was significantly higher than the AS model (ox-LDL) group (P SDF-1 can promote the proliferation of VSMCs induced by ox-LDL and inhibit cell apoptosis, via the SDF-1/CXCR4 axis.

  8. Experimental Study on the Inhibitory Effects of Verapamil on the Proliferation of Meningiomas Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; ZHANG Hongtao; WANG Heping

    2007-01-01

    In order to investigate the effects of verapamil on the proliferation of meningiomas cells in vitro and in vivo, the cultured meningiomas cells were cultured with verapamil at different concentrations for 24 h and the inhibitory effects of verapamii on cell proliferation were observed by MTT method. The meningiomas model was established by implanting the newly removed tumor fragments into the nude mice subcutaneously. The nude mice with tumors were divided into two groups: verapamil-treated group and control group. Tumor volumes were measured and after 12 weeks the tumors were taken out and examined histologically. The expression of proliferating cell nuclear antigen (PCNA) in the tumors was detected by using immunohistochemistry. It was found that verapamil could inhibit the growth of cultured meningiomas cells in a concentration-dependant manner. The inhibitory effect could be observed in the concentration of 1 μmol/L verapamil and the most obvious effects appeared in the concentration of 100 μmol/L. Tumor volume in the verapamiltreated group was obviously smaller than that in the control group (211.40±5.50 vs 163.94±3.62, P<0.01) and theexpression of PCNA was also lower (1.52±0.24 vs 2.86±0.53, P<0.05). Tumor inhibition rate was about 22.45%. It was suggested that verapamil could inhibit the proliferation and growth of meningiomas cells in vitro and in vivo.

  9. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    Science.gov (United States)

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  10. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  11. Pyruvate neutralizes peritoneal dialysate cytotoxicity: maintained integrity and proliferation of cultured human mesothelial cells.

    Science.gov (United States)

    Brunkhorst, R; Mahiout, A

    1995-07-01

    Toxic effects of commercially available peritoneal dialysate (PD) fluid include damage to mesothelial cells (MC), causing a severely disturbed proliferation of cultured MC. We investigated the injury to the cell membrane (by release of lactate dehydrogenase, LDH), the proliferation (by cell counts and by 3H-thymidine incorporation), and optional the cytokine generation (by IL-1 receptor-antagonist production, IL-1 ra) of cultured human MC during the 48 hours after a 30 minute exposure to PD containing either 35 mmol/liter sodium lactate or sodium pyruvate. All solutions had a pH of 5.2 to 5.6 and were composed as standard PD. Glucose contents of 1.36 and 3.86 mmol/liter were tested. After exposure to the lactate-PD containing 1.36% glucose, LDH activity was increased by more than 30%, proliferation of MC was inhibited by more than 30%, and IL-1 ra production was reduced significantly when compared to pyruvate-PD and the control solution. After preincubation with 3.86% glucose containing PD, all negative effects became even more pronounced in the lactate group whereas the MC maintained their integrity, rate of proliferation and IL-1 ra release after pre-exposure to pyruvate containing PD. These results suggest that the acute toxic effects of commercially available PD on the integrity, proliferation and IL-1 ra production of MC can be avoided by the use of sodium pyruvate instead of sodium lactate.

  12. Correlation between p53 Status, DNA Ploidy, Proliferation Rate and Nuclear Morphology in Breast Cancer. An Image Cytometric Study

    Directory of Open Access Journals (Sweden)

    Katrin Friedrich

    1997-01-01

    Full Text Available The study was designed to detect differences in the nuclear morphology of tumours and tumour cell populations with different p53 expression in correlation with DNA ploidy and proliferation rate. The paraffin sections from routinely processed samples of 88 breast cancers were immunostained with the monoclonal p53‐antibody DO‐1. After localization and evaluation with a scoring system the sections were destained and stained by the Feulgen method. The nuclei were relocated automatically and measured by means of the image cytometry workstation. Significant differences between the tumours and tumour cell populations with different p53 expression were found in the euploid tumours as well as in the aneuploid tumours and in the breast cancers with a high proliferation rate. The breast cancers with a low immunoreactive score (IRS 1–4 differ from the negative cancers as well as from the cancers with a higher immunoreactive score (IRS 5–12. Evaluating the nuclear populations of the p53 positive cancers, there were differences in the features of the chromatin amount and distribution in the groups of the euploid breast cancers and in cancer with a high proliferation rate. In contrast, the nuclear populations of the aneuploid cancers did not show any differences in their nuclear morphology.

  13. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  14. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  15. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  16. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  17. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  18. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  19. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    OpenAIRE

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover funct...

  20. Upregulated microRNA-224 promotes ovarian cancer cell proliferation by targeting KLLN.

    Science.gov (United States)

    Hu, Ke; Liang, Meng

    2017-02-01

    Human epithelial ovarian cancer is a complex disease, with low 5-yr survival rate largely due to the terminal stage at diagnosis in most patients. MicroRNAs play critical roles during epithelial ovarian cancer progression in vivo and have also been shown to regulate characteristic of ovarian cancer cell line in vitro. Alterative microRNA-224 (microRNA-224) expression affects human epithelial ovarian cancer cell survival, apoptosis, and metastasis. However, people know little about the effects of microRNA-224 on epithelial ovarian cancer cell proliferation. In the current study, we found that the microRNA-224 expression level of human syngeneic epithelial ovarian cancer cells HO8910 (low metastatic ability) was lower than that of HO8910PM (high metastatic ability). Furthermore, microRNA-224 was confirmed to target KLLN in HO8910 and HO8910PM. The known KLLN downstream target cyclin A was regulated by microRNA-224 in HO8910 and HO8910PM. In addition, overexpression of microRNA-224 enhanced the proliferation abilities of HO8910 and knockdown of microRNA-224 suppressed the proliferation abilities of HO8910PM by KLLN-cyclin A pathway. Our results provide new data about microRNAs and their targets involved in proliferation of epithelial ovarian cancer cells by modulating the downstream signaling.

  1. WLS inhibits melanoma cell proliferation through the β-catenin signalling pathway and induces spontaneous metastasis.

    Science.gov (United States)

    Yang, Pei-Tzu; Anastas, Jamie N; Toroni, Rachel A; Shinohara, Michi M; Goodson, Jamie M; Bosserhoff, Anja K; Chien, Andy J; Moon, Randall T

    2012-12-01

    Elevated levels of nuclear β-catenin are associated with higher rates of survival in patients with melanoma, raising questions as to how ß-catenin is regulated in this context. In the present study, we investigated the formal possibility that the secretion of WNT ligands that stabilize ß-catenin may be regulated in melanoma and thus contributes to differences in ß-catenin levels. We find that WLS, a conserved transmembrane protein necessary for WNT secretion, is decreased in both melanoma cell lines and in patient tumours relative to skin and to benign nevi. Unexpectedly, reducing endogenous WLS with shRNAs in human melanoma cell lines promotes spontaneous lung metastasis in xenografts in mice and promotes cell proliferation in vitro. Conversely, overexpression of WLS inhibits cell proliferation in vitro. Activating β-catenin downstream of WNT secretion blocks the increased cell migration and proliferation observed in the presence of WLS shRNAs, while inhibiting WNT signalling rescues the growth defects induced by excess WLS. These data suggest that WLS functions as a negative regulator of melanoma proliferation and spontaneous metastasis by activating WNT/β-catenin signalling.

  2. Effect of 103Pd on proliferation and apoptosis of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    LUO Quan-Yong; ZHU Jun; LU Han-Kui; ZHU Rui-Sen

    2003-01-01

    This study aimed at the effect of γ -emitting radionuclide 103Pd on the proliferation and apoptosis ofvascular SMCs (smooth muscle cells) in vitro. The cavy aortic SMCs were cultured with culture medium M-199. Theexperiments were carried out in two groups, one for proliferation test and the other for apoptosis test. In each group,103Pd solutions with various radioactivities were respectively added to the culture solution to irradiate SMCs for 72 h,while non-radioactive palladium solution was added to the control. 3H-thymidine incorporation test and liquid scin-tillator were used to detect the effect of 103Pd on the proliferation of SMCs. Flow cytometer was used to detect theapoptotic SMCs. The inhibition rate of SMCs proliferation by 1.85 MBq 103Pd solution was 2.3%, which was not sig-nificant, while the inhibition rate increased from 41.6% to 91.3% as the 103Pd activity increased from 7.40 MBq to 37MBq. The apoptosis rate of SMCs was extremely low (less than 4.0%) by 103Pd with activity from 1.85 MBq to 37MBq. The results suggest that the proliferation of SMCs can be repressed effectively in a dose-dependent fashion by103Pd in vitro. The mechanism of its inhibiting over neointima proliferation is likely to inhibite SMCs proliferationrather than to induce its apoptosis by 103Pd. 103Pd can be used as a γ -emitting intravascular brachytherapy radionu-clide to inhibit SMCs proliferation.

  3. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  4. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  5. Transient fluctuations of intracellular zinc ions in cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Maret, Wolfgang, E-mail: womaret@utmb.edu [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  6. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    Science.gov (United States)

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  7. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation.

    Science.gov (United States)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    2013-04-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  8. Inhibition of Pim-1 attenuates the proliferation and migration in nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Wei Jie; Qi-Yi He; Bo-Tao Luo; Shao-Jiang Zheng; Yue-Qiong Kong; Han-Guo Jiang; Ru-Jia Li; Jun-Li Guo; Zhi-Hua Shen

    2012-01-01

    Objective:To explore the role of proto-oncogenePim-1 in the proliferation and migration of nasopharyngeal carcinoma(NPC) cells.Methods:Pim-1 expressions inNPC cell lines CNE1,CNE1-GL,CNE-2Z andC666-1 were examined byRT-PCR, western blotting and immunoflucesence, respectively.AfterCNE1,CNE1-GL andC666-1 cells were treated with different concentrations ofPim-1 special inhibitor, quercetagetin, the cell viability, colony formation rate and migration ability were analyzed.Results:Pim-1 expression was negative in well-differentiatedCNE1 cells, whereas expressed weakly positive in poor-differentiated CNE-2Z cells and strongly positive in undifferentiatedC666-1 cells.Interestingly,CNE1-GL cells that derived fromCNE1 transfected with anEpsteinBarr virus latent membrane protein-1 over-expression plasmid displayed stronger expression ofPim-1.Treatment ofCNE1-GL and C666-1 cells with quercetagetin significantly decreased the cell viability, colony formation rate and migration ability but not theCNE1 cells.Conclusions:These findings suggest thatPim-1 overexpression contributes toNPC proliferation and migration, and targetingPim-1 may be a potential treatment for anti-Pim-1-expressedNPCs.

  9. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

    Science.gov (United States)

    Yu, Kaimin; Li, Guochao; Feng, Weimin; Liu, Lili; Zhang, Jiayu; Wu, Wei; Xu, Lei; Yan, Yanchun

    2015-09-05

    The potential interference of endocrine disrupting chemicals (EDCs) on aquatic animals and humans has drawn wide attention in recent years. Reports have shown that some organophosphorus pesticides were a kind of EDCs, but their effects on fish species are still under research. In present study, flow cytometry data of HEC-1B cell line showed that chlorpyrifos (CPF) could increase cell proliferation index like 17β-estradiol (E2), but the effect of CPF was weaker than of E2 in the same concentration. Moreover, CPF altered the expression pattern of estrogen-responsive gene VTG and ERα in zebrafish embryos. When exposed to CPF at various concentrations (0, 0.10, 0.25, 0.50, 0.75 and 1.00mg/L) for 48h during the embryo stage, compared with controls, the hatching rate of treated groups significantly increased at the same time and the hatching rate of embryos was proportional to CPF concentration. The mRNA expression levels of c-myc, cyclin D1, Bax and Bcl-2, which are closely related to cell proliferation and cell apoptosis, were disturbed by CPF in zebrafish embryos after exposure treated for 48h. In addition, acridine orange (AO) staining of zebrafish embryos showed that cell apoptosis was appeared in the 0.75, 1.00mg/L CPF treated groups. Taken together, the results obtained in the present study indicated that chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

  10. Fucan effect on CHO cell proliferation and migration

    OpenAIRE

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean [UNIFESP; Medeiros, Valquiria Pereira de [UNIFESP; Trindade, Edvaldo da Silva [UNIFESP; Franco,Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-01-01

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schroederi seaweed. This 21.5 kDa galactofucan inhibited CHO-Kl proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B bi...

  11. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-01-01

    Cancer cells consume more glucose than normal cells, mainly due to their increased rate of glycolysis. 2-Deoxy-d-glucose (2DG) is an analogue of glucose, and sorafenib is a kinase inhibitor and molecular agent used to treat hepatocellular carcinoma (HCC). The present study aimed to demonstrate whether combining 2DG and sorafenib suppresses tumor cell proliferation and motility more effectively than either drug alone. HLF and PLC/PRF/5 HCC cells were incubated with sorafenib with or without 1 µM 2DG, and subjected to a proliferation assay. A scratch assay was then performed to analyze cell motility following the addition of 2DG and sorafenib in combination, and each agent alone. RNA was isolated and subjected to reverse transcription-quantitative polymerase chain reaction to analyze the expression of cyclin D1 and matrix metalloproteinase-9 (MMP9) following the addition of 2DG and sorafenib in combination and each agent alone. Proliferation was markedly suppressed in cells cultured with 1 µM 2DG and 30 µM sorafenib compared with cells cultured with either agent alone (Pcultured with sorafenib and 2DG than in cells cultured with 2DG or sorafenib alone (P<0.05). Levels of MMP9 expression decreased more in cells treated with both sorafenib and 2DG than in cells treated with 2DG or sorafenib alone (P<0.05). Therefore, 2DG and sorafenib in combination suppressed the proliferation and motility of HCC cells more effectively than 2DG or sorafenib alone, and a cancer treatment combining both drugs may be more effective than sorafenib alone. PMID:28356961

  12. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  13. Biodiesel from soybean promotes cell proliferation in vitro.

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses.

  14. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation.

    Science.gov (United States)

    Fukushima, K; Yamashita, K

    2001-03-01

    Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.

  15. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    Science.gov (United States)

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  16. Inhibition Mechanism of Emodin on Rabbit Vascular Smooth Muscle Cells Proliferation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis and restenosis after angioplasty and vein graft.In this study, MTT colormetry was used to test the effective scope of emodin to inhibit VSMCs proliferation.Flow cytometry and confocal image were adopted to investigate its inhibitive mechanism.The results show that emodin could inhibit the growth and proliferation of VSMCs and the inhibition rate of emodin on VSMCs is 24.6%-94.58%, which is time - and concentration - dependent.Emodin could reduce S phase entry, increase the apoptosis of VSMCs, and reduce the intensity of[Ca2+]i in hPDGF B/B stimulated VSMCs.This research provides theoretical basis for medical application of emodin.It is concluded that emodin could inhibit the growth and proliferation of VSMCs effectively.Decreasing the DNA synthesis, increasing the cell apoptosis and reducing the intensity of[Ca2+]i in hPDGF B/B stimulated VSMCs may be the inhibitive mechanism of emodin against VSMCs proliferation.

  17. Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Victoria C. Foletta

    2016-10-01

    Full Text Available Deuterated water (2H2O, a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules, thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation, protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines. Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

  18. ANTI-PROLIFERATION EFFECT OF ORIDONIN ON HL-60 CELLS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Jia-jun Liu; Xin-yao Wu; Hui-ling Lu; Xiang-lin Pan; Jun Peng; Ren-wei Huang

    2004-01-01

    Objective To investigate the anti-proliferation effect of oridonin on leukemic HL-60 cells and its mechanism.Methods HL-60 cells in vitro in culture medium were given different concentrations oforidonin. The inhibitory rate of cells were measured by microculture tetrazolium (MTT) assay, cell apoptotic rate was detected by flow cytometry (FCM),morphology of cell apoptosis was observed by hoechst 33258 fluorescence staining, and the activity of telomerase was detected using telomere repeat amplification protocol (TRAP) PCR-ELISA before and after apoptosis occurred.Results Oridonin could decrease telomerase activity, inhibit growth of HL-60 cells, and cause apoptosis significantly.The suppression was both in time- and dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by hoechst 33258 fluorescence staining especially after cells were treated 48-60 hours by oridonin.Conclusions Oridonin has apparent anti-proliferation and apoptotic effects on HL-60 cells in vitro, decreasing telomerase activity of HL-60 cells may be one of its most important mechanisms. These results will provide strong laboratory evidence of oridonin for clinical treatment of acute leukemia.

  19. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  20. Doxycycline Induces Apoptosis and Inhibits Proliferation and Invasion of Human Cervical Carcinoma Stem Cells.

    Directory of Open Access Journals (Sweden)

    Binlie Yang

    Full Text Available Cancer stem cells (CSCs are proposed to be responsible for high recurrence rate in cervical carcinoma. Reagents that can suppress the proliferation and differentiation of CSCs would provide new opportunities to fight against tumor recurrence. Doxycycline has been reported as a potential anti-cancer compound. However, few studies investigated its inhibitory effect against cervical cancer stem cells.HeLa cells were cultured in cancer stem cell conditional media in a poly-hema-treated dish. In this non-adhesive culture system, HeLa cells were treated with cisplatin until some cells survived and formed spheroids, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every three days for five times. The tumor xenografts with CSC enrichment were cultured in cancer stem cell specific medium again to form tumorsphere, which we called HeLa-CSCs. Expression of cancer stem cell markers in HeLa-CSCs was measured by flow cytometry and qPCR. HeLa-CSCs were then treated with doxycycline. Proliferation and differentiation rates were determined by the size of spheres formed in vitro and tumor formed in vivo.We developed a new strategy to selectively enrich CSCs from human cervical carcinoma cell line HeLa, and these HeLa-CSCs are CD133+/CD49f+ cell populations with significantly enhanced expression of stem cell markers. When these HeLa-CSCs were treated with doxycycline, the colony formation, proliferation, migration and invasion, and differentiation were all suppressed. Meanwhile, stem cell markers SOX-2, OCT-4, NANOG, NOTCH and BMI-1 decreased in doxycycline treated cells, so as the surface markers CD133 and CD49f. Furthermore, proliferation markers Ki67 and PCNA were also decreased by doxycycline treatment in the in vivo xenograft mouse model.Cancer stem cells are enriched from sphere-forming and chemoresistant HeLa-derived tumor xenografts in immunodeficient mice. Doxycycline inhibits proliferation, invasion, and

  1. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  2. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation.

    Science.gov (United States)

    Leidi, Marzia; Dellera, Federica; Mariotti, Massimo; Banfi, Giuseppe; Crapanzano, Calogero; Albisetti, Walter; Maier, Jeanette A M

    2012-10-01

    An adequate intake of magnesium (Mg) is important for bone cell activity and contributes to the prevention of osteoporosis. Because (a) Mg is mitogenic for osteoblasts and (b) reduction of osteoblast proliferation is detected in osteoporosis, we investigated the influence of different concentrations of extracellular Mg on osteoblast-like SaOS-2 cell behavior. We found that low Mg inhibited SaOS-2 cell proliferation by increasing the release of nitric oxide through the up-regulation of inducible nitric oxide synthase (iNOS). Indeed, both pharmacological inhibition with the iNOS inhibitor l-N(6)-(iminoethyl)-lysine-HCl and genetic silencing of iNOS by small interfering RNA restored the normal proliferation rate of the cells. Because a moderate induction of nitric oxide is sufficient to potentiate bone resorption and a relative deficiency in osteoblast proliferation can result in their inadequate activity, we conclude that maintaining Mg homeostasis is relevant to ensure osteoblast function and, therefore, to prevent osteoporosis.

  3. Role of PKC isozymes in low-power light-stimulated proliferation of cultured skin cells

    Science.gov (United States)

    Grossman, Nili; Kleitman, Vered; Meller, Julia; Kaufmann, Roland; Akgun, Nermin; Ruck, Angelika; Livneh, Etta; Lubart, Rachel

    2000-11-01

    Exposure of cultured skin cells to low power visible light leads to a transiently stimulated proliferation. Facilitation of this response requires the presence of active PKC, elevation of intracellular calcium, and involves reactive oxygen species. In the present study, the role of PKC(alpha) and PCK(eta) was examined using paired murine fibroblasts, differing in the level of these isozymes expression. The ability of the cells to respond to low power UVA light or HeNe laser by stimulated proliferation was correlated with an active state or overexpression of PKC(alpha) , but not PKC(eta) . A parallel response was obtained in cells that were loaded with A1PcS4 before photosensitization. Whenever this latter treatment caused a light-stimulated inhibition, it was accompanied by the intracellular calcium and photosensitizer dynamics typical of the effect of PDT on rate epithelial cells. Accordingly, added antioxidants that suppressed light-stimulated proliferation also suppressed this light-stimulated inhibition. The model systems employed in this study are the first to demonstrate the specific effect of PKC isozymes on light-stimulated proliferation, in relation to oxidative stress, and indicate their dual role in light-tissue interaction.

  4. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Garry L Coles

    2015-10-01

    Full Text Available The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7 promotes Hedgehog (Hh signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein.

  5. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  6. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  7. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  8. Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach

    Directory of Open Access Journals (Sweden)

    Yangjin eKim

    2013-03-01

    Full Text Available Glioblastoma is the aggressive brain cancer with the poor survival rate. A microRNA, miR-451, and its downstream molecules, CAB39/LKB1/STRAD/AMPK, are known to play a critical role in regulating a biochemical balance between rapid proliferation and invasion in the presence of metabolic stress in microenvironment. We develop a novel multi-scale mathematical model where cell migration and proliferation are controlled through a core intracellular control system (miR-451-AMPK complex in response to glucose availability and physical constraints in the microenvironment. Tumor cells are modeled individually and proliferation and migration of those cells are regulated by the intracellular dynamics and reaction-di□usion equations of concentrations of glucose, chemoattractant, extracellular matrix, and MMPs. The model predicts that invasion patterns and rapid growth of tumor cells after conventional surgery depend onbiophysical properties of cells, dynamics of the core control system, and microenvironment as well as glucose injection methods. We developed a new type of therapeutic approaches: effective injection of chemoattractant for bring invasive cells back to the surgical site after initial surgery, followed by glucose injection at the same location. The model suggests that a good combination of chemoattractant and glucose injection at appropriate time frames may lead to an effective therapeutic strategy of eradicating tumor cells.

  9. Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis

    Science.gov (United States)

    Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio

    2014-01-01

    Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152

  10. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  11. Expression of nucleostemin in prostate cancer and its effect on the proliferation of PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Nucleostemin is essential for the proliferation and survival of stem and cancer cells,but it is unknown whether this newly identified molecule is involved in prostate cancer pathogenesis.Methods Total RNA and protein were extracted from prostate cancer tissues and PC-3,LNCap and DU145 cell lines.The nucleostemin mRNA and protein expression were measured by RT-PCR and Western blot.Immunohistochemistry was also used to detect the nucleostemin protein expression in prostate cancer tissues and PC-3 cells.A nucleostemin specific,short hairpin RNA,expression plasmid was used to transfect PC-3 cells.The changes of nucleostemin gene were detected and the proliferative capacity of the cells was determined.Results Nucleostemin was highly expressed in prostate cancer tissues and cell lines.Nucleostemin expression level in the silencer group PC-3 cells remarkably reduced.The proliferation rate of silencer group PC-3 cells decreased and the percentage of G1 stage cells increased.The neoplasm forming capacity in nude mice of the silencer group PC-3 cells decreased significantly.Conclusions Nucleostemin is highly expressed in prostate cancer tissues and cell lines.The proliferative capacity of PC-3 cells is remarkably reduced after silencing nucleostemin gene expression.

  12. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kairui; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Li, Qianqian [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Yang, Jun [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, 421 Hospital of PLA, Guangzhou 510318 (China); Dong, Weiqiang [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, The First Affiliated Hospital to Guangzhou Medical University, Guangzhou 510120 (China); Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Qiang, E-mail: 1780468505@qq.com [Department of Orthopaedics, Subei People’s Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, Jiangsu Province 225001 (China); Yu, Bin, E-mail: carryzhang1985@live.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2014-07-18

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.

  13. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  14. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  15. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line.

    Science.gov (United States)

    Tang, Yunhua; Zhang, Xiangyang; Qi, Fan; Chen, Mingfeng; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-05-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on the T24 bladder cancer cell line. The T24 bladder cancer cell line was treated with afatinib at various concentrations (0, 1, 5, 10 and 20 µmol/l). MTT assay was used to estimate the proliferation of the T24 cells; flow cytometric analysis was used to estimate the effect of afatinib on T24 cell apoptosis; cell invasion ability was assessed by a Transwell invasion assay; and western blot analysis was used to detect the expression of Bcl-2, Bax, Akt, extracellular-signal-regulated kinase (ERK)1/2, matrix metalloproteinase (MMP)-2 and MMP-9. The MTT assay demonstrated that afatinib inhibited the proliferation of T24 cells in a dose- and time-dependent manner. Flow cytometric analysis revealed that the cell apoptosis rate increased as the concentration of afatinib increased. The cell invasion assay indicated that afatinib treatment significantly inhibited the invasive behavior of T24 cells in a dose-dependent manner. Western blot analysis showed that with increasing afatinib concentrations, Bcl-2, phosphorylated (p)-ERK1/2, p-Akt, MMP-2 and MMP-9 expression levels were significantly decreased, whereas total (t)-ERK1/2 and t-Akt expression levels remained basically unchanged, and Bax expression levels were greatly increased. The results indicate that afatinib inhibits the proliferation and invasion of T24 cells in vitro and induces the apoptosis of these cells by inhibiting the EGFR signaling network.

  16. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  17. SIRT1 controls cell proliferation by regulating contact inhibition.

    Science.gov (United States)

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition.

  18. Effects of mifepristone on proliferation of human gastric adenocarcinoma cell line SGC-7901 in vitro

    Institute of Scientific and Technical Information of China (English)

    Da-Qiang Li; Zhi-Biao Wang; Jin Bai; Jie Zhao; Yuan Wang; Kai Hu; Yong-Hong Du

    2004-01-01

    AIM: To explore the effects of mifepristone, a progesterone receptor (PR) antagonist, on the proliferation of human gastric adenocarcinoma cell line SGC-7 901 in vitro and the possible mechanisms involved.METHODS: In situ hybridization was used to detect theexpression of PR mRNA in SGC-7 901 cells. After treatment with various concentrations of mifepristone (2.5, 5, 10,20 μmol/L) at various time intervals, the ultrastructural changes, cell proliferation, cell-cycle phase distribution, and the expression of caspase-3 and Bcl-XL were analyzed using transmission electron microscopy (TEM), tetrazolium blue(MTT) assay, 3H-TdR incorporation, flow cytometry, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Mifepristone markedly induced apoptosis and inhibited cell proliferation of PR- positive SGC-7 901 cells revealed by TEM, MTT assay and 3H-TdR incorporation, in a dose- and time-dependent manner. The inhibitory rate was increased from 8.98% to 51.29%. Flow cytometric analysis showed mifepristone dose-dependently decreased cells in S and G2/M phases, increased cells in Go/G1 phase,reduced the proliferative index from 57.75% to 22.83%. In addition, mifepristone up-regulated the expression of caspase-3, and down- regulated the Bcl-XL expression, dose-dependently.CONCLUSION: Mifepristone effectively inhibited the proliferation of PR-positive human gastric adenocarcinoma cell line SGC-7 901 in vitro through multiple mechanisms, and may be a beneficial agent against human adenocarcinoma.

  19. Cell cycling and patterned cell proliferation in the wing primordium of Drosophila.

    OpenAIRE

    1996-01-01

    The pattern of cell proliferation in the Drosophila imaginal wing primordium is spatially and temporally heterogeneous. Direct visualization of cells in S, G2, and mitosis phases of the cell cycle reveals several features invariant throughout development. The fraction of cells in the disc in the different cell cycle stages is constant, the majority remaining in G1. Cells in the different phases of the cell cycle mainly appear in small synchronic clusters that are nonclonally derived but resul...

  20. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    Science.gov (United States)

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  1. WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Ben-Shun Hu; Jing-Wang Tan; Guo-Hua Zhu; Dan-Feng Wang; Xian Zhou; Zhi-Qiang Sun

    2012-01-01

    AIM:To investigate the effects of the WWOX gene on the human hepatic carcinoma cell line SMMC-7721.METHODS:Full-length WWOX cDNA was amplified from normal human liver tissues.Full-length cDNA was subcloned into pEGFP-N1,a eukaryotic expression vector.After introduction of the WWOX gene into cancer cells using liposomes,the WWOX protein level in the cells was detected through Western blotting.Cell growth rates were assessed by methyl thiazolyl tetrazolium (MTT) and colony formation assays.Cell cycle progression and cell apoptosis were measured by flow cytometry.The phosphorylated protein kinase B (AKT)and activated fragments of caspase-9 and caspase-3 were examined by Western blotting analysis.RESULTS:WWOX significantly inhibited cell proliferation,as evaluated by the MTT and colony formation assays.Cells transfected with WWOX showed significantly higher apoptosis ratios when compared with cells transfected with a mock plasmid,and overexpression of WWOX delayed cell cycle progression from G1 to S phase,as measured by flow cytometry.An increase in apoptosis was also indicated by a remarkable activation of caspase-9 and caspase-3 and a dephosphorylation of AKT (Thr308 and Ser473) measured with Western blotting analysis.CONCLUSION:Overexpression of WWOX induces apoptosis and inhibits proliferation of the human hepatic carcinoma cell line SMMC-7721.

  2. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei; Lee, Chung Wa [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Cho, Chi Hin [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Francis Ka Leung [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, Jun, E-mail: junyu@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  3. Fucan effect on CHO cell proliferation and migration.

    Science.gov (United States)

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean; Medeiros, Valquiria Pereira; Trindade, Edvaldo Silva; Franco, Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-10-15

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schröederi seaweed. This 21.5 kDa galactofucan inhibited CHO-K1 proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B binds to fibronectin and activates integrin, mainly integrin α5β1, which induces FAK/RAS/MEK/ERK activation. FAK activation inhibits CHO-K1 migration on fibronectin and ERK blocks cell cycle progression. This study indicates that fucan B could be applied in developing new antitumor drugs.

  4. Ustilago maydis reprograms cell proliferation in maize anthers.

    Science.gov (United States)

    Gao, Li; Kelliher, Timothy; Nguyen, Linda; Walbot, Virginia

    2013-09-01

    The basidiomycete Ustilago maydis is a ubiquitous pathogen of maize (Zea mays), one of the world's most important cereal crops. Infection by this smut fungus triggers tumor formation in aerial plant parts within which the fungus sporulates. Using confocal microscopy to track U. maydis infection on corn anthers for 7 days post-injection, we found that U. maydis is located on the epidermis during the first 2 days, and has reached all anther lobe cell types by 3 days post-injection. Fungal infection alters cell-fate specification events, cell division patterns, host cell expansion and host cell senescence, depending on the developmental stage and cell type. Fungal effects on tassel and plant growth were also quantified. Transcriptome profiling using a dual organism microarray identified thousands of anther genes affected by fungal infection at 3 days post-injection during the cell-fate specification and rapid cell proliferation phases of anther development. In total, 4147 (17%) of anther-expressed genes were altered by infection, 2018 fungal genes were expressed in anthers, and 206 fungal secretome genes may be anther-specific. The results confirm that U. maydis deploys distinct genes to cause disease in specific maize organs, and suggest mechanisms by which the host plant is manipulated to generate a tumor.

  5. Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation.

    Science.gov (United States)

    Vacas, Eva; Fernández-Martínez, Ana B; Bajo, Ana M; Sánchez-Chapado, Manuel; Schally, Andrew V; Prieto, Juan C; Carmena, María J

    2012-10-01

    Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.

  6. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells

    Institute of Scientific and Technical Information of China (English)

    HE Qun; YUAN Lin-bo

    2007-01-01

    Background Dopamine exerts its effects mainly in nervous system through D1, D2 or D3 receptors. There are few reports dealing with the effects of dopamine on leukaemia cells. However, some dopamine agonists or antagonists do show biological effects on some types of leukaemia cells. Here, we report the effects of dopamine on the proliferation,differentiation and apoptosis of K562 leukaemia cells.Methods Proliferation was determined by MTT assay and cell counting both in liquid and semisolid cultures.Differentiation was verified by morphology, benzidine staining and flow cytometry. Apoptosis was checked by Hoechst 33258 staining and flow cytometry. The two groups were untreated group and treated group (dopamine 10-9 mol/L-10-4mol/L).Results In liquid culture, MTT assay and colony assay, dopamine inhibited proliferation of K562 cells. Inhibition rate was 29.28% at 10-6 mol/L and 36.10% at 10-5 mol/L after culture for 5 days in MTT assay. In benzidine staining and CD71 expression, dopamine induced K562 cells toward erythroid differentiation by increased 155% at 10-6 mol/L and by 171% at 10-5 mol/L after culture for 5 days in benzidine staining. In Hoechst 33258 staining and flow cytometry,dopamine induced K562 cells toward apoptosis. The sub G1 peak stained by PI was 14.23% at 10-4 mol/L dopamine after culture for 3 days compared with the control (0.81%) in flow cytometry.Conclusion Dopamine inhibites proliferation and induces both differentiation and apoptosis of K562 leukaemia cells.

  7. Hepatitis B virus X protein promotes hepatoma cell proliferation via upregulation of MEKK2

    Institute of Scientific and Technical Information of China (English)

    Guang-yao KONG; Jun-ping ZHANG; Shuai ZHANG; Chang-liang SHAN; Li-hong YE; Xiao-dong ZHANG

    2011-01-01

    To investigate the mechanism underlying the increase of hepatoma cell proliferation by hepatitis B virus X protein (HBx).Methods:HepG2,H7402 and HepG2.2.15 cells,which constitutively replicated hepatitis B virus were used.The effects of HBx on hepatoma cell proliferation were examined using 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and MTT assay.The expression level of MEKK2 was measured using RT-PCR,Western blot and luciferase reporter gene assay.The activity of activator protein 1 (AP-1) was detected using luciferase reporter gene assay.The phosphorylation levels of JNK and c-Jun were measured using Western blot.The expression levels of HBx and MEKK2 in 11 clinical hepatocellular carcinoma (HCC) tissues were measured using real time PCR and Western blot.In addition,the expression of MEKK2 in 95 clinical HCC tissues was examined using immunohistochemistry.Results:HBx significantly enhanced HepG2-X cell proliferation.In HepG2-X,H7402-X and HepG2.2.15 cells,the expression level of MEKK2 was remarkably increased.In HepG2.2.15 cells,HBx was found to activate JNK and AP-1,which were the downstream effectors of MEKK2 in HepG2-X and HepG2.2.15 cells.In 11 clinical HCC tissues,both HBx and MEKK2 expression levels were remarkably increased,as compared to those in the corresponding peritumor tissues.In 95 clinical HCC tissues,the rate of detection of MEKK2 was 85.3%.Conclusion:HBx promotes hepatoma cell proliferation via upregulating MEKK2,which may be involved in hepatocarcinogenesis.

  8. [Knock-down of apollon gene by antisense oligodeoxynucleotide inhibits the proliferation of Lovo cells and enhances chemo-sensitivity].

    Science.gov (United States)

    He, Jin-hua; Zhang, Xiao-ying; Wu, Feng-yun; Liao, Xiao-li; Wang, Wei; Jiang, Jian-wei

    2011-02-01

    In this study, the effects of apollon antisense oligodeoxynucleotide (ASODN) on the proliferation and apoptosis of human Lovo cells in vitro were investigated. Apollon ASODN was incubated with human colorectal Lovo cells for 48 h, the proliferation inhibition and the clone forming rates were detected by WST method and clone formation assay, respectively. The expression of apollon mRNA was analyzed by real time fluorescent quantitative reverse transcription polymerase chain reaction. The percentage of apoptotic cells and cell cycle distribution were determined by flow cytometry. The morphology of apoptotic cells was examined by fluorescence microscope. Lovo cells incubated with apollon ASODN combined with 5-fluorouracil (5-FU), cisplatin (DDP) or epirubicin (EPI) of different concentrations, cell proliferation inhibition rates were detected with WST method and IC50 was calculated. It was found that ASODN targeting apollon gene could all suppress the growth of Lovo cells and induce apoptosis of these cells significantly (P 5-FU, DDP and EPI on Lovo cells combined with apollon ASODN (0.08 micromol x L(-1)) were enhanced independently compared with single 5-FU, DDP and EPI groups, and the sensitivity enhanced about 2.58, 4.47, and 5.33 times respectively. It can be concluded that ASODN targeting apollon can suppress the expression of apollon mRNA, and inhibit the proliferation, induce apoptosis, arrest cell cycle at S phase of colorectal cancer Lovo cells in vitro and enhance the chemo-sensitivity to 5-FU, DDP and EPI.

  9. Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

    Science.gov (United States)

    Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.

    2016-06-01

    Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

  10. Comparative analysis of cell proliferation ratio in plaque and erosive oral lichen planus: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    C Pramod Redder

    2014-01-01

    Full Text Available Background: Proliferating cell nuclear antigen (PCNA is a nuclear protein synthesized in the late G1 and S-phase of the cell cycle. Detection of this protein represents a useful marker of the proliferation status of lesions. This study has been carried out to evaluate the cell proliferation rate in oral lichen planus (OLP and comparison between plaque and erosive lichen planus, which indicates the potential for malignant transformation. Materials and Methods: This study was comprised of 64 cases of histologically proven lichen planus, out of which 32 cases of plaque and erosive each was taken. Two sections were taken from each, one for H and E staining to verify histological diagnosis according to Eisenberg criteria, other sections were stained according to super sensitive polymer horse radish peroxidise method for identifying immunohistochemical expression of PCNA. Data were statistically analyzed by Tukey high-range statistical domain test. Statistically significant P value was considered <0.05. Results: In two types of lichen planus, erosive type (66.86% showed higher expression of PCNA followed by plaque (17.07%. Overall, P value was <0.001, which was statistically significant. It indicates that proliferation activity is more in erosive lichen planus followed by plaque type, which ultimately results in increased rate of malignant transformation. Conclusion: PCNA is a good nuclear protein marker to evaluate the proliferation status of OLP. Out of the two types of lichen planus, erosive type possesses more proliferative ratio and chances of malignant change is more in this type. It emphasizes the importance of long-term follow-up with erosive type when compared with plaque type.

  11. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death.

    Science.gov (United States)

    Laborde, E

    2010-09-01

    Glutathione transferases (GSTs) are enzymes that catalyze the conjugation of glutathione (GSH) to a variety of electrophilic substances. Their best known role is as cell housekeepers engaged in the detoxification of xenobiotics. Recently, GSTs have also been shown to act as modulators of signal transduction pathways that control cell proliferation and cell death. Their involvement in cancer cell growth and differentiation, and in the development of resistance to anticancer agents, has made them attractive drug targets. This review is focused on the inhibition of GSTs, in particular GSTP1-1, as a potential therapeutic approach for the treatment of cancer and other diseases associated with aberrant cell proliferation.

  12. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jane CJ Chao; Chia Chou Chu

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761)containing 22-27% fiavonoids (ginkgo-flavone glycosides)and 5-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.METHODS: Human HCC cell lines (HepG2 and Hep3B) were incubated with various concentrations (0-1 000 mg/L) of EGb 761 solution. After 24 h incubation, cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and lactate dehydrogenase (LDH)release, respectively. After 48 h incubation, the expression of proliferating cell nuclear antigen (PCNA) and p53 protein was measured by Western blotting.RESULTS: The results showed that EGb 761 (50-1 000 mg/L)significantly suppressed cell proliferation and increased LDH release (P<0.05) in HepG2 and Hep3B cells compared with the control group. The cell proliferation of HepG2 and Hep3B cells treated with EGb 761 (1 000 mg/L) was 45% and 39% of the control group (P<0.05), respectively. LDH release of HepG2 cells without and with EGb 761 (1 000 mg/L) treatment was 6.7% and 37.7%, respectively, and that of Hep3B cells without and with EGb 761 (1 000 mg/L) treatment was 7.2% and 40.3%, respectively. The expression of PCNA and p53 protein in HepG2 cells treated with EGb 761 (1 000 mg/L)was 85% and 174% of the control group, respectively.CONCLUSION: Ginkgobilobaextract significantly can suppress proliferation and increase cytotoxicity in HepG2 and Hep3B cells. Additionally, Ginkgo biloba extract can decrease PCNA and increase p53 expression in HepG2 cells.

  13. Analysis of epidermal growth factor signaling in nasal mucosa epithelial cell proliferation involved in chronic rhinosinusitis

    Institute of Scientific and Technical Information of China (English)

    Li Yunchuan; Li Lijuan; Wang Tong; Zang Hongrui; An Yunsong; Li Lifeng; Zhang Junyi

    2014-01-01

    Background Aberrant epithelial repair has been observed in chronic rhinosinusitis (CRS) patients; however,the mechanism of epithelial cell repair regulation is unclear.Epidermal growth factor (EGF) plays an important role in regulating epithelial cell repair in lower airway and may be a critical factor in the remodeling processes of CRS.The objective of our research is to evaluate the differences between CRS and normal subjects and between chronic rhinosinusitis without nasal polys (CRSsNP) and chronic rhinosinusitis with nasal polys (CRSwNP) in the regulation of EGF pathways and the regulating proliferative position of classic Ras/Raf/MEK/ERK pathways.Methods We evaluated the proliferation rates of ethmoidal mucosal cells before and after stimulation with EGF,epidermal growth factor receptor (EGFR) kinase inhibitor AG1478,and extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 using MTT assays.We also analyzed the sinonasal epithelial cells collected from control subjects and patients with CRS subtypes CRSsNP and CRSwNP for the expression of ERK1/2,phosphorylated ERK1/2,P21,P15,and P27 using western blotting analyses.Results The proliferation rates of sinonasal epithelial cells before and after EGF stimulation were lower in CRS patients than in the controls.AG1478 or PD98059 inhibitor treatment of control epithelial cells did not result in a significant difference in proliferation.Although,AG1478 and PD98059 inhibited the proliferation of CRS cells,the degree of proliferation inhibition was markedly different in CRSsNP.AG 1478 suppressed the proliferation of CRSwNP epithelial cells,whereas PD98059 had no effect.The ratio of ERK1/2 phosphorylation in CRS cells was lower than that of the control cells.Cyclin-dependent kinase inhibitors were highly expressed in CRS cells compared with that of control cells.ERK1/2 and P27 showed differential expression in CRSsNP and CRSwNP.Conclusions Differences existed in EGF pathways in CRS patients and normal

  14. LncRNA TUG1 is upregulated and promotes cell proliferation in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Yun-Bo Feng

    2016-01-01

    Full Text Available Objective: To examine the expression and function of long non-coding RNA taurine up-regulated 1 (TUG1 in human osteosarcoma cells. Methods: Real-time quantitive PCR was used to detect the transcription level of TUG1 in a series of osteosarcoma cell lines. Knockdown of TUG1 in U2OS cells was carried out by transient transfection of siRNAs. MTT assay was performed to access the cell growth rates. Afterwards, RNA and protein of these cells were extracted to analyze the transfection efficient as well as the expression of other molecules. Results: Compared to the normal cell line, TUG1 exhibited a significant upregulation in osteosarcoma cells. Phenotyping analysis showed the growth-promotion activity of TUG1, since knockdown of TUG1 resulted in declined proliferation. We also found that AKT phosphorylation was impaired after TUG1 was inhibited, suggesting that the AKT pathway was involved in the regulation of TUG1 in U2OS cells. Conclusion: Our data provided evidence that TUG1 was upregulated and acted as a possible oncogene via positively regulating cell proliferation in osteosarcoma cells.

  15. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    Science.gov (United States)

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

  16. Whole ovary immunohistochemistry for monitoring cell proliferation and ovulatory wound repair in the mouse

    Directory of Open Access Journals (Sweden)

    Singavarapu Rajasekhar

    2010-08-01

    Full Text Available Abstract Background Ovarian surface epithelial cells are thought to be a precursor cell type for ovarian carcinoma. It has been proposed that an increased rate of ovarian surface epithelial cell proliferation during ovulatory wound repair contributes to the accumulation of genetic changes and cell transformation. The proliferation of ovarian surface epithelial cells during ovulatory wound repair has been studied primarily using immunohistochemical staining of paraffin-embedded ovary sections. However, such analyses require complex reconstruction from serially-cut ovary sections for the visualization and quantification of the cells on the ovarian surface. In order to directly visualize the proliferation and organization of the ovarian surface epithelial cells, we developed a technique for immunohistochemical staining of whole mouse ovaries. Using this method, we analyzed cell proliferation and morphologic changes in mouse ovarian surface epithelial cells during follicle growth and ovulatory wound repair. Methods Three-week old FVB/N female mice were superovulated by sequential administration of pregnant mare's serum gonadotropin (PMSG and human chorionic gonadotropin (hCG. Ten hours after hCG administration, mice were given 5-bromo-2-deoxyuridine (BrdU and euthanized two hours after BrdU administration for ovary isolation. The levels of incorporated BrdU in the ovarian surface epithelial cells were measured by staining paraffin-embedded ovary sections and whole ovaries with the BrdU antibody. Re-epithelialization of the ovarian surface after ovulatory rupture was visualized by immunohistochemical staining with E-cadherin and Keratin 8 in paraffin-embedded ovary sections and whole ovaries. Results We determined that active proliferation of ovarian epithelial surface cells primarily occurs during antral follicle formation and, to a lesser extent, in response to an ovulatory wound. We also demonstrated that ovarian surface epithelial cells exhibit a

  17. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    OpenAIRE

    Au-Yeung, Byron B.; Zikherman, Julie; James L. Mueller; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M; Weiss, Arthur

    2014-01-01

    Biochemical signals triggered by the T-cell receptor (TCR) are required for stimulating T cells and can be initiated within seconds. However, a hallmark of T-cell activation, cell division, occurs hours after TCR signaling has begun, implying that T cells require a minimum duration and/or accumulate TCR signaling events to drive proliferation. To visualize the accumulated signaling experienced by T cells, we used a fluorescent reporter gene that is activated by TCR stimulation. This technique...

  18. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2012-12-01

    Full Text Available Abstract Background The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. Results In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. Conclusions The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and

  19. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  20. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    Science.gov (United States)

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism.

  1. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasalkova, N. Slepickova [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepicka, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Kolska, Z. [Department of Chemistry, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Prague (Czech Republic); Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ({zeta}-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  2. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  3. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    Science.gov (United States)

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  4. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    Science.gov (United States)

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway.

  5. The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels.

    Science.gov (United States)

    Alsina-Sanchis, Elisenda; Figueras, Agnès; Lahiguera, Álvaro; Vidal, August; Casanovas, Oriol; Graupera, Mariona; Villanueva, Alberto; Viñals, Francesc

    2016-10-15

    In a search for new therapeutic targets for treating epithelial ovarian cancer, we analyzed the Transforming Growth Factor Beta (TGFβ) signaling pathway in these tumors. Using a TMA with patient samples we found high Smad2 phosphorylation in ovarian cancer tumoral cells, independently of tumor subtype (high-grade serous or endometrioid). To evaluate the impact of TGFβ receptor inhibition on tumoral growth, we used different models of human ovarian cancer orthotopically grown in nude mice (OVAs). Treatment with a TGFβRI&II dual inhibitor, LY2109761, caused a significant reduction in tumor size in all these models, affecting cell proliferation rate. We identified Insulin Growth Factor (IGF)1 receptor as the signal positively regulated by TGFβ implicated in ovarian tumor cell proliferation. Inhibition of IGF1R activity by treatment with a blocker antibody (IMC-A12) or with a tyrosine kinase inhibitor (linsitinib) inhibited ovarian tumoral growth in vivo. When IGF1R levels were decreased by shRNA treatment, LY2109761 lost its capacity to block tumoral ovarian cell proliferation. At the molecular level TGFβ induced mRNA IGF1R levels. Overall, our results suggest an important role for the TGFβ signaling pathway in ovarian tumor cell growth through the control of IGF1R signaling pathway. Moreover, it identifies anti-TGFβ inhibitors as being of potential use in new therapies for ovarian cancer patients as an alternative to IGF1R inhibition.

  6. Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva Satish; Mahato, Krishna Kishore

    2015-03-01

    Low power laser irradiation (LPLI) is becoming an increasingly popular and fast growing therapeutic modality in dermatology to treat various ailments without any reported side effects. In the present study an attempt was made to investigate the proliferative potential of red laser light during tissue repair in Swiss albino mice. To this end, full thickness excisional wounds of diameter 15 mm created on mice were exposed to single dose of Helium-Neon laser (632.8 nm; 7 mW; 4.02 mWcm-2; Linear polarization) at 2 Jcm-2 and 10 Jcm-2 along with un-illuminated controls. The granulation tissues from all the respective experimental groups were harvested on day 10 post-wounding following euthanization. Subsequently, tissue regeneration potential of these laser doses under study were evaluated by monitoring proliferating cell nuclear antigen and Ki-67 following the laser treatment and comparing it with the un-illuminated controls. The percentages of Ki-67 or PCNA positive cells were determined by counting positive nuclei (Ki-67/PCNA) and total nuclei in five random fields per tissue sections. Animal wounds treated with single exposure of the 2 Jcm-2 indicated significant elevation in PCNA (Ptested experimental groups as evidenced by the microscopy results in the study. In summary, the findings of the present study have clearly demonstrated the regulation of cell proliferation by LPLI via PCNA and Ki-67 expression during tissue regeneration.

  7. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  8. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  9. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    Science.gov (United States)

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.

  10. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  11. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  12. Monovalent ions control proliferation of Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Preisler, Sarah; Pedersen, Stine Helene Falsig

    2010-01-01

    of Ehrlich Lettre ascites (ELA) cells. We measured the intracellular concentration of each ion in G(0), G(1), and S phases of the cell cycle following synchronization by serum starvation and release. We show that intracellular concentrations and content of Na+ and Cl(-) were reduced in the G(0)-G(1) phase...... transition, followed by an increased content of both ions in S phase concomitant with water uptake. The effect of substituting extracellular monovalent ions was investigated by bromodeoxyuridine incorporation and showed marked reduction after Na+ and Cl(-) substitution. In spectrofluorometric measurements...... DiBaC4(3) showed a reduced Cl(-) conductance in S compared with G(1) followed by transmembrane potential (E(m)) hyperpolarization in S. Cl(-) substitution by impermeable anions strongly inhibited proliferation and increased free, intracellular Ca2+ ([Ca2+]i), whereas a more permeable anion had little...

  13. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  14. EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; ZHANG Chong; BIAN Fan; ZOU Jun; JIANG Geng-ru; ZHU Han-wei

    2006-01-01

    Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured.Intracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripterigium Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of in- tracellular calcium concentrations wasn't the only way for proliferation.

  15. The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2010-01-01

    Full Text Available It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups.

  16. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L workers.

    Directory of Open Access Journals (Sweden)

    Cordelia Forkpah

    Full Text Available The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  17. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    Science.gov (United States)

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  18. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Xi [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); State Key Lab of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193 (China); Shi, Taiping [Chinese National Human Genome Center, Beijing. 3-707 North YongChang Road BDA, Beijing 100176 (China); Song, Quansheng [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Zhao, Hongshan, E-mail: hongshan@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  19. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    Science.gov (United States)

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  20. Influence of Flow Behavior of Alginate-Cell Suspensions on Cell Viability and Proliferation.

    Science.gov (United States)

    Ning, Liqun; Guillemot, Arthur; Zhao, Jingxuan; Kipouros, Georges; Chen, Xiongbiao

    2016-07-01

    Tissue scaffolds with living cells fabricated by three-dimensional bioprinting/plotting techniques are becoming more prevalent in tissue repair and regeneration. In the bioprinting process, cells are subject to process-induced forces (such as shear force) that can result in cell damage and loss of cell function. The flow behavior of the biomaterial solutions that encapsulate living cells in this process plays an important role. This study used a rheometer to examine the flow behavior of alginate solution and alginate-Schwann cell (RSC96), alginate-fibroblast cell (NIH-3T3), and alginate-skeletal muscle cell (L8) suspensions during shearing with respect to effects on cell viability and proliferation. The flow behavior of all the alginate-cell suspensions varied with alginate concentration and cell density and had a significant influence on the viability and proliferation of the cells once sheared as well as on the recovery of the sheared cells. These findings provide a mean to preserve cell viability and/or retain cell proliferation function in the bioprinting process by regulating the flow behavior of cell-biomaterial suspensions and process parameters.

  1. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; De-Bing Xiang; Yu-Jun He; Zeng-Peng Li; Xiao-Hua Wu; Jiang-Hong Mou; Hua-Liang Xiao; Qing-Hong Zhang

    2005-01-01

    AIM: To study the effect of caffeic acid phenethyl ester (CAPE)on proliferation, cell cycle, apoptosis and expression of β-catenin in cultured human colorectal cancer (CRC) cell line HCT116.METHODS: HCT116 cells were treated with CAPE at serial concentrations of 80, 40, 20, 10, 5, 2.5 mg/L. The proliferative status of HCT116 cells was measured by using methabenzthiazuron (MTT) assay. Cell cycle was analyzed by using flow cytometry (FCM) with propidium iodide (PI) labeling method. The rate of apoptosis was detected by using FCM with annexin V-FITC and PI double labeling method.β-catenin levels were determined by Western blotting.β-catenin localization in HCT116 was determined by indirect i mmunofluorescence.RESULTS: After HCT116 cells were exposed to CAPE (80,40, 20, 10, 5, and 2.5 mg/L) for 24, 48, 72, 96 h, CAPE displayed a strong growth inhibitory effect in a dose- and time-dependent manner against HCT116 cells. FCM analysis showed that the ratio of G0/G1 phase cells increased, S phase ratio decreased and apoptosis rate increased after HCT116 cells were exposed to CAPE (10, 5, and 2.5 mg/L)for 24 h. CAPE treatment was associated with decreased cytoplasmic β-catenin, nuclear β-catenin and a concurrent increase in β-catenin protein expression at cell-cell junctions.CONCLUSION: CAPE could inhibit HCT116 cell proliferation and induce cell cycle arrest and apoptosis. Decreased β-catenin protein expression may mediate the anti-proliferative effects of CAPE.

  2. Lens Epithelial Cell Proliferation and Cell Density in Human Age-related Cataract

    Institute of Scientific and Technical Information of China (English)

    Xialin Liu; Yizhi Liu; Jianliang Zheng; Qiang Huang; Huling Zheng

    2000-01-01

    Purpose: To discuss the potential effect of the lens epithelial cell proliferation in age-related cataract.Methods: In vitro cell proliferation was assayed by MTT method to evaluate the lens epithelial cell density, index, and proliferation capacity in normal lens and all kinds of age-related cataract. Capsulotomy specimens from all kinds of patients who underwent cataract phacoemulsification extraction surgery were compared with the lens epithelial specimens from non-cataract lenses of Eye Bank eyes.Results: Lens epithelial cell density of central anterior capsule (LECD) in female normal lens was higher than that in male, LECD in nuclear cataract( > NⅢ ) was higher than that in normal lens, but in the mature cortical cataract, LF CD was lower. Mitotic index of three kinds of age-related cataracts in vivo had no statistical difference, neither did cell proliferation capacity of cultivated cells in vitro.Conclusion: The individual difference of lens epithelial cell density and proliferation capacity in vivo may be an important underlying cause for senile cataract in the cellular level, especially for nuclear cataract.

  3. Inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    李杰

    2012-01-01

    Objective To explore the inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia (CML) cells and its possible mechanism. Methods The effects of rapamycin at various concentrations on cell proliferation of CML cell line K562 cells were analyzed by MTT. The expressions

  4. An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available BACKGROUND: Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin to have better understanding on the immune system and its regulation mechanisms in shrimps. METHODOLOGY: A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin. Its full-length cDNA was of 2621 bp with an open reading frame (ORF of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3-pLysS. The recombinant protein (rLvIntegrin could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. CONCLUSIONS: LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp.

  5. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  6. Analysis of Cell Proliferation in Newt (Pleurodeles waltl) Tissue Regeneration during Spaceflight in Foton M-2

    Science.gov (United States)

    Almeida, E. A. C.; Roden, C.; Phillips, J. A.; Yusuf, R.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Tairbekov, M.; Grigoryan, N.; Domaratskaya, E.; Poplinskaya, V.; Mitashov, V.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight expe rience musculoskeletal degeneration. It is still not understood if lo nger-term exposures to microgravity induce degeneration in other tiss ues, and if these effects are also observed in neutrally buoyant aqu atic organisms that may be pre-adapted to mechanical unloading. The " Regeneration" experiment conducted collaboratively between Russian an d US scientists for 16 days in the Russian Foton M-2 spaceflight soug ht to test the hypothesis that microgravity alters the proliferation of cells in regenerating tail tissue of the newt Pleurodeles waltl. Our initial results indicate that we successfUlly delivered the proli feration marker 5-bromo-2'-deoxy Uridine (BrdU) during spaceflight, and that it was incorporated in the nuclei of cells in regenerating tis sues. Cells in spaceflight tail regenerates proliferated at a slight ly slower rate and were more undifferentiated than those in ground sy nchronous controls. In addition, the size of regenerating tails from spaceflight was smaller than synchronous controls. However, onboard temperature recordings show that the temperature in spaceflight was a bout 2 C lower than ground synchronous controls, possibly explaining the observed differences. Additional post-facto ground controls at ma tched temperatures will correctly determine the effects of spaceflig ht on regenerative cell proliferation in the newt.

  7. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    Science.gov (United States)

    Au-Yeung, Byron B.; Zikherman, Julie; Mueller, James L.; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M.; Weiss, Arthur

    2014-01-01

    T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77–eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery. PMID:25136127

  8. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  9. Leading research on cell proliferation regulation technology; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing intelligent material, animal test alternative model, bio-cell analysis equipment, self-controlling bio-reactor and medical material, development of functional cells was studied by cell proliferation regulation technology. In fiscal 1996, the expression analysis and separation technology of specific gene for cell proliferation, and the intracellular regulation technology were surveyed from the viewpoint of intracellular regulation. The cell proliferation regulation technology by specific regulating material of cells, extracellular matrix, coculture system and embryonic cell was surveyed from the viewpoint of extracellular regulation. In addition, based on these survey results, new cell culture/analysis technology, new bio-material, artificial organ system, energy saving bio-reactor, environment purification microorganism, and animal test alternative model were surveyed as applications to industrial basic technologies from a long-term viewpoint. The approach to cell proliferation regulation requires preparation of a concrete proliferation regulation technology system of cells, and concrete application targets. 268 refs., 43 figs., 4 tabs.

  10. Effects of Nicotinamide N-Methyltransferase on PANC-1 Cells Proliferation, Metastatic Potential and Survival Under Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2015-01-01

    Full Text Available Background: Aberrant expression of Nicotinamide N-methyltransferase (NNMT has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Methods: Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. Results: NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. Conclusions: These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress.

  11. [CCR7 silence by siRNA inhibits proliferation, invasion and promotes apoptosis of human MG63 osteosarcoma cells].

    Science.gov (United States)

    Zhang, Richun; Zhang, Hongtao; E, Zhen; Ma, Qiong; Yan, Shiju; Zhang, Enwei; Ma, Bao'an

    2016-12-01

    Objective To investigate the effect of siRNA-mediated chemokine receptor 7 (CCR7) silence on the proliferation, migration, invasion and apoptosis of human MG-63 osteosarcoma cells. Methods The study designed and synthesized siRNA targeting CCR7 (CCR7-siRNA). After MG63 cells were transfected with CCR7-siRNA, the expression of CCR7 was identified by Western blotting; cell apoptosis was detected by annexinV-FITC/PI double staining combined with flow cemetery; cell proliferation was tested by MTT assay; and cell migration and invasion abilities were examined by Transwell(TM) migration/invasion assays. Results CCR7 expression in MG63 cells was significantly inhibited after transfected with CCR7-siRNA. At the same time, cell proliferation, migration and invasion abilities were distinctly suppressed, and cell apoptosis rate increased. Conclusion Down-regulating CCR7 expression in MG63 cells could apparently inhibit cell proliferation, migration and invasion abilities of MG63 cells, and also induce cell apoptosis.

  12. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Alsarra Ibrahim A

    2006-11-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  13. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  14. Regulation of cell proliferation and cell density by the inorganic phosphate transporter PiT1

    Directory of Open Access Journals (Sweden)

    Byskov Kristina

    2012-03-01

    Full Text Available Abstact Background The inorganic phosphate (Pi transporter, PiT1 (SLC20A1, is ubiquitously expressed in mammalian cells. It has previously been shown that down-regulation of PiT1 severely impaired the proliferation of two transformed human cells lines, HepG2 and HeLa, and the tumorigenicity of HeLa cells in nude mice. Moreover, PiT1 knock-out mice do not survive past E12.5 and from E10.5, the embryos were found to be growth-retarded and showed reduced proliferation of liver cells. Isolated mouse embryonic fibroblasts with knocked out as well as reduced PiT1 expression levels also exhibited impaired proliferation. Together these results suggest that a certain level of PiT1 is important for proliferation. We have here investigated the role of PiT1 in regulation of cell proliferation using two strictly density-inhibited cells lines, the murine MC3T3-E1 and NIH3T3 cells. Results We found that knock-down of PiT1 in MC3T3-E1 cells led to impaired proliferation supporting that at least a certain level of PiT1 is important for wildtype level of proliferation. We, however, also observed that MC3T3-E1 and NIH3T3 cells themselves regulate their endogenous PiT1 mRNA levels with lower levels in general correlating with decreased proliferation/increased cell density. Moreover, over-expression of human PiT1 led to increased proliferation of both MC3T3-E1 and NIH3T3 cultures and resulted in higher cell densities in cultures of these two strictly density-inhibited cell lines. In addition, when we transformed NIH3T3 cells by cultivation in fetal bovine serum, cells over-expressing human PiT1 formed more colonies in soft agar than control cells. Conclusions We conclude that not only is a certain level of PiT1 necessary for normal cell division as suggested by previously published studies, rather the cellular PiT1 level is involved in regulating cell proliferation and cell density and an increased PiT1 expression can indeed make NIH3T3 cells more sensitive to

  15. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kurki, P; Ogata, K; Tan, E M

    1988-04-22

    Proliferating cell nuclear antigen (PCNA)/cyclin is an intranuclear polypeptide antigen that is found in both normal and transformed proliferating cells. We have recently described two mouse monoclonal antibodies reacting with PCNA. In this report we describe the application of these antibodies to the study of proliferating human cells by indirect immunofluorescence microscopy and by flow cytometry. A fixation/permeation procedure was developed in order to obtain satisfactory binding of monoclonal PCNA-specific antibodies to proliferating cells. This method involved fixation with 1% paraformaldehyde followed by methanol treatment. For the staining of cells in suspension with the IgM type monoclonal antibodies lysolecithin was added to the paraformaldehyde solution to achieve a better permeation by the antibody molecules. This procedure gave a good ratio of specific staining relative to the background staining. It also preserved the shape and normal architecture of the cells as judged by visual microscopic observation and by light scatter measurements using a flow cytometer. Furthermore, this fixation technique permits simultaneous labeling of DNA by propidium iodide and PCNA by monoclonal antibodies. PCNA was detected in various types of normal and transformed proliferating cells by indirect immunofluorescence. Quiescent peripheral blood mononuclear cells were PCNA-negative whereas a fraction of lectin-stimulated lymphocytes became PCNA-positive. Similarly, early passages of fetal skin fibroblasts were PCNA-positive but non-proliferating senescent fibroblasts of later passages were PCNA-negative. The association of PCNA-staining by monoclonal antibodies with cell proliferation was confirmed by flow cytometry. Simultaneous labeling of PCNA and DNA showed that the PCNA signal increased during the G1 phase of the cell cycle, reached its maximum in the S-phase, and declined during the G2/M phase. Using cell sorting we demonstrated that mitotic cells had a very low PCNA

  16. Cell death and cell proliferation in mouse submandibular gland during early post-irradiation phase.

    Directory of Open Access Journals (Sweden)

    Bralic,Marina

    2005-08-01

    Full Text Available

    The effects of irradiation on different cell compartments in the submandibular gland were analyzed in adult C57BL/6 mice exposed to X-ray irradiation and followed up for 10 days. Apoptosis was quantified using the terminal deoxynucleotidyl transferase (TdT-mediated dUTP-digoxigenin nick end labeling method (TUNEL. Cell proliferation was detected using immunohistochemistry for proliferating cell nuclear antigen (PCNA. Radiation-induced apoptosis occurred rapidly, reaching a maximum 3 days post-irradiation. The percentage of apoptotic cells increased with the irradiation dose. At day 1 post-irradiation, cell proliferation was significantly reduced in comparison to sham-irradiated controls. After post-irradiation arrest of the cell cycle, proliferation increased in all gland compartments, reaching a maximum at day 6 post-irradiation. The proliferation response corresponded to the dose of irradiation. We suggest that the reason for gland dysfunction could be the coexistence of high apoptotic and proliferative activity in the irradiated gland.

  17. The Relationship of Expression of bcl-2, p53, and Proliferating Cell Nuclear Antigen (PCNA) to Cell Proliferation and Apoptosis in Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 程平; 李国胜; 杨郁; 曾甫清; 鲁功成

    2004-01-01

    To investigate the relationship of bcl-2, p53, proliferating cell nuclear antigen (PCNA) to cell proliferation, apoptosis and pathological parameters, the patterns of cell growth and turnover in renal cell carcinoma (RCC), formalin-fixed and paraffin-embedded tissue blocks from 34 patients with RCC were examined. Cell proliferation activity was detected by PCNA immunostaining and the proliferation index (PI) was expressed as a percentage of the PCNA-positive cells in the tumor cells. Apoptosis was detected by terminal deoxy- nucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and the apoptotic index (AI) was expressed as a percentage of the TUNEL-positive cells in the tumor cells. Expressions of bcl-2 and p53 were assessed immunohistochemically. Our results showed that the PI ranged from 6.0 % to 24.0 % (median 12.3 %) and theAI from 2.0 % to 8.0 % (median 5.4 %) in RCC. The expression of the bcl-2 protein was demonstrated in 15 cases (44.1 %); the expression of the p53 protein, however, was seen in only 3 case. bcl-2 positivity was not associated with PI or AI or any pathological parameters. There were close associations between PI and tumor grade and stage, and a significant relationship between AI and the tumor grade of RCC. Our study suggests that bcl-2 positivity was not associated with PI or AI or any pathological parameters. There are close associations between PI and AI and tumor grade and stage of RCC. Active cell proliferation may be accompanied by frequent apoptosis in RCC.

  18. Differential modulation of mitogen driven proliferation and homeostasis driven proliferation of T cells by rapamycin, Ly294002 and chlorophyllin.

    Science.gov (United States)

    Sharma, Deepak; Kumar, Sandur Santosh; Raghu, Rashmi; Khanam, Shazia; Sainis, Krishna Balaji

    2007-04-01

    Homeostasis driven proliferation (HDP) of naïve CD4+ T cells depends upon T cell receptor ligation with self-MHC II along with availability of interleukin-7. But the exact nature of downstream signaling events involved in HDP of helper T cells remains elusive. To identify the specific involvement of signaling molecules in HDP, purified CD4+ T cells were treated with either mTOR inhibitor rapamycin or PI3kinase inhibitor Ly294002 or with an antioxidant chlorophyllin (CHL) in vitro. Rapamycin treated cells failed to proliferate, expressed anergic T cell specific transcription factor genes egr-2 and egr-3 and showed diminished IFN-gamma production in response to Con A stimulation in vitro. Although CHL treated cells also failed to proliferate, they showed a normal IFN-gamma production during primary stimulation and did not upregulate egr-2 and egr-3 genes following restimulation in vitro. Ly294002 treated cells failed to express IL-2 and IFN-gamma and did not divide in response to Con A stimulation in vitro. While all these inhibitors significantly inhibited CD4+ T cell proliferation in response to the mitogen in vitro, only CHL treatment could inhibit their HDP in lymphopenic mice. Our results also demonstrate that combined treatment with rapamycin and Ly294002 did not inhibit HDP of CD4+ T cells. Thus, the present study, for the first time, shows a non-essential role of mTOR and PI3kinase during HDP of CD4+ T cells and also describes its possible regulation by an antioxidant.

  19. Inhibition of tumor cell proliferation by Coleon C.

    Science.gov (United States)

    Xing, Xiu; Wu, Hezhen; Wang, Xiaoming; Huang, Yongping; Li, Qing; Li, Changlong; Yang, Yanfang; Liu, Yanwen; Liu, Jianwen

    2008-04-01

    Coleon C (6,11,12,14,16-pentahydroxyabieta-5,8,11,13-tetraen-7-one), extracted from Coleus forskohlii Briq., was investigated for its anti-tumor activity on eight human tumor cell lines (95-D, A375, HeLa, A431, MKN45, BEL7402, LoVo and HL60) and two normal ones (293, L02) by MTT and colony-forming assay in vitro. The results indicated that A375 was the most sensitive of all the cell lines. Hoechst 33258 staining showed fragmentation and condensation of chromatin. DNA ladder assay indicated the fragments of DNA because of apoptosis. Flow cytometric analysis demonstrated hypodiploid cells existed in A375 after Coleon C treatment. In the acute toxicity studies of C57BL/6 mice, LD(50 )of Coleon C was 1496+/-150 mg/kg. In the model of Lewis lung carcinoma, the average tumor weight in groups injected with 80 mg/kg Coleon C decreased by 48.9+/-14.3% compared with that of the control. These results indicate that Coleon C could effectively inhibit tumor cell proliferation and growth by inducing apoptosis with low toxicity. To our knowledge, this is the first report on the anti-tumor activity of Coleon C both in vitro and in vivo.

  20. The nucleolus: a paradigm for cell proliferation and aging.

    Science.gov (United States)

    Comai, L

    1999-12-01

    The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA) genes are rapidly transcribed by RNA polymerase I (pol I) molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA) synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  1. The nucleolus: a paradigm for cell proliferation and aging

    Directory of Open Access Journals (Sweden)

    Comai L.

    1999-01-01

    Full Text Available The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA genes are rapidly transcribed by RNA polymerase I (pol I molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  2. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  3. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  4. TKTL1 promotes cell proliferation and metastasis in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Li, Juan; Zhu, Shu-Chai; Li, Shu-Guang; Zhao, Yan; Xu, Jin-Rui; Song, Chun-Yang

    2015-08-01

    Transketolase-like-1 (TKTL1), which is a rate-limiting enzyme in the non-oxidative part of the pentose-phosphate pathway, has been demonstrated to promote carcinogenesis through enhanced aerobic glycolysis. Dysregulation of TKTL1 expression also leads to poor prognosis in patients with urothelial and colorectal cancer. However, the expression pattern and underlying cellular functions in human esophageal squamous cell carcinoma (ESCC) remain largely unexplored. In this study, we measured TKTL1 expression in ESCC cell lines and paraffin-embedded ESCC tumor tissues. Our results revealed that TKTL1 expression was upregulated in all of the four ESCC cell lines and in 61.25% (98/160) of ESCC specimens detected, while only 27.5% (11/40) in normal epithelium. Silencing of TKTL1 expression decreased cell proliferation through inhibiting the expression of MKI67 and cyclins including Ccna2, Ccnb1, Ccnd1 and Ccne1. Meanwhile, down-regulation of TKTL1 also associated with increased apoptotic ratio and altered protein expression of Bcl-2 family in ESCC cells. Furthermore, knockdown of TKTL1 significantly reduced the invasive potential of ESCC cells through up-regulation of anti-metastasis genes (MTSS1, TIMP2 and CTSK) and down-regulation of pr-metastasis genes (MMP2, MMP9, MMP10 and MMP13). Taken together, our results indicate that TKTL1 is associated with a more aggressive behavior in ESCC cells and suppresses its expression or enzyme activity might represents a potential target for developing novel therapies in human ESCCs.

  5. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration

    NARCIS (Netherlands)

    Lesnik Oberstein, S.Y.; Byun, J.; Herrera, D.; Chapin, E.A.; Fisher, S.K.; Lewis, G.P.

    2011-01-01

    To quantify the extent of cellular proliferation and immunohistochemically characterize the proliferating cell types in epiretinal membranes (ERMS) from four different conditions: proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, post-retinal detachment, and idiopathic ERM.

  6. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.

  7. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    Science.gov (United States)

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  8. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis.

    Science.gov (United States)

    Mohan, Vishwa; Sinha, Rohit A; Pathak, Amrita; Rastogi, Leena; Kumar, Praveen; Pal, Amit; Godbole, Madan M

    2012-10-01

    Neuronal progenitor cell proliferation and their optimum number are indispensable for neurogenesis, which is determined by cell cycle length and cell cycle quitting rate of the dividing progenitors. These processes are tightly orchestrated by transcription factors like Tbr2, Pax6, and E2f-1. Radial glia and intermediate progenitor cells (IPC) through direct and indirect neurogenesis maintain surface area and neocortical thickness during development. Here we show that fetal neurogenesis is maternal thyroid hormone (MTH) dependent with differential effect on direct and indirect neurogenesis. MTH deficiency (MTHD) impairs direct neurogenesis through initial down-regulation of Pax6 and diminished progenitor pool with recovery even before the onset of fetal thyroid function (FTF). However, persistent decrease in Tbr2 positive IPCs, diminished NeuN positivity in layers I-III of neocortex, and reduced cortical thickness indicate a non-compensatory impairment in indirect neurogenesis. TH deficiency causes disrupted cell cycle kinetics and deranged neurogenesis. It specifically affects indirect neurogenesis governed by intermediate progenitor cells (IPCs). TH replacement in hypothyroid dams partially restored the rate of neurogenesis in the fetal neocortex. Taken together we describe a novel role of maternal TH in promoting IPCs derived neuronal differentiation in developing neo-cortex. We have also shown for the first time that ventricular zone progenitors are TH responsive as they express its receptor, TR alpha-1, transporters (MCT8) and deiodinases. This study highlights the importance of maternal thyroid hormone (TH) even before the start of the fetal thyroid function.

  9. Effects of Trichostatin A on HDAC8 Expression, Proliferation and Cell Cycle of Molt-4 Cells

    Institute of Scientific and Technical Information of China (English)

    HE Jing; LIU Hongli; CHEN Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 μg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 μg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  10. Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

    Directory of Open Access Journals (Sweden)

    Sajad Sahab Negah

    2016-12-01

    Full Text Available Objective(s: In order to grow cells in a three-dimensional (3D microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs. Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs.

  11. A new monoclonal antibody against DNA ligase I is a suitable marker of cell proliferation in cultured cell and tissue section samples

    Directory of Open Access Journals (Sweden)

    B Vitolo

    2009-06-01

    Full Text Available The extensive characterization of the replicative human DNA ligase I (LigI undertaken in the last decade demonstrated that the level of this protein strongly correlates with the rate of cell proliferation. This may allow to expand the repertoire of clinical biomarkers for the analysis of cell proliferation.We have produced a new monoclonal antibody (5H5 against LigI and exploited it as cell proliferation marker in Western blotting and immunofluorescence as well as in immunohistochemistry on paraffin tissue sections. The Western blot analysis showed that the LigI level detected by 5H5 antibody is high in all proliferating cells. On the contrary the protein is down regulated in resting human fibroblast and peripheral blood lymphocytes. Immunofluorescence analysis on cultured HeLa cells showed that 5H5 antibody labels all proliferating cells and displays the same staining pattern of BrdU in S-phase nuclei. Finally the analysis of serial sections of inflamed tonsils and NHL lymph nodes (either frozen or paraffin embedded demonstrated that 5H5 marks the same population of cells as the Ki-67 antibody. Our results demonstrate that 5H5 antibody is a valuable tool for labeling proliferating cells that can be conveniently used in Western blotting, immunocytochemistry and immunohistochemistry.

  12. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.

    1986-12-01

    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  13. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Li-Ning Xu; Xin Wang; Sheng-Quan Zou

    2008-01-01

    AIM: To explore the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the growth of biliary tract cancer cell lines (gallbladder carcinoma cell line and cholangiocarcinoma cell line) in v/vo and in vitro,and to investigate the perspective of histone deacetylase inhibitor in its clinical application.METHODS: The survival rates of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) treated with various doses of TSA were detected by methylthiazoy tetrazolium (MTT) assay.A nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line)was successfully established, and changes in the growth of transplanted tumor after treated with TSAwere measured.RESULTS: TSA could inhibit the proliferation of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) in a dose-dependent manner.After the nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line) was successfully established, the growth of cancer was inhibited in the model, after treated with TSA.CONCLUSION: TSA can inhibit the growth of cholangiocarcinoma and gallbladder carcinoma cell lines in vitro and in vivo.

  14. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology.

    Directory of Open Access Journals (Sweden)

    Alexei Vazquez

    Full Text Available Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.

  15. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    Zhao, Bing; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  16. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation.

    Science.gov (United States)

    Geskin, Larisa J; Viragova, Sara; Stolz, Donna B; Fuschiotti, Patrizia

    2015-04-30

    Cutaneous T-cell lymphomas (CTCLs) primarily affect skin and are characterized by proliferation of mature CD4(+) T-helper cells. The pattern of cytokine production in the skin and blood is considered to be of major importance for the pathogenesis of CTCLs. Abnormal cytokine expression in CTCLs may be responsible for enhanced proliferation of the malignant cells and/or depression of the antitumor immune response. Here we show that interleukin-13 (IL-13) and its receptors IL-13Rα1 and IL-13Rα2 are highly expressed in the clinically involved skin of CTCL patients. We also show that malignant lymphoma cells, identified by the coexpression of CD4 and TOX (thymus high-mobility group box), in the skin and blood of CTCL patients produce IL-13 and express both receptors. IL-13 induces CTCL cell growth in vitro and signaling through the IL-13Rα1. Furthermore, antibody-mediated neutralization of IL-13 or soluble IL-13Rα2 molecules can lead to inhibition of tumor-cell proliferation, implicating IL-13 as an autocrine factor in CTCL. Importantly, we established that IL-13 synergizes with IL-4 in inhibiting CTCL cell growth and that blocking the IL-4/IL-13 signaling pathway completely reverses tumor-cell proliferation. We conclude that IL-13 and its signaling mediators are novel markers of CTCL malignancy and potential therapeutic targets for intervention.

  17. Enhancement of hybridoma formation, clonability and cell proliferation in a nanoparticle-doped aqueous environment

    Directory of Open Access Journals (Sweden)

    Karnieli Ohad

    2008-01-01

    Full Text Available Abstract Background The isolation and production of human monoclonal antibodies is becoming an increasingly important pursuit as biopharmaceutical companies migrate their drug pipelines away from small organic molecules. As such, optimization of monoclonal antibody technologies is important, as this is becoming the new rate-limiting step for discovery and development of new pharmaceuticals. The major limitations of this system are the efficiency of isolating hybridoma clones, the process of stabilizing these clones and optimization of hybridoma cell secretion, especially for large-scale production. Many previous studies have demonstrated how perturbations in the aqueous environment can impact upon cell biology. In particular, radio frequency (RF irradiation of solutions can have dramatic effects on behavior of solutions, cells and in particular membrane proteins, although this effect decays following removal of the RF. Recently, it was shown that nanoparticle doping of RF irradiated water (NPD water produced a stabilized aqueous medium that maintained the characteristic properties of RF irradiated water for extended periods of time. Therefore, the ordering effect in water of the RF irradiation can now be studied in systems that required prolonged periods for analysis, such as eukaryotic cell culture. Since the formation of hybridoma cells involves the formation of a new membrane, a process that is affected by the surrounding aqueous environment, we tested these nanoparticle doped aqueous media formulations on hybridoma cell production. Results In this study, we tested the entire process of isolation and production of human monoclonal antibodies in NPD water as a means for further enhancing human monoclonal antibody isolation and production. Our results indicate an overall enhancement of hybridoma yield, viability, clonability and secretion. Furthermore, we have demonstrated that immortal cells proliferate faster whereas primary human fibroblasts

  18. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  19. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Sang; Xiao-Lei Shi; Bin Han; Tao Huang; Xu Huang; Hao-Zhen Ren; Yi-Tao Ding

    2016-01-01

    BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs trans-plantation route in a swine ALF model. METHODS: The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), pe-ripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs trans-plantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS: The average survival time of each group was 10.7 ± 1.6 days (InP), 6.0±0.9 days (AH), 4.7±1.4 days (PV), 4.3± 0.8 days (IH), respectively, when compared with the average survival time of 3.8±0.8 days in the D-Gal group. The sur-vival rates between the InP group and D-Gal group revealed a statistically signiifcant difference (P CONCLUSIONS: Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC trans-plantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.

  20. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation.

    Science.gov (United States)

    Pedro, Dalila F N; Ramos, Alice A; Lima, Cristovao F; Baltazar, Fatima; Pereira-Wilson, Cristina

    2016-02-01

    Salvia officinalis and some of its isolated compounds have been found to be preventive of DNA damage and increased proliferation in vitro in colon cells. In the present study, we used the azoxymethane model to test effects of S. officinalis on colon cancer prevention in vivo. The results showed that sage treatment reduced the number of ACF formed only if administered before azoxymethane injection, demonstrating that sage tea drinking has a chemopreventive effect on colorectal cancer. A decrease in the proliferation marker Ki67 and in H2 O2 -induced and azoxymethane-induced DNA damage to colonocytes and lymphocytes were found with sage treatment. This confirms in vivo the chemopreventive effects of S. officinalis. Taken together, our results show that sage treatment prevented initiation phases of colon carcinogenesis, an effect due, at least in part, to DNA protection, and reduced proliferation rates of colon epithelial cell that prevent mutations and their fixation through cell replication. These chemopreventive effects of S. officinalis on colon cancer add to the many health benefits attributed to sage and encourage its consumption.

  1. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  2. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  3. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    Science.gov (United States)

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  4. Mechanisms of regulating cell topology in proliferating epithelia: impact of division plane, mechanical forces, and cell memory.

    Directory of Open Access Journals (Sweden)

    Yingzi Li

    Full Text Available Regulation of cell growth and cell division has a fundamental role in tissue formation, organ development, and cancer progression. Remarkable similarities in the topological distributions were found in a variety of proliferating epithelia in both animals and plants. At the same time, there are species with significantly varied frequency of hexagonal cells. Moreover, local topology has been shown to be disturbed on the boundary between proliferating and quiescent cells, where cells have fewer sides than natural proliferating epithelia. The mechanisms of regulating these topological changes remain poorly understood. In this study, we use a mechanical model to examine the effects of orientation of division plane, differential proliferation, and mechanical forces on animal epithelial cells. We find that regardless of orientation of division plane, our model can reproduce the commonly observed topological distributions of cells in natural proliferating animal epithelia with the consideration of cell rearrangements. In addition, with different schemes of division plane, we are able to generate different frequency of hexagonal cells, which is consistent with experimental observations. In proliferating cells interfacing quiescent cells, our results show that differential proliferation alone is insufficient to reproduce the local changes in cell topology. Rather, increased tension on the boundary, in conjunction with differential proliferation, can reproduce the observed topological changes. We conclude that both division plane orientation and mechanical forces play important roles in cell topology in animal proliferating epithelia. Moreover, cell memory is also essential for generating specific topological distributions.

  5. Mechanisms of regulating cell topology in proliferating epithelia: impact of division plane, mechanical forces, and cell memory.

    Science.gov (United States)

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X; Liang, Jie

    2012-01-01

    Regulation of cell growth and cell division has a fundamental role in tissue formation, organ development, and cancer progression. Remarkable similarities in the topological distributions were found in a variety of proliferating epithelia in both animals and plants. At the same time, there are species with significantly varied frequency of hexagonal cells. Moreover, local topology has been shown to be disturbed on the boundary between proliferating and quiescent cells, where cells have fewer sides than natural proliferating epithelia. The mechanisms of regulating these topological changes remain poorly understood. In this study, we use a mechanical model to examine the effects of orientation of division plane, differential proliferation, and mechanical forces on animal epithelial cells. We find that regardless of orientation of division plane, our model can reproduce the commonly observed topological distributions of cells in natural proliferating animal epithelia with the consideration of cell rearrangements. In addition, with different schemes of division plane, we are able to generate different frequency of hexagonal cells, which is consistent with experimental observations. In proliferating cells interfacing quiescent cells, our results show that differential proliferation alone is insufficient to reproduce the local changes in cell topology. Rather, increased tension on the boundary, in conjunction with differential proliferation, can reproduce the observed topological changes. We conclude that both division plane orientation and mechanical forces play important roles in cell topology in animal proliferating epithelia. Moreover, cell memory is also essential for generating specific topological distributions.

  6. Wnt blockers inhibit the proliferation of lung cancer stem cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2015-04-01

    Full Text Available Xueyan Zhang,1* Yuqing Lou,1* Xiaoxuan Zheng,1 Huimin Wang,1 Jiayuan Sun,1 Qianggang Dong,2 Baohui Han1 1Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Section of Cancer Stem Cells, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Previous study has confirmed that the occurrence of Wnt pathway activation is associated with risk of non-small-cell lung cancer recurrence. However, whether the pharmacologic blocking of the Wnt signaling pathway could provide therapeutic possibility remains unknown. The aim of the present study was to evaluate the therapeutic functions of the Wnt signaling pathway inhibitor pyrvinium pamoate (PP on lung cancer stem cells (LCSCs in vitro. Methods: Colony formation and sphere culture were performed to enrich LCSCs from three lung cancer cell lines: PC9, SPC-A1, and A549. After confirming stemness by immunofluorescence, PP was employed for cell viability assay by comparison with three other kinds of Wnt signaling inhibitor: salinomycin, ICG-001, and silibinin. The effect of PP on LCSCs was further verified by colony formation assay and gene expression analysis. Results: LCSCs were successfully generated by sphere culture from SPC-A1 and PC9 cells, but not A549 cells. Immunofluorescence assay showed that LCSCs could express pluripotent stem cell markers, including NANOG, Oct4, KLF5, and SOX2, and Wnt signaling pathway molecules ß-catenin and MYC. Half-maximal inhibitory concentrations of PP on SPC-A1, PC9, and A549 were 10 nM, 0.44 nM, and 0.21 nM, respectively, which are much lower than those of salinomycin, ICG-001, and silibinin. Moreover, significantly decreased colony formation and downregulation of pluripotent stem cell signaling pathway were observed in lung cancer cells after treatment with PP. Conclusion: Wnt signaling

  7. Effect of adrenotensin on cell proliferation is mediated by angiotensin Ⅱ in cultured rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    Hong XUE; Ping YUAN; Li ZHOU; Tai YAO; Yu HUANG; Li-min LU

    2009-01-01

    Aim: Both adrenomedullin (ADM) and adrenotensin (ADT) are derived from the same propeptide precursor, and both act as circulat- ing hormones and local paracrine mediators with multiple biological activities. Compared with ADM, little is known about how ADT achieves its functions. In the present study, we investigated the effect of ADT on cell proliferation and transforming growth factor-β (TGF-β) secretion in cultured renal mesangial cells (MCs) and determined whether angiotensin Ⅱ (Ang Ⅱ) was involved in mediating this process.Methods: Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation assay, Ang Ⅱ levels were assayed using an enzyme immunoassay, and real time PCR was used to measure Ang Ⅱ type 1 (AT1) receptor, Ang Ⅱ type 2 (AT2) receptor, angiotensino-gen (AGT), renin, angiotensin converting enzyme (ACE) and TGF-β1 mRNA levels. TGF-β1 and collagen type IV protein levels in cellmedia were measured using enzyme-linked immunoassays. Results: ADT treatment induced cell proliferation in a concentration-dependent manner; it also increased the levels of TGF-β1 mRNA and protein as well as collagen type Ⅳ excretion by cultured MCs. ADT treatment increased renin and AGT mRNAs as well as Ang Ⅱ protein, but did not affect the ACE mRNA level. ADT up-regulated angiotensin AT1 receptor mRNA, but not that of the AT2 receptor. The angiotensin AT1 receptor antagonist Iosartan blocked the effects of ADT-induced cell proliferation, TGF-β1 and collagen type Ⅳ synthe-sis and secretion.Conclusion: ADT has a stimulating role in cell proliferation in cultured MCs. Increases in the levels of Ang II and the AT1 receptor after ADT treatment mediate the stimulating effects of ADT on cell proliferation and extracellular matrix synthesis and secretion.

  8. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  9. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  10. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  11. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  12. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  13. Aspirin inhibits the proliferation of tobacco-related esophageal squamous carcinomas cell lines through cyclooxygenase 2 pathway

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Zhi; LIU Hai-bo; DING Xin-chun; LI Peng; ZHANG Shu-tian; YU Zhong-lin

    2007-01-01

    Background Cigarette smoking has been verified as the risk factor of esophageal squamous cell carcinoma(ESCC).Overexpression of cyclooxygenase 2(COX-2)is shown in ESCC.The objective of this study was to investigate the effects of cigarette smoking ethanol extract(EE)on the proliferation of the human ESCC cell Iines,and to explore the correlation between the proliferation rate of human ESCC cell lines and the expression pattern of COX-2.Whether aspirin can inhibit the proliferation of the ESCC cell lines pretreated with EE.and regulate the mRNA expression levels of COX-2 are also examined.Methods Two human ESCC cell Iines were selected.EC109 was poorly differentiated and EC9706 was highly differentiated.EC109 and EC9706 were treated with EE and aspirin for different time course.The cell growth of ESCC was measured by MTT reduction assay and the expression of COX-2 was measured by RT-PCR and Western blot analysis.Results EE promoted the proliferation of EC109 and EC9706 in dose- and time-dependent manners.In the concentration range (10-100 μg/ml for EE)and in the time range(24-72 hours)after addition of EE,the cell proliferation was prominent in an up-scaled manner respectively.Aspirin could inhibit the proliferation of cell lines EC109 and EC9706.pretreated with EE for 5 hours,in a dose-dependent manner.In the concentration range (0.5-8.0 mmol/L for aspirin),the cell growth inhibition was prominent in an up-scaled manner accordingly (P<0.05).The effect of EE on cell proliferation was correlated with the up-regulation of COX-2 gene.However,the cell growth inhibition of aspirin was correlated with the down-regulation of COX-2 gene.Conclusions EE can stimulate the proliferation of human ESCC cell lines EC109 and EC9706,most likely through up-regulating the expression of COX-2.Aspirin can inhibit the proliferation of ESCC cell lines induced by EE,which suggests it may be advantageous in the chemoprevention and therapy of human tobacco-related ESCC.And its effect is

  14. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    Energy Technology Data Exchange (ETDEWEB)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  15. Nitric oxide coordinates cell proliferation and cell movements during early development of Xenopus.

    Science.gov (United States)

    Peunova, Natalia; Scheinker, Vladimir; Ravi, Kandasamy; Enikolopov, Grigori

    2007-12-15

    The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses convergent extension in the axial mesoderm and neuroectoderm. NO controls cell division and cell movement through two separate signaling pathways. Both rely on RhoA-ROCK signaling but can be distinguished by the involvement of either guanylate cyclase or the planar cell polarity regulator Dishevelled. Through the cGMP-dependent pathway, NO suppresses cell division by negatively regulating RhoA and controlling the nuclear distribution of ROCK and p21WAF1. Through the cGMP-independent pathway, NO facilitates cell movement by regulating the intracellular distribution and level of Dishevelled and the activity of RhoA, thereby controlling the activity of ROCK and regulating actin cytoskeleton remodeling and cell polarization. Concurrent control by NO helps ensure that the crucial processes of cell proliferation and morphogenetic movements are coordinated during early development.

  16. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    Science.gov (United States)

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    Science.gov (United States)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  18. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation.

    Science.gov (United States)

    Xu, F; Moon, S J; Emre, A E; Turali, E S; Song, Y S; Hacking, S A; Nagatomi, J; Demirci, U

    2010-03-01

    Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges and provide limited control over building block properties (e.g., cell density). The cell-encapsulating droplet generation technique has potential to address these challenges. In this study, we monitored individual building blocks for viability, proliferation and cell density. The results showed that (i) SMCs can be encapsulated in collagen droplets with high viability (>94.2 +/- 3.2%) for four cases of initial number of cells per building block (i.e. 7 +/- 2, 16 +/- 2, 26 +/- 3 and 37 +/- 3 cells/building block). (ii) Encapsulated SMCs can proliferate in building blocks at rates that are consistent (1.49 +/- 0.29) across all four cases, compared to that of the controls. (iii) By assembling these building blocks, we created an SMC patch (5 mm x 5 mm x 20 microm), which was cultured for 51 days forming a 3D tissue-like construct. The histology of the cultured patch was compared to that of a native rat bladder. These results indicate the potential of creating 3D tissue models at high throughput in vitro using building blocks.

  19. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Vanessa A Evans

    Full Text Available Latently infected resting CD4(+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+ T cells and syngeneic myeloid dendritic cells (mDC can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+ T cells. Gene expression in non-proliferating CD4(+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+ T cells, which is predominantly mediated through signalling during DC-T cell contact.

  20. Effects of MicroRNA-10b on lung cancer cell proliferation and invasive metastasis and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Su; Shuang-Qing Li; Duo-Ning Wang; Feng Liu; Bo Yuan

    2014-01-01

    Objective:To study the influence ofMicroRNA-10b on proliferation and invasion of human low metastatic lung cancer cell95-C and its mechanism.Methods:LipofectamineMicroRNA-10b eukaryotic expression plasmid was transfected into95-C.The experiment group was divided into blank control group, empty vector transfected group andMicroRNA-10b transfected group.Real time quantitativeRT-PCR was used to detect theexpression ofMicroRNA-10b and KLF4mRNA expression.Proliferations of cells were detected by cell proliferation assay, invasion of the detected the cellTranswell experiments, the expression ofKLF4 protein was detected in Western blotting cells.Results:The proliferation rate ofMicroRNA-10b plasmid transfection group increased significantly after transfection, invasion and migration ability enhancement, by comparison, there are statistically significant differences in the blank control group and negative control group(P0.05). Conclusions:MicroRNA-10b may promote proliferation and invasion of95-C cells by down regulating the expression ofKLF4 protein.

  1. Lobaplatin suppresses proliferation and induces apoptosis in the human colorectal carcinoma cell Line LOVO in vitro.

    Science.gov (United States)

    Dai, Hong-yu; Liu, Lin; Qin, Shu-kui; He, Xiang-ming; Li, Su-yi

    2011-06-01

    Lobaplatin, as the third-generation platinum antineoplastic agent, showed promising antineoplastic effects in variety of preclinical test tumor models. We investigated the inhibition effect of lobaplatin on the colorectal carcinoma cell line LOVO in vitro, and explored its mechanism of action. The MTT assay was used to determine the inhibitory effect and inhibition ratio of lobaplatin on LOVO at various lobaplatin concentrations (500 μM, 1000 μM, 2000 μM). Apoptosis was detected by terminal deoxynucleotide transferase-mediated dUTP nickend labelling (TUNEL). The cell cycle and apoptotic rate were analyzed by flow cytometry (FCM) and the expression of caspase-3,8,9 in cells was detected by chromometry. The results of MTT assay showed that proliferation of LOVO cells was inhibited by lobaplatin in a concentration-dependent manner. Apoptosis was detected in LOVO cells by TUNEL. The FCM assay indicated that lobaplatin altered the cell cycle and induced apoptosis of the LOVO cells when treated for 24h, the percentages of cells in the S phase transition were increased, whereas the percentages of cells in the G(2) transition were decreased. The expressions of caspase-389 is higher than the control group after LOVO cells were treated by lobaplatin. Lobaplatin can inhibit the proliferation of colorectal carcinoma cell line LOVO by inducing apoptosis in vitro. The mechanism may be related to the "S" cycle arrest in cell cycle distribution and the up-regulated expression of caspase-8 and caspase-9 which up-regulated the expression of caspase-3.

  2. Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors.

    Science.gov (United States)

    Hasibeder, Astrid; Venkataramani, Vivek; Thelen, Paul; Radzun, Heinz-Joachim; Schweyer, Stefan

    2013-11-01

    Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell factors may be based on histone-independent mechanisms such as direct hyperacetylation of transcription factors. Based on these findings, phytoestrogens may be useful as new agents in the treatment of TGCT.

  3. Prolonged perturbation of the oscillations of hepatoma Fao cell proliferation by a single small dose of methotrexate.

    Science.gov (United States)

    Guerroui, S; Deschatrette, J; Wolfrom, C

    2005-06-01

    The proliferation rate of various cell types in vitro, including hepatoma Fao cells, displays aperiodic oscillations. The frequency of these oscillations is about one every 3-5 weeks, and there are variations in cell functions and polarity. Topological analysis has showed that these oscillations in growth rate are determined, and presumably chaotic. One characteristic of complex chaotic systems is that their dynamics can be persistently modified by a small external perturbation. We show that treatment with a single small dose of the anticancer drug methotrexate causes long-term stable alteration of the oscillatory dynamics of Fao cell proliferation. The oscillations of growth rate are shifted, and their mean level decreased according to a fractal pattern.

  4. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  5. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC.

  6. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation

    Science.gov (United States)

    Mih, Justin D.; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S.; Tschumperlin, Daniel J.

    2012-01-01

    Summary The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate. PMID:23097048

  7. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  8. Di-(2-ethylhexyl Phthalate-Induced Hippocampus-Derived Neural Stem Cells Proliferation

    Directory of Open Access Journals (Sweden)

    Alireza Abdanipour

    2017-01-01

    Full Text Available The brain and spinal cord have a limited capacity for self-repair under damaged conditions. One of the best options to overcome these limitations involves the use of phytochemicals as potential therapeutic agents. In this study, we have aimed to investigate the effects of di-(2-ethylhexyl phthalate (DEHP on hippocampus-derived neural stem cells (NSCs proliferation to search phytochemical candidates for possible treatment of neurological diseases using endogenous capacity. In this experimental study, neonatal rat hippocampus-derived NSCs were cultured and treated with various concentrations of DEHP (0, 100, 200, 400 and 600 µM and Cirsium vulgare (C. vulgare hydroethanolic extract (0, 200, 400, 600, 800 and 1000 µg/ml for 48 hours under in vitro conditions. Cell proliferation rates and quantitative Sox2 gene expression were evaluated using MTT assay and real-time reverse transcription polymerase chain reaction (RT-PCR. We observed the highest average growth rate in the 400 µM DEHP and 800 µg/ml C. vulgare extract treated groups. Sox2 expression in the DEHP-treated NSCs significantly increased compared to the control group. Gas chromatography/mass spectrometry (GC/ MS results demonstrated that the active ingredients that naturally occurred in the C. vulgare hydroethanolic extract were 2-ethyl-1-hexanamine, n-heptacosane, 1-cyclopentanecarboxylic acid, 1-heptadecanamine, 2,6-octadien-1-ol,2,6,10,14,18,22-tetracosahexaene, and DEHP. DEHP profoundly stimulated NSCs proliferation through Sox2 gene overexpression. These results provide and opportunity for further use of the C. vulgure phytochemicals for prevention and/or treatment of neurological diseases via phytochemical mediated-proliferation of endogenous adult NSCs.

  9. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  10. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  11. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells.

    Science.gov (United States)

    Zhao, Bing; Hu, Mengcai

    2013-12-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer.

  12. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells.

    Science.gov (United States)

    Machado-Neto, João Agostinho; Lazarini, Mariana; Favaro, Patricia; de Melo Campos, Paula; Scopim-Ribeiro, Renata; Franchi Junior, Gilberto Carlos; Nowill, Alexandre Eduardo; Lima, Paulo Roberto Moura; Costa, Fernando Ferreira; Benichou, Serge; Olalla Saad, Sara Teresinha; Traina, Fabiola

    2015-03-01

    ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.

  13. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion

    Science.gov (United States)

    Lu, Xiao-Yu; Yan, Yan; Zhai, Yu-Jia; Bao, Qing; Doetsch, Paul W.; Deng, Xingming; Thai, Tiffany L.; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Ma, He-Ping

    2017-01-01

    Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockdown of TRPC6 channel inhibited A549 cell proliferation by arresting cell cycle at the S-G2M phase and caused a significant portion of cells detached and rounded-up, but did not induce any types of cell death. Western blot and cell cycle analysis show that the detached round cells at the S-G2M phase expressed more TRPC6 than the still attached polygon cells at the G1 phase. Patch-clamp data also show that TRPC whole-cell currents in the detached cells were significantly higher than in the still attached cells. Inhibition of Ca2+-permeable TRPC6 channels significantly reduced intracellular Ca2+ in A549 cells. Interestingly, either blockade or knockdown of TRPC6 strongly reduced the invasion of this NSCLC cell line and decreased the expression of an adherent protein, fibronectin, and a tight junction protein, zonula occluden protein-1 (ZO-1). These data suggest that TRPC6-mediated elevation of intracellular Ca2+ stimulates NSCLC cell proliferation by promoting cell cycle progression and that inhibition of TRPC6 attenuates cell proliferation and invasion. Therefore, further in vivo studies may lead to a consideration of using a specific TRPC6 blocker as a complement to treat NSCLC. PMID:28030826

  14. Development of ethynyl-2'-deoxyuridine chemical probes for cell proliferation.

    Science.gov (United States)

    Lovitt, Carrie J; Hilko, David H; Avery, Vicky M; Poulsen, Sally-Ann

    2016-09-15

    A common method of evaluating cellular proliferation is to label DNA with chemical probes. 5-Ethynyl-2'-deoxyuridine (EdU) is a widely utilized chemical probe for labeling DNA, and upon incorporation, EdU treatment of cells is followed by a reaction with a small molecule fluorescent azide to allow detection. The limitations when using EdU include cytotoxicity and a reliance on nucleoside active transport mechanisms for entry into cells. Here we have developed six novel EdU pro-labels that consist of EdU modified with variable lipophilic acyl ester moieties. This pro-label:chemical probe relationship parallels the prodrug:drug relationship that is employed widely in medicinal chemistry. EdU and EdU pro-labels were evaluated for their labeling efficacy and cytotoxicity. Several EdU pro-label analogues incorporate into DNA at a similar level to EdU, suggesting that nucleoside transporters can be bypassed by the pro-labels. These EdU pro-labels also had reduced toxicity compared to EdU.

  15. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  16. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    Science.gov (United States)

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  17. Salvianolic Acid A Inhibits PDGF-BB Induced Vascular Smooth Muscle Cell Migration and Proliferation While Does Not Constrain Endothelial Cell Proliferation and Nitric Oxide Biosynthesis

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2012-03-01

    Full Text Available Proliferation and migration of vascular smooth muscle cells (VSMCs are critical events in the initiation and development of restenosis upon percutaneous transluminal coronary angioplasty (PTCA. Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Salvianolic A (SalA is one of the most abundant polyphenols extracted from salvia. In this study, we investigated the effect of salvianolic A (SalA on the migration and proliferation of VSMCs. We found a preferential interaction of SalA with cellular systems that rely on the PDGF signal, but not on the EGF and bFGF signal. SalA inhibits PDGF-BB induced VSMC proliferation and migration in the concentration range from 0.01 to 0.1 μM. The inhibition of SalA on VSMC proliferation is associated with cell cycle arrest. We also found that SalA inhibits the PDGFRβ-ERK1/2 signaling cascade activated by PDGF-BB in VSMCs. In addition, SalA does not influence the proliferation of endothelial cells, the synthesis of NO and eNOS protein expression. Our results suggest that SalA inhibits migration and proliferation of VSMCs induced by PDGF-BB via the inhibition of the PDGFRβ-ERK1/2 cascade, but that it does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis.

  18. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  19. Sometimes it takes darkness to see the light: pitfalls in the interpretation of cell proliferation markers (Ki-67 and PCNA).

    Science.gov (United States)

    Castilla, Carmen; McDonough, Patrick; Tumer, Gizem; Lambert, Peter C; Lambert, W Clark

    2012-01-01

    The degree of cell proliferation in a tumor is often associated with metastatic risk and mortality. Proliferating cell nuclear antigen (PCNA) and Ki-67 are proliferation markers that can be used to assess malignant potential in cutaneous lesions and pathological cell proliferation in psoriasis. These markers are elevated during periods of cell proliferation; however, they are also upregulated following UV irradiation. This upregulation may be problematic, as many skin lesions are subject to sun exposure in an everyday setting.

  20. Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa.

    Science.gov (United States)

    Arrighi, Nicola; Bodei, Serena; Lucente, Alessandra; Michel, Martin C; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Spano, PierFranco; Sigala, Sandra

    2011-10-01

    The widespread non-neuronal synthesis of acetylcholine (ACh) has changed the paradigm of ACh acting solely as a neurotransmitter. Indeed, the presence of ACh in many types of proliferating cells suggests a role for this neurotransmitter in the control of cell division. The parasympathetic system is a major pathway regulating micturition, but ACh-mediated control plays a more complex role than previously described, acting not only in the detrusor muscle, but also influencing detrusor function through the activity of urothelial muscarinic receptors. Here we investigated the role of muscarinic receptors in mediating cell proliferation in the human UROtsa cell line, which is a widely used experimental model to study urothelium physiology and pathophysiology. Our results demonstrate that UROtsa cells express the machinery for ACh synthesis and that muscarinic receptors, with the rank order of M3>M2>M5>M1=M4, are present and functionally linked to their known second messengers. Indeed, the cholinergic receptor agonist carbachol (CCh) (1-100 μM) concentration-dependently raised IP(3) levels, reaching 66±5% over basal. The forskolin-mediated adenylyl cyclase activation was reduced by CCh exposure (forskolin: 1.4±0.14 pmol/ml; forskolin+100 μM CCh: 0.84±0.12 pmol/ml). CCh (1-100 μM) concentration-dependently increased UROtsa cell proliferation and this effect was inhibited by the non-selective antagonist atropine and the M(3)-selective antagonists darifenacin and J104129. Finally, CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation.

  1. Inhibitory effect of ubiquitin-proteasome pathway on proliferation of esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Wei-Guo Zhang; Jie-Ping Yu; Qing-Ming Wu; Qiang Tong; Sheng-Bao Li; Xiao-Hu Wang; Guo-Jian Xie

    2004-01-01

    AIM: To investigate the inhibitory effect of ubiquitinproteasome pathway (UPP) on proliferation of esophageal carcinoma cells.METHODS: Esophageal carcinoma cell strain EC9706 was treated with MG-132 to inhibit its UPP specificity. Cell growth suppression was evaluated with 3-(4,5-dimethylthiazole2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. DNA synthesis was evaluated by 3H-thymidine (3H-TdR)incorporation. Morphologic changes of cells were observed under microscope. Activity of telomerase was examined by telomeric repeat amplification protocol (TRAP) of PCRELISA. Cell cycle and apoptosis were detected by flow cytometry (FCM). DNA fragment analysis was used to confirm the presence of apoptosis. Expression of p27kip1was detected by immunocytochemical technique.RESULTS: After exposed to MG-132, the growth and value of 3H-TdR incorporation of EC9706 cells were obviously inhibited. Cells became round, small and exfoliative under microscope. TRAP PCR-ELISA showed that light absorption of cells gradually decreased after exposed to 5 μmol/L of MG-132 for 24, 48, 72 and 96 h (P<0.01). The percentage of cells at G0/G1 phase was increased and that at S and G2/M was decreased (P<0.01). The rate of apoptotic cells treated with 5 μmol/L of MG-132 for 48 and 96 h was 31.7%and 66.4%, respectively. Agarose electrophoresis showed marked ladders. In addition, the positive signals of p27kip1were located in cytoplasm and nuclei in MG-132 group in contrast to cytoplasm staining in control group.CONCLUSION: MG-132 can obviously inhibit proliferation of EC9706 cells and induce apoptosis. The mechanisms include upregulation of p27kip1 expression, G1 arrest and depression of telomerase activity. The results indicate that inhibiting UPP is a novel strategy for esophageal carcinoma therapy.

  2. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; JIANG, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  3. Helicobacter pylori Infection in Association with Cell Proliferation,Apoptosis and Prostaglandin E2 Levels

    Institute of Scientific and Technical Information of China (English)

    PAN Kai-feng; ZHANG Yang; ZHANG Lian; MA Jun-ling; FENG Guo-shuang; ZHOU Tong; YOU Wei-cheng

    2007-01-01

    Objective: To evaluate the relationship between H. pylori infection with cell proliferation, apoptosis and PGE2 levels. Methods: A population-based study was conducted in Linqu, a high-risk area of gastric cancer in China. A total of 1523 subjects, aged 35-64, participating in a gastric cancer screening survey were investigated. H. pylori status were determined by 13C-urea breath test, expressions of Ki-67 were assessed by immunohistochemistry, apoptotic cells were detected by terminal deoxynucleotide transferase mediated dUTP nick end-labeling (TUNEL) method, and PGE2 levels were measured by enzyme immunoassay. Results: H. pylori infection was positively associated with cell proliferation activity. The mean and median percentage of Ki-67 labeling index (LI) in subjects with H. pylori positive were 14.1±10.3 and 12.0, significantly higher than those with H. pylori negative (-x±s: 8.4±7.0;median: 5.8;P<0.0001). Moreover, the prevalence rates of H. pylori infection showed a tendency to increase according to severity score of cell apoptosis (Ptrend <0.0001), from score 0 to 3, the percentage of H. pylori positivity increased from 67.5% to 96.7%. Furthermore, The mean and median of PGE2 concentration were 628.84±726.40 pg/mL and 411.33 pg/mL among subjects with H. pylori positive compared with 658.19±575.91pg/mL and 455.97 pg/mL among those with H. pylori negative (P=0.209). Conclusion: H. pylori infection was positively associated with increased cell proliferation and apoptosis activity, suggesting that H. pylori infection plays an important role in the gastric epithelial cell malignant transformation.

  4. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  5. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1.

    Science.gov (United States)

    Xu, Ran; Zeng, Guang; Gao, Jing; Ren, Yue; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Tao, Hong; Li, Daxu

    2015-10-01

    Aberrant microRNA expression has been suggested to be an important event in the pathologies of various types of cancer. MicroRNA-138 (miR-138) has been reported to be frequently downregulated in various types of human cancer, including oral squamous cell carcinoma (OSCC). However, the precise molecular mechanism of miR-138 underlying OSCC remains largely unknown. The aim of the present study was to investigate the expression of miR-138 in OSCC tumor tissues and several OSCC cell lines and validated its interaction with the 3'-untranslated region (3'-UTR) of Yes-associated protein 1 (YAP1). The results showed that, miR-138 was significantly downregulated in OSCC tumor tissues and cell lines. Overexpression of miR-138 inhibited cell proliferation of OSCC cells whereas the downregulation of miR-138 promoted cell proliferation. A direct interaction between miR-138 and 3'-UTR of YAP1 was validated by dual-luciferase reporter assay. Moreover, overexpression of miR-138 in OSCC cells significantly decreased the expression of YAP1 and downregulation of miR-138 inhibited the expression of YAP1. Specifically, the inhibitory effect of miR-138 on the proliferation of OSCC cells was eliminated by transfection with YAP1 overexpression vectors that did not harbor any specific miR-138 binding specific sequences in 3'-UTR. In addition, the miR-138‑overexpressing OSCC cells exhibited a low growth rate in the xenograft tumor assay with a decreased expression of YAP1 in tumor tissues. The results suggest that miR-138 is a tumor suppressor miRNA in OSCC through targeting YAP1, which serves as a promising therapeutic target for the treatment of OSCC.

  6. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  7. Phytoncide, Nanochemicals from Chamaecyparis obtusa, Inhibits Proliferation and Migration of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Lim, Leejin; Jang, Young-Su; Yun, Je-Jung; Song, Heesang

    2015-01-01

    Phytoncide, nanochemicals extracted from Chamaecyparis obtusa (C. obtusa), is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, antioxidant, and antiinflammatory activities. However, the effect of phytoncide in vascuar diseases, especially on the behavior of vascular smooth muscle cells, has not yet been clearly elucidated. Therefore, in the present study, we investigated the effects of 15 kinds of phytoncide by various extraction conditions from C. obtusa on the proliferation and migration in rat aortic smooth muscle cells (RAoSMCs). First of all, we determined the concentration of each extracts not having cytotoxicity by MTT assay. We observed that the proliferation rate measured using BrdU assay was significantly reduced by supercritical fluid, steam distillation, Me-OH, and hexane extraction fraction in order with higher extent, respectively. Moreover, the treatment of above nanofractions inhibit the migration of RAoSMCs by 40%, 60%, and 30%, respectively, both in 2-D wound healing assay and 3-D boyden chamber assay. Immunoblot revealed that the phosphorylated levels of Akt and ERK were significantly reduced in nanofractions treated RAoSMCs. Taken together, these data suggest that phytoncide extracted from C. obtusa inhibits proliferation and migration in RAoSMCs via the modulation of phosphorylated levels of Akt and ERK. Therefore, phytoncide nanomolecules might be a potential therapeutic approach to prevent or treat atheroscrelosis and restenosis.

  8. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation.

    Science.gov (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-02-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D.

  9. [Effect of overexpression of CAV1 mediated by lentivirus on proliferation and apoptosis of HL-60 cells].

    Science.gov (United States)

    Ma, Wei; Wang, Di-Di; Wang, Zhao; Zhu, Gui-Ming; Zhang, Peng-Xia

    2013-08-01

    This study was purposed to explore the effect of lentivirus-mediated CAV1 overexpression on proliferation and apoptosis in HL-60 cells. Recombinant lentiviral expression vector pcDNA-EF1-CAV1 was constructed, and cotransfected the 293TN cells with a mixture of pPACK packaging plasmids. Then collecting virus suspension infects the HL-60 cells, which make CAV1 gene stable transfection and high expression in the cells. The CAV1 protein expression status in HL-60 cells transfected was evaluated through Western blot method. Proliferative activity and apoptosis of HL-60 cells before and after transfection were detected by CCK-8 method and flow cytometry, respectively. The results showed that the PCR-positive clone screening and results of nucleotide sequencing confirmed that the CAV1 gene inserted into the expression vector pcDNA-EF1-GFP correctly, recombinant lentiviral particles Lv-CAV1 transfected HL-60 cells successfully and with transfection rate up to 90%. The result of Western blot showed that CAV1 protein expression in HL-60 cells significantly increased at 48 hours after transfection. CCK-8 result indicated that cell proliferation activity increased at 48 h after transfection (P HL-60 cells obviously decreased after transfection (P HL-60 cells can inhibit cell proliferation activity and promote cell apoptosis.

  10. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  11. Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Ming Gao

    2016-01-01

    Objective: To discuss the influence of tachyzoite of Toxoplasma gondii (T. gondii) RH strain on proliferation and apoptosis of hepatoma carcinoma (HCC) H7402 cell. Methods: The HCC H7402 cell in logarithmic phase and tachyzoite of T. gondii RH strain in different concentrations (1×107/mL, 2×107/mL, 4×107/mL, 8×107/mL and 16×107/mL) were co-cultured. CCK-8 was utilized to determine the inhibition rate of T. gondii tachyzoite on H7402 cell growth. Flow cytometry was used to detect the change of cell cycle. RT-PCR method was used to detect the expression of cyclinB1 and cdc2--two genes related to cell cycle. Western blot method was used to detect the expression of apoptosis-related proteins Caspase-3 and Bcl-2. Results: The tachyzoite of T. gondii RH strain can inhibit the proliferation of HCC H7402 cells. The inhibition rate of tumor cell growth increased with the increase of concentration of T. gondii tachyzoite. With the increase of concentration of T. gondii tachyzoite, the proportion of G0/G1 phase of H7402 cell increased, the proportion of S phase decreased, and PI value decreased accordingly. The expression of cyclinB1 and cdc2 genes decreased with the increase of the concentration of T. gondii tachyzoite. With the increase of the concentration of tachyzoite of T. gondii RH strain, the expression quantity of Caspase-3 in H7402 cell increased, but the expression quantity of Bcl-2 protein decreased. Conclusions: T. gondii can inhibit the in vitro proliferation of HCC H7402 cell, and induce its apoptosis. This effect shows a trend of concentration-dependent increase. Moreover, it is related to the down-regulation of cyclinB1 and cdc2 (cell cycle-related genes), the increase of apoptosis-related protein Caspase-3, and the decrease of Bcl-2 expression.

  12. Inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To evaluate the inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells. Methods: Different doses of antisense PIN1 gene (0,20,50,100,200,250μl) were transfected into osteosarcoma MG-63 cells. The cells and the culture supernatants before and after transfection were collected. The cell growth curve was made using MTT method. The cell growth cycle and apoptosis were detected by FCM. The expression of PIN1 was detected by Western blot. The expression of PIN1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Results: MTT and FCM assays indicated that the transfection of antisense PIN1 gene could inhibit proliferation of MG-63 cells and lead to cell apoptosis. Western-blot assays revealed the MG-63 cells transfected with antisense PIN1 gene had weaker expression than those without transfection with antisense PIN1 gene, and the band intensity was negatively related with doses. The cells transfected with different doses of gene (0,20,50,100,200,250 μl) had different absorbance rate(0.854 ± 0.136,0. 866 ± 0. 138,0. 732 ± 0. 154, 0. 611 ± 0. 121,0. 547 ± 0. 109,0. 398 ± 0. 113,0. 320 ± 0. 151 ), with significant difference assessed by F and q test ( P < 0.05). The absorbance rate of PINI mRNA was 0. 983 ± 0.125,0.988 ± 0.127, 0.915 ± 0.157,0.786 ± 0.125,0.608 ± 0.124,0.433 ± 0.130,0.410 ± 0. 158 respectively ( P < 0.05). Conclusion: The expression of PINlmRNA in MG-63 cells could be inhibited by antisense PIN1 gene, and then the expression of PIN1 was reduced and depressed, and so the proliferation of human osteosarcoma cells MG-63 was inhibited.

  13. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc.

  14. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells

    Directory of Open Access Journals (Sweden)

    Zhimin Fu

    2016-01-01

    Full Text Available We aimed to explore the effects of raloxifene (RAL on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs. Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.

  15. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Tracy M Covey

    Full Text Available Porcupine (PORCN is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.

  16. Effects of PP4 suppression on the proliferation of MCF7 cells

    Institute of Scientific and Technical Information of China (English)

    NING Lifeng; LONG Zhitao; HUANG Xiuqing; SUN Lingling; SANG Jianli

    2006-01-01

    PP4, one of the few protein phosphatases associated with centrosome in cells of many species such as Drosophila, C. elegans and mammals, plays an essential role in the regulation of centrosome functions in Drosophila and C. elegans. In order to explore the role of PP4 in mammalian cells, full-length PP4 gene was obtained by RT-PCR from MCF7 cell total RNA and inserted into eukaryotic expression vector pEGFP-C1. The resultant construct pEGFP-C1-PP4 was transfected into MCF7 cells and immunostaining was carried out to confirm the centrosome localization of PP4. Then we reversely subcloned a non-conserved domain of PP4 into pXJ41 to construct an anti-sense vector pXJ41- as-PP4. By transfecting pXJ41-as-PP4 into MCF7 cells and screening with G418, we obtained a stable cell line in which PP4 expression was stably suppressed. The cell line was analyzed on cell morphology, cytoskeleton structure, growth characteristics and the mitosis process. It was found that the proliferation rate decreased and serum-dependence increased in PP4-suppressed cells. Furthermore, flow cytometry and mitotic index analysis showed that G2/M transition was prolonged. PP4 suppression resulted in abnormal interphase microtubule, formation of multipolar spindles and an increase in percentage of multinuclear cells. These results suggested that PP4 is required for centrosome function in mammalian cells.

  17. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  18. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Raewyn C., E-mail: raewyn.poulsen@gmail.com; Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  19. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  20. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Wang, Huaxi [Southern Medical University, 510515 Guangzhou (China); Yang, Yan [College of Pharmacy, Jinan University, 510632 Guangzhou (China); Liu, Hui [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Zhang, Qihao; Xiang, Qi [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); National Engineering Research Center of Genetic Medicine, 510632 Guangzhou (China); Ge, Renshan [Population Council, Rockefeller University, 10065 New York (United States); Su, Zhijian, E-mail: tjnuszj@jnu.edu.cn [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Huang, Yadong, E-mail: tydhuang@jnu.edu.cn [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); National Engineering Research Center of Genetic Medicine, 510632 Guangzhou (China)

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  1. Phosphorothioate oligodeoxyribonucleotides induce in vitro proliferation of chicken B-cells.

    Science.gov (United States)

    Wattrang, Eva

    2009-10-15

    The study aimed to evaluate short synthetic oligodeoxyribonucleotides (ODN) as inducers of proliferation of chicken peripheral blood mononuclear cells (PBMC) and to identify the proliferating cells. A panel of different ODN; with phosphodiester and/or phosphorothioate backbone, with and without CpG-motifs, was therefore assessed for in vitro induction of proliferation. Six complete phosphorothioate ODN induced proliferation of PBMC while the complete phosphodiester or chimeric phosphodiester/phosphorohiate ODN did not. Moreover, CpG-motifs were not essential for induction of proliferation as responses to CpG-ODN were similar to those of their GpC controls. Two stimulatory phosphorothioate ODN were also used in phosphodiester form. In this comparison, only the phosphorothioate ODN were active despite the identical nucleotide sequences of their phosphodiester counterparts. In order to deliver DNA to the cytoplasm and decrease degradation of ODN by nucleases, stimulating as well as inactive ODN were treated with lipofectin prior to induction. However, proliferative responses were not influenced by lipofectin treatment and in analogy, none of the inactive ODN induced proliferation after lipofectin treatment. Among PBMC, ODN-responding cells were identified as predominantly Bu-1, immunoglobulin and major histocompatibility complex class II expressing cells, while CD3 expressing cells were not responding. Using magnetic cell separation of Bu-1 expressing cells prior to culture it was found that Bu-1 depleted cells did not proliferate upon ODN stimulation while the Bu-1 enriched cells were able to proliferate upon this stimulus. Taken together, among ODN in the present panel, only phosphorothioate ODN induced proliferation of PBMC. Responses were induced regardless of the presence of CpG-motifs and were not influenced by addition of lipofectin. Amid the chicken PBMC, predominantly cells of a B-cell phenotype proliferated in response to ODN stimulation and they were able

  2. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  3. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Gradinaru, Cristian; Wierzbicki, Rafal;

    2012-01-01

    viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e. g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much...... standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while...

  4. H2A/K pseudogene mutation may promote cell proliferation.

    Science.gov (United States)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun; Yang, Jing-Hua

    2016-05-01

    Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  5. Effects of granulosa cells on steroidogenesis, proliferation and apoptosis of stromal cells and theca cells derived from the goat ovary.

    Science.gov (United States)

    Qiu, Mingning; Quan, Fusheng; Han, Chengquan; Wu, Bin; Liu, Jun; Yang, Zhongcai; Su, Feng; Zhang, Yong

    2013-11-01

    The aim of this study was to investigate the effect of granulosa cells from small antral follicles on steroidogenesis, proliferation and apoptosis of goat ovarian stromal and theca cells in vitro. Using Transwell co-culture system, we evaluated androgen production, LH responsiveness, cell proliferation and apoptosis and some molecular expression regarding steroidogenic enzyme and apoptosis-related genes in stromal and theca cells. The results indicated that the co-culture with granulosa cells increased steroidogenesis, LH responsiveness and bcl-2 gene expression as well as decreased apoptotic bax and bad expressions in stromal and theca cells. Thus, granulosa cells had a capacity of promoting steroidogenesis in stromal cell and LH responsiveness in cortical stromal cells, maintaining steroidogenesis in theca cells, inhibiting apoptosis of cortical stromal cells and improving anti-apoptotic abilities of stromal and theca cells.

  6. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation.

    Science.gov (United States)

    Brahmbhatt, Meera; Gundala, Sushma R; Asif, Ghazia; Shamsi, Shahab A; Aneja, Ritu

    2013-01-01

    Dietary phytochemicals offer nontoxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable to individual phytochemicals, rather may be ascribed to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03 to 0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE's antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management.

  7. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis.

    Science.gov (United States)

    Coimbra, L S; Steffens, J P; Alsadun, S; Albiero, M L; Rossa, C; Pignolo, R J; Spolidorio, L C; Graves, D T

    2015-12-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.

  8. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

    Science.gov (United States)

    Sternberg, Katrin; Gratz, Matthias; Koeck, Kathleen; Mostertz, Joerg; Begunk, Robert; Loebler, Marian; Semmling, Beatrice; Seidlitz, Anne; Hildebrandt, Petra; Homuth, Georg; Grabow, Niels; Tuemmler, Conny; Weitschies, Werner; Schmitz, Klaus-Peter; Kroemer, Heyo K

    2012-01-01

    Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.

  9. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube.

    Science.gov (United States)

    Chalasani, Kavita; Brewster, Rachel M

    2011-05-01

    Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.

  10. Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial Cell proliferation in vitro

    Institute of Scientific and Technical Information of China (English)

    Xuan Wang; Fu-Kun Liu; Xi Li; Jai-Sou Li; Gen-Xin Xu

    2002-01-01

    AIM: To constnuct a stable transfectant of human livercarcinoma cell line SMMC7721 that could secret humanencicstatin and to explore the effect of human encostatinexpressed by the transfectant on enciotheliai cell proliferation.METHODS: Recombinant retroviral plasmid pLncx-Endocontaining the eDNA for human endoslsin gene togetherwith mt albumin signal peptide was engineered andtransferred into SMMC7721 cell by lipofectamine. Afterselection with G418, endcotatin-transfected SMMC7721 ceiiswere chosen and expanded. Immunohistochemical stainingand Western blot were used to detect the expression ofhuman endosatin in transfected SMMC7721 cells and itsmedium. The conditioned medium of endostatin-transfectedand control SMMC7721 cells were collected to cultivate withhuman umbilical vein endothelial cells for 72 hours. Theinhibitory effect of endoststin, expressed by transfectedSMMC7721 cells, on endothelial proliferation in vitro wasobserved by using Mn assay.RESULTS: A 550 bp specific fragment of endostatin gene wasdetected from the PCR product of endostatin-transfeclsdSMMC7721 cells. Immunohistochemistry and Western blotanalysis confirmed the expression and secretion of foreighhuman endostatin protein by endoslstin-transfeclsdSMMC7721 cells. In vitro endothelial proliferation assayshowed that 72 hours after cultivation with human umbilicalvein endothelial cells, the optical density (OD) in groupusing the medium from endostatin-transfected SMMC7721cells was 0.51 ±0.06, lower than that from RPMI 1640 group(0.98 ± 0.09) or that from control plasmid pLncx-transfeotedSMMC7721 cells (0. 88 ± 0. 11). The inhibitory rate formedium from endostatin-transfeclsd SMMC7721 cells was 48%, significantly higher than that from empty plasmid plncx-transfected SMMC7721 cells (10.2 %, P< 0.01).CONCLUSION: Human endoslstin can he stably expressedby SMMC7721 cell tran sferred with human endoslsin geneand its product can significantly inhibit the proliferation ofhuman umbilical vein

  11. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  12. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  13. RAF kinase activity regulates neuroepithelial cell proliferation and neuronal progenitor cell differentiation during early inner ear development.

    Directory of Open Access Journals (Sweden)

    Marta Magariños

    Full Text Available BACKGROUND: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG and neuron maturation. CONCLUSIONS/SIGNIFICANCE: We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG.

  14. Effect of S1P5 on proliferation and migration of human esophageal cancer cells

    OpenAIRE

    Hu, Wei-Min; Li, Li; Jing, Bao-Qian; Zhao, Yong-Sheng; Wang, Chao-Li; Feng, Li; Xie, Yong-En

    2010-01-01

    AIM: To investigate the sphingosine 1-phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells.

  15. A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine

    Directory of Open Access Journals (Sweden)

    Fanju W. Meng

    2015-11-01

    Full Text Available Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK and extracellular signal-regulated kinase (ERK pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.

  16. Inhibition of Proliferation of Human Osteosarcoma Cells Transfected with PIN1 Antisense Gene

    Institute of Scientific and Technical Information of China (English)

    XIONG Wenhua; CHEN Anmin; GUO Fengjin

    2006-01-01

    Objective: To evaluate the inhibition of proliferation of human osteosarcoma cells transfected with Pin1 anti-sense gene. Methods: Different doses of antisense Pin1 gene (0, 20, 50, 100, 200, 250μL) were transfected into osteosarcoma MG-63 cells. The cells and culture supernatant before and after transfection were collected. The curve of cell growth was made by MTT method. The cell growth cycle and apoptosis were detected by FCM. The expression of Pin1 was detected by Western-blot and that of Pin1 mRNA by polymerase chain reaction (RT-PCR) respectively. Results: MTT and FCM assays indicated that the transfection by antisense Pin1 gene could inhibit MG-63 proliferation and induce apoptosis. Western-blot assays revealed that the antisense Pin1 gene-transfected MG-63 cells had weaker staining than those without transfected with antisense Pin1 gene, and staining intensity was negatively related with doses. The cells transfected by different doses of gene (0, 20, 50, 100, 200, 250μL) had different absorbance rate: 0.854±0.136, 0.866±0.138, 0.732±0.154, 0.611±0.121, 0.547±0.109, 0.398±0.113,0.320±0.151 respectively, with the difference being significant by F and q test (P<0.05). The expression of Pin1 mRNA had the similar results and its absorbance rate was 0.983±0.125, 0.988±0.127, 0.915±0.157,0.786±0.125, 0.608±0.124, 0.433±0.130, 0.410±0.158 respectively (P<0.05). Conclusion: The expression of Pin1 mRNA in MG-63 cells could be inhibited by antisense Pin1 gene, so to reduce the expression of Pin1 and depress the proliferation of human osteosarcoma cells MG-63.

  17. Arsenic Trioxide Inhibits Proliferation in K562 Cells by Changing Cell Cycle and Survivin Expression

    Institute of Scientific and Technical Information of China (English)

    伍晓菲; 陈智超; 刘仲萍; 周浩; 游泳; 黎纬明; 邹萍

    2004-01-01

    To study the mechanisms involved in the inhibition of chronic myeloid leukemic cells (K562) proliferation induced by arsenic trioxide (As2O3) and to explore the potential role of Survivin, an inhibitor of apoptosis protein, in the regulation of As2O3 induced cell apoptosis, K562 cells were cultured with As2O3 of different concentrations. Cells were collected for proliferation analysis by MTT assay. Cell cycle distribution and cell apoptosis were analyzed by flow cytometry.Expression of Survivin protein and mRNA were detected by flow cytometry and RT-PCR, respectively. Our results showed that As2O3 (2-10 μmol/L) inhibited K562 cells growth effectively, but it did not induce cells apoptosis significantly. The percentage of K562 cells at G2/M phase increased in proportion to As2O3 concentrations, and the expression of Survivin mRNA and content of Survivin protein was up-regulated accordingly. It is concluded that As2 O3 inhibited K562 cells growth by inducing cell cycle arrest mainly at G2/M phase. Over-expression of Survivin gene and protein might be one of the possible mechanisms contributing to K562 cells' resistance to As2O3-induced apoptosis.

  18. Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation.

    Science.gov (United States)

    Mokbel, Nancy; Hoffman, Nolan J; Girgis, Christian M; Small, Lewin; Turner, Nigel; Daly, Roger J; Cooney, Gregory J; Holt, Lowenna J

    2014-11-01

    Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.

  19. Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study.

    Science.gov (United States)

    Gimeno, Amparo; García-Giménez, José Luis; Audí, Laura; Toran, Nuria; Andaluz, Pilar; Dasí, Francisco; Viña, José; Pallardó, Federico V

    2014-01-01

    Down Syndrome is the most common chromosomal disease and is also known for its decreased incidence of solid tumors and its progeroid phenotype. Cellular and systemic oxidative stress has been considered as one of the Down Syndrome phenotype causes. We correlated, in a preliminary study, the fibroblast proliferation rate and different cell proliferation key regulators, like Rcan1 and the telomere length from Down Syndrome fetuses, with their oxidative stress profile and the Ribonucleic acid and protein expression of the main antioxidant enzymes together with their activity. Increased oxidized glutathione/glutathione ratio and high peroxide production were found in our cell model. These results correlated with a distorted antioxidant shield. The messenger RNA (SOD1) and protein levels of copper/zinc superoxide dismutase were increased together with a decreased mRNA expression and protein levels of glutathione peroxidase (GPx). As a consequence the [Cu/ZnSOD/(catalase+GPx)] activity ratio increases which explains the oxidative stress generated in the cell model. In addition, the expression of thioredoxin 1 and glutaredoxin 1 is decreased. The results obtained show a decreased antioxidant phenotype that correlates with increased levels of Regulator of calcineurin 1 and attrition of telomeres, both related to oxidative stress and cell cycle impairment. Our preliminary results may explain the proneness to a progeroid phenotype.

  20. Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yuanyuan; Wang, Yuqi; Wei, Youheng; Wu, Jiaxue; Zhang, Pingzhao; Shen, Suqin; Saiyin, Hexige; Wumaier, Reziya; Yang, Xianmei; Wang, Chenji; Yu, Long

    2016-03-01

    CCT3 was one of the subunits of molecular chaperone CCT/TRiC complex, which plays a central role in maintaining cellular proteostasis. We demonstrated that expressions of CCT3 mRNA and protein are highly up-regulated in hepatocellular carcinoma (HCC) tissues, and high level of CCT3 is correlated with poor survival in cancer patients. In HCC cell lines, CCT3 depletion suppresses cell proliferation by inducing mitotic arrest at prometaphase and apoptosis eventually. We also identified CCT3 as a novel regulator of spindle integrity and as a requirement for proper kinetochore-microtubule attachment during mitosis. Moreover, we found that CCT3 depletion sensitizes HCC cells to microtubule destabilizing drug Vincristine. Collectively, our study suggests that CCT3 is indispensible for HCC cell proliferation, and provides a potential drug target for treatment of HCC.

  1. Compatibility of Porous Chitosan Scaffold with the Attachment and Proliferation of human Adipose-Derived Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Gomathysankar S

    2016-11-01

    Full Text Available Adipose-derived stem cells (ASCs have potential applications in the repair and regeneration of various tissues and organs. The use of various scaffold materials as an excellent template for mimicking the extracellular matrix to induce the attachment and proliferation of different cell types has always been of interest in the field of tissue engineering because ideal biomaterials are in great demand. Chitosan, a marine polysaccharide, have wide clinical applications and it acts as a promising scaffold for cell migration and proliferation. ASCs, with their multi-differentiation potential, and chitosan, with its great biocompatibility with ASCs, were investigated in the present study. ASCs were isolated and were characterized by two different methods: immunocytochemistry and flow cytometry, using the mesenchymal stem cell markers CD90, CD105, CD73 and CD29. The ASCs were then induced to differentiate into adipogenic, osteogenic and chondrogenic lineages. These ASCs were incorporated into a porous chitosan scaffold (PCS, and their structural morphology was studied using a scanning electron microscope and hematoxylin and eosin staining. The proliferation rate of the ASCs on the PCS was assessed using a PrestoBlue viability assay. The results indicated that the PCS provides an excellent template for the adhesion and proliferation of ASCs. Thus, this study revealed that PCS is a promising biomaterial for inducing the proliferation of ASCs, which could lead to successful tissue reconstruction in the field of tissue engineering.

  2. Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP.

    Science.gov (United States)

    Lv, Meng; Li, Shuting; Luo, Changqin; Zhang, Xiaoman; Shen, Yanwei; Sui, Yan Xia; Wang, Fan; Wang, Xin; Yang, Jiao; Liu, Peijun; Yang, Jin

    2016-03-15

    Renal cell carcinoma (RCC) is one of the common tumors in the urinary system without effective therapies. Angiomotin (Amot) can interact with Yes-associated protein (YAP) to either stimulate or inhibit YAP activity, playing a potential role in cell proliferation. However, the role of Amot in regulating the proliferation of renal epithelial and RCC cells is unknown. Here, we show that Amot is expressed predominantly in the nucleus of RCC cells and tissues, and in the cytoplasm and nucleus of renal epithelial cells and paracancerous tissues. Furthermore, Amot silencing inhibited proliferation of HK-2 and 786-O cells while Amot upregulation promoted proliferation of ACHN cells. Interestingly, the location of Amot and YAP in RCC clinical samples and cells was similar. Amot interacted with YAP in HK-2 and 786-O cells, particularly in the nucleus. Moreover, Amot silencing mitigated the levels of nuclear YAP in HK-2 and 786-O cells and reduced YAP-related CTGF and Cyr61 expression in 786-O cells. Amot upregulation slightly increased the nuclear YAP and YAP-related gene expression in ACHN cells. Finally, enhanced YAP expression restored proliferation of Amot-silencing 786-O cells. Together, these data indicate that Amot is crucial for the maintenance of nuclear YAP to promote renal epithelial and RCC proliferation.

  3. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  4. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells

    OpenAIRE

    Liu,Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-lin; X. Wilson, John

    2010-01-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation ...

  5. Parkin Enhances the Expression of Cyclin-dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells*

    OpenAIRE

    2010-01-01

    Although mutations in the parkin gene are frequently associated with familial Parkinsonism, emerging evidence suggests that parkin also plays a role in cancers as a putative tumor suppressor. Supporting this, we show here that parkin expression is dramatically reduced in several breast cancer-derived cell lines as well as in primary breast cancer tissues. Importantly, we found that ectopic parkin expression in parkin-deficient breast cancer cells mitigates their proliferation rate both in vit...

  6. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation. [Paramecium tetraurelia; Synechococcus lividus

    Energy Technology Data Exchange (ETDEWEB)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-05-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y.

  7. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  8. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    Science.gov (United States)

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR.

  9. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis.

    Science.gov (United States)

    Collins, Carl; Maruthi, N M; Jahn, Courtney E

    2015-08-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants.

  10. Cdk4 functions in multiple cell types to control Drosophila intestinal stem cell proliferation and differentiation

    Directory of Open Access Journals (Sweden)

    Mojca Adlesic

    2016-03-01

    Full Text Available The proliferation of intestinal stem cells (ISCs and differentiation of enteroblasts to form mature enteroendocrine cells and enterocytes in the Drosophila intestinal epithelium must be tightly regulated to maintain homeostasis. We show that genetic modulation of CyclinD/Cdk4 activity or mTOR-dependent signalling cell-autonomously regulates enterocyte growth, which influences ISC proliferation and enteroblast differentiation. Increased enterocyte growth results in higher numbers of ISCs and defective enterocyte growth reduces ISC abundance and proliferation in the midgut. Adult midguts deficient for Cdk4 show severe disruption of intestinal homeostasis characterised by decreased ISC self-renewal, enteroblast differentiation defects and low enteroendocrine cell and enterocyte numbers. The ISC/enteroblast phenotypes result from a combination of cell autonomous and non-autonomous requirements for Cdk4 function. One non-autonomous consequence of Cdk4-dependent deficient enterocyte growth is high expression of Delta in ISCs and Delta retention in enteroblasts. We postulate that aberrant activation of the Delta–Notch pathway is a possible partial cause of lost ISC stemness. These results support the idea that enterocytes contribute to a putative stem cell niche that maintains intestinal homeostasis in the Drosophila anterior midgut.

  11. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  12. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells

    Institute of Scientific and Technical Information of China (English)

    Feng-ze WANG; Li SHA; Wei-ying ZHANG; Lian-ying WU; Ling QIAO; Nan LI; Xiao-dong ZHANG; Li-hong YE

    2007-01-01

    Aim: To investigat the effect of Hepatitis B X-interacting protein (HBXIP) on cell proliferation. Methods: A rabbit antibody against HBXIP was generated. The RNA interference (RNAi) fragment of the HBXIP gene was constructed in the pSilencer-3.0-H1 vector termed pSilencer-hbxip. Plasmids of the pcDNA3-hbxip encoding HBXIP gene and pSilencer-hbxip were transfected into human breast carcinoma MCF-7 cells, hepatoma H7402 cells, and the normal human hepatic cell line L-O2, respectively. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro- mide (MTT) assay and 5-bromo-2-deoxyuridine incorporation assay were applied to detect cell proliferation. MCF-7 cells and L-O2 cells in the cell cycle were examined by flow cytometry. The proteins involved in cell proliferation and cell cycle were investigated by Western blot. Results: Overexpression of HBXIP resulted in the promotion of proliferation of MCF-7, H7402, and L-O2 cells. Flow cytometry showed that the overexpression of HBXIP promoted the cell prolifera-tion of MCF-7 and L-O2 cells, and led to an increased cell proliferative index in MCF-7 cells (from 46.25% to 58.28%) and L-O2 cells (from 29.62% to 35.54%). Western blot showed that expression levels of c-Myc, Bcl-2, and proliferating cell nuclear antigen were upregulated in MCF-7, H7402, or L-O2 cells, whereas that of p27 was downregulated. However, the RNAi of HBXIP brought opposite results.Conclusion: One of the functions of HBXIP is its involvement in cell proliferation.

  13. Exposure to ELF-pulse modulated X band microwaves increases in vitro human astrocytoma cell proliferation.

    Science.gov (United States)

    Pérez-Castejón, C; Pérez-Bruzón, R N; Llorente, M; Pes, N; Lacasa, C; Figols, T; Lahoz, M; Maestú, C; Vera-Gil, A; Del Moral, A; Azanza, M J

    2009-12-01

    Common concern about the biological effects of electromagnetic fields (EMF) is increasing with the expansion of X-band microwaves (MW). The purpose of our work was to determine whether exposure to MW pulses in this range can induce toxic effects on human astrocytoma cells. Cultured astrocytoma cells (Clonetics line 1321N1) were submitted to 9.6 GHz carrier, 90% amplitude modulated by extremely low frequency (ELF)-EMF pulses inside a Gigahertz Transversal Electromagnetic Mode cell (GTEM-cell). Astrocytoma cultures were maintained inside a GTEM-incubator in standard culture conditions at 37+/-0.1 degrees C, 5% CO2, in a humidified atmosphere. Two experimental conditions were applied with field parameters respectively of: PW 100-120 ns; PRF 100-800 Hz; PRI 10-1.25 ms; power 0.34-0.60 mW; electric field strength 1.25-1.64 V/m; magnetic field peak amplitude 41.4-54.6 microOe. SAR was calculated to be 4.0 x 10-4 W/Kg. Astrocytoma samples were grown in a standard incubator. Reaching 70-80% confluence, cells were transferred to a GTEM-incubator. Experimental procedure included exposed human astrocytoma cells to MW for 15, 30, 60 min and 24 h and unexposed sham-control samples. Double blind method was applied. Our results showed that cytoskeleton proteins, cell morphology and viability were not modified. Statistically significant results showed increased cell proliferation rate under 24h MW exposure. Hsp-70 and Bcl-2 antiapoptotic proteins were observed in control and treated samples, while an increased expression of connexin 43 proteins was found in exposed samples. The implication of these results on increased proliferation is the subject of our current research.

  14. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  15. Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib.

    Science.gov (United States)

    Burger, Jan A; Li, Kelvin W; Keating, Michael J; Sivina, Mariela; Amer, Ahmed M; Garg, Naveen; Ferrajoli, Alessandra; Huang, Xuelin; Kantarjian, Hagop; Wierda, William G; O'Brien, Susan; Hellerstein, Marc K; Turner, Scott M; Emson, Claire L; Chen, Shih-Shih; Yan, Xiao-Jie; Wodarz, Dominik; Chiorazzi, Nicholas

    2017-01-26

    BACKGROUND. Ibrutinib is an effective targeted therapy for patients with chronic lymphocytic leukemia (CLL) that inhibits Bruton's tyrosine kinase (BTK), a kinase involved in B cell receptor signaling. METHODS. We used stable isotopic labeling with deuterated water ((2)H2O) to measure directly the effects of ibrutinib on leukemia cell proliferation and death in 30 patients with CLL. RESULTS. The measured average CLL cell proliferation ("birth") rate before ibrutinib therapy was 0.39% of the clone per day (range 0.17%-1.04%); this decreased to 0.05% per day (range 0%-0.36%) with treatment. Death rates of blood CLL cells increased from 0.18% per day (average, range 0%-0.7%) prior to treatment to 1.5% per day (range 0%-3.0%) during ibrutinib therapy, and they were even higher in tissue compartments. CONCLUSIONS. This study provides the first direct in vivo measurements to our knowledge of ibrutinib's antileukemia actions, demonstrating profound and immediate inhibition of CLL cell proliferation and promotion of high rates of CLL cell death. TRIAL REGISTRATION. This trial was registered at clinicaltrials.gov (NCT01752426). FUNDING. This study was supported by a Cancer Center Support Grant (National Cancer Institute grant P30 CA016672), an NIH grant (CA081554) from the National Cancer Institute, MD Anderson's Moon Shots Program in CLL, and Pharmacyclics, an AbbVie company.

  16. FHL2 Antagonizes Id1-Promoted Proliferation and Invasive Capacity of Human MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Ming-zhou Guo; Xiao-bing Fu

    2010-01-01

    Objective:FHL2 was previously identified to be a novel interacting factor of Id family proteins.The aim of this study was to investigate,the effects of FHL2 on Id1-mediated transcriptional regulation activity and its oncogenic activity in human breast cancer cells.Methods:Cell transfection was performed by Superfect reagent.Id1 stably overexpressed MCF-7 cells was cloned by G418 screening.The protein level of Id1 was detected by western blot analysis.Dual relative luciferase assays were used to measure the effect of E47-mediated transcriptional activity in MCF-7 human breast cancer cells.MTT assay was used to measure cell proliferation.Transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results:The basic helix-loop-helix(bHLH)factor E47-mediated transcription activity was markedly repressed by Id1 in MCF-7 cells.This Id1-mediated repression was effectively antagonized by FHL2 transduction.Overexpression of Id1 markedly promoted the proliferation rate and invasive capacity of MCF-7 cells; however,these effects induced by Id1 were significantly suppressed by overexpression of FHL2 in cells.Conclusion:FHL2 can inhibit the proliferation and invasiveness of human breast cancer cells by repressing the functional activity of Id1.These findings provide the basis for further investigating the functional roles of FHL2-Id1 signaling in the carcinogenesis and development of human breast cancer.

  17. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-03-05

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by /sup 3/H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects.

  18. Interaction of proliferation cell nuclear antigen (PCNA with c-Abl in cell proliferation and response to DNA damages in breast cancer.

    Directory of Open Access Journals (Sweden)

    Huajun Zhao

    Full Text Available Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211 enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.

  19. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko [Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-8657 (Japan); Kano, Kiyoshi, E-mail: kanokiyo@yamaguchi-u.ac.jp [Laboratory of Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan. (Japan); Biomedical Science Center for Translational Research (BSCTR), The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515 (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates

  20. Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Md. Moklesur Rahman Sarker

    2014-01-01

    Full Text Available Objective: Keyhole limpet hemocyanin (KLH is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied. Materials and Methods: Cytotoxicity was determined with killing ability of NK cells against yeast artificial chromosome (YAC-1 cells. Interferon-gamma (IFN-γ and tumor necrosis factor-alpha (TNF-α productions by NK cells were measured by enzyme-linked immunosorbent assay (ELISA. Proliferations of NK and Meth A cells were determined by [ 3 H]thymidine incorporated proliferation and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT methods, respectively. Results: KLH at 6.25, 12.5, and 25 μg/well augmented cytotoxicity of NK cells against YAC-1 cells by 2.5, three, and five-times, respectively. KLH at 25 μg/well enhanced IFN-γ and TNF-α productions by 17- and 23-folds, respectively. The proliferation of NK cells was three times stimulated by KLH. The proliferation of Meth A cells was markedly inhibited by all the doses; the highest (4-folds higher inhibition was observed at a dose of KLH (25 μg/well. Conclusion: The study demonstrated the anticancer activity of KLH acting through the induction of NK cells and inhibition of cancer cells. KLH, therefore, may be a good candidate for an anticancer agent alone or in combination with other chemotherapeutic agents.

  1. The Effect of Erigeron Breviscapus on Proliferation of Pulmonary Artery Smooth Muscle Cells in Hypoxic Porcines

    Institute of Scientific and Technical Information of China (English)

    DING; Yipeng; XU; Yongjian; ZHANG; Zhenxiang

    2001-01-01

    In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the proliferation of PASMC. It was found that the proliferation of PASMC in porcines was obvious, and the expression of proliferating cell nuclear antigen (PCNA)was significantly high within 48 h after exposure to hypoxia. The EB could inhibit the proliferation and the expression of PCNA in PASMC under hypoxia, but it had no effect on the proliferation and expression of PCNA in PASMC under normal condition. The EB could inhibit the proliferation and the expression of PCNA in PASMC induced by phorbol 12-myristate 13-acetate (PMA), an agonist of PKC in normal and hypoxic conditions. It was concluded that the hypoxia could enhance the proliferation and expression of PCNA in PASMC. The EB can inhibit the proliferation and expression of PCNA in PASMC under hypoxia through PKC-signal way. The EB may be used in treating the pulmonary hypertension by inhibiting the proliferation of PASMC and the pulmonary vascular remodeling.

  2. Evaluation of co-stimulatory effects of Tamarindus indica L. on MNU-induced colonic cell proliferation.

    Science.gov (United States)

    Shivshankar, Pooja; Shyamala Devi, Chennam Srinivasulu

    2004-08-01

    Colonic cell proliferation is the prerequisite for the genesis of cancer. Experimental and epidemiologic evidence indicate dietary factors to be one of the commonest predisposing factors in the development of several types of cancers including large intestine. Here we have investigated the role of the fruit pulp of Tamarindus indica L. (TI), a tropical plant-derived food material, on the proliferating colonic mucosa using Swiss albino mice. Crypt cell proliferation rate (CCPR), on histological basis and [3H]-thymidine incorporation assay were chosen to evaluate the modulating potential of TI per se and in response to a subacute dose of N-nitroso N'-methyl urea (MNU). Descending colonic segment showed greater rate of cell proliferation than the ascending colon and cecum tissues isolated from the group 2 (TI-per se) when compared with group 1 (negative controls). It also revealed a positive correlation with the incorporation studies. Significant increase in the CCPR and radiolabeled precursor incorporation (p <0.001) was observed in MNU-induced+TI fed group of animals (group 4) in all the three segments when compared with control diet fed normal (group 1) as well as MNU-induced (group 3) animals. This study therefore indicates a co-stimulatory effect of TI on MNU-induced colonic cell kinetics.

  3. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States); Wang, Shao-Chun, E-mail: shao-chun.wang@uc.edu [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  4. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  5. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells

    Institute of Scientific and Technical Information of China (English)

    周琼; 白明; 苏远

    2004-01-01

    Background Expression of polo-like kinase 1 (Plk1) is elevated in lung cancer and has been proposed as having prognostic value and related to resistance to chemotherapy and radiation. In addition, Plk1 has several functions in mitotic progression. In this study, the authors investigated the effect of Plk1 depletion on cell cycle progression and proliferation in A549 cells, a lung cancer cell line.Methods A recombinant plasmid containing antisense RNA targeting Plk1 (pcDNA3-Plk1) was transfected into A549 cells. Reverse transcription-polymerase chain reaction and Western blot were used to examine Plk1 gene expression. Cell proliferation was evaluated by direct cell counting and bromodeoxyuridine (BrdU) labelling. Cell cycle and apoptosis were examined by flow cytometry. Expression of α-tubulin was detected by immunofluorescence, and the inhibition rate (IR) by chemotherapeutic agents was determined by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide assay.Results After transfection into A549 cells, pcDNA3-Plk1 reduced Plk1 mRNA by 46.75% for 24 hours and by 61.84% for 48 hours. Plk1 protein was significantly decreased simultaneously (P<0.05). Abnormal morphological changes of cells and growth inhibition were observed in pcDNA3-Plk1 transfected groups. The BrdU labelling index was 25.59% 48 hours after transfection, which was significantly lower than that of the control groups (P<0.05). Forty-eight hours after transfection, there showed absence of microtubule polymerization and spindle abnormalities in staining for α-tubulin. A549 cells showed a strong G2/M arrest and apoptosis 72 hours post transfection. IR of vinorelbine in pcDNA3-Plk1 transfected groups was significantly higher than that of the other groups (P<0.05, respectively).Conclusions Plk1 depletion interferes with spindle formation, induces cell cycle arrest and apoptosis, and consequently inhibits cell proliferation in A549 cells. Moreover, it sensitizes lung cancer cells to chemotherapy.

  6. Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells.

    Directory of Open Access Journals (Sweden)

    Sun-Young Kong

    Full Text Available Neural stem cells (NSCs have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV, which was isolated from the mulberry tree (Morus bombycis root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.

  7. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  8. CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells.

    Directory of Open Access Journals (Sweden)

    Miao Mo

    Full Text Available To investigate the effects of CCL21/CCR7 on the proliferation, migration, and invasion of T24 cells and the possible associated mechanisms: expression of MMP-2 and MMP-9, and regulation of BCL-2 and BAX proteins.T24 cells received corresponding treatments including vehicle control, antibody (20 ng/mL CCR7 antibody and 50 ng/ml CCL21, and 50, 100, and 200 ng/ml CCL21. Proliferation was evaluated by MTT assay; cell migration and invasion were assayed using a transwell chamber. Cell apoptosis was induced by Adriamycin (ADM. The rate of cell apoptosis was examined by flow cytometry using annexin V-FITC/PI staining. Western-blot was used to analyze MMP-2 and MMP-9 and BCL-2 and BAX proteins.CCL21 promoted T24 cell proliferation in concentration-dependent manner with that 200 ng/mL induced the largest amount of proliferation. Significant differences of cell migration were found between CCL21treatment groups and the control group in both the migration and invasion studies (P < 0.001 for all. The expressions of MMP-2 and MMP-9 proteins were significantly increased after CCL21 treatment (p < 0.05 for all. Protein expression of Bcl-21 follows an ascending trend while the expression of Bax follows a descending trend as the concentration of CCL21 increases. No difference was found between the control group and antibody group for all assessments.CCL21/CCR7 promoted T24 cell proliferation and enhanced its migration and invasion via the increased expression of MMP-2 and MMP-9. CCL21/CCR7 had antiapoptotic activities on T24 cells via regulation of Bcl-2 and Bax proteins. CCL21/CCR7 may promote bladder cancer development and metastasis.

  9. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Myoung Hee, E-mail: mhkim1@yuhs.ac [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  10. Cell