WorldWideScience

Sample records for cell proliferation dna

  1. Recombiant DNA and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, G.S.; Stein, J.L.

    1984-01-01

    This book contains 13 chapters. Some of the chapter titles are: Expression of Dihydrofolate Reductase and Thymidylate Synthase Genes in Mammalian Cells; Expression of Histone Genes during the Cell Cycle in Human Cells; Regulation of Nonmuscle Actin Gene Expression during Early Development; and Recombinant DNA Approaches to Studying Control of Cell Proliferation: An Overview.

  2. The effects of 4-MEI on cell proliferation, DNA breaking and DNA fragmentation.

    Science.gov (United States)

    Tazehkand, M Norizadeh; Moridikia, A; Hajipour, O; Valipour, E; Timocin, T; Topaktas, M; Yilmaz, M B

    4-Methylimidazole (4-MEI) is a color widely found in cola drinks, roasted foods, grilled meats, coffee and other foods. This study was aimed to investigate the 4-MEI effects on the cell proliferation, purified circular DNA and DNA from cells of rats treated with the 4-MEI.In this study, mouse 3T3-L1 cell line was treated with 4-MEI at concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that cytotoxic effect of the 4-MEI was studied by MTT test. Also, the effect of 4-MEI on purified circular DNA (pET22b) was investigated by treating of the DNA with 4-MEI concentrations of 300, 450, 600 and 750 µg/ml. DNA was extracted from liver cells of rats that have been treated with 4-MEI doses of 25 and 50 mg/kg for 10 week and it was subjected to agarose gel electrophoreses analyses.4-MEI significantly inhibited cell proliferation of 3T3-L1 cell line at highest concentration for 24 h and at all concentration for 48 h treatment time. DNA fragmentation assay showed that 4-MEI at 50 mg/kg concentration clearly produced characteristic DNA smear and no DNA laddering (200bp) was observed when mouse was exposed to 4-MEI. The results obtained from plasmid DNA damaging assay showed that 4-MEI has noeffect on the DNA, because the electrophoretic pattern of DNA treated with 4-MEI showed three bands on agarose gel electrophoresis as it was for untreated control. 4-MEI showed cytotoxic effect on 3T3-L1 cells but no effect on plasmid DNA breaking. According to DNA fragmentation assay 4-MEI has necrosis effects on mouse liver cells (Tab. 1, Fig. 4, Ref. 27).

  3. Involvement of proliferating cell nuclear antigen (Cyclin) in DNA replication in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, M.; Tan, E.M.; Ryoji, M.

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase /delta/ but not the other DNA polymerases in vitro. The authors injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase /delta/ is necessary for plasmid replication in vivo, Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase /alpha/. Anti-DNA polymerase /alpha/ alone inhibited plasmid replication by 63%. Thus, DNA ploymerase /alpha/ is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase /alpha/ antibody blocked 73% of replication. They concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase /delta/. In addition, they obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymearse /alpha/, that the structure of DNA polymerase /alpha/ holoenzyme for chromosome replication is significantly different from that for plasmid replication.

  4. DNA polymerase zeta is required for proliferation of normal mammalian cells.

    Science.gov (United States)

    Lange, Sabine S; Wittschieben, John P; Wood, Richard D

    2012-05-01

    Unique among translesion synthesis (TLS) DNA polymerases, pol ζ is essential during embryogenesis. To determine whether pol ζ is necessary for proliferation of normal cells, primary mouse fibroblasts were established in which Rev3L could be conditionally inactivated by Cre recombinase. Cells were grown in 2% O(2) to prevent oxidative stress-induced senescence. Cells rapidly became senescent or apoptotic and ceased growth within 3-4 population doublings. Within one population doubling following Rev3L deletion, DNA double-strand breaks and chromatid aberrations were found in 30-50% of cells. These breaks were replication dependent, and found in G1 and G2 phase cells. Double-strand breaks were reduced when cells were treated with the reactive oxygen species scavenger N-acetyl-cysteine, but this did not rescue the cell proliferation defect, indicating that several classes of endogenously formed DNA lesions require Rev3L for tolerance or repair. T-antigen immortalization of cells allowed cell growth. In summary, even in the absence of external challenges to DNA, pol ζ is essential for preventing replication-dependent DNA breaks in every division of normal mammalian cells. Loss of pol ζ in slowly proliferating mouse cells in vivo may allow accumulation of chromosomal aberrations that could lead to tumorigenesis. Pol ζ is unique amongst TLS polymerases for its essential role in cell proliferation.

  5. 5-Ethynyl-2'-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells.

    Science.gov (United States)

    Qu, Dezhong; Wang, Guoxing; Wang, Zhe; Zhou, Li; Chi, Weilin; Cong, Shujie; Ren, Xiaoshuai; Liang, Peizhou; Zhang, Biliang

    2011-10-01

    The labeling of newly synthesized DNA in cells to identify cell proliferation is an important experimental technique. The most accurate methods incorporate [(3)H]thymidine or 5-bromo-2'-deoxyruidine (BrdU) into dividing cells during S phase, which is subsequently detected by autoradiography or immunohistochemistry, directly measuring the newly synthesized DNA. Recently, a novel method was developed to detect DNA synthesis in proliferating cells based on a novel thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU). EdU is incorporated into DNA and subsequently detected with a fluorescent azide via "click" chemistry. This novel technique is highly sensitive and does not require DNA denaturation. However, it was also found that EdU exhibits time-dependent inhibition effects on cell growth. Therefore, here we report a novel deoxycytidine analog, 5-ethynyl-2'-deoxycytidine (EdC), that can be used to detect DNA synthesis in vitro and in vivo at a similar sensitivity level compared with EdU. Furthermore, the EdC-induced cytotoxicity is much less than that of EdU when combined with thymidine. This will be a potential application for the long-term detection of proliferating cells.

  6. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.

    Science.gov (United States)

    Strzalka, Wojciech; Ziemienowicz, Alicja

    2011-05-01

    PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.

  7. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  8. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    Science.gov (United States)

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  9. Simple Laboratory methods to measure cell proliferation using DNA synthesis property

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2007-01-01

    Full Text Available This is a mini-review on the techniques to measure proliferation of cells by estimation of DNA synthesis. This is not an exhaustive review of literature, but a bird’s eye view of a few selected articles which may provide the technical details to the readers.The nucleus of a cell occupies about 10-30% of the cells space, depends on the type of genetic material (DNA -DeoxyriboNucleic Acid. DNA is a long, double-stranded, helical molecule which carries the genetic information. Duplication of the DNA takes place by the phenomena of replication. One copy of double-stranded DNA molecule forms two double-stranded DNA molecules. DNA replication is the fundamental process used in all living organisms as it is the basis for biological inheritance. This process is known also as Mitosis in somatic cells. In Mitosis, the duplication process results in two genetically identical "daughter" cells from a single "parent" cell. The resulting double-stranded DNA molecules are identical; proof reading and error-checking mechanisms exist to ensure near perfect pair. Mitosis is divided into six phases: prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis.

  10. Biphasic effect of falcarinol on caco-2 cell proliferation, DNA damage, and apoptosis.

    Science.gov (United States)

    Young, Jette F; Duthie, Susan J; Milne, Lesley; Christensen, Lars P; Duthie, Garry G; Bestwick, Charles S

    2007-02-07

    The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.

  11. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation.

    Science.gov (United States)

    Pedro, Dalila F N; Ramos, Alice A; Lima, Cristovao F; Baltazar, Fatima; Pereira-Wilson, Cristina

    2016-02-01

    Salvia officinalis and some of its isolated compounds have been found to be preventive of DNA damage and increased proliferation in vitro in colon cells. In the present study, we used the azoxymethane model to test effects of S. officinalis on colon cancer prevention in vivo. The results showed that sage treatment reduced the number of ACF formed only if administered before azoxymethane injection, demonstrating that sage tea drinking has a chemopreventive effect on colorectal cancer. A decrease in the proliferation marker Ki67 and in H2 O2 -induced and azoxymethane-induced DNA damage to colonocytes and lymphocytes were found with sage treatment. This confirms in vivo the chemopreventive effects of S. officinalis. Taken together, our results show that sage treatment prevented initiation phases of colon carcinogenesis, an effect due, at least in part, to DNA protection, and reduced proliferation rates of colon epithelial cell that prevent mutations and their fixation through cell replication. These chemopreventive effects of S. officinalis on colon cancer add to the many health benefits attributed to sage and encourage its consumption.

  12. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  13. Interaction of proliferation cell nuclear antigen (PCNA with c-Abl in cell proliferation and response to DNA damages in breast cancer.

    Directory of Open Access Journals (Sweden)

    Huajun Zhao

    Full Text Available Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211 enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.

  14. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc.

  15. Interaction of Proliferating Cell Nuclear Antigen With DNA at the Single Molecule Level

    KAUST Repository

    Raducanu, Vlad-Stefan

    2016-05-01

    Proliferating cell nuclear antigen (PCNA) is a key factor involved in Eukaryotic DNA replication and repair, as well as other cellular pathways. Its importance comes mainly from two aspects: the large numbers of interacting partners and the mechanism of facilitated diffusion along the DNA. The large numbers of interacting partners makes PCNA a necessary factor to consider when studying DNA replication, either in vitro or in vivo. The mechanism of facilitated diffusion along the DNA, i.e. sliding along the duplex, reduces the six degrees of freedom of the molecule, three degrees of freedom of translation and three degrees of freedom of rotation, to only two, translation along the duplex and rotational tracking of the helix. Through this mechanism PCNA can recruit its partner proteins and localize them to the right spot on the DNA, maybe in the right spatial orientation, more effectively and in coordination with other proteins. Passive loading of the closed PCNA ring on the DNA without free ends is a topologically forbidden process. Replication factor C (RFC) uses energy of ATP hydrolysis to mechanically open the PCNA ring and load it on the dsDNA. The first half of the introduction gives overview of PCNA and RFC and the loading mechanism of PCNA on dsDNA. The second half is dedicated to a diffusion model and to an algorithm for analyzing PCNA sliding. PCNA and RFC were successfully purified, simulations and a mean squared displacement analysis algorithm were run and showed good stability and experimental PCNA sliding data was analyzed and led to parameters similar to the ones in literature.

  16. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  17. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Grigoriadou, Christina; Pytel, Dariusz; Zhang, Fang; Ye, Jiangbin; Koumenis, Constantinos; Cavener, Douglas; Diehl, J. Alan

    2010-01-01

    In order to proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential anti-neoplastic targets. However, recent investigations into the role of the ER resident protein kinase PERK have paradoxically suggested both pro- and anti-tumorigenic properties. We have utilized animal models of mammary carcinoma to interrogate PERK contribution in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle due to the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is utilized during both tumor initiation and expansion to maintain redox homeostasis and thereby facilitates tumor growth. PMID:20453876

  18. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

    Science.gov (United States)

    Bobrovnikova-Marjon, E; Grigoriadou, C; Pytel, D; Zhang, F; Ye, J; Koumenis, C; Cavener, D; Diehl, J A

    2010-07-01

    To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.

  19. Genotoxic Anti-Cancer Agents and Their Relationship to DNA Damage, Mitosis, and Checkpoint Adaptation in Proliferating Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lucy H. Swift

    2014-02-01

    Full Text Available When a human cell detects damaged DNA, it initiates the DNA damage response (DDR that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.

  20. Time-course Interactions between Cell Proliferation and DNA Sequence Variants in a Mouse Model of Latent Carcinogenicity

    Science.gov (United States)

    A fundamental principle of non-mutagenic chemical carcinogenesis is that increased cell proliferation enhances spontaneous DNA damage. Over time, this damage drives mutations in oncogenic genes that ultimately lead to cancer. This concept is a central part of cancer mode of actio...

  1. Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication

    DEFF Research Database (Denmark)

    Piunti, Andrea; Rossi, Alessandra; Cerutti, Aurora;

    2014-01-01

    that PRCs regulate cellular proliferation and transformation independently of the Ink4a/Arf-pRb-p53 pathway. We provide evidence that PRCs localize at replication forks, and that loss of their function directly affects the progression and symmetry of DNA replication forks. Thus, we have identified a novel...

  2. Step-wise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization

    Science.gov (United States)

    Novak, P; Jensen, TJ; Garbe, JC; Stampfer, MR; Futscher, BW

    2009-01-01

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16 INK4A expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending upon how stasis was overcome. A second step coincides with immortalization, and results in hundreds of additional DNA methylation changes, regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that may prove useful in breast cancer risk assessment. PMID:19509227

  3. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box.

    Directory of Open Access Journals (Sweden)

    Jesus S Carrasco-Miranda

    Full Text Available DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA. This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein. The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.

  4. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  5. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  6. Keratin23 (KRT23) knockdown decreases proliferation and affects the DNA damage response of colon cancer cells

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Hahn, Stephan; Mansilla, Francisco

    2013-01-01

    correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed...... response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced...... that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage...

  7. dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yanjuan Xu

    Full Text Available BACKGROUND: The family of RecQ DNA helicases plays an important role in the maintenance of genomic integrity. Mutations in three of the five known RecQ family members in humans, BLM, WRN and RecQ4, lead to disorders that are characterized by predisposition to cancer and premature aging. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo functions of Drosophila RecQ4 (dRecQ4, we generated mutant alleles of dRecQ4 using the targeted gene knock-out technique. Our data show that dRecQ4 mutants are homozygous lethal with defects in DNA replication, cell cycle progression and cell proliferation. Two sets of experiments suggest that dRecQ4 also plays a role in DNA double strand break repair. First, mutant animals exhibit sensitivity to gamma irradiation. Second, the efficiency of DsRed reconstitution via single strand annealing repair is significantly reduced in the dRecQ4 mutant animals. Rescue experiments further show that both the N-terminal domain and the helicase domain are essential to dRecQ4 function in vivo. The N-terminal domain is sufficient for the DNA repair function of dRecQ4. CONCLUSIONS/SIGNIFICANCE: Together, our results show that dRecQ4 is an essential gene that plays an important role in not only DNA replication but also DNA repair and cell cycle progression in vivo.

  8. Cdk2 silencing via a DNA/PCL electrospun scaffold suppresses proliferation and increases death of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Clément Achille

    Full Text Available RNA interference (RNAi is a promising approach for cancer treatment. Site specific and controlled delivery of RNAi could be beneficial to the patient, while at the same time reducing undesirable off-target side effects. We utilized electrospinning to generate a biodegradable scaffold capable of incorporating and delivering a bioactive plasmid encoding for short hairpin (sh RNA against the cell cycle specific protein, Cdk2. Three electrospun scaffolds were constructed, one using polycaprolactone (PCL alone (Control and PCL with plasmid DNA encoding for either Cdk2 (Cdk2i and EGFP (EGFPi, also served as a control shRNA. Scaffold fiber diameters ranged from 1 to 20 µm (DNA containing and 0.2-3 µm (Control. While the electrospun fibers remained intact for more than two weeks in physiological buffer, degradation was visible during the third week of incubation. Approximately 20-60 ng/ml (~2.5% cumulative release of intact and bioactive plasmid DNA was released over 21 days. Further, Cdk2 mRNA expression in cells plated on the Cdk2i scaffold was decreased by ~51% and 30%, in comparison with that of cells plated on Control or EGFPi scaffold, respectively. This decrease in Cdk2 mRNA by the Cdk2i scaffold translated to a ~40% decrease in the proliferation of the breast cancer cell line, MCF-7, as well as the presence of increased number of dead cells. Taken together, these results represent the first successful demonstration of the delivery of bioactive RNAi-based plasmid DNA from an electrospun polymer scaffold, specifically, in disrupting cell cycle regulation and suppressing proliferation of cancer cells.

  9. Keratin23 (KRT23 knockdown decreases proliferation and affects the DNA damage response of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Karin Birkenkamp-Demtröder

    Full Text Available Keratin 23 (KRT23 is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.

  10. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity.

    Science.gov (United States)

    Underwood, Karen F; D'Souza, David R; Mochin-Peters, Maria; Pierce, Adam D; Kommineni, Sravya; Choe, Moran; Bennett, Jessica; Gnatt, Averell; Habtemariam, Bahru; MacKerell, Alexander D; Passaniti, Antonino

    2012-04-01

    The fat-soluble prohormone cholecalciferol (Vitamin D3) is a precursor of the circulating 25-OH Vitamin D3, which is converted by 1α-hydroxylase to the biologically active 1,25-OH Vitamin D3. Active Vitamin D3 interacts with the Vitamin D receptor (VDR), a transcription factor that plays an important role in calcium mobilization and bone formation. RUNX2 is a DNA-binding transcription factor that regulates target genes important in bone formation, angiogenesis, and cancer metastasis. Using computer-assisted drug design (CADD) and a microtiter plate-based DNA-binding enzyme-linked immunosorbent assay (D-ELISA) to measure nuclear RUNX2 DNA binding, we have found that Vitamin D3 prohormones can modulate RUNX2 DNA binding, which was dose-dependent and sensitive to trypsin, salt, and phosphatase treatment. Unlabeled oligonucleotide or truncated, dominant negative RUNX2 proteins were competitive inhibitors of RUNX2 DNA binding. The RUNX2 heterodimeric partner, Cbfβ, was detected in the binding complexes with specific antibodies. Evaluation of several RUNX2:DNA targeted small molecules predicted by CADD screening revealed a previously unknown biological activity of the inactive Vitamin D3 precursor, cholecalciferol. Cholecalciferol modulated RUNX2:DNA binding at nanomolar concentrations even in cells with low VDR. Cholecalciferol and 25-OH Vitamin D3 prohormones were selective inhibitors of RUNX2-positive endothelial, bone, and breast cancer cell proliferation, but not of cells lacking RUNX2 expression. These compounds may have application in modulating RUNX2 activity in an angiogenic setting, in metastatic cells, and to promote bone formation in disease-mediated osteoporosis. The combination CADD discovery and D-ELISA screening approaches allows the testing of other novel derivatives of Vitamin D and/or transcriptional inhibitors with the potential to regulate DNA binding and biological function.

  11. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); M.R.M. Baert (Miranda); C.M. van den Burg (Caroline); M. van Noort (Mascha); E.F. de Haas (Edwin); J.J.M. van Dongen (Jacques)

    2004-01-01

    textabstractThe thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals i

  12. A new monoclonal antibody against DNA ligase I is a suitable marker of cell proliferation in cultured cell and tissue section samples

    Directory of Open Access Journals (Sweden)

    B Vitolo

    2009-06-01

    Full Text Available The extensive characterization of the replicative human DNA ligase I (LigI undertaken in the last decade demonstrated that the level of this protein strongly correlates with the rate of cell proliferation. This may allow to expand the repertoire of clinical biomarkers for the analysis of cell proliferation.We have produced a new monoclonal antibody (5H5 against LigI and exploited it as cell proliferation marker in Western blotting and immunofluorescence as well as in immunohistochemistry on paraffin tissue sections. The Western blot analysis showed that the LigI level detected by 5H5 antibody is high in all proliferating cells. On the contrary the protein is down regulated in resting human fibroblast and peripheral blood lymphocytes. Immunofluorescence analysis on cultured HeLa cells showed that 5H5 antibody labels all proliferating cells and displays the same staining pattern of BrdU in S-phase nuclei. Finally the analysis of serial sections of inflamed tonsils and NHL lymph nodes (either frozen or paraffin embedded demonstrated that 5H5 marks the same population of cells as the Ki-67 antibody. Our results demonstrate that 5H5 antibody is a valuable tool for labeling proliferating cells that can be conveniently used in Western blotting, immunocytochemistry and immunohistochemistry.

  13. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    Science.gov (United States)

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent.

  14. DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation

    Directory of Open Access Journals (Sweden)

    Ulbricht Tobias

    2010-12-01

    Full Text Available Abstract Background Proteins are able to react in response to distinct stress stimuli by alteration of their subcellular distribution. The stress-responsive protein S100A11 belongs to the family of multifunctional S100 proteins which have been implicated in several key biological processes. Previously, we have shown that S100A11 is directly involved in DNA repair processes at damaged chromatin in the nucleus. To gain further insight into the underlying mechanism subcellular trafficking of S100A11 in response to DNA damage was analyzed. Results We show that DNA damage induces a nucleolin-mediated translocation of S100A11 from the cytoplasm into the nucleus. This translocation is impeded by inhibition of the phosphorylation activity of PKCα. Translocation of S100A11 into the nucleus correlates with an increased cellular p21 protein level. Depletion of nucleolin by siRNA severely impairs translocation of S100A11 into the nucleus resulting in a decreased p21 protein level. Additionally, cells lacking nucleolin showed a reduced colony forming capacity. Conclusions These observations suggest that regulation of the subcellular distribution of S100A11 plays an important role in the DNA damage response and p21-mediated cell cycle control.

  15. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine.

    Science.gov (United States)

    Mahesh Kumar, Jerald; Idris, Mohammed M; Srinivas, Gunda; Vinay Kumar, Pallerla; Meghah, Vuppalapaty; Kavitha, Mitta; Reddy, Chada Raji; Mainkar, Prathama S; Pal, Biswajit; Chandrasekar, Srivari; Nagesh, Narayana

    2013-01-01

    Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3) and non-nucleoside 1,2,3-triazoles (L4-L14) were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2) and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3), demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM) among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3) cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA) than non quadruplex forming DNA (NQF DNA). T(m) of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA). From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3) interact with quadruplex DNA with significantly higher affinity (K(d)≈10⁻⁷ M). Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands are

  16. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine.

    Directory of Open Access Journals (Sweden)

    Jerald Mahesh Kumar

    Full Text Available Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3 and non-nucleoside 1,2,3-triazoles (L4-L14 were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2 and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3, demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3 cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA than non quadruplex forming DNA (NQF DNA. T(m of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA. From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3 interact with quadruplex DNA with significantly higher affinity (K(d≈10⁻⁷ M. Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands

  17. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    Directory of Open Access Journals (Sweden)

    María del Carmen González

    2012-01-01

    Full Text Available Inhibitor of DNA binding (Id2 is a helix-loop-helix (HLH transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY. WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2. MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V, the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  18. Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells.

    Science.gov (United States)

    González, María Del Carmen; Corton, J Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Alvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  19. Effects of Nerve Growth Factor on Proliferation and DNA Synthesis of Cultured Human Fetal Retinal Pigment Epithelium Cells

    Institute of Scientific and Technical Information of China (English)

    Wensheng Li; Jun Wen; Deyong Jiang; Jianguang Ding

    2002-01-01

    Objective: To investigate the effects of nerve growth factor(NGF)on proliferation and DNAthesis of cultured human fetal retinal pigment epithelium (RPE)cells in vitro.Methods: Primary culture and subculture of human fetal retinal pigment epithelium cellswere established in vitro first. Cultured RPE cells were treated with NGF by variousconcentrations 0μg/L, 50μg/L, 100μg/L, 200μg/L and 300μg/L(final concentration)for 48 hs.After 48 hs, cells proliferation was measured with methyl thiazolyl tetrazolium(MTT)assay method and the amount of DNA was determined by the absorbance at 280nm of nucleic acid & protein analysis.Results: The A values of 100 μg/L, 200 μg/L, 300 μg/L NGF was(0. 213 7 ± 0. 23 3),(0. 218 8 ±0. 018 1), (0. 232 2 ±0. 016 4) as compared with(0. 189 7 ±0. 015 2) of Avalue of 0 μg/L NGF respectively, q value was 3.63,4.40, 6. 42 and P value was0. 015, 0. 000, 0. 000(q-test). The DNA concentrations of 100 μg/L, 200 μg/L, 300μg/L and 400 μg/L NGF was (981. 220 4 ± 123.535 7), (1 375. 848 4 ±244. 471 8),(1 658.707 1 ± 176. 938 1), (2 353.086 3 ±609. 906 4) μg/ml as compared with(666. 818 8 ± 141. 330 2) μg/ml of DNA concentration of 0 μg/L NGF respectively, qvalue was 3.63,8.20,11.47,19.46, P value was 0. 024,0. 000,0. 000,0. 000 (q-test).Conclusion: The data suggested that NGF could stimulate the proliferation and DNAsynthesis of cultured of hRPE cells in vitro in a dose-dependent manner.

  20. Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Hua Xiong; Da-Qing Yang

    2012-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias.The gene mutated in this disease,ATM (A-T,mutated),encodes a 370-kDa Ser/Thr protein kinase.ATM not only mediates cellular response to DNA damage but also acts as an activator of Akt in response to insulin.However,despite intensive studies,the mechanism underlying the neuronal degeneration symptoms of human A-T is still poorly understood.We found that the topoisomerase inhibitors etoposide and camptothecin readily induced apoptosis in undifferentiated proliferating SH-SY5Y cells but could not induce apoptosis in neuronally differentiated SH-SY5Y cells.In addition,etoposide induced p53 phosphorylation and H2AX foci formation in proliferating SH-SY5Y cells but failed to do so in differentiated SH-SY5Y cells.Moreover,while inhibition of ATM in undifferentiated SH-SY5Y cells partially protected them from etoposide-induced apoptosis,the same treatment had no effect on cell viability in differentiated SH-SY5Y cells.These results suggest that DNA damage or defective response to DNA damage is not the cause of neuronal cell death in human A-T.In contrast,we discovered that Akt phosphorylation was inhibited when ATM activity was suppressed in differentiated SH-SY5Y cells.Furthermore,inhibition of ATM induced apoptosis following serum starvation in neuronally differentiated SH-SY5Y cells but could not trigger apoptosis under the same conditions in undifferentiated proliferating SH-SY5Y cells.These results demonstrate that ATM mediates the Akt signaling and promotes cell survival in neuron-like human SH-SY5Y cells,suggesting that impaired activation of Akt is the reason for neuronal degeneration in human A-T.

  1. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts.

    Science.gov (United States)

    Sinnett-Smith, James; Rozengurt, Nora; Kui, Robert; Huang, Carlos; Rozengurt, Enrique

    2011-01-07

    We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.

  2. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eva M García-Recio

    2016-01-01

    Full Text Available Elevated expression levels of eukaryotic initiation factor 4E (eIF4E promote cancer development and progression. MAP kinase interacting kinases (MNKs modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA, and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.

  3. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression.

    Science.gov (United States)

    Jiang, Yanlin; Zhou, Shaoyu; Sandusky, George E; Kelley, Mark R; Fishel, Melissa L

    2010-11-01

    Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.

  4. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Amilcar [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  5. Expression of angiostatin cDNA in human gallbladder carcinoma cell line GBC-SD and its effect on endothelial proliferation and growth

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zuo-Ren Wang

    2006-01-01

    AIM: To explore the influence of angiostatin up-regulation on the biologic behavior of gallbladder carcinoma cells in vitro and in vitro, and the potential value of angiostatin gene therapy for gallbladder carcinoma.METHODS: A eukaryotic expression vector of pcDNA3.1(+) containing murine angiostatin was constructed and identified by restriction endonuclease digestion and sequencing. The recombinant vector pcDNA3.1-angiostatin was transfected into human gallbladder carcinoma cell line GBC-SD with Lipofectamine 2000, and paralleled with the vector and mock control. The resistant clone was screened by G418 filtration. Angiostatin transcription and protein expression were examined by RT-PCR,immunofluorescence and Western-blot. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope.RESULTS: Murine angiostatin Cdna was successfully cloned into the eukaryotic expression vector pcDNA3.1(+). After 14 d of transfection and selection with G418,macroscopic resistant cell cloning was formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin was detected by RT-PCR and protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. No significant difference was observed in the growth speed of GBCSD cells between groups that were transfected with and without angiostatin. After treatment with supernatant,significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited.CONCLUSION: Angiostatin does not directly inhibit human gallbladder carcinoma cell proliferation and growth in vitro, but the secretion of angiostatin inhabits endothelial cell proliferation and growth.

  6. Effects of Low-Dose Bisphenol A on DNA Damage and Proliferation of Breast Cells: The Role of c-Myc.

    Science.gov (United States)

    Pfeifer, Daniella; Chung, Young Min; Hu, Mickey C-T

    2015-12-01

    Humans are exposed to low-dose bisphenol A (BPA) through plastic consumer products and dental sealants containing BPA. Although a number of studies have investigated the mammary gland effects after high-dose BPA exposure, the study findings differ. Furthermore, there has been a lack of mechanistic studies. The objective of this study was to investigate the effect and the mechanism of low-dose BPA in mammary gland cells. We evaluated DNA damage following BPA exposure using the comet assay and immunofluorescence staining, and used cell counting and three-dimensional cultures to evaluate effects on proliferation. We examined the expressions of markers of DNA damage and cell-cycle regulators by immunoblotting and performed siRNA-mediated gene silencing to determine the role of c-Myc in regulating BPA's effects. Low-dose BPA significantly promoted DNA damage, up-regulated c-Myc and other cell-cycle regulatory proteins, and induced proliferation in parallel in estrogen receptor-α (ERα)-negative mammary cells. Silencing c-Myc diminished these BPA-induced cellular events, suggesting that c-Myc is essential for regulating effects of BPA on DNA damage and proliferation in mammary cells. Low-dose BPA exerted c-Myc-dependent genotoxic and mitogenic effects on ERα-negative mammary cells. These findings provide significant evidence of adverse effects of low-dose BPA on mammary cells.

  7. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    Science.gov (United States)

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  8. DNA Damage-Induced NF-κB Activation in Human Glioblastoma Cells Promotes miR-181b Expression and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Rui-Xue Xu

    2015-01-01

    Full Text Available Background: Glioblastoma (GBM is the most common and most aggressive form of brain cancer. After surgery, radiotherapy is the mainstay of treatment for GBM patients. Unfortunately, the vast majority of GBM patients fail responding to radiotherapy because GBM cells remain highly resistant to radiation. Radiotherapy-induced DNA damage response may correlate with therapeutic resistance. Methods: Ionizing radiation (IR was used to induce DNA damage. Cell proliferation and migration were detected by wound-healing, MTT and apoptosis assays. Dual-luciferase assays and Western blot analysis were performed to evaluate NF-κB activation and validate microRNA targets. Real-time PCR was used to study mRNA and microRNA levels. Results: IR-induced DNA damage activated NF-κB in GBM cells which promoted expression of IL-6, IL-8 and Bcl-xL, thereby contributing to cell survival and invasion. Knockdown SENP2 expression enhanced NF-κB essential modulator (NEMO SUMOylation and NF-κB activity following IR exposure. miR-181b targets SENP2 and positively regulated NF-κB activity. Conclusion: NF-κB activation by DNA damage in GBM cells confers resistance to radiation-induced death.

  9. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  10. Evaluation of cell proliferation, apoptosis, and DNA-repair genes as potential biomarkers for ethanol-induced CNS alterations.

    Science.gov (United States)

    Hicks, Steven D; Lewis, Lambert; Ritchie, Julie; Burke, Patrick; Abdul-Malak, Ynesse; Adackapara, Nyssa; Canfield, Kelly; Shwarts, Erik; Gentile, Karen; Meszaros, Zsuzsa Szombathyne; Middleton, Frank A

    2012-10-25

    Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and

  11. Effects of beta interferon on human fibroblasts at different population doubling levels. Proliferation, cell volume, thymidine uptake, and DNA synthesis

    OpenAIRE

    1984-01-01

    Cellular aging had no effect on the ability of beta interferon to increase cell volume and population doubling time in 76-109 cells, a line of human skin fibroblasts. However, DNA synthesis in cells at high population doubling levels (PDL 55-70) was inhibited after 72 h of beta interferon treatment (1,000 U/ml) while no inhibition of DNA synthesis was observed in cells at middle population doubling levels (PDL 30-40).

  12. Solution Structure of Human Growth Arrest and DNA Damage 45α (Gadd45α) and Its Interactions with Proliferating Cell Nuclear Antigen (PCNA) and Aurora A Kinase*

    OpenAIRE

    2010-01-01

    Gadd45α is a nuclear protein encoded by a DNA damage-inducible gene. Through its interactions with other proteins, Gadd45α participates in the regulation of DNA repair, cell cycle, cell proliferation, and apoptosis. The NMR structure of human Gadd45α has been determined and shows an α/β fold with two long disordered and flexible regions at the N terminus and one of the loops. Human Gadd45α is predominantly monomeric in solution but exists in equilibrium with dimers and other oligomers whose p...

  13. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Judy [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada); Tang, Damu, E-mail: damut@mcmaster.ca [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada)

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  14. Fluorogenic "click" reaction for labeling and detection of DNA in proliferating cells.

    Science.gov (United States)

    Li, Kai; Lee, L Andrew; Lu, Xiaobing; Wang, Qian

    2010-07-01

    A thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), has been reported as a rapid labeling tool for direct measurement of cells in S-phase. The alkynyl group of EdU is a biologically inert group that undergoes an extremely selective reaction with azido-functionalized groups via Cu(I)-catalyzed alkyneazide cycloaddition (CuAAC or "click") reaction. Here we report the highly efficient reaction of the terminal alkynyl group of EdU with a pro-fluorogenic compound, 3-azido-7-hydroxycoumarin, to afford an intense fluorescent 1,2,3-triazole product, which occurs only after the CuAAC reaction. This new method eliminates concerns for residual fluorescence since the unreacted precursors are optically inactive. The procedure therefore does not require extensive wash steps to remove the unreacted fluorescent dyes in the sample, allowing for immediate quantification and visualization after the reaction. The advantage over currently available commercial products is its potential to streamline high-throughput applications and help minimize errors.

  15. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Abha [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wang, Nadan [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Alexis, Jeffrey, E-mail: jeffrey_alexis@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States)

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  16. HBD-2 is downregulated in oral carcinoma cells by DNA hypermethylation, and increased expression of hBD-2 by DNA demethylation and gene transfection inhibits cell proliferation and invasion.

    Science.gov (United States)

    Kamino, Yoshitaka; Kurashige, Yoshihito; Uehara, Osamu; Sato, Jun; Nishimura, Michiko; Yoshida, Koki; Arakawa, Toshiya; Nagayasu, Hiroki; Saitoh, Masato; Abiko, Yoshihiro

    2014-08-01

    Human β-defensin-2 (hBD-2) is a type of epithelial antimicrobial peptide. The expression level of hBD-2 mRNA is lower in oral carcinoma cells (OCCs) than in healthy oral epithelium. Yet, it is still unknown how hBD-2 expression is downregulated in OCCs. The present study investigated DNA hypermethylation of hBD-2 in OCCs and the effect of the demethylation and increased expression of hBD-2 on cell proliferation and invasion. Six different types of oral carcinoma cell lines (OSC-19, BSC-OF, SAS, HSC-2, HSC-4 and HSY) and normal oral keratinocytes (NOKs) were used. The expression levels of hBD-2 in all OCCs were significantly lower than that in the NOKs. Treatment with DNA methyltransferase inhibitor, 5-aza-dC, at the concentration of 50 µM significantly induced upregulation of expression of hBD-2 in the OCCs. Using methylation-specific PCR, DNA hypermethylation was observed in all OCCs. These results suggest that DNA hypermethylation is, at least in part, involved in the decreased expression of hBD-2 in OCCs. We examined the effect of 5-aza-dC on the cell proliferation and invasive ability of OCCs. The cell invasion assays showed that the number of OCCs treated with 5-aza-dC on the filters was significantly lower than that of the controls. We examined whether increased expression of hBD-2 generated by gene transfection inhibited the proliferation and invasion of SAS cells. The number of SAS cells exhibiting increased expression of hBD-2 on the filters in the invasion assay were significantly lower on day 7 when compared with the control. hBD-2 may function as a tumor suppressor. Increased expression of hBD-2 induced by demethylation or increased expression generated by gene transfection may be useful therapeutic methods for oral carcinoma.

  17. Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Koh, Masashi; Umezawa, Kazuo; Kawanishi, Shosuke

    2004-03-09

    The soy isoflavones, genistein (5,7,4'-trihydroxyisoflavone) and daidzein (7,4'-dihydroxyisoflavone), are representative phytoestrogens that function as chemopreventive agents against cancers, cardiovascular disease, and osteoporosis. However, recent studies indicated that genistein and/or daidzein induced cancers of reproductive organs in rodents, such as the uterus and vulva. To clarify the molecular mechanisms underlying the induction of carcinogenesis by soy isoflavones, we examined the ability of genistein, daidzein, and their metabolites, 5,7,3',4'-tetrahydroxyisoflavone (orobol), 7,3',4'-trihydroxyisoflavone (7,3',4'-OH-IF), and 6,7,4'-trihydroxyisoflavone (6,7,4'-OH-IF), to cause DNA damage and cell proliferation. An E-screen assay revealed that genistein and daidzein enhanced proliferation of estrogen-sensitive breast cancer MCF-7 cells, while their metabolites had little or no effect. A surface plasmon resonance sensor showed that binding of isoflavone-liganded estrogen receptors (ER) to estrogen response elements (ERE) was largely consistent with cell proliferative activity of isoflavones. Orobol and 7,3',4'-OH-IF significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in human mammary epithelial MCF-10A cells, while genistein, daidzein, and 6,7,4'-OH-IF did not. Experiments using isolated DNA revealed a metal-dependent mechanism of oxidative DNA damage induced by orobol and 7,3',4'-OH-IF. DNA damage was enhanced by the addition of endogenous reductant NADH, formed via the redox cycle. These findings suggest that oxidative DNA damage by isoflavone metabolites plays a role in tumor initiation and that cell proliferation by isoflavones via ER-ERE binding induces tumor promotion and/or progression, resulting in cancer of estrogen-sensitive organs.

  18. Monitoring the Retention of Human Proliferating Cell Nuclear Antigen at Primer/Template Junctions by Proteins That Bind Single-Stranded DNA.

    Science.gov (United States)

    Hedglin, Mark; Aitha, Mahesh; Benkovic, Stephen J

    2017-07-11

    In humans, proliferating cell nuclear antigen (PCNA) sliding clamps encircling DNA coordinate various aspects of DNA metabolism throughout the cell cycle. A critical aspect of this is restricting PCNA to the vicinity of its DNA target site. For example, PCNA must be maintained at or near primer/template (P/T) junctions during DNA synthesis. With a diverse array of cellular factors implicated, many of which interact with PCNA, DNA, or both, it is unknown how this critical feat is achieved. Furthermore, current biochemical assays that examine the retention of PCNA near P/T junctions are inefficient, discontinuous, and qualitative and significantly deviate from physiologically relevant conditions. To overcome these challenges and limitations, we recently developed a novel and convenient Förster resonance energy transfer (FRET) assay that directly and continuously monitors the retention of human PCNA at a P/T junction. Here we describe in detail the design, methodology, interpretation, and limitations of this quantitative FRET assay using the single-stranded DNA-binding protein, SSB, from Escherichia coli as an example. This powerful tool is broadly applicable to any single-stranded DNA-binding protein and may be utilized and/or expanded upon to dissect DNA metabolic pathways that are dependent upon PCNA.

  19. Apigenin inhibits renal cell carcinoma cell proliferation.

    Science.gov (United States)

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-03-21

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.

  20. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine.

    Science.gov (United States)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li; Zhou, Longxia; Zhang, Minghao; Xu, Hua; Han, Xuebo; Li, Guizhong; Yang, Xiaoling; Jiang, YiDeng

    2016-09-10

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  1. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rangapriya Sundararajan

    2011-03-01

    Full Text Available Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2, a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  2. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sundararajan, Rangapriya; Freudenreich, Catherine H

    2011-03-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  3. DNA Polymerases BI and D from the Hyperthermophilic Archaeon Pyrococcus furiosus Both Bind to Proliferating Cell Nuclear Antigen with Their C-Terminal PIP-Box Motifs▿

    Science.gov (United States)

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3′-5′ exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex. PMID:17496095

  4. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

    Science.gov (United States)

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-08-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.

  5. Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis.

    Science.gov (United States)

    Onodera, Takefumi; Takenaka, Yukiko; Kozaki, Sachiko; Tanahashi, Takao; Mizushina, Yoshiyuki

    2016-03-01

    We purified and identified eight xanthones from mangosteen (Garcinia mangostana L.) and investigated whether these compounds inhibited the activities of mammalian DNA polymerases (Pols) and human DNA topoisomerases (Topos). β-Mangostin was the strongest inhibitor of both mammalian Pols and human Topos among the isolated xanthones, with 50% inhibitory concentration (IC50) values of 6.4-39.6 and 8.5-10 µM, respectively. Thermal transition analysis indicated that β-mangostin did not directly bind to double-stranded DNA, suggesting that this compound directly bound the enzyme protein rather than the DNA substrate. β-Mangostin showed the strongest suppression of human cervical cancer HeLa cell proliferation among the eight compounds tested, with a 50% lethal dose (LD50) of 27.2 µM. This compound halted cell cycle in S phase at 12-h treatment and induced apoptosis. These results suggest that decreased proliferation by β-mangostin may be a result of the inhibition of cellular Pols rather than Topos, and β-mangostin might be an anticancer chemotherapeutic agent.

  6. Nuclear DNA methylation and chromatin condensation phenotypes are distinct between normally proliferating/aging, rapidly growing/immortal, and senescent cells.

    Science.gov (United States)

    Oh, Jin Ho; Gertych, Arkadiusz; Tajbakhsh, Jian

    2013-03-01

    This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns - visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis - in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors.

  7. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  8. Maternal diabetes modulates dental epithelial stem cells proliferation and self-renewal in offspring through apurinic/apyrimidinicendonuclease 1-mediated DNA methylation

    Science.gov (United States)

    Chen, Guoqing; Chen, Jie; Yan, Zhiling; Li, Ziyue; Yu, Mei; Guo, Weihua; Tian, Weidong

    2017-01-01

    Maternal gestational diabetes mellitus (GDM) has many adverse effects on the development of offspring. Aberrant DNA methylation is a potential mechanism associated with these effects. However, the effects of GDM on tooth development and the underlying mechanisms have not been thoroughly investigated. In the present study, a GDM rat model was established and incisor labial cervical loop tissue and dental epithelial stem cells (DESCs) were harvested from neonates of diabetic and control dams. GDM significantly suppressed incisor enamel formation and DESCs proliferation and self-renewal in offspring. Gene expression profiles showed that Apex1 was significantly downregulated in the offspring of diabetic dams. In vitro, gain and loss of function analyses showed that APEX1 was critical for DESCs proliferation and self-renewal and Oct4 and Nanog regulation via promoter methylation. In vivo, we confirmed that GDM resulted in significant downregulation of Oct4 and Nanog and hypermethylation of their promoters. Moreover, we found that APEX1 modulated DNA methylation by regulating DNMT1 expression through ERK and JNK signalling. In summary, our data suggest that GDM-induced APEX1 downregulation increased DNMT1 expression, thereby inhibiting Oct4 and Nanog expression, through promoter hypermethylation, resulting in suppression of DESCs proliferation and self-renewal, as well as enamel formation. PMID:28094306

  9. Cell proliferation in gastrointestinal mucosa.

    OpenAIRE

    Wong, W M; Wright, N A

    1999-01-01

    Gastrointestinal cell proliferation plays an important role in the maintenance of the integrity of the gastrointestinal system. The study of gastrointestinal proliferation kinetics allows a better understanding of the complexity of the system, and also has important implications for the study of gastrointestinal carcinogenesis. Gastrointestinal stem cells are shown to be pluripotential and to give rise to all cell lineages in the epithelium. Carcinogenesis in the colon occurs through sequenti...

  10. Proliferation of luteal steroidogenic cells in cattle.

    Directory of Open Access Journals (Sweden)

    Shin Yoshioka

    Full Text Available The rapid growth of the corpus luteum (CL after ovulation is believed to be mainly due to an increase in the size of luteal cells (hypertrophy rather than an increase in their number. However, the relationship between luteal growth and the proliferation of luteal steroidogenic cells (LSCs is not fully understood. One goal of the present study was to determine whether LSCs proliferate during CL growth. A second goal was to determine whether luteinizing hormone (LH, which is known have roles in the proliferation and differentiation of follicular cells, also affects the proliferation of LSCs. Ki-67 (a cell proliferation marker was expressed during the early, developing and mid luteal stages and some Ki-67-positive cells co-expressed HSD3B (a steroidogenic marker. DNA content in LSCs isolated from the developing CL increased much more rapidly (indicating rapid growth than did DNA content in LSCs isolated from the mid CL. The cell cycle-progressive genes CCND2 (cyclin D2 and CCNE1 (cyclin E1 mRNA were expressed more strongly in the small luteal cells than in the large luteal cells. LH decreased the rate of increase of DNA in LSCs isolated from the mid luteal stage but not in LSCs from the developing stage. LH suppressed CCND2 expression in LSCs from the mid luteal stage but not from the developing luteal stage. Furthermore, LH receptor (LHCGR mRNA expression was higher at the mid luteal stage than at the developing luteal stage. The overall results suggest that the growth of the bovine CL is due to not only hypertrophy of LSCs but also an increase in their number, and that the proliferative ability of luteal steroidogenic cells decreases between the developing and mid luteal stages.

  11. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage

    Directory of Open Access Journals (Sweden)

    Chung-Yi Chen

    2016-11-01

    proliferation of oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.

  12. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-01-01

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N-acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  13. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity.

    Science.gov (United States)

    Wu, Deng-Pan; Lin, Tian-Yu; Lv, Jin-Yan; Chen, Wen-Ya; Bai, Li-Ru; Zhou, Yan; Huang, Jin-Lan; Zhong, Zhen-Guo

    2017-01-01

    Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  14. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity

    Directory of Open Access Journals (Sweden)

    Deng-Pan Wu

    2017-01-01

    Full Text Available Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  15. Cell proliferation in Allium cepa L. meristems under 8-hydroxyquinoline, a chelating agent that affects DNA and RNA polymerases.

    Science.gov (United States)

    Ferrero, M L; De la Torre, C

    1986-02-01

    8-Hydroxyquinoline (HQ) chelates Mg2+ and Mn2+ and, secondarily, affects the activities of DNA and RNA polymerases. The in vivo effect of HQ has been estimated in Allium cepa L. meristems growing under new growth kinetics in the presence of this agent. HQ (at both 5 X 10(-5) M and 10(-4) M) depressed incorporation of [3H]uridine much more effectively than that of [3H]-thymidine. Cycle kinetics in meristems behaved as if they were independent of the rates of synthesis or accumulation of RNA since, under HQ, cycle time was only moderately modified and the new cycle kinetics achieved could be explained by the new rates of [3H]thymidine incorporation. Lengthened S periods were partially compensated for by shortened G2 phases, suggesting that, in these cells, both the growth cycle and its coupling with the DNA-division cycle were not disturbed by a decreased amount of RNA. Finally, the nucleolar cycle during mitosis, but not the interphase nucleolus, was modified under the new rates of RNA synthesis.

  16. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-09-18

    We have previously shown that the insulin like growth factor 1 receptor (IGF1R) translocates to the cell nucleus, where it binds to enhancer like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF1R (nIGF1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer binding factor 1 (Lef1), histone H3, and Brahma related gene 1 proteins. In the present study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF1R binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA coincubated with the IGF1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF1R targets, and PCNA phosphorylation was followed by mono and poly ubiquitination. Coimmunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF1R or mutation of Tyr60, Tyr133, or Tyr250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF1R, externally induced DNA damage in IGF1R negative cells caused G1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF1R in DDT. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Menin represses tumorigenesis via repressing cell proliferation

    OpenAIRE

    Wu, Ting; Hua, Xianxin

    2011-01-01

    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in the tumor suppressor gene, MEN1, which encodes nuclear protein menin. Menin is important for suppressing tumorigenesis in various endocrine and certain non-endocrine tissues. Although menin suppresses MEN1 through a variety of mechanisms including regulating apoptosis and DNA repair, the role of menin in regulating cell proliferation is one of the best-studied functions. Here, we focus on reviewing various mechanisms underly...

  18. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  19. Evaluation of germ-cell kinetics in infertile patients with proliferating cell nuclear antigen proliferating index

    Institute of Scientific and Technical Information of China (English)

    Li ZENG; Xiang-Tian KONG; Jin-Wei SU; Tong-Li XIA; Yan-Qun NA; Ying-Lu GUO

    2001-01-01

    To explore the usefulness of proliferating cell nuclear antigen proliferating index (PCNA PI) in the pathological diagnosis and treatment of male infertility. Methods: Testicular biopsy specimen obtained from 48 cases of male infertility and 2 normal controls were fixed and embedded. The sections were stained with anti-PCNA monoclonal antibodies or haematoxylin/eosin. Proliferating index (PI), expressed as the percentage of germ-cell nuclei positively stained with PCNA antibody, was assessed from more than 20 seminiferous tubules or 600 germ-cells. Results: The infertile patients were divided into 4 groups: Group 1, normal spermatogenesis ( 14 cases); Group 2, hypospermatogenesis (16 cases); Group 3, germinal arrest (10 cases); Group 4, Sertoli cell only syndrome (8 cases). The PCNA PI of normal control testis was 86.5% (mean value). Group 3 had a significantly lower PCNA PI (29.8%) than normal testis; Group 1 and 2 had similar Pis (82.3% and 82.3%, respectively) as the control testis. PI of the negative control (Group 4) was 0 as no germ-cells were found. Conclusion: PCNA PI is useful for assessing germ-cell kinetics, especially for pathological diagnosis of germinal arrest which is difficult to differentiate by routine HE staining technique. In germinal arrest, there is a significantly lowered PCNA PI, which is an indication of DNA synthesis deterioration, suggesting the use of therapies be different from those for hypospermatogenesis.

  20. Neural and Oligodendrocyte Progenitor Cells: Transferrin Effects on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucas Silvestroff

    2013-02-01

    Full Text Available NSC (neural stem cells/NPC (neural progenitor cells are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone of the mammalian CNS (central nervous system. These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres to evaluate the effects of Tf (transferrin on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein, Nestin and Sox2 and the OL (oligodendrocyte progenitor markers NG2 (nerve/glia antigen 2 and PDGFRα (platelet-derived growth factor receptor α. The results of this study indicate that aTf (apoTransferrin is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1. Since OPCs (oligodendrocyte progenitor cells represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.

  1. Tetraploid cells produced by absence of substrate adhesion during cytokinesis are limited in their proliferation and enter senescence after DNA replication.

    Science.gov (United States)

    De Santis Puzzonia, Marco; Gonzalez, Laetitia; Ascenzi, Sonia; Cundari, Enrico; Degrassi, Francesca

    2016-01-01

    Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.

  2. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute...

  3. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  4. DNA Methylation Dynamics During Differentiation, Proliferation, and Tumorigenesis in the Intestinal Tract

    Science.gov (United States)

    Huang, Can-Ze

    2015-01-01

    DNA methylation, an epigenetic control mechanism in mammals, is widely present in the intestinal tract during the differentiation and proliferation of epithelial cells. Cells in stem cell pools or villi have different patterns of DNA methylation. The process of DNA methylation is dynamic and occurs at many relevant regulatory elements during the rapid transition of stem cells into fully mature, differentiated epithelial cells. Changes in DNA methylation patterns most often take place in enhancer and promoter regions and are associated with transcription factor binding. During differentiation, enhancer regions associated with genes important to enterocyte differentiation are demethylated, activating gene expression. Abnormal patterns of DNA methylation during differentiation and proliferation in the intestinal tract can lead to the formation of aberrant crypt foci and destroy the barrier and absorptive functions of the intestinal epithelium. Accumulation of these epigenetic changes may even result in tumorigenesis. In the current review, we discuss recent findings on the association between DNA methylation and cell differentiation and proliferation in the small intestine and highlight the possible links between dysregulation of this process and tumorigenesis. PMID:26413818

  5. The effect of proliferation promoting and DNA danage of low dose formaldehyde on 16HBE cells%低剂量甲醛对16HBE细胞的增殖促进及DNA损伤作用

    Institute of Scientific and Technical Information of China (English)

    刘庆成; 杨淋清; 陶功华; 龚春梅; 刘建军; 张文娟; 黄海燕; 胡恭华; 庄志雄

    2011-01-01

    Objective To observe the short term effect on cell proliferation and DNA damage of low dose formaldehyde (FA), and provide some fundamental data for the design of in vitro malignant transformation. Methods The method of CCK-8 was applied to detect the cell viability, and BrdU incorporation method was used to observe the percentage of S-phase cells. The degree of DNA damage was determined by the combination of the test of single cell gel electrophoresis and UV exposure. Results On the background of 24h exposure time, when FA concentration ranged from 10-9 to 10-5mol/L it could increase the proliferation ratio and cell viability of 16HBE cells, and cell viability decreased while the concentration reached to 10-4mol/L; DNA damage was observed in the groups greater than 10-6mol/ L, while DNA strand break happened in the 10-6~10-5mol/L groups and DNA protein cross-link happened in the groups higher than 10-4mol/L. The percentage of S-phase cell was marked increased on the influence of 10-7~ 10-5mol/L FA, and then the cell proliferation was promoted. Conclusions The FA could disturb the cell cycle, and then induce the cell proliferation and cause DNA damage simultaneously in 16HBE cells when its concentration ranged within 10-6~10-5mol/L.%目的 观察甲醛在低剂量水平时短期作用对细胞增殖及DNA损伤的影响,为进一步开展甲醛致体外细胞恶性转变的长期试验提供剂量设计依据.方法 采用CCK-8法检测细胞活力,采用BrdU掺入法检测S期细胞比例,从而反映细胞增殖潜能,应用单细胞凝胶电泳结合紫外线照射的方法检测细胞DNA损伤程度.结果 在24 h的作用时间下,当甲醛浓度在10-9~10- 5mol/L范围内时可以增加细胞增殖率,提高16HBE细胞活力,而剂量达到10-4 mol/L时可造成细胞死亡增多,降低细胞活力;同时当甲醛浓度超过10-6 mol/L时可产生DNA损伤,在10-6~10-5 mol/L表现为DNA断裂,当剂量达到或高于10-4mol/L,DNA蛋

  6. Eosinophils induce airway smooth muscle cell proliferation.

    Science.gov (United States)

    Halwani, Rabih; Vazquez-Tello, Alejandro; Sumi, Yuki; Pureza, Mary Angeline; Bahammam, Ahmed; Al-Jahdali, Hamdan; Soussi-Gounni, Abdelillah; Mahboub, Bassam; Al-Muhsen, Saleh; Hamid, Qutayba

    2013-04-01

    Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling

  7. Meta-analysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Jagannathan Vidhya

    2011-08-01

    Full Text Available Abstract Background Many studies have been published outlining the global effects of 17β-estradiol (E2 on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. Results We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early and at 24 hrs (late. We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. Conclusions Our results confirm that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.

  8. Coupling cell proliferation and development in plants.

    Science.gov (United States)

    Gutierrez, Crisanto

    2005-06-01

    Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.

  9. Microfluidic devices for cell cultivation and proliferation

    OpenAIRE

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell cul...

  10. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  11. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  12. Long Noncoding RNA PANDA Positively Regulates Proliferation of Osteosarcoma Cells.

    Science.gov (United States)

    Kotake, Yojiro; Goto, Taiki; Naemura, Madoka; Inoue, Yasutoshi; Okamoto, Haruna; Tahara, Keiichiro

    2017-01-01

    A long noncoding RNA, p21-associated ncRNA DNA damage-activated (PANDA), associates with nuclear transcription factor Y subunit alpha (NF-YA) and inhibits its binding to promoters of apoptosis-related genes, thereby repressing apoptosis in normal human fibroblasts. Here, we show that PANDA is involved in regulating proliferation in the U2OS human osteosarcoma cell line. U2OS cells were transfected with siRNAs against PANDA 72 h later and they were subjected to reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR and cell-cycle analysis. PANDA was highly expressed in U2OS cells, and its expression was induced by DNA damage. Silencing PANDA caused arrest at the G1 phase of the cell cycle, leading to inhibition of cell proliferation. Quantitative RT-PCR showed that silencing PANDA increased mRNA levels of the cyclin-dependent kinase inhibitor p18, which caused G1 phase arrest. These results suggest that PANDA promotes G1-S transition by repressing p18 transcription, and thus promotes U2OS cell proliferation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase {epsilon} is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8.

    Science.gov (United States)

    Murakami, Takeshi; Takano, Ryuji; Takeo, Satoshi; Taniguchi, Rina; Ogawa, Kaori; Ohashi, Eiji; Tsurimoto, Toshiki

    2010-11-05

    One of the proliferating cell nuclear antigen loader complexes, Ctf18-replication factor C (RFC), is involved in sister chromatid cohesion. To examine its relationship with factors involved in DNA replication, we performed a proteomics analysis of Ctf18-interacting proteins. We found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with pol ε. The C-terminal 23-amino acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion.

  14. Long-term stable expression of antisense cDNA of cyclin B1 profoundly inhibits the proliferation of tumor cells and suppresses tumorigenicity in implanted mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; SU Xiao-mei; ZHANG Ling; LI Ji-cheng; WEI Dong; WEI Yu-quan; ZHANG Ru; CHENG Peng; CHEN Xian-cheng; LIU Huan-yi

    2008-01-01

    Background Cyclin B1 (CLB1) is necessary for mitotic initiation in mammalian cells and plays important roles in cancer development. Therefore, a potential strategy in cancer therapy is to suppress the activity of CLB1 by delivering antisense constructs of CLB1 into tumor cells. In previous CLB1 studies, antisense constructs with a short half life were often used and these constructs might not persistently inhibit CLB1.Methods We successfully created a recombinant plasmid encoding the full-length antisense cDNA of mouse cyclin B1 (AS-mCLB1) and transfected this construct to the murine Lewis lung carcinoma (LL/2) and CT-26 colon carcinoma (CT-26) cells. We isolated clones of LL/2 and CT-26 transfectants with stable expression of AS-mGLB1. Reverse transcriptional polymerase chain reaction (RT-PCR) and Western blot were applied to detect the expression of the mRNA and protein levels of CLB1. To further test the efficacy of this strategy in vivo, AS-mCLBl-expressing LL/2 and CT-26 transfectants were implanted into mice.Results We found the expression of the mRNA and protein levels of CLB1 decrease in these trensfectants. The inhibition of CLB1 caused prominent G1 arrest, abnormal morphology, retarded cell growth and an increase in apoptosis. In AS-mCLB1-expressing LL/2 and CT-26 transfectants implanted mice, tumorigenicity was effectively suppressed compared with the controls. In addition, the expression of AS-mCLB1 also significantly increases the survival duration of implanted animals.Conclusion AS-mCLB1 is likely to be useful in future cancer therapy, which may be associated with its ability to down-regulate the expression of CLB1 and then induce G1 arrest and apoptosis in tumor cells.

  15. Adipogenesis licensing and execution are disparately linked to cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Kun-Ming Zhang; Kang Tu; Yi-Xue Li; Li Zhu; Hua-Sheng Xiao; Ying Yang; Jia-Rui Wu

    2009-01-01

    Coordination of cell differentiation and proliferation is a key issue in the development process of multi-cellular organisms and stem cells. Here we provide evidence that the establishment of adipocyte differentiation of 3T3-LI cells requires two processes: the licensing of an adipogenesis gene-expression program within a particular growth-arrest stage, i.e., the contact-inhibition stage, and then the execution of this program in a cell-cycle-independent manner,by which the licensed progenitors are differentiated into adipocytes in the presence of inducing factors. Our results showed that differentiation licensing of 3T3-L1 cells during the contact-inhibition stage involved epigenetic modifications such as DNA methylation and histone modifications, whereas disturbing these epigenetic modifications by DNA methylation inhibitors or RNAi during the contact-inhibition stage significantly reduced adipogenesis efficiency.More importantly, when these licensed 3T3-LI cells were re-cultured under non-differentiating conditions or treated only with insulin, this adipogenesis commitment could be maintained from one cell generation to the next, whereby the licensed program could be activated in a cell-cycle-independent manner once these cells were subjected to adipogenesis-inducing conditions. This result suggests that differentiation licensing and differentiation execution can be uncoupled and disparately linked to cell proliferation. Our findings deliver a new concept that cell-fate decision can be subdivided into at least two stages, licensing and execution, which might have different regulatory relationships with cell proliferation, in addition, this new concept may provide a clue for developing new strategies against obesity.

  16. Ethanol inhibits human bone cell proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friday, K.E.; Howard, G.A. (University of Washington, Seattle (USA))

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  17. Aging and Immortality in a Cell Proliferation Model

    CERN Document Server

    Antal, T; Trugman, S A; Redner, S

    2007-01-01

    We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomeres become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.

  18. Bisphenol A Inhibits Cell Proliferation and Reduces the Motile Potential of Murine LM8 Osteosarcoma Cells.

    Science.gov (United States)

    Kidani, Teruki; Yasuda, Rie; Miyawaki, Joji; Oshima, Yusuke; Miura, Hiromasa; Masuno, Hiroshi

    2017-04-01

    The aim of this study was to examine the effect of bisphenol A (BPA) on the proliferation and motility potential of murine LM8 osteosarcoma cells. LM8 cells were treated for 3 days with or without 80 μM BPA. The effect of BPA on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine (BrdU) incorporation study. Ethanol-fixed cells were stained with hematoxylin-eosin (H&E) to visualize cell morphology. Cell motility was assayed using inserts with uncoated membranes in invasion chambers. Expression of cell division cycle 42 (CDC42) was determined by immunofluorescence staining and western blotting. BPA reduced the DNA content of cultures and the number of BrdU-positive cells. BPA induced a change in morphology from cuboidal with multiple filopodia on the cell surface to spindle-shaped with a smooth cell surface. BPA-treated cells expressed less CDC42 and were less motile than untreated cells. BPA inhibited DNA replication and cell proliferation. BPA inhibited filopodia formation and motile potential by inhibiting CDC42 expression in LM8 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ... of cell proliferation while an inverted microscope was employed for the analysis of ... μΜ concentration of CQ without affecting normal human skin keratinocyte cell line, K38.

  20. Effect of Mitomycin on DNA Damage and Proliferation of Gastric Cancer Cell in vitro%丝裂霉素对体外胃癌细胞DNA损伤和增殖的影响

    Institute of Scientific and Technical Information of China (English)

    贾金海; 李勇; 张晓琳; 何英辉

    2012-01-01

    目的 探讨丝裂霉素对体外胃癌细胞DNA损伤和增殖的影响.方法 选用不同浓度丝裂霉素处理体外培养的胃癌细胞SGC-7901,利用免疫荧光和Western blot技术,分别检测γH2AX的焦点形成和蛋白水平变化;使用MTT法检测SGC-7901细胞的增殖情况.结果 丝裂霉素的作用浓度和作用时间存在交互效应,除400 μg/ml外,平均γH2AX焦点数和焦点细胞率呈逐渐增加趋势(P<0.05);400μg/ml时,6h组平均γH2AX焦点数和焦点细胞率低于4h组,差异有统计学意义(P<0.05).随丝裂霉素作用时间延长,γH2AX蛋白水平呈先升后降趋势,差异有统计学意义(P<0.05).MTT结果显示,丝裂霉素对SGC-7901细胞的增殖有明显抑制作用(P<0.05).结论 γH2AX可敏感反应丝裂霉素对胃癌细胞DNA的损伤,丝裂霉素对体外胃癌细胞增殖抑制明显.%Objective To study mitomycin - induced DNA damage and proliferation inhibition of gastric cancer cells by detection of γH2AX in vitro. Methods Mitomycin with different concentrations was used to incubate gastric cancer cell line SGC-7901 cells in vitro. Focus formation and protein levels of 7 H2AX were detected by immunofluorescence and western-blotting techniques, respectively, MTT assay was used to detect the proliferation of gastric cancer cell. Results The mitomycin existed concentration and time interaction effect. Except 400 μg/ml, the average number of γH2AX foci and focus cell rate were gradually increased (P<0. 05). At 400 μg/ml, in 6 h group average number of γH2AX foci and focus of cell rate were less than those in 4 h group (P<0. 05). With time of mitomycin treatment prolonged, γH2AX protein levels were increased and then decreased (P<0. 05). MMC significantly inhibited the proliferation of SGC-7901 (P<0.05). Conclusion γH2AX was a sensitive marker to predict DNA damage and proliferation inhibition of gastric cancer cell induced by Mitomycin C in vitro.

  1. NSAIDs and Cell Proliferation in Colorectal Cancer.

    Science.gov (United States)

    Ettarh, Raj; Cullen, Anthony; Calamai, Alvise

    2010-06-24

    Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration), could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  2. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  3. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas;

    2011-01-01

    The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and t......, the GC B cells of Dnmt1 hypomorphic animals showed evidence of increased DNA damage, suggesting dual roles for DNMT1 in DNA methylation and double strand DNA break repair.......The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation...... and the role of DNA methyltransferases in the formation of GCs. DNA methylation profiling revealed a marked shift in DNA methylation patterning in GC B cells versus resting/naive B cells. This shift included significant differential methylation of 235 genes, with concordant inverse changes in gene expression...

  4. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  5. Aging and immortality in a cell proliferation model.

    Science.gov (United States)

    Antal, T; Blagoev, K B; Trugman, S A; Redner, S

    2007-10-07

    We investigate a model of cell division in which the length of telomeres within a cell regulates its proliferative potential. At each division, telomeres undergo a systematic length decrease as well as a superimposed fluctuation due to exchange of telomere DNA between the two daughter cells. A cell becomes senescent when one or more of its telomeres become shorter than a critical length. We map this telomere dynamics onto a biased branching-diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. Using first-passage ideas, we find a phase transition between finite lifetime and immortality (infinite proliferation) of the cell population as a function of the influence of telomere shortening, fluctuations, and cell division.

  6. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kurki, P; Ogata, K; Tan, E M

    1988-04-22

    Proliferating cell nuclear antigen (PCNA)/cyclin is an intranuclear polypeptide antigen that is found in both normal and transformed proliferating cells. We have recently described two mouse monoclonal antibodies reacting with PCNA. In this report we describe the application of these antibodies to the study of proliferating human cells by indirect immunofluorescence microscopy and by flow cytometry. A fixation/permeation procedure was developed in order to obtain satisfactory binding of monoclonal PCNA-specific antibodies to proliferating cells. This method involved fixation with 1% paraformaldehyde followed by methanol treatment. For the staining of cells in suspension with the IgM type monoclonal antibodies lysolecithin was added to the paraformaldehyde solution to achieve a better permeation by the antibody molecules. This procedure gave a good ratio of specific staining relative to the background staining. It also preserved the shape and normal architecture of the cells as judged by visual microscopic observation and by light scatter measurements using a flow cytometer. Furthermore, this fixation technique permits simultaneous labeling of DNA by propidium iodide and PCNA by monoclonal antibodies. PCNA was detected in various types of normal and transformed proliferating cells by indirect immunofluorescence. Quiescent peripheral blood mononuclear cells were PCNA-negative whereas a fraction of lectin-stimulated lymphocytes became PCNA-positive. Similarly, early passages of fetal skin fibroblasts were PCNA-positive but non-proliferating senescent fibroblasts of later passages were PCNA-negative. The association of PCNA-staining by monoclonal antibodies with cell proliferation was confirmed by flow cytometry. Simultaneous labeling of PCNA and DNA showed that the PCNA signal increased during the G1 phase of the cell cycle, reached its maximum in the S-phase, and declined during the G2/M phase. Using cell sorting we demonstrated that mitotic cells had a very low PCNA

  7. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  8. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways

    NARCIS (Netherlands)

    Passarinho, P.A.; Ketelaar, M.J.; Xing, M.; Arkel, van J.; Maliepaard, C.A.; Weemen, W.M.J.; Joosen, R.V.L.; Lammers, M.; Herdies, L.; Boer, de B.; Geest, van der A.H.M.; Boutilier, K.A.

    2008-01-01

    Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a

  9. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  10. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    Science.gov (United States)

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  11. Deviating the level of proliferating cell nuclear antigen in Trypanosoma brucei elicits distinct mechanisms for inhibiting proliferation and cell cycle progression.

    Science.gov (United States)

    Valenciano, Ana L; Ramsey, Aaron C; Mackey, Zachary B

    2015-01-01

    The DNA replication machinery is spatially and temporally coordinated in all cells to reproduce a single exact copy of the genome per division, but its regulation in the protozoan parasite Trypanosoma brucei is not well characterized. We characterized the effects of altering the levels of proliferating cell nuclear antigen, a key component of the DNA replication machinery, in bloodstream form T. brucei. This study demonstrated that tight regulation of TbPCNA levels was critical for normal proliferation and DNA replication in the parasite. Depleting TbPCNA mRNA reduced proliferation, severely diminished DNA replication, arrested the synthesis of new DNA and caused the parasites to accumulated in G2/M. Attenuating the parasite by downregulating TbPCNA caused it to become hypersensitive to hydroxyurea. Overexpressing TbPCNA in T. brucei arrested proliferation, inhibited DNA replication and prevented the parasite from exiting G2/M. These results indicate that distinct mechanisms of cell cycle arrest are associated with upregulating or downregulating TbPCNA. The findings of this study validate deregulating intra-parasite levels of TbPCNA as a potential strategy for therapeutically exploiting this target in bloodstream form T. brucei.

  12. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    Directory of Open Access Journals (Sweden)

    Yoko Endo

    Full Text Available Quiescent hepatic stem cells (HSCs can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1, an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  13. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  14. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  15. Cell Proliferation Tracking Using Graphene Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Ronan Daly

    2012-01-01

    Full Text Available The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies.

  16. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  18. Transient fluctuations of intracellular zinc ions in cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Maret, Wolfgang, E-mail: womaret@utmb.edu [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  19. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  20. Mir-33 regulates cell proliferation and cell cycle progression.

    Science.gov (United States)

    Cirera-Salinas, Daniel; Pauta, Montse; Allen, Ryan M; Salerno, Alessandro G; Ramírez, Cristina M; Chamorro-Jorganes, Aranzazu; Wanschel, Amarylis C; Lasuncion, Miguel A; Morales-Ruiz, Manuel; Suarez, Yajaira; Baldan, Ángel; Esplugues, Enric; Fernández-Hernando, Carlos

    2012-03-01

    Cholesterol metabolism is tightly regulated at the cellular level and is essential for cellular growth. microRNAs (miRNAs), a class of noncoding RNAs, have emerged as critical regulators of gene expression, acting predominantly at posttranscriptional level. Recent work from our group and others has shown that hsa-miR-33a and hsa-miR-33b, miRNAs located within intronic sequences of the Srebp genes, regulate cholesterol and fatty acid metabolism in concert with their host genes. Here, we show that hsa-miR-33 family members modulate the expression of genes involved in cell cycle regulation and cell proliferation. MiR-33 inhibits the expression of the cyclin-dependent kinase 6 (CDK6) and cyclin D1 (CCND1), thereby reducing cell proliferation and cell cycle progression. Overexpression of miR-33 induces a significant G 1 cell cycle arrest in Huh7 and A549 cell lines. Most importantly, inhibition of miR-33 expression using 2'fluoro/methoxyethyl-modified (2'F/MOE-modified) phosphorothioate backbone antisense oligonucleotides improves liver regeneration after partial hepatectomy (PH) in mice, suggesting an important role for miR-33 in regulating hepatocyte proliferation during liver regeneration. Altogether, these results suggest that Srebp/miR-33 locus may cooperate to regulate cell proliferation, cell cycle progression and may also be relevant to human liver regeneration.

  1. Study on Taxol in Inhibiting Human Leukemia Cell Proliferation and Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵小英; 张晓红; 徐磊; 张行

    2004-01-01

    Objective: To explore the effects of Taxol in inhibiting human leukemia k562 cell proliferation and inducing apoptosis in vitro. Methods: Human leukemia K562 cells were treated with Taxol of different concentrations for 12-72 hrs. Cell proliferation was evaluated by MTT assay and morphological changes of apoptosis were examined by microscopy. Cell apoptosis was determined by flow cytometry (FCM) and DNA gel electrophoresis. Results: Growth of K562 cells was inhibited by Taxol with an IC50 value of 0.84 μg/mi.Typical nuclear condensation and apoptosis bodies were observed as early as 24 hrs after a 0.5 μg/ml Taxol treatment; Apoptotic rate of the Taxol-treated K562 cells increased from 3.7% to 24.0% in 24 hrs. No DNA ladder was observed by DNA gel electrophoresis. Conclusion: Taxol could inhibit K562 cell growth and induce apoptosis in vitro.

  2. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  3. Role of Cell Proliferation and DNA Damage in the Formation of Rat Dental Fluorosis Induced by Fluoride%细胞增殖和DNA损伤在大鼠氟斑牙形成中的作用研究

    Institute of Scientific and Technical Information of China (English)

    贺凌飞; 邹志辉; 钟苑芳; 谢谦; 潘宣; 余日安

    2011-01-01

    Objective: To explore the role of cell proliferation and DNA damage in the formation of rat dental fluorosis induced by fluoride.Methods: Male SD rats were provided with distilled water to drink containing NaF at different doses (10, 50 and 100 mg/L respectively) for 60 or 90 days.The rat model for dental fluorosis was made.The cell cycle of proliferation was detected by flowcytometry in mandibular incisor ameloblasts and odontoblasts, and the DNA damage was also measured with single cell gel electrophoresis (or comet assay).Results: NaF at the doses of 50and 100 mg/L for 60 d and 90 d could increase serum fluoride concentration significantly, statistical analysis yielded close relationship between the dose of NaF in water and the level of NaF in serum, and the relative coefficient was 0.995 7 (P<0.01) and 0.9880 (P<0.05) respectively.NaF at the doses of 50 and 100 mg/L could cause dental fluorosis at rat mandibular incisor obviously, but 10 mg/L NaF failed to induce dental fluorosis for 60 and 90 days.Compared with control, olive tail moment of ameloblasts and odontoblasts at the doses of 10, 50, and 100 mg/L NaF were increased significantly (P<0.05) for 60 and 90 days.At the same doses, olive tail moment of group for 90 days were more than those of 60 days obviously (P<0.05).After 60 days treatment, NaF reduced the cell number of G2/M phase in cell cycle at the dose of 10 mg/L, but increased the cell number of G2/M phase at the doses of 50 and 100 mg/L after 90 days, and the changes of cell cycle were not significant (P>0.05) in rat ameloblasts and odontoblasts.Conclusion: It was suggested that ameloblast and odontoblast proliferation as well as their DNA damage could play roles in the formation of rat dental fluorosis induced by fluoride, but the mechanisms in detail needs to be studied further.%目的:研究在氟中毒引起氟斑牙时,氟对大鼠切牙细胞增殖和DNA损伤的影响.方法:给雄性SD大鼠饮用含10,50,100 mg/L Na

  4. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    Science.gov (United States)

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  5. Phosphorothioate oligodeoxyribonucleotides induce in vitro proliferation of chicken B-cells.

    Science.gov (United States)

    Wattrang, Eva

    2009-10-15

    The study aimed to evaluate short synthetic oligodeoxyribonucleotides (ODN) as inducers of proliferation of chicken peripheral blood mononuclear cells (PBMC) and to identify the proliferating cells. A panel of different ODN; with phosphodiester and/or phosphorothioate backbone, with and without CpG-motifs, was therefore assessed for in vitro induction of proliferation. Six complete phosphorothioate ODN induced proliferation of PBMC while the complete phosphodiester or chimeric phosphodiester/phosphorohiate ODN did not. Moreover, CpG-motifs were not essential for induction of proliferation as responses to CpG-ODN were similar to those of their GpC controls. Two stimulatory phosphorothioate ODN were also used in phosphodiester form. In this comparison, only the phosphorothioate ODN were active despite the identical nucleotide sequences of their phosphodiester counterparts. In order to deliver DNA to the cytoplasm and decrease degradation of ODN by nucleases, stimulating as well as inactive ODN were treated with lipofectin prior to induction. However, proliferative responses were not influenced by lipofectin treatment and in analogy, none of the inactive ODN induced proliferation after lipofectin treatment. Among PBMC, ODN-responding cells were identified as predominantly Bu-1, immunoglobulin and major histocompatibility complex class II expressing cells, while CD3 expressing cells were not responding. Using magnetic cell separation of Bu-1 expressing cells prior to culture it was found that Bu-1 depleted cells did not proliferate upon ODN stimulation while the Bu-1 enriched cells were able to proliferate upon this stimulus. Taken together, among ODN in the present panel, only phosphorothioate ODN induced proliferation of PBMC. Responses were induced regardless of the presence of CpG-motifs and were not influenced by addition of lipofectin. Amid the chicken PBMC, predominantly cells of a B-cell phenotype proliferated in response to ODN stimulation and they were able

  6. Effects of genistein on proliferation and DNA damage of irradiated human liver L-02 cells%Genistein对受辐射L-02人肝细胞增殖和DNA损伤的影响

    Institute of Scientific and Technical Information of China (English)

    类春燕; 沈秀华; 张乃宁; 丛峰松; 马俐君; 宋立华

    2012-01-01

    Objective To investigate the radioprotective effects of genistein (GEN) against radiation-induced DNA damage in human liver cell line L-02. Methods (1)L-02 cells were treated with different concentrations of GEN (1, 5, 10, and 20 μmol/L) for 24 h, and then irradiated with X-ray at the doses of 6, 8, 12,16,and 20 Gy. Forty-eight hours after irradiation, MTT method was applied to examine the proliferation of L-02 cells. (2)L-02 cells were treated with different concentrations of GEN (1,5, 10, and 20 μmol/L) for 24 h, and then irradiated with X-ray at the doses of 8 Gy (300 cGy/min) . Single cell gel electrophoresis was used to determine the DNA damage after radiation . Results (1) After irradiation with 6, 8 and 12 Gy of X-ray, the cell proliferation rate of 5 μmol/L GEN-pretreated group was significantly increased compared to radiation alone (R) group (P<0. 05). But no significant increase was observed in GEN-pretreated groups irradiated with 16 Gy and 20 Gy of X-ray compared with R group. (2)As for the DNA damage, no comet cells were detected in normal control group or all GEN-trealed groups without irradiation. After irradiation with 8 Gy of X-ray for 24 h, comet incidences were less than 1% in all GNE-pretreated groups and R group, and comet tail length showed no significant difference between different groups. At 48 h after irradiation, the comet incidence of R group was (24. 2±1. 2)% and the comet tail length was (283. 6±22. 3) μm, while both comet incidence and tail length of GEN-pretreated groups were significantly lower than those of R group (P<0. 05). The comet incidence and tail length of R group were significantly decreased 72 h after irradiation compared with 48 h after irradiation (P< 0. 05), and those in 1 μmol/L and 5μmol/L GEN-pretreated groups were still significantly lower than those of R group

  7. Bromodeoxyuridine Inhibits Cancer Cell Proliferation In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Lindsay H. Levkoff

    2008-08-01

    Full Text Available The thymidine analog bromodeoxyuridine (BrdU is incorporated into newly synthesized DNA and has been shown to increase the susceptibility of incorporating cells to ionizing radiation. However, in the absence of secondary stressors, BrdU is thought to substitute relatively benignly for thymidine and is commonly used to “birth-date” proliferative cells. We report a novel antiproliferative effect of BrdU on cancer cells, which is independent of its role in radiosensitization. A single, brief in vitro exposure to BrdU induces a profound and sustained reduction in the proliferation rate of all cancer cells examined. Cells do not die but variably up-regulate some senescence-associated proteins as they accumulate in the G1 phase of the cell cycle. Bromodeoxyuridine also impairs the proliferative capacity of primary tumor-initiating human glioma cells and may therefore represent a means of targeting cancer stem cells. Finally, conservative in vivo BrdU regimens—in the absence of any other treatment—significantly suppress the progression of gliomas in the highly aggressive, syngeneic RG2 model. These results suggest that BrdU may have an important role as an adjunctive therapeutic for a wide variety of cancers based on new insights into its effect as a negative regulator of cell cycle progression.

  8. Hypusine is essential for eukaryotic cell proliferation.

    Science.gov (United States)

    Park, M H; Lee, Y B; Joe, Y A

    1997-01-01

    Hypusine [N epsilon-(4-amino-2-hydroxybutyl)lysine] occurs in all eukaryotes at one residue in a highly conserved protein, the putative eukaryotic translation initiation factor 5A (eIF-5A, old terminology eIF-4D). This unusual amino acid is produced in a unique posttranslational modification reaction that involves the conjugation of the 4-aminobutyl moiety of the polyamine spermidine to the epsilon-amino group of a specific lysine residue of the eIF-5A precursor protein to form the deoxyhypusine [N epsilon-(4-aminobutyl)lysine] residue and its subsequent hydroxylation. The strict specificity of hypusine synthesis, its derivation from spermidine and its requirement for the activity of eIF-5A and for eukaryotic cell proliferation have raised keen interest in the physiological function of the hypusine-containing protein, eIF-5A.

  9. Development of ethynyl-2'-deoxyuridine chemical probes for cell proliferation.

    Science.gov (United States)

    Lovitt, Carrie J; Hilko, David H; Avery, Vicky M; Poulsen, Sally-Ann

    2016-09-15

    A common method of evaluating cellular proliferation is to label DNA with chemical probes. 5-Ethynyl-2'-deoxyuridine (EdU) is a widely utilized chemical probe for labeling DNA, and upon incorporation, EdU treatment of cells is followed by a reaction with a small molecule fluorescent azide to allow detection. The limitations when using EdU include cytotoxicity and a reliance on nucleoside active transport mechanisms for entry into cells. Here we have developed six novel EdU pro-labels that consist of EdU modified with variable lipophilic acyl ester moieties. This pro-label:chemical probe relationship parallels the prodrug:drug relationship that is employed widely in medicinal chemistry. EdU and EdU pro-labels were evaluated for their labeling efficacy and cytotoxicity. Several EdU pro-label analogues incorporate into DNA at a similar level to EdU, suggesting that nucleoside transporters can be bypassed by the pro-labels. These EdU pro-labels also had reduced toxicity compared to EdU.

  10. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Cunningham Michael

    2006-01-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  11. The nucleolus: a paradigm for cell proliferation and aging

    Directory of Open Access Journals (Sweden)

    Comai L.

    1999-01-01

    Full Text Available The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA genes are rapidly transcribed by RNA polymerase I (pol I molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  12. The nucleolus: a paradigm for cell proliferation and aging.

    Science.gov (United States)

    Comai, L

    1999-12-01

    The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA) genes are rapidly transcribed by RNA polymerase I (pol I) molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA) synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  13. Inhibition of tumor cell proliferation by Coleon C.

    Science.gov (United States)

    Xing, Xiu; Wu, Hezhen; Wang, Xiaoming; Huang, Yongping; Li, Qing; Li, Changlong; Yang, Yanfang; Liu, Yanwen; Liu, Jianwen

    2008-04-01

    Coleon C (6,11,12,14,16-pentahydroxyabieta-5,8,11,13-tetraen-7-one), extracted from Coleus forskohlii Briq., was investigated for its anti-tumor activity on eight human tumor cell lines (95-D, A375, HeLa, A431, MKN45, BEL7402, LoVo and HL60) and two normal ones (293, L02) by MTT and colony-forming assay in vitro. The results indicated that A375 was the most sensitive of all the cell lines. Hoechst 33258 staining showed fragmentation and condensation of chromatin. DNA ladder assay indicated the fragments of DNA because of apoptosis. Flow cytometric analysis demonstrated hypodiploid cells existed in A375 after Coleon C treatment. In the acute toxicity studies of C57BL/6 mice, LD(50 )of Coleon C was 1496+/-150 mg/kg. In the model of Lewis lung carcinoma, the average tumor weight in groups injected with 80 mg/kg Coleon C decreased by 48.9+/-14.3% compared with that of the control. These results indicate that Coleon C could effectively inhibit tumor cell proliferation and growth by inducing apoptosis with low toxicity. To our knowledge, this is the first report on the anti-tumor activity of Coleon C both in vitro and in vivo.

  14. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Science.gov (United States)

    Evans, Vanessa A; Kumar, Nitasha; Filali, Ali; Procopio, Francesco A; Yegorov, Oleg; Goulet, Jean-Philippe; Saleh, Suha; Haddad, Elias K; da Fonseca Pereira, Candida; Ellenberg, Paula C; Sekaly, Rafick-Pierre; Cameron, Paul U; Lewin, Sharon R

    2013-01-01

    Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.

  15. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Vanessa A Evans

    Full Text Available Latently infected resting CD4(+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+ T cells and syngeneic myeloid dendritic cells (mDC can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+ T cells. Gene expression in non-proliferating CD4(+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+ T cells, which is predominantly mediated through signalling during DC-T cell contact.

  16. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  17. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells

    Institute of Scientific and Technical Information of China (English)

    Li-Feng Qi; Zi-Rong Xu; Yan Li; Xia Jiang; Xin-Yan Han

    2005-01-01

    AIM: To investigate the effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 in vitro and the possible mechanisms involved.METHODS: Chitosan nanoparticles were characterized by particle size, zeta potential, and morphology. After treatment with various concentrations of chitosan nanoparticles (25, 50, 75, 100 μg/mL) at various time intervals, cell proliferation, ultrastructural changes, DNA fragmentation, mitochondrial membrane potential (MMP),cell cycle phase distribution and apoptotic peaks of MGC803 cells were analyzed by MTT assay, electron microscopy,DNA agarose gel electrophoresis, and flow cytometry.RESULTS: Chitosan nanoparticles exhibited a small particle size as 65 nm and a high surface charge as 52 mV.Chitosan nanoparticles markedly inhibited cell proliferation of MGC803 cells with an IC50 value of 5.3 μg/mL 48 h after treatment. After treatment with chitosan nanoparticles,the typical necrotic cell morphology was observed by electron microscopy, a typical DNA degradation associated with necrosis was determined by DNA agarose electrophoresis.Flow cytometry showed the loss of MMP and occurrence of apoptosis in chitosan nanoparticles-treated cells.CONCLUSION: Chitosan nanoparticles effectively inhibit the proliferation of human gastric carcinoma cell line MGC803 in vitro through multiple mechanisms, and may be a beneficial agent against human carcinoma.

  18. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells

    Institute of Scientific and Technical Information of China (English)

    Feng-ze WANG; Li SHA; Wei-ying ZHANG; Lian-ying WU; Ling QIAO; Nan LI; Xiao-dong ZHANG; Li-hong YE

    2007-01-01

    Aim: To investigat the effect of Hepatitis B X-interacting protein (HBXIP) on cell proliferation. Methods: A rabbit antibody against HBXIP was generated. The RNA interference (RNAi) fragment of the HBXIP gene was constructed in the pSilencer-3.0-H1 vector termed pSilencer-hbxip. Plasmids of the pcDNA3-hbxip encoding HBXIP gene and pSilencer-hbxip were transfected into human breast carcinoma MCF-7 cells, hepatoma H7402 cells, and the normal human hepatic cell line L-O2, respectively. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro- mide (MTT) assay and 5-bromo-2-deoxyuridine incorporation assay were applied to detect cell proliferation. MCF-7 cells and L-O2 cells in the cell cycle were examined by flow cytometry. The proteins involved in cell proliferation and cell cycle were investigated by Western blot. Results: Overexpression of HBXIP resulted in the promotion of proliferation of MCF-7, H7402, and L-O2 cells. Flow cytometry showed that the overexpression of HBXIP promoted the cell prolifera-tion of MCF-7 and L-O2 cells, and led to an increased cell proliferative index in MCF-7 cells (from 46.25% to 58.28%) and L-O2 cells (from 29.62% to 35.54%). Western blot showed that expression levels of c-Myc, Bcl-2, and proliferating cell nuclear antigen were upregulated in MCF-7, H7402, or L-O2 cells, whereas that of p27 was downregulated. However, the RNAi of HBXIP brought opposite results.Conclusion: One of the functions of HBXIP is its involvement in cell proliferation.

  19. RhoA promotes epidermal stem cell proliferation via PKN1-cyclin D1 signaling

    Science.gov (United States)

    Wang, Fan; Zhan, Rixing; Chen, Liang; Dai, Xia; Wang, Wenping; Guo, Rui; Li, Xiaoge; Li, Zhe; Wang, Liang; Huang, Shupeng; Shen, Jie

    2017-01-01

    Objective Epidermal stem cells (ESCs) play a critical role in wound healing, but the mechanism underlying ESC proliferation is not well defined. Here, we explore the effects of RhoA on ESC proliferation and the possible underlying mechanism. Methods Human ESCs were enriched by rapid adhesion to collagen IV. RhoA(+/+)(G14V), RhoA(-/-)(T19N) and pGFP control plasmids were transfected into human ESCs. The effect of RhoA on cell proliferation was detected by cell proliferation and DNA synthesis assays. Induction of PKN1 activity by RhoA was determined by immunoblot analysis, and the effects of PKN1 on RhoA in terms of inducing cell proliferation and cyclin D1 expression were detected using specific siRNA targeting PKN1. The effects of U-46619 (a RhoA agonist) and C3 transferase (a RhoA antagonist) on ESC proliferation were observed in vivo. Results RhoA had a positive effect on ESC proliferation, and PKN1 activity was up-regulated by the active RhoA mutant (G14V) and suppressed by RhoA T19N. Moreover, the ability of RhoA to promote ESC proliferation and DNA synthesis was interrupted by PKN1 siRNA. Additionally, cyclin D1 protein and mRNA expression levels were up-regulated by RhoA G14V, and these effects were inhibited by siRNA-mediated knock-down of PKN1. RhoA also promoted ESC proliferation via PKN in vivo. Conclusion This study shows that the effect of RhoA on ESC proliferation is mediated by activation of the PKN1-cyclin D1 pathway in vitro, suggesting that RhoA may serve as a new therapeutic target for wound healing. PMID:28222172

  20. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation.

    Science.gov (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-02-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D.

  1. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation.

    Science.gov (United States)

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.

  2. DNA Ligase I Is Not Essential for Mammalian Cell Viability

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-04-01

    Full Text Available Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1 has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  3. DNA ligase I is not essential for mammalian cell viability.

    Science.gov (United States)

    Han, Li; Masani, Shahnaz; Hsieh, Chih-lin; Yu, Kefei

    2014-04-24

    Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1) has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  4. STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation.

    Science.gov (United States)

    Koganti, Siva; Hui-Yuen, Joyce; McAllister, Shane; Gardner, Benjamin; Grasser, Friedrich; Palendira, Umaimainthan; Tangye, Stuart G; Freeman, Alexandra F; Bhaduri-McIntosh, Sumita

    2014-04-01

    DNA damage response (DDR) is a signaling network that senses DNA damage and activates response pathways to coordinate cell-cycle progression and DNA repair. Thus, DDR is critical for maintenance of genome stability, and presents a powerful defense against tumorigenesis. Therefore, to drive cell-proliferation and transformation, viral and cellular oncogenes need to circumvent DDR-induced cell-cycle checkpoints. Unlike in hereditary cancers, mechanisms that attenuate DDR and disrupt cell-cycle checkpoints in sporadic cancers are not well understood. Using Epstein-Barr virus (EBV) as a source of oncogenes, we have previously shown that EBV-driven cell proliferation requires the cellular transcription factor STAT3. EBV infection is rapidly followed by activation and increased expression of STAT3, which mediates relaxation of the intra-S phase cell-cycle checkpoint; this facilitates viral oncogene-driven cell proliferation. We now show that replication stress-associated DNA damage, which results from EBV infection, is detected by DDR. However, signaling downstream of ATR is impaired by STAT3, leading to relaxation of the intra-S phase checkpoint. We find that STAT3 interrupts ATR-to-Chk1 signaling by promoting loss of Claspin, a protein that assists ATR to phosphorylate Chk1. This loss of Claspin which ultimately facilitates cell proliferation is mediated by caspase 7, a protein that typically promotes cell death. Our findings demonstrate how STAT3, which is constitutively active in many human cancers, suppresses DDR, fundamental to tumorigenesis. This newly recognized role for STAT3 in attenuation of DDR, discovered in the context of EBV infection, is of broad interest as the biology of cell proliferation is central to both health and disease.

  5. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  6. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  7. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

    Science.gov (United States)

    Sternberg, Katrin; Gratz, Matthias; Koeck, Kathleen; Mostertz, Joerg; Begunk, Robert; Loebler, Marian; Semmling, Beatrice; Seidlitz, Anne; Hildebrandt, Petra; Homuth, Georg; Grabow, Niels; Tuemmler, Conny; Weitschies, Werner; Schmitz, Klaus-Peter; Kroemer, Heyo K

    2012-01-01

    Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.

  8. Glutamine enhances glucose-induced mesangial cell proliferation.

    Science.gov (United States)

    Lagranha, Claudia J; Doi, Sonia Q; Pithon-Curi, Tania C; Curi, Rui; Sellitti, Donald F

    2008-05-01

    The proliferation of mesangial cells (MC) in the presence of glutamine (0-20 mM) was determined in both low (5 mM) and high (25 mM) glucose-containing medium. Glutamine in a high glucose (HG) environment increased cell proliferation in a dose-dependent manner. Inhibition of glutamine:fructose 6-phosphate amidotransferase (GFAT) and of phosphodiesterase significantly reduced glutamine-induced proliferation. Supraphysiologic levels of glutamine increase MC proliferation in a HG milieu via GFAT and cAMP-dependent pathways, suggesting that glutamine could pose a risk for diabetic nephropathy.

  9. Flow cytometric detection of some activation and proliferation markers in human hematopoietic cell lines.

    Science.gov (United States)

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1996-01-01

    Simultaneous surface marker/DNA, cytoplasmic/DNA or nuclear/DNA staining was used to study proliferation of hematopoietic cell lines (MOLT4, BJAB, P3HR1). Different fixation/permeabilization methods (paraformaldehyde with metanol or Tween 20 or saponin, buffered formaldehyde-acetone) were used providing optimal results of the double stainings. There was a significant increase of S phase and proliferation index (PI) of CD71+ and Ki67+ MOLT4 cells in comparison with their negative counterparts. This indicates their close connection with proliferation. Unlike that, the correlation between the expression of CD38 and S phase or PI was not significant either in MOLT4 or in P3HRI cells. For cytoplasmic markers CD3 (in MOLT4 cells) and CD22 (in BJAB cells) statistically significant (cCD3) and not significant (cCD22) correlation was demonstrated between their expression and S phase or PI. Molecular equivalents of soluble fluorescein values for CD71 were always higher than for CD38. The density of these cell surface markers in addition to the percentage of their expression is of considerable significance for their evaluation as activation or proliferation markers.

  10. Depletion of DNMT3A Suppressed Cell Proliferation and Restored PTEN in Hepatocellular Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Zhujiang Zhao

    2010-01-01

    Full Text Available Promoter hypermethylation mediated by DNA methyltransferases (DNMTs is the main reason for epigenetic inactivation of tumor suppressor genes (TSGs. Previous studies showed that DNMT1 and DNMT3B play an important role in CpG island methylation in tumorigenesis. Little is known about the role of DNMT3A in this process, especially in hepatocellular carcinoma (HCC. In the present study, increased DNMT3A expression in 3 out of 6 HCC cell lines and 16/25 (64% HCC tissues implied that DNMT3A is involved in hepatocellular carcinogenesis. Depletion of DNMT3A in HCC cell line SMMC-7721 inhibited cell proliferation and decreased the colony formation (about 65%. Microarray data revealed that 153 genes were upregulated in DNMT3A knockdown cells and that almost 71% (109/153 of them contain CpG islands in their 5′ region. 13 of them including PTEN, a crucial tumor suppressor gene in HCC, are genes involved in cell cycle and cell proliferation. Demethylation of PTEN promoter was observed in DNMT3A-depleted cells implying that DNMT3A silenced PTEN via DNA methylation. These results provide insights into the mechanisms of DNMT3A to regulate TSGs by an epigenetic approach in HCC.

  11. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  12. The Effect of the LysoPC-induced Endothelial Cell Conditioned Medium on Proliferating Cell Nuclear Antigen Expression of the Calf Thoracic Aorta Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    周洪莲; 姚济华; 余枢

    2002-01-01

    In order to study the effect of and mechanism of lysophosphatidylcholine (LysoPC) on proliferation of the calf thoracic aorta smooth muscle cells (ASMCs), the ASMCs were used to observe the effects of LysoPC-induced endothelial cell conditioned medium on the DNA content and proliferating cell nuclear antigen (PCNA) expression in the calf thoracic ASMCs by flow cytometry and Western Blot technique. It was found that LysoPC-induced endothelial cell conditioned medium could significantly promote PCNA expression of the calf ASMCs, induce the converting of ASMCs from G0/G1 phase to S phase of DNA synthesis, and increase the tyrosine phosphorylation protein expression. Tyrosine protein kinase inhibitor (TPKi) RG50864 could obviously inhibit proliferation of LysoPC-induced ASMCs in a dose-dependence manner. The results indicated that the effect of LysoPC promoting the proliferation of ASMCs is partly evoked by endothelial cell derived growth factors such as PDGF and so on.

  13. Avidin inhibits PHA-induced human peripheral blood mononuclear cell proliferation

    Directory of Open Access Journals (Sweden)

    Cicia Firakania

    2016-04-01

    Full Text Available Background: Cell proliferation occurs not only in normal but also in cancer cells. Most of cell proliferation inhibition can be done by inhibiting the DNA synthesis, notably by intervening the formation of purine or pyrimidine. In purine de novo synthesis, it was assumed that biotin plays a role as a coenzyme in carboxylation reaction, one of the pivotal steps in the purine de novo pathways. The aim of this study was to see the avidin potency to bind biotin and inhibit mitosis.Methods: Peripheral blood mononuclear cell (PBMC was cultured in RPMI-1640 medium and stimulated by phytohemagglutinin (PHA in the presence or absence of interleukin-2 (IL-2, with or without avidin. The effect of avidin addition was observed at 24, 48, and 72 hours for cell proliferation, viability, and cell cycle. Statistical analysis was done by one-way ANOVA.Results: Avidin inhibited cell proliferation and viability in culture under stimulation by PHA with and without IL-2. Cell cycle analysis showed that avidin arrested the progression of PBMC after 72 hours of culture. Most cells were found in G0/G1 phase.Conclusion: Inhibition of biotin utilization by avidin binding can halt cell proliferation.

  14. Cartilage cell proliferation in degenerative TFCC wrist lesions.

    Science.gov (United States)

    Unglaub, Frank; Thomas, Susanne B; Wolf, Maya B; Dragu, Adrian; Kroeber, Markus W; Mittlmeier, Thomas; Horch, Raymund E

    2010-08-01

    The central zone of the triangular fibrocartilage complex (TFCC) of the wrist is thought to be avascular and is generally considered to lack any healing potential. The purpose of this study was to investigate, if cartilage cells of degenerative disc lesions possess any healing or proliferation potential and whether ulna length plays a significant role in the proliferation process. Cells positive for proliferating cell nuclear antigen (PCNA) were found in all specimens. Specimens of patients with ulna positive variance showed a decreased number of PCNA positive cells than specimens of patients with either negative or neutral ulna variance. We found that cartilage cells of Palmer type 2C lesions undergo mitotic cell division, thus exhibiting proliferation capability. It could not be shown that ulnar length is significantly correlated with the number of PCNA positive cells.

  15. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation

    Science.gov (United States)

    2017-01-01

    Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy. PMID:28880866

  16. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels.

    Science.gov (United States)

    Stallings, Jonathan D; Zeng, Yue X; Narvaez, Francisco; Rebecchi, Mario J

    2008-05-16

    We previously reported that phospholipase C-delta1 (PLC-delta1) accumulates in the nucleus at the G1/S transition, which is largely dependent on its binding to phosphatidylinositol 4,5-bisphosphate ( Stallings, J. D., Tall, E. G., Pentyala, S., and Rebecchi, M. J. (2005) J. Biol. Chem. 280, 22060-22069 ). Here, using small interfering RNA (siRNA) that specifically targets rat PLC-delta1, we investigated whether this enzyme plays a role in cell cycle control. Inhibiting expression of PLC-delta1 significantly decreased proliferation of rat C6 glioma cells and altered S phase progression. [3H]Thymidine labeling and fluorescence-activated cell sorting analysis indicated that the rates of G1/S transition and DNA synthesis were enhanced. On the other hand, knockdown cultures released from the G1/S boundary were slower to reach full G2/M DNA content, consistent with a delay in S phase. The levels of cyclin E, a key regulator of the G1/S transition and DNA synthesis, were elevated in asynchronous cultures as well as those blocked at the G1/S boundary. Epifluorescence imaging showed that transient expression of human phospholipase C-delta1, resistant to these siRNA, suppressed expression of cyclin E at the G1/S boundary despite treatment of cultures with rat-specific siRNA. Although whole cell levels of phosphatidylinositol 4,5-bisphosphate were unchanged, suppression of PLC-delta1 led to a significant rise in the nuclear levels of this phospholipid at the G1/S boundary. These results support a role for PLC-delta1 and nuclear phospholipid metabolism in regulating cell cycle progression.

  17. Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao PANG; Ning-ling SUN

    2009-01-01

    Aim: Catecholamine-induced vascular smooth muscle cell (VSMC) proliferation is one of the major events in the pathogenesis of atherosclerosis and vascular remodeling. The calcineurin-NFAT pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the calcineurin-NFAT pathway was involved in the regulation of phenylephrine-induced VSMC proliferation.Methods: Proliferation of VSMC was measured using an MTT assay and cell counts. Localization of NFATcl was detected by immunofluorescence staining. NFATcl-DNA binding was determined by EMSA and luciferase activity analyses.NFATcl and calcineurin levels were assayed by immunoprecipitation.Results: Phenylephrine (PE, an α1-adrenoceptor agonist) increased VSMC proliferation and cell number. Prazosin (an α1-adrenoceptor antagonist), cyclosporin A (CsA, an inhibitor of calcineurin) and chelerythrine (an inhibitor of PKC)decreased PE-induced proliferation and cell number. Additional treatment of VSMC with CsA or chelerythrine further inhibited proliferation and cell number in the chelerythrine-pretreatment group and the CsA-pretreatment group. CsA and chelerythrine alone had no effect on either absorbance or cell number. CsA decreased PE-induced calcineurin levels and activity. NFATc1 was translocated from the cytoplasm to the nucleus upon treatment with PE. This translocation was reversed by CsA. CsA decreased the PE-induced NFATc1 level in the nucleus. PE increased NFAT's DNA binding activity and NFAT-dependent reporter gene expression. CsA blocked these effects.Conclusion: CsA partially suppresses PE-induced VSMC proliferation by inhibiting calcineurin activity and NFATc1 nuclear translocation. The calcineurin-NFATc1 pathway is involved in the hyperplastic growth of VSMC induced by phenylephrine.

  18. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle

    NARCIS (Netherlands)

    Shaltiel, Indra A.; Krenning, Lenno; Bruinsma, Wytse; Medema, René H.

    2015-01-01

    Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cyc

  19. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  20. 6-mercaptopurine promotes energetic failure in proliferating T cells.

    Science.gov (United States)

    Fernández-Ramos, Ana A; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-06-27

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.

  1. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  2. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  3. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  4. Statins inhibited erythropoietin-induced proliferation of rat vascular smooth muscle cells.

    Science.gov (United States)

    Kaneda, Tae; Tsuruoka, Shuichi; Fujimura, Akio

    2010-12-15

    Erythropoietin (EPO) directly stimulates the proliferation of vascular smooth muscle cells, and this is believed to be one of the mechanisms of vascular access failure of hemodialysis patients. However, precise mechanisms of the EPO-induced proliferation of vascular smooth muscle cells are not certain. HMG-CoA reductase inhibitors (statins) are primarily used to reduce cholesterol levels, but also exert other effects, including reno-protective effects. We evaluated the effect of several statins with various hydrophilicities on the EPO-induced proliferation of primary cultured rat vascular smooth muscle cells (VSMCs) in vitro. EPO significantly and concentration-dependently increased DNA synthesis as assessed by [³H]thymidine incorporation, cell proliferation as assessed by WST-1 assay, and activation of the p44/42MAPK pathway. Therapeutic doses of statins (pravastatin, simvastatin, atorvastatin and fluvastatin) in patients with hypercholesterolemia almost completely suppressed all of the EPO-induced effects in a concentration-dependent manner. Co-addition of mevalonic acid almost completely reversed the effects of statins. Statin alone did not affect the basal proliferation capacity of the cells. The effects were almost similar among the statins. We concluded that statins inhibited EPO-induced proliferation in rat VSMCs at least partly through their inhibition of HMG-CoA reductase activity. In the future, statins might prove useful for the treatment of EPO-induced hyperplasia of vascular access. Because the statins all showed comparable effects irrespective of their hydrophilicities, these effects might be a class effect.

  5. Insulin and glucagon regulate pancreatic α-cell proliferation.

    Directory of Open Access Journals (Sweden)

    Zhuo Liu

    Full Text Available Type 2 diabetes mellitus (T2DM results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s regulate α-cell turnover. Lepr(db/Lepr(db (db/db mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.

  6. Analysis of Cell Proliferation and Homeostasis Using EdU Labeling.

    Science.gov (United States)

    Flomerfelt, Francis A; Gress, Ronald E

    2016-01-01

    Determination of cellular proliferation and population turnover is an important tool for research on lymphoid cell function. Historically this has been done using radiolabeled nucleotides or nucleoside analogs, such as BrdU (5-bromo-2-deoxyuridine), that are incorporated into nascent DNA during S-phase. Recently, a new procedure was developed to label nascent DNA using EdU (5-Ethynyl-2-deoxyuridine). This new method overcomes limitations imposed by the procedure used to detect BrdU because EdU detection is based on an easily performed chemical reaction that does not require DNA denaturation, is quick and reproducible, and has a superior signal-to-noise ratio. This technique offers a wide range of opportunities to analyze cellular proliferation, population homeostasis, and cell marking procedures.

  7. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  8. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  9. Evaluation of the Cell Proliferation Process of Ovarian Follicles in Hypothyroid Rats by Proliferation Cell Nuclear Antigen Immunohistochemical Technique

    Directory of Open Access Journals (Sweden)

    M. Moghaddam Dorafshani

    2012-10-01

    Full Text Available Introduction & Objective: The normal females reproductive function , needs hypothalamus-hypophysis-ovarian extensive hormonal messages. Primary hypothyroidism is characterized by reduced production and secretion of thyroid hormones. During follicular growth PCNA (Proliferating Cell Nuclear Antigen and cycklin D complex play an important role in regulating cell proliferation .This study aimed to determine the cell proliferation index and how this process changes induced by thyroid hormone decreased in rat ovarian follicles.Materials & Methods: In this experimental study, 20 Wistar female rats were divided into experimental and control groups. Experimental group was chemically thyroidectomized by administering propylthiouracil (PTU (500 mg per liter of drinking water. The control group received normal drinking water. After three weeks rats were killed and their ovaries dissected and fixed for the histological preparation. Cell proliferation was determined by PCNA and stereological methods were used for counting cells.Results: Cell proliferation index showed a significant decrease in the frequency of follicular growth from prenatal to graafian follicles in hypothyroidism groups(P0.05 . PCNA expression determined that Primary follicle growth begins earlier. Positive PCNA cells were not observed in primordial follicles of the groups.Conclusion: According to the results of our study, this hypothesis is raised that granulosa cells in growing follicles may be increased by follicle adjacent cells in ovarian stroma . Hormonal changes following the reduction of thyroid hormones may greatly affect the cell proliferation index and lead to faster follicle degeneration.(Sci J Hamadan Univ Med Sci 2012; 19 (3:5-15

  10. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  11. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol ?) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol ? is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  12. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  13. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  14. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells.

    Science.gov (United States)

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C

    2016-06-07

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  15. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Katarina Znidar

    2016-01-01

    Full Text Available In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI, DEAD (Asp-Glu-Ala-Asp box polypeptide 60 (DDX60, and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  16. THE EFFECT OF TRANSFECTED CX43 GENE ON THE GJIC AND PROLIFERATION OF GLIOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    浦佩玉; 夏之柏; 黄强; 王春艳; 王广秀

    2002-01-01

    Objective: To evaluate the effect of Cx43 gene on gap junction intercellular communication (GJIC) and proliferation of glioma cells. Methods: Cx43 cDNA was transfected into TJ905 human glioblastoma cells using lipofectamine. The expression of Cx43 was identified by Northern blot analyses, in situ hybridization and immunohistochemistry. MTT assay and average number of AgNORs (Argyrophlic nuclear organizer regions) were used to determine the cell proliferation. TUNEL method was used for detection of cell apoptosis, and scrape loading and dye tranfer method for examination of GJIC. Results: The Cx43 expression was greatly upregulated when Cx43 gene was transfected into TJ905 glioma cells. The cell proliferation was inhibited while the cell apoptosis was not increased and GJIC was significantly restored in the glioma cells tranfected with Cx43 gene. Conclusion: Cx43 gene has an inhibitory effect on the glioma cell proliferation, but no effect on induction of cell apoptosis. The restoration of GJIC may be the major mechanism involved in its effect. Cx43 gene can be the candidate for gene therapy of gliomas.

  17. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  18. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  19. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    Science.gov (United States)

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  20. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  1. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  2. Mechanism of Suppression on Proliferation of QGY Cell by Oxaliplatin

    Institute of Scientific and Technical Information of China (English)

    HE Song; ZUO Guo-qing; ZHANG Yan; TANG Wei-xue; LIU Chang-an

    2007-01-01

    Objective: To observe the effects of oxaliplatin(L-OHP) on proliferation of human hepatoma cell line QGY in vitro and to investigate the mechanism. Methods: The inhibition of proliferation in QGY cell was assayed by MTT-test. Morphologic changes were observed under light microscope and electronic microscope. Distribution of cell cycle and apoptosis were analyzed using flow cytometry. The expressions of cell cycle proteins and apoptosis-associated proteins were detected with immuno-histochemical technique. Results: Oxaliplatin could inhibit the proliferation of QGY cells and the inhibition depended on the exposure time and dose. The cells showed morphologic changes of the early stage of apoptosis under the light microscope: the shrunk round cells, condensed cytoplasma and pycnosis of nucleus. Apoptotic cells and apoptotic body could be found under the transmission electronic microscope. The analysis of cell cycle indicated that oxaliplatin blocked cells at S and G2/M phases and the cells of G0/Gl phase reduced. When treated with oxaliplatin for 72h, the expressions of cyclin A and Bax were up-regulated, mutant type P53, Bcl-2 and Myc were down-regulated, and Fas was not changed. Conclusion: Oxaliplatin could inhibit the proliferation of the hepatoma cell lines. Cells were blocked at S and G2/M phases. The apoptosis was related to the up-regulation of Bax and down-regulation of mutant type P53, Bcl-2 and Myc. Oxaliplatin could not induce apoptosis through the Fas pathway.

  3. Arecoline suppresses HaCaT cell proliferation through cell cycle regulatory molecules.

    Science.gov (United States)

    Zhou, Zhong-Su; Li, Ming; Gao, Feng; Peng, Jie-Ying; Xiao, Hai-Bo; Dai, Li-Xia; Lin, Shi-Rong; Zhang, Rui; Jin, Long-Yu

    2013-06-01

    Betel nut chewing is the most common cause of oral submucous fibrosis (OSF). Arecoline is the main component of the betel nut, and is associated with the occurrence and development of OSF through cytotoxicity, genotoxicity and DNA damage. Similar types of stimuli elicit differential responses in different cells. In the present study, we investigated the effects of arecoline on the HaCaT epithelial and Hel fibroblast cell lines. The data showed that arecoline affected HaCaT cell morphology. MTT assay revealed that arecoline suppressed HaCaT cell proliferation. Furthermore, we found that arecoline induced the cell cycle arrest of HaCaT cells. In comparison with the untreated control cells, following treatment with ≥75 µg/ml arecoline an increased percentage of HaCaT cells remained at the G0/G1 phase of the cell cycle, accompanied by a reduced percentage of cells in the S phase. However, arecoline treatment did not significantly alter Hel cell cycle distribution. In the HaCaT epithelial cells, arecoline downregulated expression of the G1/S phase regulatory proteins cyclin D1, CDK4, CDK2, E2F1 as determined by reverse transcription-PCR analysis and western blotting. In summary, arecoline inhibits HaCaT epithelial cell proliferation and survival, in a dose-dependent manner, and cell cycle arrest in the G1/S phase, while this is not obvious in the Hel fibroblast cells. Potentially, our findings may aid in the prevention of arecoline-associated human OSF.

  4. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  5. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Congjun; Evans, Chheng-Orn [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States); Stevens, Victoria L. [Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia (United States); Owens, Timothy R. [Emory University, School of Medicine, Atlanta, Georgia (United States); Oyesiku, Nelson M., E-mail: noyesik@emory.edu [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States)

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  6. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    Science.gov (United States)

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  7. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas

    2011-01-01

    The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and t...

  8. Bcl11b mutations identified in murine lymphomas increase the proliferation rate of hematopoietic progenitor cells

    Directory of Open Access Journals (Sweden)

    Söderkvist Peter

    2007-10-01

    Full Text Available Abstract Background The telomeric region of mouse chromosome 12 has previously shown frequent allelic loss in murine lymphoma. The Bcl11b gene has been identified and suggested as a candidate tumor suppressor gene within this region. In this study, we aimed to elucidate whether Bcl11b is mutated in lymphomas with allelic loss, and whether the mutations we detected conferred any effect on cell proliferation and apoptosis. Methods Mouse lymphomas induced by 1,3-butadiene or 2',3'-dideoxycytidine were analysed for mutations in the Bcl11b gene using single strand conformation analysis and direct DNA sequencing. Effects on cell proliferation by the detected mutations were studied by expressing wild-type and mutant Bcl11b in the cytokine-dependent hematopoietic progenitor cell line FDC-P1, lacking endogenous Bcl11b expression. Results Missense and frameshift (FS mutations were identified in 7 of 47 tumors (15%. Interestingly, all mutations were found between amino acids 778–844 which encode the three C-terminal DNA-binding zinc fingers. In FDC-P1 cells, wild-type Bcl11b suppressed cell proliferation, whereas the mutated versions (S778N, K828T, Y844C and FS823 enhanced proliferation several-fold. Conclusion The genetic alterations detected in this study suggest that the three C-terminal zinc fingers of Bcl11b are important for the DNA-binding. Cell proliferation was suppressed by overexpression of wild-type Bcl11b but enhanced by mutant Bcl11b, indicating that these mutations may be an important contributing factor to lymphomagenesis in a subset of tumors.

  9. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun

    2005-01-01

    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  10. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  11. Potential action of androstenedione on the proliferation and apoptosis of stromal endometrial cells

    Directory of Open Access Journals (Sweden)

    Anido Mabel

    2004-12-01

    Full Text Available Abstract Background Hyperandrogenic conditions have been associated with a high prevalence of endometrial pathologies related to cell survival. However, the action of androgens on proliferation and apoptosis in endometrial cells is poorly understood. Therefore, the aim of the present study was to evaluate the effect of androstenedione on cell proliferation, cell death and expression of estrogen receptor (ER isoforms and proteins related to apoptosis in endometrial cells using two in vitro experimental approaches. Methods The endometrial tissue was obtained from 20 eumenorrheic women [28.7 (25 – 35 years] during the early secretory phase. We analyzed cell proliferation (immunohistochemistry of Ki-67 and spectrophotometric assay; apoptosis (DNA fragmentation (TUNEL and Annexin V-FITC binding; ER-alpha, ER-beta bcl-2 and bax mRNA abundance (RT-PCR in explants and isolated endometrial epithelial (EEC and stromal cells (ESC incubated with androstenedione 1 micro mol/l (A4 or A4 plus hydroxyflutamide 10 micro mol/l (F for 24 h. Results In explants, A4 induced an increase of cell proliferation and a decrease on apoptosis in the stromal compartment (p Conclusions These results indicate that androstenedione may modulate cell survival, expression of ER-beta and proteins related to apoptosis, suggesting a potential mechanism that associates the effect of hyperandrogenemia on the endometrial tissue.

  12. Electrospun fiber membranes enable proliferation of genetically modified cells

    Directory of Open Access Journals (Sweden)

    Borjigin M

    2013-02-01

    Full Text Available Mandula Borjigin*, Chris Eskridge*, Rohina Niamat, Bryan Strouse, Pawel Bialk, Eric B KmiecDepartment of Chemistry, Delaware State University, Dover, DE, USA *These authors contributed equally to this work Abstract: Polycaprolactone (PCL and its blended composites (chitosan, gelatin, and lecithin are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher. Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. Keywords: nanofibers, PCL-biomaterial blends, miscibility, gene editing, cell proliferation

  13. Splice variants DNMT3B4 and DNMT3B7 overexpression inhibit cell proliferation in 293A cell line.

    Science.gov (United States)

    Shao, Guo; Zhang, Ran; Zhang, Shu; Jiang, Shuyuan; Liu, You; Zhang, Wei; Zhang, Yanbo; Li, Jinping; Gong, Kerui; Gong, Keri; Hu, Xin-Rong; Jiang, Shi-Wen

    2013-05-01

    DNA methyltransferase 3B (DNMT3B) is critical in abnormal DNA methylation patterns in cancer cells. Nearly 40 alternatively spliced variants of DNMT3B have been reported. DNMT3B4 and DNMT3B7 are two kinds of splice variants of DNMT3B lacking the conserved methyltransferase motif. In this study, the effect of inactivation of DNMT3B variants, DNMT3B4 and DNMT3B7, on cell proliferation was assessed. pCMV-DNMT3B4 and pCMV-DNMT3B7 recombinant plasmids were developed and stably transfected into 293A cells. 293A cells transfected with plasmid pCMV-DNMT3B4 or pCMV-2B were then treated with G418 to the stable cell lines. After that, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method was used for testing the proliferation level, and flow cytometry was used to test cell cycle distribution of the cell line. The expression of p21 was detected by real-time PCR and Western blot. The methylation status of p21 promoter was detected by methylation-specific PCR (MS-PCR). It was found that DNMT3B4 and DNMT3B7 overexpression could inhibit cell proliferation and increase the expression of p21. Cell cycle analysis demonstrated that inactivation of DNMT3B variants overexpression inhibited cell cycle progression. Inactivation of DNMT3B variants overexpression facilitated p21 expression to delay 293A cell proliferation. These findings indicate that inactivation of DNMT3B variants might play an important role in cell proliferation correlating with the change of p21.

  14. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  15. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  16. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-08-18

    The study aimed to investigate the effects of SOX15 on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low-expression SOX15 Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were performed to examine expression of SOX15 mRNA and SOX15 protein respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low-expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while downregulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell cycle arrest in G1 stage. In addition, transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also downregulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and upregulation of SOX15 could be valuable for EC treatment. ©2017 The Author(s).

  17. Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangbo; Zhang, Lu; Ding, Nianhua; Yang, Xinghui; Zhang, Jin; He, Jiang; Li, Zhi; Sun, Lun-Quan, E-mail: lunquansun@csu.edu.cn

    2015-05-29

    Epigenetic inactivation of genes plays a critical role in many important human diseases, especially in cancer. A core mechanism for epigenetic inactivation of the genes is methylation of CpG islands in genome DNA, which is catalyzed by DNA methyltransferases (DNMTs). The inhibition of DNMTs may lead to demethylation and expression of the silenced tumor suppressor genes. Although DNMT inhibitors are currently being developed as potential anticancer agents, only limited success is achieved due to substantial toxicity. Here, we utilized a multiplex selection system to generate efficient RNA-cleaving DNAzymes targeting DNMT1. The lead molecule from the selection was shown to possess efficient kinetic profiles and high efficiency in inhibiting the enzyme activity. Transfection of the DNAzyme caused significant down-regulation of DNMT1 expression and reactivation of p16 gene, resulting in reduced cell proliferation of bladder cancers. This study provides an alternative for targeting DNMTs for potential cancer therapy. - Highlights: • Identified DNMT1-targeted DNAzymes by multiplex selection system. • Biochemically characterized a lead DNAzyme with high kinetic efficiency. • Validated DNMT1-targeted DNAzyme in its enzymatic and cellular activities.

  18. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    Science.gov (United States)

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. The Long Noncoding RNA SPRIGHTLY Regulates Cell Proliferation in Primary Human Melanocytes.

    Science.gov (United States)

    Zhao, Wei; Mazar, Joseph; Lee, Bongyong; Sawada, Junko; Li, Jian-Liang; Shelley, John; Govindarajan, Subramaniam; Towler, Dwight; Mattick, John S; Komatsu, Masanobu; Dinger, Marcel E; Perera, Ranjan J

    2016-04-01

    The long noncoding RNA SPRIGHTLY (formerly SPRY4-IT1), which lies within the intronic region of the SPRY4 gene, is up-regulated in human melanoma cells compared to melanocytes. SPRIGHTLY regulates a number of cancer hallmarks, including proliferation, motility, and apoptosis. To better understand its oncogenic role, SPRIGHTLY was stably transfected into human melanocytes, which resulted in increased cellular proliferation, colony formation, invasion, and development of a multinucleated dendritic-like phenotype. RNA sequencing and mass spectrometric analysis of SPRIGHTLY-expressing cells revealed changes in the expression of genes involved in cell proliferation, apoptosis, chromosome organization, regulation of DNA damage responses, and cell cycle. The proliferation marker Ki67, minichromosome maintenance genes 2-5, antiapoptotic gene X-linked inhibitor of apoptosis, and baculoviral IAP repeat-containing 7 were all up-regulated in SPRIGHTLY-expressing melanocytes, whereas the proapoptotic tumor suppressor gene DPPIV/CD26 was down-regulated, followed by an increase in extracellular signal-regulated kinase 1/2 phosphorylation, suggesting an increase in mitogen-activated protein kinase activity. Because down-regulation of DPPIV is known to be associated with malignant transformation in melanocytes, SPRIGHTLY-mediated DPPIV down-regulation may play an important role in melanoma pathobiology. Together, these findings provide important insights into how SPRIGHTLY regulates cell proliferation and anchorage-independent colony formation in primary human melanocytes.

  20. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways.

    Science.gov (United States)

    Passarinho, Paul; Ketelaar, Tijs; Xing, Meiqing; van Arkel, Jeroen; Maliepaard, Chris; Hendriks, Mieke Weemen; Joosen, Ronny; Lammers, Michiel; Herdies, Lydia; den Boer, Bart; van der Geest, Lonneke; Boutilier, Kim

    2008-10-01

    Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover. A number of the target genes have been shown to be expressed in meristems or to be involved in cell wall modifications associated with dividing/growing cells. One of the BBM target genes encodes an ADF/cofilin protein, ACTIN DEPOLYMERIZING FACTOR9 (ADF9). The consequences of BBM:GR activation on the actin cytoskeleton were followed using the GFP:FIMBRIN ACTIN BINDING DOMAIN2 (GFP:FABD) actin marker. Dexamethasone-mediated BBM:GR activation induced dramatic changes in actin organization resulting in the formation of dense actin networks with high turnover rates, a phenotype that is consistent with cells that are rapidly undergoing cytoplasmic reorganization. Together the data suggest that the BBM transcription factor activates a complex network of developmental pathways associated with cell proliferation and growth.

  1. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation

    Institute of Scientific and Technical Information of China (English)

    Arash; Khojasteh; Saeed; Reza; Motamedian; Maryam; Rezai; Rad; Mehrnoosh; Hasan; Shahriari; Nasser; Nadjmi

    2015-01-01

    AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells(h DPSCs) on four commercially available scaffold biomaterials. METHODS: hD PSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. h DPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureO ss(Allograft), Cerabone(Xenograft), PLLA(Synthetic), and OSTEON Ⅱ Collagen(Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy(SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase(ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except Sure Oss(Allograft) supported h DPSC adhesion, proliferation and differentiation. hD PSCs seeded on PLLA(Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hD PSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA(Synthetic) and OSTEON ⅡCollagen(Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone(Xenograft) and OSTEON Ⅱ Collagen(Composite) scaffolds, the h DPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hD PSCs. Hence, it may be useful in combination with hD PSCs for cell-based reconstructive therapy.

  2. Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation.

    Science.gov (United States)

    Cheng, Fan; McLaughlin, Patricia J; Banks, William A; Zagon, Ian S

    2009-09-01

    Naltrexone (NTX) is a potent opioid antagonist that promotes cell proliferation by upregulating DNA synthesis through displacement of the tonically active inhibitory peptide, opioid growth factor (OGF) from its receptor (OGFr). To investigate how NTX enters cells, NTX was fluorescently labeled [1-(N)-fluoresceinyl NTX thiosemicarbazone; FNTX] to study its uptake by living cultured cells. When human head and neck squamous cell carcinoma cell line (SCC-1) was incubated with FNTX for as little as 1 min, cells displayed nuclear and cytoplasmic staining of FNTX as determined by fluorescent deconvolution microscopy, with enrichment of fluorescent signal in the nucleus and nucleolus. The same temporal-spatial distribution of FNTX was detected in a human pancreatic cancer cell line (MIA PaCa-2), African green monkey kidney cell line (COS-7), and human mesenchymal stem cells (hMSCs). FNTX remained in cells for as long as 48 h. FNTX was internalized in SCC-1 cells when incubation occurred at 4 degrees C, with the signal being comparable to that recorded at 37 degrees C. A 100-fold excess of NTX or a variety of other opioid ligands did not alter the temporal-spatial distribution of FNTX. Neither fluorescein-labeled dextran nor fluorescein alone entered the cells. To study the effect of FNTX on DNA synthesis, cells incubated with FNTX at concentrations ranging from 10(-5) to 10(-8) M had a 5-bromo-2'-deoxyuridine index that was 39-82% greater than for vehicle-treated cells and was comparable to that of unlabeled NTX (37-70%). Taken together, these results suggested that NTX enters cells by passive diffusion in a nonsaturable manner.

  3. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    Science.gov (United States)

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  4. Cholesterol induces proliferation of chicken primordial germ cells.

    Science.gov (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  5. Inflammation and proliferation act together to mediate intestinal cell fusion.

    Directory of Open Access Journals (Sweden)

    Paige S Davies

    Full Text Available Cell fusion between circulating bone marrow-derived cells (BMDCs and non-hematopoietic cells is well documented in various tissues and has recently been suggested to occur in response to injury. Here we illustrate that inflammation within the intestine enhanced the level of BMDC fusion with intestinal progenitors. To identify important microenvironmental factors mediating intestinal epithelial cell fusion, we performed bone marrow transplantation into mouse models of inflammation and stimulated epithelial proliferation. Interestingly, in a non-injury model or in instances where inflammation was suppressed, an appreciable baseline level of fusion persisted. This suggests that additional mediators of cell fusion exist. A rigorous temporal analysis of early post-transplantation cellular dynamics revealed that GFP-expressing donor cells first trafficked to the intestine coincident with a striking increase in epithelial proliferation, advocating for a required fusogenic state of the host partner. Directly supporting this hypothesis, induction of augmented epithelial proliferation resulted in a significant increase in intestinal cell fusion. Here we report that intestinal inflammation and epithelial proliferation act together to promote cell fusion. While the physiologic impact of cell fusion is not yet known, the increased incidence in an inflammatory and proliferative microenvironment suggests a potential role for cell fusion in mediating the progression of intestinal inflammatory diseases and cancer.

  6. Cell cycle and epigenetic changes of plant DNA

    Directory of Open Access Journals (Sweden)

    Shevchenko G. V.

    2010-04-01

    Full Text Available Plants can apply various strategies to minimize environmental impact. One of the strategies is heritable modifications of gene expression which occur without changing original DNA sequence and are known as epigenetic. Signaling pathway Rb-E2F (retinoblastoma (Rb-transcription factor E2F/DP connects the cell cycle with factors, modifying structure of chromatin and DNA. It also coordinates cell proliferation and differentiation influenced by external stimuli. The article highlights the activity of Rb-E2F/DP signaling pathway and its connection with the epigenetic changes of DNA in plants.

  7. ENHANCEMENT OF NIH3T3 CELL PROLIFERATION BY EXPRESSING MACROPHAGE COLONY STIMULATING FACTOR IN NUCLEI

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 李戈; 林永敏; 张斌; 郑国光

    2003-01-01

    Objective: To explore the effects of nuclear M-CSF on the process of tumorigenesis. Methods: Functional part of M-CSF cDNA was inserted into an eukaryotic expression plasmid pCMV/myc/nuc, which can add three NLS to the C-terminal of the expressed protein and direct the protein into the cell nuclei. The constructed plasmid was transferred into NIH3T3 cells and the cell clones were selected by G-418 selection. Cell clones stable expressing target protein were identified by RT-PCR, ABC immunohistochemistry assay and Western blot. Cell growth kinetics analyses through growth curves, cell doubling time, MTT test and anti-sense oligodeoxynucleotide (ASODN) inhibiting cell growth test were performed to identify cells proliferation potential. Results: The transfected cells showed elevated proliferation potential over the control cells. Conclusion: Abnormal appearance of M-CSF in nucleus could enhance cell proliferation, which suggests that cytokine isoforms within cell nucleus might play transcription factor-like role.

  8. Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Li GAO; Bao-en SHAN; Jing CHEN; Jiang-hui LIU; Da-xiang SONG; Bao-cheng ZHU

    2005-01-01

    Aim: To examine the effect of venom from the spider Macrothele raven on cell proliferation and cytotoxicity in human cervical carcinoma, HeLa cells. Methods:Morphological and biochemical signs of apoptosis appeared using acridine orange-ethidium bromide (AO/EB) staining. Marked morphological changes in HeLa cells after treatment with spider venom were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell proliferation and cytotoxicity were determined by [methyl-3H] thymidine assay ([3H]TdR) and lactate dehydrogenase (LDH) release, respectively. DNA fragmentation and cell cycle distribution were monitored using flow cytometry. In addition, Western blot analysis was used to evaluate the level of caspase-3 expression. In vivo examination of the inhibition of the size of tumors in nude mice treated with spider venom was measured. Results: Marked morphological changes were observed using AO/EB staining, SEM and TEM assay. Spider venom at concentrations of 10-40 mg/L caused dose- and time-dependent inhibition of HeLa cell proliferation.The ratio of apoptosis and necrosis increased. The activity of caspase-3 was upregulated after spider venom treatment. In vivo study of tumor size revealed that tumors significantly decreased in size from controls to tumors treated for 3 weeks with spider venom (P<0.05). Conclusion: The inhibition of HeLa cells by the venom of the spider Macrothele raveni was carried out in three ways: induction of apoptosis, necrosis of toxicity damage and direct lysis. Spider venom is a novel anti-tumor material both in vitro and in vivo.

  9. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    Science.gov (United States)

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.

  10. Cell type specific applicability of 5-ethynyl-2'-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry.

    Science.gov (United States)

    Diermeier-Daucher, Simone; Clarke, Scott T; Hill, Dani; Vollmann-Zwerenz, Arabel; Bradford, Jolene A; Brockhoff, Gero

    2009-06-01

    Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) for thymidine substitution instead of BrdU (5-bromo-2'-deoxyuridine) in cell proliferation assays has recently been proposed. However, the effect of EdU on cell viability, DNA synthesis, and cell cycle progression and consequently its usability for dynamic cell proliferation analysis in vitro has not been explored. We compared the effect of EdU and BrdU incorporation into SK-BR-3 and BT474 breast cancer cells and the impact on cell cycle kinetics, cell viability, and DNA damage. We found that EdU can be used not only for pulse but also for continuous cell labeling and henceforth in high resolution EdU/Hoechst quenching assays. BrdU and EdU proliferation assays based on click chemistry revealed comparable results. However, cell viability of SK-BR-3 breast cancer cells was highly affected by long term exposure to EdU. Both SK-BR-3 as well as BT474 cells show cell cycle arrests upon long term EdU treatment whereas only SK-BR-3 cells were driven into necrotic cell death by long term exposure to EdU. In contrast BT474 cells appeared essentially unharmed by EdU treatment in terms of viability. Consequently using EdU enables highly sensitive and quantitative detection of proliferating cells and facilitates even continuous cell cycle assessment. Nevertheless, potential cellular susceptibility needs to be individually evaluated.

  11. UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells

    NARCIS (Netherlands)

    Riva, F.; Zuco, V.; Vink, A.A.; Supino, R.; Prosperi, E.

    2001-01-01

    The tumour suppressor gene TP53 plays an important role in the regulation of DNA repair, and particularly of nucleotide excision repair. The influence of p53 status on the efficiency of the principal steps of this repair pathway was investigated after UV-C irradiation in the human ovarian carcinoma

  12. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation.

    Science.gov (United States)

    Yuan, Dexiao; Ye, Shuang; Pan, Yan; Bao, Yizhong; Chen, Honghong; Shao, Chunlin

    2013-10-09

    Cadmium (Cd) is a well-established carcinogen, however, the underlying mechanism, especially the role of epigenetics in it, is still poorly understood. Our previous work has disclosed that when rats were exposed to 0.5mg CdCl2 (kgd) for 8 and 12 weeks, the growth of peripheral white blood cells (WBC) was obviously stimulated but no over-proliferation of granulocyte-monocyte (GM) progenitor cells was observed in the bone marrow, suggesting that the over-proliferation of lymphocyte was promoted by Cd exposure. Is DNA-methylation involved in this Cd-stimulated cell proliferation? The present study found that when human B lymphoblast HMy2.CIR cells were exposed to Cd with a dose lower than 0.1μM for 3 months, both cell proliferation and mRNA expressions of DNA methyltransferases of DNMT1 and DNMT3b were increased, while the mRNA of tumor suppressor gene p16 was remarkably decreased. Furthermore, the level of genomic DNA methylation was increased and the CpG island in p16 promoter was hypermethylated in the Cd-exposed cells. A DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), diminished Cd-stimulated cell proliferation associated with p16 overexpression. Our results suggested that the chronic exposure of low dose Cd could induce hypermethylation of p16 promoter and hence suppress p16 expression and then promote cell proliferation, which might contribute to Cd-induced carcinogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    OpenAIRE

    Ela Alcántara-Flores; Alicia Enriqueta Brechú-Franco; Patricia García-López; Leticia Rocha-Zavaleta; Rebeca López-Marure; Mariano Martínez-Vázquez

    2015-01-01

    Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senes...

  14. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation.

    Science.gov (United States)

    De Preter, Géraldine; Neveu, Marie-Aline; Danhier, Pierre; Brisson, Lucie; Payen, Valéry L; Porporato, Paolo E; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard

    2016-01-19

    Glucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines. To further investigate the link between glycolysis and proliferation, a pharmacological inhibitor of the pentose phosphate pathway (PPP) was used. We demonstrated that reduction of PPP activity decreases cancer cells proliferation, with a profound effect in Warburg-phenotype cancer cells. The crucial role of the PPP in sustaining cancer cells proliferation was confirmed using siRNAs against glucose-6-phosphate dehydrogenase, the first and rate-limiting enzyme of the PPP. In addition, we found that dichloroacetate (DCA), a new clinically tested compound, induced a switch of glycolytic cancer cells to a more oxidative phenotype and decreased proliferation. By demonstrating that DCA decreased the activity of the PPP, we provide a new mechanism by which DCA controls cancer cells proliferation.

  15. GABA Regulates Stem Cell Proliferation before Nervous System Formation.

    OpenAIRE

    Wang, Doris,; Kriegstein, Arnold; Ben-Ari, Yehezkel

    2008-01-01

    International audience; HISTONE H2AX-DEPENDENT GABAA RECEPTOR REGULATION OF STEM CELL PROLIFERATION: Andäng M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibañez CF, Ernfors P. Nature20084517177:460-46418185516 Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differenc...

  16. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells

    Directory of Open Access Journals (Sweden)

    Huawei Zeng

    2017-01-01

    Full Text Available Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2, a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  17. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  18. Induction of Multifunctional Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T Cells Capable of Proliferation in Healthy Subjects by Using a Prime-Boost Regimen of DNA- and Modified Vaccinia Virus Ankara-Vectored Vaccines Expressing HIV-1 Gag Coupled to CD8+ T-Cell Epitopes†

    Science.gov (United States)

    Goonetilleke, Nilu; Moore, Stephen; Dally, Len; Winstone, Nicola; Cebere, Inese; Mahmoud, Abdul; Pinheiro, Susana; Gillespie, Geraldine; Brown, Denise; Loach, Vanessa; Roberts, Joanna; Guimaraes-Walker, Ana; Hayes, Peter; Loughran, Kelley; Smith, Carole; De Bont, Jan; Verlinde, Carl; Vooijs, Danii; Schmidt, Claudia; Boaz, Mark; Gilmour, Jill; Fast, Pat; Dorrell, Lucy; Hanke, Tomas; McMichael, Andrew J.

    2006-01-01

    A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8+ T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2× MVA.HIVA) (n = 8) or two doses of placebo (2× placebo) (n = 4). The second group received 2× pTHr.HIVA followed by one dose of MVA.HIVA (n = 8) or 3× placebo (n = 4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-γ) ELISPOT (group mean, 210 spot-forming cells/106 cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2× MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-γ ELISPOT assay, positive responses mainly mediated by CD4+ T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2× MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4+ T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8+ T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1β. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees. PMID:16641265

  19. Novel cAMP targets in cell proliferation

    NARCIS (Netherlands)

    Kuiperij, Hinke Bertha

    2004-01-01

    cAMP is a second messenger that plays a role in a wide variety of biological processes, one of which is the regulation of cell proliferation. Adenylate cyclases generate cAMP in the cell upon activation, followed by binding to and activation of its direct targets, PKA and Epac. PKA is a protein kina

  20. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis.

    Science.gov (United States)

    Pagotto, Romina Maria; Pereyra, Elba Nora; Monzón, Casandra; Mondillo, Carolina; Pignataro, Omar Pedro

    2014-04-01

    Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

  1. Stimulation of cell proliferation by calcium and a calcimimetic compound

    NARCIS (Netherlands)

    Mailland, M; Waelchli, R; Ruat, M; Boddeke, HGWM; Seuwen, K

    Some mesenchymal cells respond to stimulation by specific cations with increased cell proliferation. In the present study we have investigated whether the parathyroid/kidney/brain calcium-sensing receptor (PCaR) can mediate such mitogenic responses. We have expressed the recombinant rat PCaR in

  2. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    proliferation while an inverted microscope was employed for the analysis of alterations in the ... cells in CQ-treated and untreated control HONE-1 cell cultures was 53.67 and 3.78 %, respectively .... SPSS 11.5 statistical software were used for.

  3. Notch as a Driver of Gastric Epithelial Cell Proliferation.

    Science.gov (United States)

    Demitrack, Elise S; Samuelson, Linda C

    2017-05-01

    The gastric epithelium is sustained by a population of stem cells that replenish the various mature epithelial lineages throughout adulthood. Regulation of stem and progenitor cell proliferation occurs via basic developmental signaling pathways, including the Notch pathway, which recently was described to promote gastric stem cell proliferation in both mice and human beings. Current cancer theory proposes that adult stem cells that maintain gastrointestinal tissues accumulate mutations that promote cancerous growth, and that basic signaling pathways, such as Notch, which stimulate stem cell proliferation, can promote tumorigenesis. Accordingly, constitutive Notch activation leads to unchecked cellular proliferation and gastric tumors in genetic mouse models. Furthermore, there is emerging evidence suggesting that the Notch pathway may be activated in some human gastric cancers, supporting a potential role for Notch in gastric tumorigenesis. In this review, we first summarize the current understanding of gastric stem cells defined by genetic mouse studies, followed by discussion of the literature regarding Notch pathway regulation of gastric stem cell function in the mouse and human beings. Notch action to maintain gastric epithelial cell homeostasis and the cellular consequences of dysregulated signaling to promote tumorigenesis are discussed, including studies associating Notch activation with human gastric cancer. Finally, we compare and contrast Notch function in the stomach with other gastrointestinal tissues, including the intestine, to highlight the sensitivity of the stomach to Notch-induced tumors.

  4. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  5. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Ben-Shun Hu; Jing-Wang Tan; Guo-Hua Zhu; Dan-Feng Wang; Xian Zhou; Zhi-Qiang Sun

    2012-01-01

    AIM:To investigate the effects of the WWOX gene on the human hepatic carcinoma cell line SMMC-7721.METHODS:Full-length WWOX cDNA was amplified from normal human liver tissues.Full-length cDNA was subcloned into pEGFP-N1,a eukaryotic expression vector.After introduction of the WWOX gene into cancer cells using liposomes,the WWOX protein level in the cells was detected through Western blotting.Cell growth rates were assessed by methyl thiazolyl tetrazolium (MTT) and colony formation assays.Cell cycle progression and cell apoptosis were measured by flow cytometry.The phosphorylated protein kinase B (AKT)and activated fragments of caspase-9 and caspase-3 were examined by Western blotting analysis.RESULTS:WWOX significantly inhibited cell proliferation,as evaluated by the MTT and colony formation assays.Cells transfected with WWOX showed significantly higher apoptosis ratios when compared with cells transfected with a mock plasmid,and overexpression of WWOX delayed cell cycle progression from G1 to S phase,as measured by flow cytometry.An increase in apoptosis was also indicated by a remarkable activation of caspase-9 and caspase-3 and a dephosphorylation of AKT (Thr308 and Ser473) measured with Western blotting analysis.CONCLUSION:Overexpression of WWOX induces apoptosis and inhibits proliferation of the human hepatic carcinoma cell line SMMC-7721.

  7. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2

    Science.gov (United States)

    Naito, Masashi; Mori, Masaki; Inagawa, Masayo; Miyata, Kohei; Hashimoto, Naohiro; Tanaka, Sakae; Asahara, Hiroshi

    2016-01-01

    Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO) mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs) exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs), in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2. PMID:27415617

  8. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2.

    Directory of Open Access Journals (Sweden)

    Masashi Naito

    2016-07-01

    Full Text Available Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs, in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2.

  9. Promoter Methylation Analysis Reveals that KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

    Science.gov (United States)

    Ryland, Katherine E; Hawkins, Allegra G.; Weisenberger, Daniel J.; Punj, Vasu; Borinstein, Scott C.; Laird, Peter W.; Martens, Jeffrey R.; Lawlor, Elizabeth R.

    2015-01-01

    Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via post-translational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft tissue tumor that is characterized by over-expression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared to non-malignant adult tissues. Ion channels regulate a variety of biological processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of Kv1.5 channel function. Implications This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dyregulation to tumorigenesis. PMID:26573141

  10. Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Yu Cui; Heng Xie; Kang-Biao Qi; Yan-Ming He; Jin-Fa Wang

    2005-01-01

    AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic "DNA ladder"was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.

  11. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  12. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  13. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  14. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  15. 7-Piperazinethylchrysin inhibits melanoma cell proliferation by ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights ... patients suffering from the metastatic stage of ... Cell lines and culture conditions ..... Safety of botanical ingredients in personal care.

  16. Fluidic control over cell proliferation and chemotaxis

    Science.gov (United States)

    Groisman, Alex

    2006-03-01

    Microscopic flows are almost always stable and laminar that allows precise control of chemical environment in micro-channels. We describe design and operation of several microfluidic devices, in which various types of environments are created for different experimental assays with live cells. In a microfluidic chemostat, colonies of non-adherent bacterial and yeast cells are trapped in micro-chambers with walls permeable for chemicals. Fast chemical exchange between the chambers and nearby flow-through channels creates essentially chemostatic medium conditions in the chambers and leads to exponential growth of the colonies up to very high cell densities. Another microfluidic device allows creation of linear concentration profiles of a pheromone (α-factor) across channels with non-adherent yeast cells, without exposure of the cells to flow or other mechanical perturbation. The concentration profile remains stable for hours enabling studies of chemotropic response of the cells to the pheromone gradient. A third type of the microfluidic devices is used to study chemotaxis of human neutrophils exposed to gradients of a chemoattractant (fMLP). The devices generate concentration profiles of various shapes, with adjustable steepness and mean concentration. The ``gradient'' of the chemoattractant can be imposed and reversed within less than a second, allowing repeated quantitative experiments.

  17. Automated measurement of cell motility and proliferation

    Directory of Open Access Journals (Sweden)

    Goff Julie

    2005-04-01

    Full Text Available Abstract Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell

  18. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  19. Prostate progenitor cells proliferate in response to castration

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    2014-07-01

    Full Text Available Androgen-deprivation is a mainstay of therapy for advanced prostate cancer but tumor regression is usually incomplete and temporary because of androgen-independent cells in the tumor. It has been speculated that these tumor cells resemble the stem/progenitor cells of the normal prostate. The purpose of this study was to examine the response of slow-cycling progenitor cells in the adult mouse prostate to castration. Proliferating cells in the E16 urogenital sinus were pulse labeled by BrdU administration or by doxycycline-controlled labeling of the histone-H2B GFP mouse. A small population of labeled epithelial cells in the adult prostate localized at the junction of the prostatic ducts and urethra. Fluorescence-activated cell sorting (FACS showed that GFP label-retaining cells were enriched for cells co-expressing stem cell markers Sca-1, CD133, CD44 and CD117 (4- marker cells; 60-fold enrichment. FACS showed, additionally, that 4-marker cells were androgen receptor positive. Castration induced proliferation and dispersal of E16 labeled cells into more distal ductal segments. When naïve adult mice were administered BrdU daily for 2 weeks after castration, 16% of 4-marker cells exhibited BrdU label in contrast to only 6% of all epithelial cells (P < 0.01. In sham-castrated controls less than 4% of 4-marker cells were BrdU labeled (P < 0.01. The unexpected and admittedly counter-intuitive finding that castration induced progenitor cell proliferation suggests that androgen deprivation therapy in men with advanced prostate cancer could not only exert pleiotrophic effects on tumor sub-populations but may induce inadvertent expansion of tumor stem cells.

  20. Effects of an imprinting procedure on cell proliferation in the chick brain.

    Science.gov (United States)

    Komissarova, N V; Anokhin, K V

    2008-03-01

    We report here studies on the effects of an imprinting procedure on cell proliferation in neonatal chicks in brain structures known to undergo plastic changes in imprinting. Proliferating cells were detected immunohistochemically on brain sections by incorporation of pre-training doses of 5-bromodeoxyuridine (BrdU) into DNA; numbers of new cells were counted in the intermediate medial mesopallium, the intermediate arcopallium, the medial part of the mesopallium and the nidopallium, the dorsocaudal nidopallium, the hippocampus, and the parahippocampal region 24 h and seven days after training. The intermediate medial mesopallium showed an increase in the number of BrdU-positive cells 24 h after training. However, at seven days post-training, the number of BrdU-containing cells decreased in the medial nidopallium and mesopallium, in the dorsocaudal nidopallium, and the right intermediate medial mesopallium. Thus, the imprinting procedure had differently directed transient and long-term influences on the genesis of new cells in the chick brain, inducing the appearance of a large number of cells in the parenchyma of the brain one day after training and decreases in the numbers of cells at later time points. This double effect may be associated with the fact that the imprinting procedure simultaneously initiates two brain processes involving the control of cell proliferation - one related to maturation of a species-specific functional system for tracking individuals of the same species and one related to remembering the characteristics of the actual parent.

  1. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC

    2007-01-01

    Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene

  2. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  3. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  4. Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Victoria C. Foletta

    2016-10-01

    Full Text Available Deuterated water (2H2O, a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules, thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation, protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines. Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

  5. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  6. c-myc Regulates Cell Proliferation during Lens Development

    Science.gov (United States)

    Gomes, Anielle L.; Rodrigues, Paulo M. G.; Martins, Rodrigo A. P.

    2014-01-01

    Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens. PMID:24503550

  7. c-Myc regulates cell proliferation during lens development.

    Directory of Open Access Journals (Sweden)

    Gabriel R Cavalheiro

    Full Text Available Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.

  8. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  9. Opioid-induced proliferation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Sandra Leo

    2009-05-01

    Full Text Available Sandra Leo1,2, Rony Nuydens1, Theo F Meert11Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium; 2Laboratory of Biological Psychology, University of Leuven, Leuven, BelgiumAbstract: Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3, to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings. Keywords: endothelial cells, morphine, cell proliferation, MAPK, nitric oxide, μ3 opioid receptor, angiogenesis

  10. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  11. Ligands of Peroxisome Proliferator-activated Receptor Inhibit Homocysteineinduced DNA Methylation of Inducible Nitric Oxide Synthase Gene

    Institute of Scientific and Technical Information of China (English)

    Yideng JIANG; Jianzhong ZHANG; Jiantuan XIONG; Jun CAO; Guizhong LI; Shuren WANG

    2007-01-01

    Homocysteine (Hcy) is a risk factor for atherosclerosis. It is generally accepted that inducible nitric oxide synthase (iNOS) is a key enzyme in the regulation of vascular disease. The aim of the present study is to investigate the effects of peroxisome proliferator-activated receptor ligands on iNOS in the presence of Hcy in human monocytes. Foam cells, induced by oxidize low density lipoprotein (ox-LDL) and phorbol myristate acetate (PMA) in the presence of different concentrations of Hcy, clofibrate and pioglitazone in human monocytes for 4 d, were examined by oil red O staining. The activity of iNOS was detected by real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis. The capability of DNA methylation was measured by assaying endogenous C5 DNA methyltransferase (C5MTase)activity, and the iNOS promoter methylation level was determined by quantitative MethyLight assays. The results indicated that Hcy increased the activity of C5MTase and the level of iNOS gene DNA methylation,resulting in a decrease of iNOS expression. Clofibrate and pioglitazone could antagonize the Hcy effect on iNOS expression through DNA methylation, resulting in attenuation of iNOS transcription. These findings suggested that Hcy decreased the expression of iNOS by elevating iNOS DNA methylation levels, which can repress the transcription of some genes. Peroxisome proliferator-activated receptor α/γ ligands can down-regulate iNOS DNA methylation, and could be useful for preventing Hcy-induced atherosclerosis by repressing iNOS expression.

  12. Effect of diglycine mutant FAT10 on the proliferation and apoptosis of cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Cui LI

    2015-01-01

    Full Text Available Objective To investigate the effects of FAT10ΔGG, a carboxyl-terminal diglycine deficient mutant, on the proliferation and apoptosis of cervical cancer cell line HeLa. Methods Specimens of cervical carcinoma in situ and normal cervix tissue, 5 each, were collected. The expressive levels of FAT10 protein in these specimens were detected by Western blotting. Sitedirected mutagenesis was applied to construct the mutant pcDNA3.0-flag-FAT10ΔGG plasmid. The HeLa cells were then transiently transfected with wild-type FAT10, FAT10ΔGG and empty vector (used as negative control, and the wild-type HeLa cells served as blank control. The transfection efficiency of FAT10 or FAT10ΔGG was detected by Western blotting, and cell proliferation was determined by CCK-8 assay. Cisplatin was used to induce cell apoptosis after cells were transfected for 24h, and the cell apoptotic rates of all groups were determined by flow cytometry. Results Western blotting showed a significantly increased expression of FAT10 protein in cervical carcinoma tissues compared with that in normal cervical tissue. Over-expression of wild FAT10 in HeLa cells obviously promoted cell proliferation, but this promotion was significantly inhibited in cells transfected with its diglycine mutant. Compared with blank control group (22.7%±4.2% and negative control group (24.1%±3.8%, the apoptotic rate was significantly reduced in wild FAT10 group (10.9%±2.0%, P0.05. Conclusion FAT10 can promote cell proliferation and inhibit cell apoptosis through its carboxyl-terminal diglycine motif, and it may play an essential role in carcinogenesis and development of cancer. DOI: 10.11855/j.issn.0577-7402.2014.12.01

  13. Effects of α-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Su-Gang Shen; Dong Zhang; Heng-Tong Hu; Jun-Hui Li; Zheng Wang; Qing-Yong Ma

    2008-01-01

    AIM: To discuss the expression of α-adrenoreceptors in pancreatic cancer cell lines PC-2 and PC-3 and the effects of α1- and α2-adrenoreceptor antagonists, yohimbine and urapidil hydrochloride, on the cell lines in vitro.METHODS: We cultured the human ductal pancreatic adenocarcinoma cell lines PC-2 and PC-3 and analyzed the mRNA expression of α1- and α2-adrenergic receptors by reverse transcription polymerase chain reaction (RT-PCR).The effects of yohimbine and urapidil hydrochloride on cell proliferation were assessed by 3-(4,5-dimethylthiasol-2-yl)2,4,-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using the terminal deoxyribonucleoticlyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM).RESULTS: PC-2 expressed rnRNA in α1- and α2-adrenoreceptors. MTT assays showed that urapidil hydrochloride had no effect on PC-3 cell lines. However,exposure to urapidil hydrochloride increased DNA synthesis in PC-2 cell lines as compared to the control group. PC-2 cell lines were sensitive to both drugs. The proliferation of the 2 cell lines was inhibited by yohimbine.Cell proliferation was inhibited by yohimbine via apoptosis induction.CONCLUSION: The expression of α1-and α2-adrenoreceptors is different in PC-2 and PC-3 cell lines,which might be indicative of their different functions. Theα2-adrenoceptor antagonist, yohimbine, can inhibit the proliferation of both cell lines and induce their apoptosis,suggesting that yohimbine can be used as an anticancer drug for apoptosis of PC-2 and PC-3 cells.

  14. nm23-H1基因和增殖细胞核抗原在肝癌组织中的表达及其与癌细胞DNA含量的关系%Relationship between nm23-H1, proliferating cell nuclear antigen expression and DNA content of human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    赵新; 丛文铭; 谭璐; 吴孟超

    2001-01-01

    目的 探讨转移抑制基因nm23-H1在肝癌组织中的表达和癌细胞增殖及DNA含量间的关系。方法 应用免疫组织化学染色法检测56例肝癌组织标本中nm23-H1基因和增殖细胞核抗原(PCNA)的表达,应用图像分析系统测定癌细胞DNA含量,分析与肝癌病理生物学行为之间的关系。结果 nm23-H1表达阳性率无包膜组肝癌(29.6%)比包膜完整(64.3%)和包膜突破组肝癌(66.7%)明显减低(P<0.05)。DNA指数(DI)与肝癌包膜情况、组织类型、组织分级也有显著相关性(P<0.05)。nm23-H1表达阴性的肝癌P CNA标记指数(LI)高于nm23-H1阳性者(P<0.05);PCNA标记指数高增殖组肝癌D I值(2.30±0.90)较低增殖组肝癌DI值(1.86±0.7)明显增高(P<0.05)。结论 nm23-H1表达与肝癌包膜形成具有一定关系,并与肝癌增殖活性相关。DNA含量测定结合PCNA免疫组织化学染色可较为准确的反映肝癌浸润侵袭特征和增殖活性。%Objective To evaluate the relationship be tween expressions of nm23-H1, proliferating cell nuclear antigen (PCNA) in hepa tocellular carcinoma and DNA content of cancer cells. Methods The expression of nm23-H1 and PCNA were detected in 56 cases of HCC by us ing immunohistochemistry technique and DNA content of cancer cells were analyzed by DNA imaging analyses system as well in order to find their relationship with biopathologic characters of HCC. Results The expression levels of nm23-H1 in HCC without encapsulation (29.6%) were significantly reduc ed when compared with that with encapsulation (64.3%) or with incomplete capsula tion (66.7%,P<0.05). The increased DNA content of HCC was correlated with n on-encapsulation, compact type and high grade of the tumor (P<0.05). The labeling indexes of PCNA in the group with negative nm23-H1 expression of HCC w ere significantly higher than those in the group with positive nm23-H1 expressi on of HCC (P<0.05). The DI in

  15. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm

    KAUST Repository

    Sabelli, Paolo A.

    2013-04-22

    The endospermof cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ~70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 downregulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1- dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organlevel regulation of endosperm/seed homeostasis.

  16. High-level expression of human calmodulin in E. coli and its effects on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao Jun Li; Jian Guo Wu; Jun Ling Si; Da Wen Guo; Jian Ping Xu

    2000-01-01

    Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to play a vital role in the regulation of cell proliferative cycle[1,2]. Recently, many studies showed that CaM is also present in extracellular fluid such as cell culture media and normal body fluid and has been reported to stimulate proliferation in a range of normal and neoplastic cells, apparently acting as an autocrine growth factor[3-11]. In 1988, Crocker et al reported for the first time that addition of extracellular pure pig brain CaM could promote DNA synthesis and cell [7]proliferation in K562 human leukaemic lymphocytes[7].After that, more and more research was done on extracellular CaM and evidences demonstrated that extracellular CaM could also stimulate cell proliferation in normal human umbilical vein endothelial cells[5], keratinocytes[4], suspension-cultured cells of Angelica Dahurica, etc[6]. CaM is a monomeric protein of 148 amino acids that contains four homologous Ca2 + -binding domains. CaM has been highly conserved throughout the evolution. Only 1 out of 148 amino acids of human CaM is different from that of fish CaM. Complementary DNAs encoding rat, eel, chicken, human, and trypanosome CaM have been cloned.

  17. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.

    Science.gov (United States)

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-05-10

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs.

  18. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  19. Is hypusine essential for eukaryotic cell proliferation?

    Science.gov (United States)

    Park, M H; Wolff, E C; Folk, J E

    1993-12-01

    Hypusine [N epsilon-(4-amino-2-hydroxybutyl)-L-lysine] is a most remarkable amino acid, occurring in all eukaryotic cells, yet occupying only a single position in one protein, eukaryotic protein synthesis initiation factor 5A (eIF-5A). The unusual structure of hypusine, its derivation from the polyamine spermidine, and its increased formation in response to growth stimulation, as well as its limited occurrence in the highly conserved amino acid sequence of eIF-5A, have aroused keen interest in the biological significance of its existence and in its relationship to eIF-5A function.

  20. Inhibition Mechanism of Emodin on Rabbit Vascular Smooth Muscle Cells Proliferation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis and restenosis after angioplasty and vein graft.In this study, MTT colormetry was used to test the effective scope of emodin to inhibit VSMCs proliferation.Flow cytometry and confocal image were adopted to investigate its inhibitive mechanism.The results show that emodin could inhibit the growth and proliferation of VSMCs and the inhibition rate of emodin on VSMCs is 24.6%-94.58%, which is time - and concentration - dependent.Emodin could reduce S phase entry, increase the apoptosis of VSMCs, and reduce the intensity of[Ca2+]i in hPDGF B/B stimulated VSMCs.This research provides theoretical basis for medical application of emodin.It is concluded that emodin could inhibit the growth and proliferation of VSMCs effectively.Decreasing the DNA synthesis, increasing the cell apoptosis and reducing the intensity of[Ca2+]i in hPDGF B/B stimulated VSMCs may be the inhibitive mechanism of emodin against VSMCs proliferation.

  1. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  2. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  3. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  4. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    NARCIS (Netherlands)

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/E

  5. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  6. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    Science.gov (United States)

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP(+) memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP(+) memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.

  7. Effect of Amygdalin on the Proliferation of Hyperoxia-exposed Type Ⅱ Alveolar Epithelial Cells Isolated from Premature Rat

    Institute of Scientific and Technical Information of China (English)

    祝华平; 常立文; 李文斌; 刘汉楚

    2004-01-01

    Summary: The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in AEC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 μmol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 μmol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 μmol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  8. Effect of amygdalin on the proliferation of hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat.

    Science.gov (United States)

    Zhu, Huaping; Chang, Liwen; Li, Wenbin; Liu, Hanchu

    2004-01-01

    The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in A-EC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 micromol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 micromol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 micromol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  9. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  10. Inducible transcript expressed by reactive epithelial cells at sites of olfactory sensory neuron proliferation.

    Science.gov (United States)

    Stoss, Thomas D; Nickell, Melissa D; Hardin, Debra; Derby, Charles D; McClintock, Timothy S

    2004-02-15

    The continuous replacement of cells in the spiny lobster olfactory organ depends on proliferation of new cells at a specific site, the proximal proliferation zone (PPZ). Using representational difference analysis of cDNA, we identified transcripts enriched in the PPZ compared to the mature zone (MZ) of the organ. The 12 clones identified included four novel sequences, three exoskeletal proteins, a serine protease, two protease inhibitors, a putative growth factor, and a sequence named PET-15 that has similarity to antimicrobial proteins of the crustin type. PET-15 mRNA was only detected in epithelial cells. It was abundant in all epithelial cells of the PPZ, but was only detected in the MZ at sites of damage to the olfactory organ. PET-15 mRNA was increased by types of damage that are known to induce proliferation of new olfactory sensory neurons in the olfactory organ. It increased in the PPZ after partial ablation of the olfactory organ and in the MZ after shaving of aesthetasc sensilla. These ipsilateral effects were mirrored by smaller increases in the undamaged contralateral olfactory organ. These contralateral effects are most parsimoniously explained by the action of a diffusible signal. Because epithelial cells are the source of proliferating progenitors in the olfactory organ, the same diffusible signal may stimulate increases in both cellular proliferation and PET-15 mRNA. The uniformity of expression of PET-15 in the PPZ epithelium suggests that the epithelial cells that give rise to new olfactory sensory neurons are a subset of cells that express PET-15.

  11. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Science.gov (United States)

    Stadelmann, Britta; Merino, María C; Persson, Lo; Svärd, Staffan G

    2012-01-01

    In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO). A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI). Reduced intestinal epithelial cell (IEC) proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful and that

  12. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    Full Text Available In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO. A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI. Reduced intestinal epithelial cell (IEC proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful

  13. Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis.

    Science.gov (United States)

    Kuba, Yumani; Ishino, Sonoko; Yamagami, Takeshi; Tokuhara, Masahiro; Kanai, Tamotsu; Fujikane, Ryosuke; Daiyasu, Hiromi; Atomi, Haruyuki; Ishino, Yoshizumi

    2012-11-01

    The DNA sliding clamp is a multifunctional protein involved in cellular DNA transactions. In Archaea and Eukaryota, proliferating cell nuclear antigen (PCNA) is the sliding clamp. The ring-shaped PCNA encircles double-stranded DNA within its central hole and tethers other proteins on DNA. The majority of Crenarchaeota, a subdomain of Archaea, have multiple PCNA homologues, and they are capable of forming heterotrimeric rings for their functions. In contrast, most organisms in Euryarchaeota, the other major subdomain, have a single PCNA forming a homotrimeric ring structure. Among the Euryarchaeota whose genome is sequenced, Thermococcus kodakarensis is the only species with two genes encoding PCNA homologues on its genome. We cloned the two genes from the T. kodakarensis genome, and the gene products, PCNA1 and PCNA2, were characterized. PCNA1 stimulated the DNA synthesis reactions of the two DNA polymerases, PolB and PolD, from T. kodakarensis in vitro. PCNA2, however, only had an effect on PolB. We were able to disrupt the gene for PCNA2, whereas gene disruption for PCNA1 was not possible, suggesting that PCNA1 is essential for DNA replication. The sensitivities of the Δpcna2 mutant strain to ultraviolet irradiation (UV), methyl methanesulfonate (MMS) and mitomycin C (MMC) were indistinguishable from those of the wild-type strain. © 2012 The Authors Genes to Cells © 2012 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. [Identification of proliferating cells in Taenia solium cysts].

    Science.gov (United States)

    Orrego-Solano, Miguel Ángel; Cangalaya, Carla; Nash, Theodore E; Guerra-Giraldez, Cristina

    2014-01-01

    Neoblasts are totipotent cells, solely responsible for the proliferation and maturation of tissues in free-living flatworms. Similar cells have been isolated from parasitic flatworms such as Echinococcus. Taenia solium causes human taeniasis (intestinal) and cysticercosis in humans and pigs. Brain infection with larvae (cysts) of T. solium results in neurocysticercosis which is hyperendemic in Peru, and its treatment is associated with serious neurological symptoms. The proliferative capacity and development stages of T. solium have not been described and the neoblasts of this parasite have not been characterized We looked for cell proliferation in T. solium cysts collected from an infected pig, which were identified when replicating and incorporating bromodeoxyuridine nucleotide detected with a monoclonal antibody. A stable cell line of neoblasts would be useful for systematic in vitro studies on drug efficacy and the biology of T. solium.

  15. Mal/SRF is dispensable for cell proliferation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Barry J Thompson

    Full Text Available The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing--where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development.

  16. Erythropoietin-induced proliferation of gastric mucosal cells

    Institute of Scientific and Technical Information of China (English)

    Kazuro Itoh; Masato Higuchi; Fumio Ishihata; Yushi Sudoh; Soichiro Miura; Yoshio Sawasaki; Kyoko Takeuchi; Shingo Kato; Nobuhiro Imai; Yoichiro Kato; Noriyuki Shibata; Makio Kobayashi; Yoshiyuki Moriguchi

    2006-01-01

    AIM: To analyze the localization of erythropoietin receptor on gastric specimens and characterize the effects of erythropoietin on the normal gastric epithelial proliferation using a porcine gastric epithelial cell culture model.METHODS: Erythropoietin receptor was detected by RT-PCR, Western blotting and immunohistochermistry.Growth stimulation effects of erythropoietin on cultured gastric mucosal cells were determined by ELISA using bromodeoxyuridine (BrdU).RESULTS: Erythropoietin receptor was detected on cultured porcine gastric mucosal epithelial cells.Erythropoietin receptor was also detected histochemically at the base of gastric mucosal epithelium. BrdU assay demonstrated a dose-dependent increase in growth potential of cultured porcine gastric mucosal epithelial cells by administration of erythropoietin, as well as these effects were inhibited by administration of antierythropoietin antibody (P< 0.01).CONCLUSION: These findings indicate that erythropoietin has a potential to proliferate gastric mucosal epithelium via erythropoietin receptor.

  17. An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available BACKGROUND: Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin to have better understanding on the immune system and its regulation mechanisms in shrimps. METHODOLOGY: A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin. Its full-length cDNA was of 2621 bp with an open reading frame (ORF of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3-pLysS. The recombinant protein (rLvIntegrin could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. CONCLUSIONS: LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp.

  18. Akt- and CREB-Mediated Prostate Cancer Cell Proliferation Inhibition by Nexrutine, a Phellodendron amurense Extract

    Directory of Open Access Journals (Sweden)

    Gretchen E. Garcia

    2006-06-01

    Full Text Available Evidence from epidemiological studies suggests that plant-based diets can reduce the risk of prostate cancer. However, very little information is available concerning the use of botanicals in preventing prostate cancer. As a first step toward developing botanicals as prostate cancer preventives, we examined the effect of Nexrutine on human prostate cancer cells. Nexrutine is a herbal extract developed from Phellodendron amurense. Phellodendron extracts have been used traditionally in Chinese medicine for hundreds of years as an antidiarrheal, astringent, and anti-inflammatory agent. The present study investigated its potential antitumor effect on human prostate cancer cells. Our results suggest that it inhibits tumor cell proliferation through apoptosis induction and inhibition of cell survival signaling. The results of the present study indicate that Nexrutine treatment 1 inhibits the proliferation of both androgenresponsive and androgen-independent human prostate cancer cells through induction of apoptosis; 2 reduces levels of pAkt, phosphorylated cAMP response-binding protein (pCREB, and CREB DNA-binding activity; and 3 induces apoptosis in prostate cancer cells stably overexpressing Bcl-2. Further Akt kinase activity was reduced in cells treated with Nexrutine, and ectopic expression of myristoylated Akt protected from Nexrutine induced inhibition of proliferation, implicating a role for Akt signaling.

  19. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    Science.gov (United States)

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  20. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    Science.gov (United States)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-02-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly ( p Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant ( p cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  1. Seasonal cell proliferation in the chemosensory epithelium and brain of red-backed salamanders, Plethodon cinereus.

    Science.gov (United States)

    Dawley, E M; Fingerlin, A; Hwang, D; John, S S; Stankiewicz, C A

    2000-06-01

    The chemosensory epithelium of vertebrates retains the ability to produce new receptor neurons throughout life, presumably as a mechanism to replace aging or damaged receptors. We examined cell division in the main olfactory and vomeronasal epithelia of red-backed salamanders (Plethodon cinereus) because previous studies had shown that the volume of sensory epithelia changes seasonally. Cell division was compared throughout the year by injecting salamanders once with 5-bromo-2'-deoxyuridine (BrdU), which is incorporated into the DNA of cells during DNA synthesis, and sacrificing them one hour after injection. We used immunocytochemistry to locate cells that had arisen from cell division since BrdU injection and compared the number of labeled cells per area among animals. Animals collected in May had significantly more labeled nuclei than animals collected in any other month. However, proliferation rates among the other months were not significantly different and were quite low. Labeled nuclei also were found around the cerebral ventricles of salamanders collected in May, but rarely in any other month, although other tissues in the head often were heavily labeled. Cell proliferation appears to be up-regulated in the chemosensory epithelia and in the telencephalon during May, and we hypothesize that new receptors, and perhaps their interneurons in the telencephalon, are being generated in anticipation of seasonal events that are mediated by chemoreception. Copyright 2000 S. Karger AG, Basel

  2. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    Science.gov (United States)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  3. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  4. Acute acid exposure increases rabbit esophageal cell proliferation.

    Science.gov (United States)

    Carpizo, D R; Reaka, A J; Glaws, W R; Pooley, N; Schmidt, L; Halline, A G; Goldstein, J L; Layden, T J

    1998-02-01

    In the present study we examined whether an acute infusion of HCl into the esophagus of rabbits would cause an increase in esophageal cellular proliferation independent of morphologic evidence of cell injury. To examine this question, the distal two thirds of the rabbit esophagus was infused for 1 hour with either 40 mmol/L HCl or NSS (control), and cellular proliferation was studied 24 and 48 hours later by using bromodeoxyuridine (BrDu) to label the nuclei of dividing cells and ornithine decarboxylase (ODC) enzyme activity as a biochemical index of cell division. Although there was no gross or microscopic evidence of cell necrosis or mucosal inflammation 24 hours after H+ infusion, BrDu labeling of basal cell nuclei was significantly greater 24 hours after H+ infusion (31%+/-6%) as compared with that in control animals infused with NSS (15%+/-4%). This increase in labeling index was paralleled by a threefold greater ODC enzyme activity at 24 hours with H+ infusion. Rete pegs were infrequent in control tissues (4+/-4 rete pegs per 100 microm of esophageal length) or in animals examined 24 hours after acid exposure (4+/-2 rete pegs per 100 microm). However, rete pegs were very prominent 48 hours after acid infusion (22+/-6 rete pegs per 100 microm). A short exposure to acid can cause a significant increase in mucosal proliferation independent of injury, suggesting that esophageal cell acidification either directly or indirectly acts as a tissue mitogen.

  5. Promotion of stem cell proliferation by vegetable peptone.

    Science.gov (United States)

    Lee, J; Lee, J; Hwang, H; Jung, E; Huh, S; Hyun, J; Park, D

    2009-10-01

    Technical limitations and evolution of therapeutic applications for cell culture-derived products have accelerated elimination of animal-derived constituents from such products to minimize inadvertent introduction of microbial contaminants, such as fungi, bacteria or viruses. The study described here was conducted to investigate the proliferative effect of vegetable peptone on adult stem cells in the absence of serum, and its possible mechanisms of action. Cell viability and proliferation were determined using the MTT assay and Click-iT EdU flow cytometry, respectively. In addition, changes in expression of cytokine genes were analysed using MILLIPLEX human cytokine enzyme-linked immunosorbent assay kit. Viability of cord blood-derived mesenchymal stem cells (CB-MSC) and adipose tissue-derived stem cells (ADSC) increased significantly when treated with the peptone. In addition, median value of the group treated with peptone shifted to the right when compared to the untreated control group. Furthermore, quantitative analysis of the cytokines revealed that production of vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-beta1), and interleukin-6 (IL-6) increased significantly in response to treatment with our vegetable peptone in both CB-MSCs and ADSCs. Our findings revealed that the vegetable peptone promotes proliferation of CB-MSCs and ADSCs. In addition, results of this study suggest that induction of stem cell proliferation by vegetable peptone is likely to be related to its induction of VEGF, TGF-beta1, and IL-6 expression.

  6. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    Science.gov (United States)

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  7. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  8. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    Science.gov (United States)

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  9. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    Science.gov (United States)

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.

  10. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    Science.gov (United States)

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  11. Correlation between p53 Status, DNA Ploidy, Proliferation Rate and Nuclear Morphology in Breast Cancer. An Image Cytometric Study

    Directory of Open Access Journals (Sweden)

    Katrin Friedrich

    1997-01-01

    Full Text Available The study was designed to detect differences in the nuclear morphology of tumours and tumour cell populations with different p53 expression in correlation with DNA ploidy and proliferation rate. The paraffin sections from routinely processed samples of 88 breast cancers were immunostained with the monoclonal p53‐antibody DO‐1. After localization and evaluation with a scoring system the sections were destained and stained by the Feulgen method. The nuclei were relocated automatically and measured by means of the image cytometry workstation. Significant differences between the tumours and tumour cell populations with different p53 expression were found in the euploid tumours as well as in the aneuploid tumours and in the breast cancers with a high proliferation rate. The breast cancers with a low immunoreactive score (IRS 1–4 differ from the negative cancers as well as from the cancers with a higher immunoreactive score (IRS 5–12. Evaluating the nuclear populations of the p53 positive cancers, there were differences in the features of the chromatin amount and distribution in the groups of the euploid breast cancers and in cancer with a high proliferation rate. In contrast, the nuclear populations of the aneuploid cancers did not show any differences in their nuclear morphology.

  12. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  13. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Science.gov (United States)

    Uchida, Naoya; Hsieh, Matthew M; Platner, Charlotte; Saunthararajah, Yogen; Tisdale, John F

    2014-01-01

    Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  14. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Naoya Uchida

    Full Text Available Efficient ex vivo transduction of hematopoietic stem cells (HSCs is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation, compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  15. American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway

    Science.gov (United States)

    Wu, Qi; Wang, Wenjuan; Li, Siying; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-01-01

    Ethnopharmcological relevance Ginseng, a folk medicine which has been used for thousands of years in Asia, has been promoted for the treatment or prevention of health problems including cardiovascular disease. However, the molecular mechanism of ginseng-induced cardiovascular protection is unclear. Thus, we investigated signaling mechanism by which American ginseng inhibits vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular disease. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. Rat aortic smooth muscle cells (RASMCs) were exposed to fetal bovine serum (FBS), platelet derived growth factor (PDGF), insulin, or angiotensin II (Ang II) to induce proliferation that was examined by measuring DNA synthesis and cell numbers. Western blot was applied to determine the activations of Jak, Stat, Akt, and ERK. Results American ginseng inhibited RASMC proliferation induced by FBS, PDGF, insulin or Ang II. American ginseng slightly increased both basal and FBS-, PDGF- or Ang II-induced activities of Akt and ERK in RASMCs; however, it dramatically inhibited the activation of Jak2 and Stat3. Conclusion These results demonstrate that American ginseng inhibits VSMC proliferation through suppressing the Jak/Stat pathway. PMID:23041701

  16. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation.

    Science.gov (United States)

    Matsunuma, Ryoichi; Niida, Hiroyuki; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-11-16

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4(DDB2). Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation.

  17. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    Science.gov (United States)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

  18. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  19. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells

    Science.gov (United States)

    Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J.; Huang, Cai

    2017-01-01

    Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells. PMID:28099519

  20. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells.

    Science.gov (United States)

    Jafari, Naser; Kim, Hyunju; Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J; Park, Junsoo; Huang, Cai

    2017-01-01

    Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells.

  1. Links between DNA Replication, Stem Cells and Cancer

    Directory of Open Access Journals (Sweden)

    Alex Vassilev

    2017-01-01

    Full Text Available Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  2. Links between DNA Replication, Stem Cells and Cancer.

    Science.gov (United States)

    Vassilev, Alex; DePamphilis, Melvin L

    2017-01-25

    Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  3. Biciliated ependymal cell proliferation contributes to spinal cord growth.

    Science.gov (United States)

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2012-10-15

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

  4. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    Science.gov (United States)

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  5. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  6. Could the endogenous opioid, morphine, prevent neural stem cell proliferation?

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Tabatabaei, Seyed Abdolreza Mortazavi; Verdi, Javad

    2011-02-01

    In spite of widespread use of morphine to treat pain in patients, little is known about the effects of this opioid on many cells including stem cells. Moreover the studies have been shown controversial results about morphine effects on several kinds of cells. It is well-known that morphine exposure could decrease testosterone levels in brain and spinal cord. Morphine could increase the activity of 5α-redutase, the enzyme that converts testosterone into its respective 5α-redutase derivative dihydrotestosterone (DHT). Also it could increase aromatase activity that converts testosterone to estradiol. Proliferation of neural stem cells was observed in human stem cells after exposure to certain combinations of steroids especially testosterone. On the other hand DHT has negative effect in neural stem cell reproduction. Morphine induces over-expression of p53 gene that could mediate stem cell apoptosis. Therefore we hypothesized that due to reduction in the testosterone levels, elevation in the DHT levels, and over-expression of p53 gene, morphine could prevent neural stem cell proliferation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  8. GENISTEIN INHIBITS PROLIFERATION OF HUMAN ENDOMETRIAL ENDOTHELIAL CELL IN VITRO

    Institute of Scientific and Technical Information of China (English)

    Gui-hua Sha; Shou-qing Lin

    2008-01-01

    Objective To explore the effect of genistein on proliferation of human endometrial endothefial cells (HEECs) and glandular epithelium.Methods In vitro HEECs and human endometrial cancer-1B cell (HEC-1B) were cultured with 0, 1, 10, 50,100, and 200 μmol/L of genistein alone or indicated concentrations of genistein combined with 0.2 or 1 nmol/L 17β- estradiol (17β-E2 ). Cell proliferation was determined by [ 3H ]-thymidine incorporation and cell cycle was measured by flow cytometry.Results After 96 hours of treatment, genistein inhibited the proliferation of HEECs in a dose-dependent manner.The stimulation index reduced from 100% (without genistein treatment ) to about 1% (200 μmol/L genistein).HEECs were arrested at G1/0 and G2/M phase when treated with genistein for 96 hours. When the concentration of genistein was 200 μmol/L, the percentages of HEECs at GI/0, G2/M, and S phase were 96.0%, 2. 1%, and 1.9%,respectively. However, when HEECs were treated without genistein, the percentages of HEECs at G1/0, G2/M, and S phase were 76. 7%, 8.5%, and 14. 7%, respectively. 17β-E2 could not influence the effects of genistein on the prolif-eration of HEECs. Meanwhile, genistein could suppress the proliferation of HEC-1B. If the stimulation index of HEC-1B was defined as 100% when HEC-1B was treated with different doses of 1713-E2 ( without genistein), it was 67%,19, as well as 32% when cell was supplemented with 200 μmoi/L genistein combined with 0, 0.2, or 1 nmol/L 17β-E2, respectively.Conclusion Genistein at the concentration of 200 μmol/L can sufficiently inhibit the proliferation of HEECs and endometrial glandular epithelium simultaneously in vitro.

  9. [Effect of overexpression of CAV1 mediated by lentivirus on proliferation and apoptosis of HL-60 cells].

    Science.gov (United States)

    Ma, Wei; Wang, Di-Di; Wang, Zhao; Zhu, Gui-Ming; Zhang, Peng-Xia

    2013-08-01

    This study was purposed to explore the effect of lentivirus-mediated CAV1 overexpression on proliferation and apoptosis in HL-60 cells. Recombinant lentiviral expression vector pcDNA-EF1-CAV1 was constructed, and cotransfected the 293TN cells with a mixture of pPACK packaging plasmids. Then collecting virus suspension infects the HL-60 cells, which make CAV1 gene stable transfection and high expression in the cells. The CAV1 protein expression status in HL-60 cells transfected was evaluated through Western blot method. Proliferative activity and apoptosis of HL-60 cells before and after transfection were detected by CCK-8 method and flow cytometry, respectively. The results showed that the PCR-positive clone screening and results of nucleotide sequencing confirmed that the CAV1 gene inserted into the expression vector pcDNA-EF1-GFP correctly, recombinant lentiviral particles Lv-CAV1 transfected HL-60 cells successfully and with transfection rate up to 90%. The result of Western blot showed that CAV1 protein expression in HL-60 cells significantly increased at 48 hours after transfection. CCK-8 result indicated that cell proliferation activity increased at 48 h after transfection (P HL-60 cells obviously decreased after transfection (P HL-60 cells can inhibit cell proliferation activity and promote cell apoptosis.

  10. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Run-Sheng Guo; Yue Yu; Jun Chen; Yue-Yu Chen; Na Shen; Ming Qiu

    2016-01-01

    Background:Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers.However,its role in thyroid cancer has not been investigated yet.In the present study,the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.Methods:BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed,pcDNA-BASP 1 carrying full length ofBASP1 cDNA was constructed to restore the expression ofBASP 1 in thyroid cancer cell lines (BHT-101 and KMH-2).The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models,respectively.Cell cycle distribution after transfection was analyzed using flow cytometry.Cell apoptosis after transfection was examined by annexin V/propidium iodide assay.The migration was examined using transwell assay.Results:BASP 1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P =0.000).pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P =0.000).pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells.In addition,pcDNA-BASP1 significantly inhibited the cell migration.Conclusions:Downregnlation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer.Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells,which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.

  11. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    Science.gov (United States)

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  12. Construction of Antisense Transforming Growth Factorβ1 Gene and Its Effect on the Proliferation by Expression in Osteosarcoma Cells

    Institute of Scientific and Technical Information of China (English)

    刘勇; 郑启新; 杜靖远; 杨述华; 邵增务; 肖宝钧

    2003-01-01

    Summary: To construct the antisensc transforming growth factorβl (TGFβ1) gene and investigatethe effect of TGFβ1 autocrine loop blockage on the proliferation of osteosarcoma cells. TGFβ1 cDNAwas cloned by RT-PCR from human osteosarcoma cells (MG-63) and inserted into pcDNA3 to con-struct an antisense expression vector, which was dubbed pcDNA3-TGFβ1(- ). MTT was used to de-tect the proliferation of osteosarcoma cells transfected by antisense TGFβ1 gene. Our results showedthat the proliferation of the transfected osteosarcoma cells was suppressed markedly. It is concludedthat TGFβ1 autocrine loop blockage in osteosarcoma cells could inhibit cell proliferation, which mightbe helpful for gene therapy of osteosarcoma.

  13. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    Energy Technology Data Exchange (ETDEWEB)

    Lushaj, Entela B., E-mail: lushaj@surgery.wisc.edu [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States); Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States)

    2012-06-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  14. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells

    Institute of Scientific and Technical Information of China (English)

    周琼; 白明; 苏远

    2004-01-01

    Background Expression of polo-like kinase 1 (Plk1) is elevated in lung cancer and has been proposed as having prognostic value and related to resistance to chemotherapy and radiation. In addition, Plk1 has several functions in mitotic progression. In this study, the authors investigated the effect of Plk1 depletion on cell cycle progression and proliferation in A549 cells, a lung cancer cell line.Methods A recombinant plasmid containing antisense RNA targeting Plk1 (pcDNA3-Plk1) was transfected into A549 cells. Reverse transcription-polymerase chain reaction and Western blot were used to examine Plk1 gene expression. Cell proliferation was evaluated by direct cell counting and bromodeoxyuridine (BrdU) labelling. Cell cycle and apoptosis were examined by flow cytometry. Expression of α-tubulin was detected by immunofluorescence, and the inhibition rate (IR) by chemotherapeutic agents was determined by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide assay.Results After transfection into A549 cells, pcDNA3-Plk1 reduced Plk1 mRNA by 46.75% for 24 hours and by 61.84% for 48 hours. Plk1 protein was significantly decreased simultaneously (P<0.05). Abnormal morphological changes of cells and growth inhibition were observed in pcDNA3-Plk1 transfected groups. The BrdU labelling index was 25.59% 48 hours after transfection, which was significantly lower than that of the control groups (P<0.05). Forty-eight hours after transfection, there showed absence of microtubule polymerization and spindle abnormalities in staining for α-tubulin. A549 cells showed a strong G2/M arrest and apoptosis 72 hours post transfection. IR of vinorelbine in pcDNA3-Plk1 transfected groups was significantly higher than that of the other groups (P<0.05, respectively).Conclusions Plk1 depletion interferes with spindle formation, induces cell cycle arrest and apoptosis, and consequently inhibits cell proliferation in A549 cells. Moreover, it sensitizes lung cancer cells to chemotherapy.

  15. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation

    Science.gov (United States)

    Siddiqui, Y H; Kershaw, R M; Humphreys, E H; Assis Junior, E M; Chaudhri, S; Jayaraman, P-S; Gaston, K

    2017-01-01

    PRH/HHEX (proline-rich homeodomain protein/haematopoietically expressed homeobox protein) is a transcription factor that controls cell proliferation, cell differentiation and cell migration. Our previous work has shown that in haematopoietic cells, Protein Kinase CK2-dependent phosphorylation of PRH results in the inhibition of PRH DNA-binding activity, increased cleavage of PRH by the proteasome and the misregulation of PRH target genes. Here we show that PRH and hyper-phosphorylated PRH are present in normal prostate epithelial cells, and that hyper-phosphorylated PRH levels are elevated in benign prostatic hyperplasia, prostatic adenocarcinoma, and prostate cancer cell lines. A reduction in PRH protein levels increases the motility of normal prostate epithelial cells and conversely, PRH over-expression inhibits prostate cancer cell migration and blocks the ability of these cells to invade an extracellular matrix. We show that CK2 over-expression blocks the repression of prostate cancer cell migration and invasion by PRH. In addition, we show that PRH knockdown in normal immortalised prostate cells results in an increase in the population of cells capable of colony formation in Matrigel, as well as increased cell invasion and decreased E-cadherin expression. Inhibition of CK2 reduces PRH phosphorylation and reduces prostate cell proliferation but the effects of CK2 inhibition on cell proliferation are abrogated in PRH knockdown cells. These data suggest that the increased phosphorylation of PRH in prostate cancer cells increases both cell proliferation and tumour cell migration/invasion. PMID:28134934

  16. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  17. Proliferation of normal and malignant human epithelial cells post irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Seymour, C.B.; O' Brien, A.; Hennessy, T. (Saint James Hospital, Dublin (Ireland). Radiobiological Research Group Dublin Inst. of Tech. (Ireland). Physics Dept.)

    1991-01-01

    Fragments of human oesophageal mucosa, urothelium, squamous and adenocarcinoma of the oesophagus and carcinoma of the bladder have been plated in culture and irradiated. The cells growing from the explanted tissues have then been studied for four weeks post irradiation to assess the overall rate of growth from the irradiated explants and the fraction of profilerating cells. Th results show that when using cell number as an endpoint it is possible to derive growth curves from this type of data which permit a doubling time to be obtained for the cell population surviving different doses. In an attempt to determine the proliferating fraction of the cell population, cultures were labelled at appropriate intervals with tritiated thymidine and were also stained with Ki-67 antiproliferating antigen. The results show an interesting relationship between the dose response obtained for cell labelling with tritiated thymidine and area of cellular outgrowth. Ki-67 staining when used carefully and analysed as described was a useful indicator of proliferating cells. The results provid a means of determining the post irradiation growth potential of fragments of tissue from human organs and may be important for determined overall response of the tumour bulk to proposed treatment. (orig.).

  18. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  19. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes

    Science.gov (United States)

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A.

    2015-01-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic’s nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs. PMID:26683696

  20. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  1. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  2. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  3. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  4. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  5. Inhibitory effect of ubiquitin-proteasome pathway on proliferation of esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Wei-Guo Zhang; Jie-Ping Yu; Qing-Ming Wu; Qiang Tong; Sheng-Bao Li; Xiao-Hu Wang; Guo-Jian Xie

    2004-01-01

    AIM: To investigate the inhibitory effect of ubiquitinproteasome pathway (UPP) on proliferation of esophageal carcinoma cells.METHODS: Esophageal carcinoma cell strain EC9706 was treated with MG-132 to inhibit its UPP specificity. Cell growth suppression was evaluated with 3-(4,5-dimethylthiazole2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. DNA synthesis was evaluated by 3H-thymidine (3H-TdR)incorporation. Morphologic changes of cells were observed under microscope. Activity of telomerase was examined by telomeric repeat amplification protocol (TRAP) of PCRELISA. Cell cycle and apoptosis were detected by flow cytometry (FCM). DNA fragment analysis was used to confirm the presence of apoptosis. Expression of p27kip1was detected by immunocytochemical technique.RESULTS: After exposed to MG-132, the growth and value of 3H-TdR incorporation of EC9706 cells were obviously inhibited. Cells became round, small and exfoliative under microscope. TRAP PCR-ELISA showed that light absorption of cells gradually decreased after exposed to 5 μmol/L of MG-132 for 24, 48, 72 and 96 h (P<0.01). The percentage of cells at G0/G1 phase was increased and that at S and G2/M was decreased (P<0.01). The rate of apoptotic cells treated with 5 μmol/L of MG-132 for 48 and 96 h was 31.7%and 66.4%, respectively. Agarose electrophoresis showed marked ladders. In addition, the positive signals of p27kip1were located in cytoplasm and nuclei in MG-132 group in contrast to cytoplasm staining in control group.CONCLUSION: MG-132 can obviously inhibit proliferation of EC9706 cells and induce apoptosis. The mechanisms include upregulation of p27kip1 expression, G1 arrest and depression of telomerase activity. The results indicate that inhibiting UPP is a novel strategy for esophageal carcinoma therapy.

  6. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  7. Effects of estradiol on proliferation and metabolism of rabbit mandibular condylar cartilage cells in vitro

    Institute of Scientific and Technical Information of China (English)

    程鹏; 马绪臣; 薛延; 李盛琳; 张祖燕

    2003-01-01

    Objective To investigate the effects in vitro of 17 β-estradiol (E2) on the proliferation and metabolism of rabbit mandibular condylar cartilage cells.Methods Chondrocytes were derived from neonatal rabbit mandibular condylar cartilage using a modified enzyme method. 17β-estradiol was added to the culture medium in a variety of concentrations. Cell growth and DNA, collagen, and proteoglycan synthesis were used as indicators of proliferation and differentiation of condylar chondrocytes. These were measured by cell number, 3H-proline and 35S-incorporation, respectively.Results E2 increased cell number and 3H-thymidine incorporation at 10-8 to 10-10 mol/L, and 10-8 to 10-11 mol/L in a dose-dependent manner, peaking at 10-8 mol/L and 10-9 mol/L, respectively. However, further increase in the concentration of estradiol caused inhibition of both cell number and 3H-thymidine incorporation, and this was significant at 10-6 mol/L. The effect of E2 on proteglycan synthesis was similar; the maximum stimulating effect was at 10-8 mol/L, and inhibition was significant at 10-6 mol/L. There was no obvious stimulatory effect of E2 on 3H-thymidine incorporation observed.Conclusions Estradiol affects condylar chondrocyte cell growth, DNA, and proteoglycan synthesis in a biphasic manner depending on its concentration. This indicates that estrogen may be important in the proliferation and differentiation of mandibular condylar chondrocytes, and could be relevant to some aspects of certain tempormandibular joint diseases by modulating the function of the chondrocytes.

  8. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    OpenAIRE

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover funct...

  9. Recombinant Mouse Canstatin Inhibits Chicken Embryo Chorioallantoic Membrane Angiogenesis and Endothelial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong HOU; Tian-Yun WANG; Bao-Mei YUAN; Yu-Rong CHAI; Yan-Long JIA; Fang TIAN; Jian-Min WANG; Le-Xun XUE

    2004-01-01

    Human canstatin, a 24 kD fragment of the α2 chain of type Ⅳ collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M 15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.

  10. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  11. REDD1 Is Essential for Optimal T Cell Proliferation and Survival.

    Directory of Open Access Journals (Sweden)

    Emma L Reuschel

    Full Text Available REDD1 is a highly conserved stress response protein that is upregulated following many types of cellular stress, including hypoxia, DNA damage, energy stress, ER stress, and nutrient deprivation. Recently, REDD1 was shown to be involved in dexamethasone induced autophagy in murine thymocytes. However, we know little of REDD1's function in mature T cells. Here we show for the first time that REDD1 is upregulated following T cell stimulation with PHA or CD3/CD28 beads. REDD1 knockout T cells exhibit a defect in proliferation and cell survival, although markers of activation appear normal. These findings demonstrate a previously unappreciated role for REDD1 in T cell function.

  12. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.

    Science.gov (United States)

    Rocheteau, Pierre; Gayraud-Morel, Barbara; Siegl-Cachedenier, Irene; Blasco, Maria A; Tajbakhsh, Shahragim

    2012-01-20

    Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  14. [Blocking effect of phytic acid on cell proliferation in human gastric carcinoma].

    Science.gov (United States)

    Wang, Lu; Yang, Zhiping; Cui, Hongbin

    2008-05-01

    To explore the bcl-2 and the bax protein expression, the effect and possible mechanism of phytic acid (IP6) on cell proliferation in human gastric carcinoma. The inhibiting action of IP6 on human gastric carcinoma was examed by MTT assay. The morphological changes of SGC-7901 cells exposed to IP6 was examined by reverse discrepancy microscope. The apoptosis of SGC-7901 cells treated with IP6 was observed by single cell gel electrophoresis. The bax and bcl-2 protein expressions were detected by Western blotting method. MTT assay indicated that the growth of SGC-7901 cells were inhibited by IP6 in dose and time dependent manners. The morphological observation by reverse discrepancy microscope indicated that the growth of cells exposed to IP6 were not well. The DNA damage rates of SGC-7901 cells treated with IP6 were more higher than those of control groups in dose and time dependent manners. The bcl-2 protein expressions treated with IP6 were reduced, and the bax protein expressions treated with IP6 were more than those of control groups in dose and time dependent manners. The proliferation of gastric carcinoma SGC-7901 cells inhibitited by IP6 could be associated with apoptosis of gene bax and bcl-2.

  15. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    Science.gov (United States)

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  16. The effect of ghrelin on cell proliferation in small intestinal IEC-6 cells.

    Science.gov (United States)

    Yu, Huafang; Xu, Guoxiong; Fan, Xiaoming

    2013-04-01

    Recent evidence demonstrates that ghrelin, a short orexigenic peptide from the stomach, has dual effects on cell proliferation in different cell types via autocrine and/or paracrine mechanisms. The aim of this study is to investigate the proliferative role of ghrelin in intestinal epithelial IEC-6 cells and explore underlying mechanism. RT-PCR was used for the detection of growth hormone secretagogue receptor 1a. Cell proliferation was measured using Cell Counting Kit-8. Protein expression of ERK 1/2 and Akt was examined using western blotting. Inhibitors of mitogen activated protein kinases kinase and phosphatidylinositol 3-kinase were used to evaluate the role of these signalling pathways in ghrelin-induced proliferation of IEC-6 cells. Growth hormone secretagogue receptor 1a mRNA was present in IEC-6 cells. Ghrelin and des-acyl ghrelin increased IEC-6 cell proliferation in a dose- and time-dependent manner. Ghrelin and des-acyl ghrelin activated ERK1/2, but not Akt. U0126, a specific inhibitor of mitogen activated protein kinases kinase, blocked ghrelin- and des-acyl ghrelin-induced ERK1/2 phosphorylation and cell proliferation in IEC-6 cells. Ghrelin and des-acyl ghrelin stimulate the proliferation of IEC-6 cells via the ERK1/2 pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells.

    Science.gov (United States)

    Li, Baomin; Iglesias-Pedraz, Juan Manuel; Chen, Leng-Ying; Yin, Fei; Cadenas, Enrique; Reddy, Sita; Comai, Lucio

    2014-04-01

    The Werner syndrome protein (WRN) is a nuclear protein required for cell growth and proliferation. Loss-of-function mutations in the Werner syndrome gene are associated with the premature onset of age-related diseases. How loss of WRN limits cell proliferation and induces replicative senescence is poorly understood. Here, we show that WRN depletion leads to a striking metabolic shift that coordinately weakens the pathways that generate reducing equivalents for detoxification of reactive oxygen species and increases mitochondrial respiration. In cancer cells, this metabolic shift counteracts the Warburg effect, a defining characteristic of many malignant cells, resulting in altered redox balance and accumulation of oxidative DNA damage that inhibits cell proliferation and induces a senescence-like phenotype. Consistent with these findings, supplementation with antioxidant rescues at least in part cell proliferation and decreases senescence in WRN-knockdown cancer cells. These results demonstrate that WRN plays a critical role in cancer cell proliferation by contributing to the Warburg effect and preventing metabolic stress.

  18. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan); Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  19. Fucan effect on CHO cell proliferation and migration

    OpenAIRE

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean [UNIFESP; Medeiros, Valquiria Pereira de [UNIFESP; Trindade, Edvaldo da Silva [UNIFESP; Franco,Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-01-01

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schroederi seaweed. This 21.5 kDa galactofucan inhibited CHO-Kl proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B bi...

  20. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-12-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required.

  1. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  2. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation.

    Science.gov (United States)

    Fukushima, K; Yamashita, K

    2001-03-01

    Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.

  3. Biodiesel from soybean promotes cell proliferation in vitro.

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses.

  4. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    Science.gov (United States)

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  5. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  6. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    Science.gov (United States)

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  7. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    Science.gov (United States)

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  8. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  9. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  10. The Effect of Curcumin on Proliferation and Apoptosis in LNCaP Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Lianying Zhang; Lijun Chen; Bin Meng; Jiangrui Suo; Hongmin Wang; Hong Xie; Qiuyue Jin; Li Yao; Ruimin Wang

    2006-01-01

    OBJECTIVE To observe the effect of curcumin on proliferation and apoptosis in the prostate cancer LNCaP cell line.METHODS The AXSYMTM system luciferase method was used to examine the effect of various concentratious of curcumin on the content of prostate specific antigen (PSA) in prostate cancer LNCaP cells. A pGL3-PSA luciferase expression vector, containing 640 bp DNA of the PSA gene 5'-promoter region was constructed and transfected into the LNCaP cells with lipofectin. By measuring luciferase activity, the effect of 10 μmol/L, 20 μmol/L, 30 and 40 μmol/L curcumin on the promoter was studied. Effects on cell growth and apoptosis were analyzed by microscopy, the MTT colorimetric assay and flow cytometry Western-blotting was used to measure expression of the androgen receptor (AR) in the LNCaP cells treated with different concentrations of curcumin.RESULTS The results showed that the expression of PSA was inhibited as curcumin reduced the activity of luciferase. Curcumin also caused a sigificant concentration-dependent decrease in AR expession measured by Western-blotting. Cell growth was inhibited and apoptosis was induced.CONCLUSION By inhibiting AR expression, curcumin reduced the function of the PSA promoter and inhibited PSA protein expression. Curcumin decreased the cellular proliferation and induced apoptosis in LNCaP cells in a concention-dependent manner.

  11. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts.

    Science.gov (United States)

    Cheng, Ching-Yi; Tseng, Hui-Ching; Yang, Chuen-Mao

    2012-04-01

    In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  12. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States); Wang, Shao-Chun, E-mail: shao-chun.wang@uc.edu [Department of Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Cincinnati, OH 45267-0056 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  13. Dynamics of HBV cccDNA expression and transcription in different cell growth phase

    Directory of Open Access Journals (Sweden)

    Chong Chin-Liew

    2011-12-01

    Full Text Available Abstract Background The covalently closed-circular DNA (cccDNA of hepatitis B virus (HBV is associated with viral persistence in HBV-infected hepatocytes. However, the regulation of cccDNA and its transcription in the host cells at different growth stages is not well understood. Methods We took advantages of a stably HBV-producing cell line, 1.3ES2, and examine the dynamic changes of HBV cccDNA, viral transcripts, and viral replication intermediates in different cellular growth stages. Results In this study, we showed that cccDNA increased suddenly in the initial proliferation phase of cell growth, probably attributable to its nuclear replenishment by intracellular nucleocapsids. The amount of cccDNA then decreased dramatically in the cells during their exponential proliferation similar to the loss of extrachromosomal plasmid DNA during cell division, after which it accumulated gradually while the host cells grew to confluency. We found that cccDNA was reduced in dividing cells and could be removed when proliferating cells were subjected to long term of lamivudine (3TC treatment. The amounts of viral replicative intermediates were rapidly reduced in these proliferating cells and were significantly increased after cells reaching confluency. The expression levels of viral transcripts were increased in parallel with the elevated expression of hepatic transcription factors (HNF4α, CEBPα, PPARα, etc. during cell growth confluency. The HBV transcripts were transcribed from both integrated viral genome and cccDNA, however the transcriptional abilities of cccDNA was less efficient then that from integrated viral genome in all cell growth stages. We also noted increases in the accumulation of intracellular viral particles and the secretion of mature virions as the cells reached confluency and ceased to grow. Conclusions Based on the dynamics of HBV replication, we propose that HBV replication is modulated differently in the different stages of cell

  14. Akt: A Double-Edged Sword in Cell Proliferation and Genome Stability

    Directory of Open Access Journals (Sweden)

    Naihan Xu

    2012-01-01

    Full Text Available The Akt family of serine/threonine protein kinases are key regulators of multiple aspects of cell behaviour, including proliferation, survival, metabolism, and tumorigenesis. Growth-factor-activated Akt signalling promotes progression through normal, unperturbed cell cycles by acting on diverse downstream factors involved in controlling the G1/S and G2/M transitions. Remarkably, several recent studies have also implicated Akt in modulating DNA damage responses and genome stability. High Akt activity can suppress ATR/Chk1 signalling and homologous recombination repair (HRR via direct phosphorylation of Chk1 or TopBP1 or, indirectly, by inhibiting recruitment of double-strand break (DSB resection factors, such as RPA, Brca1, and Rad51, to sites of damage. Loss of checkpoint and/or HRR proficiency is therefore a potential cause of genomic instability in tumor cells with high Akt. Conversely, Akt is activated by DNA double-strand breaks (DSBs in a DNA-PK- or ATM/ATR-dependent manner and in some circumstances can contribute to radioresistance by stimulating DNA repair by nonhomologous end joining (NHEJ. Akt therefore modifies both the response to and repair of genotoxic damage in complex ways that are likely to have important consequences for the therapy of tumors with deregulation of the PI3K-Akt-PTEN pathway.

  15. Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis

    Science.gov (United States)

    Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio

    2014-01-01

    Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152

  16. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  17. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  18. Crystallization and X-ray diffraction studies of crustacean proliferating cell nuclear antigen

    Science.gov (United States)

    Carrasco-Miranda, Jesus S.; Cardona-Felix, Cesar S.; Lopez-Zavala, Alonso A.; de-la-Re-Vega, Enrique; De la Mora, Eugenio; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2012-01-01

    Proliferating cell nuclear antigen (PCNA), a member of the sliding clamp family of proteins, interacts specifically with DNA replication and repair proteins through a small peptide motif called the PCNA-interacting protein or PIP box. PCNA is recognized as one of the key proteins involved in DNA metabolism. In the present study, the recombinant PCNA from Litopenaeus vannamei (LvPCNA) was heterologously overexpressed and purified using metal ion-affinity chromatography. Crystals suitable for diffraction grew overnight using the hanging-drop vapour-diffusion method. LvPCNA crystals belong to space group C2 with unit-cell parameters a = 144.6, b = 83.4, c = 74.3 Å, β = 117.6°. One data set was processed to 3 Å resolution, with an overall R meas of 0.09 and a completeness of 93.3%. Initial phases were obtained by molecular replacement using a homology model of LvPCNA as the search model. Refinement and structural analysis are underway. This report is the first successful crystallographic analysis of a marine crustacean decapod shrimp (L. vannamei) proliferating cell nuclear antigen. PMID:23143251

  19. Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation

    Directory of Open Access Journals (Sweden)

    Meizhen Yin

    2014-01-01

    Full Text Available Hydroxyapatite nanoparticles (nano-HAPs were prepared by homogeneous precipitation, and size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Nano-HAPs were uniformly distributed, with rod-like shapes sizes ranging from 44.6 to 86.8 nm. Attached overnight, suspended, and proliferating Bel-7402 cells were repeatedly incubated with nano-HAPs. Inverted microscopy, transmission electron microscopy, and fluorescence microscopy were used to observe the cell adhesion and growth, the culture medium containing nano-HAPs, the cell ultrastructure, and intracellular Ca2+ labeled with a fluo-3 calcium fluorescent probe. The results showed that nano-HAPs inhibited proliferation of Bel-7402 cells and, caused an obvious increase in the concentration of intracellular Ca2+, along with significant changes in the cell ultrastructure. Moreover, nano-HAPs led suspended cells and proliferating cells after trypsinized that did not attach to the bottom of the culture bottle died. Nano-HAPs continuously entered these cells. Attached, suspended, and proliferating cells endocytosed nano-HAPs, and nanoparticle-filled vesicles were in the cytoplasm. Therefore, hepatoma cellular uptake of nano-HAPs through endocytosis was very active and occurred continuously. Nano-HAPs affected proliferation and adhesion of hepatoma cells probably because uptake of nano-HAPs blocked integrin-mediated cell adhesion, which may have potential significance in inhibiting metastatic cancer cells to their target organ.

  20. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  1. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Science.gov (United States)

    He, Xingyue; Riceberg, Jessica; Pulukuri, Sai M; Grossman, Steve; Shinde, Vaishali; Shah, Pooja; Brownell, James E; Dick, Larry; Newcomb, John; Bence, Neil

    2015-01-01

    SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA) to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  2. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  3. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways.

  4. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Zheng, Z.H.; Wang, E.H. [Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Wei, M.J. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China)

    2013-12-12

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  5. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2014-01-01

    Full Text Available Fanconi anemia complementation group F protein (FANCF is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  6. SIRT1 controls cell proliferation by regulating contact inhibition.

    Science.gov (United States)

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  8. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  9. Cell cycling and patterned cell proliferation in the wing primordium of Drosophila.

    OpenAIRE

    1996-01-01

    The pattern of cell proliferation in the Drosophila imaginal wing primordium is spatially and temporally heterogeneous. Direct visualization of cells in S, G2, and mitosis phases of the cell cycle reveals several features invariant throughout development. The fraction of cells in the disc in the different cell cycle stages is constant, the majority remaining in G1. Cells in the different phases of the cell cycle mainly appear in small synchronic clusters that are nonclonally derived but resul...

  10. Linkage of E2F1 transcriptional network and cell proliferation with respiratory chain activity in breast cancer cells.

    Science.gov (United States)

    Mori, Kazunori; Uchida, Tetsu; Fukumura, Motonori; Tamiya, Shigetoshi; Higurashi, Masato; Sakai, Hirosato; Ishikawa, Fumihiro; Shibanuma, Motoko

    2016-07-01

    Mitochondria are multifunctional organelles; they have been implicated in various aspects of tumorigenesis. In this study, we investigated a novel role of the basal electron transport chain (ETC) activity in cell proliferation by inhibiting mitochondrial replication and transcription (mtR/T) using pharmacological and genetic interventions, which depleted mitochondrial DNA/RNA, thereby inducing ETC deficiency. Interestingly, mtR/T inhibition did not decrease ATP levels despite deficiency in ETC activity in different cell types, including MDA-MB-231 breast cancer cells, but it severely impeded cell cycle progression, specifically progression during G2 and/or M phases in the cancer cells. Under these conditions, the expression of a group of cell cycle regulators was downregulated without affecting the growth signaling pathway. Further analysis suggested that the transcriptional network organized by E2F1 was significantly affected because of the downregulation of E2F1 in response to ETC deficiency, which eventually resulted in the suppression of cell proliferation. Thus, in this study, the E2F1-mediated ETC-dependent mechanism has emerged as the regulatory mechanism of cell cycle progression. In addition to E2F1, FOXM1 and BMYB were also downregulated, which contributed specifically to the defects in G2 and/or M phase progression. Thus, ETC-deficient cancer cells lost their growing ability, including their tumorigenic potential in vivo. ETC deficiency abolished the production of reactive oxygen species (ROS) from the mitochondria and a mitochondria-targeted antioxidant mimicked the deficiency, thereby suggesting that ETC activity signaled through ROS production. In conclusion, this novel coupling between ETC activity and cell cycle progression may be an important mechanism for coordinating cell proliferation and metabolism.

  11. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Otterlei, Marit; Pena Diaz, Javier

    2004-01-01

    Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using...

  12. Induction of cell proliferation in the rat liver by the short-term administration of ethyl tertiary-butyl ether.

    Science.gov (United States)

    Kakehashi, Anna; Hagiwara, Akihiro; Imai, Norio; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2015-01-01

    In the present study, in continuation of our previous experiment in order to investigate the mode of action (MOA) of ethyl tertiary-butyl ether (ETBE) hepatotumorigenicity in rats, we aimed to examine alterations in cell proliferation, that are induced by short-term administration of ETBE. F344 rats were administered ETBE at doses of 0, and 1,000 mg/kg body weight twice a day by gavage for 3, 10, 17 and 28 days. It was found that the previously observed significant increase of P450 total content and hydroxyl radical levels after 7 days of ETBE administration, and 8-OHdG formation at day 14, accompanied by accumulation of CYP2B1/2B2, CYP3A1/3A2, CYP2C6, CYP2E1 and CYP1A1 and downregulation of DNA oxoguanine glycosylase 1, was preceded by induction of cell proliferation at day 3. Furthermore, we observed an increase in regenerative cell proliferation as a result of ETBE treatment at day 28, followed by induction of cell cycle arrest and apoptosis by day 14. These results indicated that short-term administration of ETBE led to a significant early increase in cell proliferation activity associated with induction of oxidative stress, and to a regenerative cell proliferation as an adaptive response, which could contribute to the hepatotumorigenicity of ETBE in rats.

  13. DNA Charge Transport within the Cell

    Science.gov (United States)

    Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.

    2015-01-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include Endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within E. coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. Based on these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  14. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei; Lee, Chung Wa [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Cho, Chi Hin [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Francis Ka Leung [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, Jun, E-mail: junyu@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  15. Fucan effect on CHO cell proliferation and migration.

    Science.gov (United States)

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean; Medeiros, Valquiria Pereira; Trindade, Edvaldo Silva; Franco, Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-10-15

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schröederi seaweed. This 21.5 kDa galactofucan inhibited CHO-K1 proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B binds to fibronectin and activates integrin, mainly integrin α5β1, which induces FAK/RAS/MEK/ERK activation. FAK activation inhibits CHO-K1 migration on fibronectin and ERK blocks cell cycle progression. This study indicates that fucan B could be applied in developing new antitumor drugs.

  16. Ustilago maydis reprograms cell proliferation in maize anthers.

    Science.gov (United States)

    Gao, Li; Kelliher, Timothy; Nguyen, Linda; Walbot, Virginia

    2013-09-01

    The basidiomycete Ustilago maydis is a ubiquitous pathogen of maize (Zea mays), one of the world's most important cereal crops. Infection by this smut fungus triggers tumor formation in aerial plant parts within which the fungus sporulates. Using confocal microscopy to track U. maydis infection on corn anthers for 7 days post-injection, we found that U. maydis is located on the epidermis during the first 2 days, and has reached all anther lobe cell types by 3 days post-injection. Fungal infection alters cell-fate specification events, cell division patterns, host cell expansion and host cell senescence, depending on the developmental stage and cell type. Fungal effects on tassel and plant growth were also quantified. Transcriptome profiling using a dual organism microarray identified thousands of anther genes affected by fungal infection at 3 days post-injection during the cell-fate specification and rapid cell proliferation phases of anther development. In total, 4147 (17%) of anther-expressed genes were altered by infection, 2018 fungal genes were expressed in anthers, and 206 fungal secretome genes may be anther-specific. The results confirm that U. maydis deploys distinct genes to cause disease in specific maize organs, and suggest mechanisms by which the host plant is manipulated to generate a tumor.

  17. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  18. Effects of a Regional Chinese Diet and Its Vitamin Supplementation on Proliferation of Human Esophageal Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    YAN JIANG; HuI-ZHANG DU; WEN-YI ZHU; HUI-JUAN XIAO; CHENG-YU HUANG

    2008-01-01

    Objective To study the effects of a local diet popular in Yanting region (YT diet) on the proliferation of two human cell lines (Eta-109 esophageal squamous cell carcinoma line and HL7702 normal liver epithelial cell line) in rats by a ero-physiological approach. Methods Male SD rats were divided into six groups and fed respectively with a conventional diet and the YT diet (one of the five experimental diets) supplemented with two vitamin mixtures (Mix.1: vitamins A, E, and folio acid; Mix.2: mix.l plus riboflavin and vitamin C) at two different doses. On the 30th day, sera were collected from the rats and added into a medium for cell culture, with 10% FBS used as a serum control. The effects were assessed by MTI" assay, DNA synthesis and flow cytometry assays. Results Compared with the control, the sera from rats fed with the YT diet significantly promoted the proliferation of Eca-109 cells, which was, however, reversed by the supplementation with two vitamin mixtures at high doses. Surprisingly, the same treatment produced contrary effects on HL7702 cells as compared with Eca-109 cells. Conclusion The sera from rats fed with the YT diet could promote the proliferation of human esophageal cancer cell line Eca-109, whereas the sera from those fed with the YT diet supplemented with vitamin mixtures might have inhibitory effects on the proliferation of Eca-109 cells.

  19. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Yohko Fujimoto

    2014-06-01

    Full Text Available The aim of this study was to assess the possible roles of the phytochemical compounds, curcumin, quercetin and resveratrol in the proliferation of human colorectal cancer cell line Caco-2. All three phytochemical compounds inhibited Caco-2 cell proliferation, with curcumin being more effective than quercetin and resveratrol. Investigations concerning DNA fragmentation in the nucleus, Bax and Bcl-2 mRNA expression levels, and caspase-3/7 activity indicated that curcumin induced apoptosis in Caco-2 cells through an increase in the Bax/Bcl-2 ratio and activation of caspase-3/7. Furthermore, the analysis of flow-cytometry showed that curcumin caused an arrest of G2/M phase in Caco-2 cells. These results suggest that curcumin suppresses Caco-2 proliferation partially via activation of the mitochondrial apoptotic pathway and cell cycle retardation.

  20. Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation.

    Science.gov (United States)

    Vacas, Eva; Fernández-Martínez, Ana B; Bajo, Ana M; Sánchez-Chapado, Manuel; Schally, Andrew V; Prieto, Juan C; Carmena, María J

    2012-10-01

    Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.

  1. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  2. Insulin induces PKC-dependent proliferation of mesenteric vascular smooth muscle cells from hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    Xukai WANG; Yan WANG; Chenming YANG; Ying WAN; Xianwen JI

    2006-01-01

    Background and objectives Proliferation of human vascular smooth muscle cells (VSMCs) induced by hyperinsulinemia is a very common clinical pathology. Extensive research has focused on PKC (Protein kinase C)-MAPK (mitogen-activated protein kinase)intracellular signal transduction and the phenotypic modulation accompanied by reorganization of intracellular F-actins in VSMCs.Methods DNA synthesis, signaling of ERK1/2 MAPKs, and changes in α-smooth muscle (SM) actin and F-actin were studied in hypertensive and normotensive human arterial VSMCs exposed to insulin and PMA with and without the PKC inhibitor, GF109203X.Results Differences among cell types in MAPK signaling, α-SM actin, and F-actin isoforms in VSMCs harvested from the arteries of patients with essential hypertension (EH) and normotension (NT) were identified in response to insulin treatment. Proliferation and activation of MAPK were more pronounced in EH VSMCs than in NEH VSMCs. Insulin exposure decreased expression of α-SM actin and was accompanied by rearrangement of intracellular F-actins in VSMCs, especially in the EH group. These effects were reversed by treatment with the PKC inhibitor. Conclusions Human mesenteric VSMCs of EH and NT patients differed in proliferation, MAPK signaling, and degree of changes in α-SM actin and F-actin isoforms immediately following insulin exposure in vitro.

  3. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death.

    Science.gov (United States)

    Laborde, E

    2010-09-01

    Glutathione transferases (GSTs) are enzymes that catalyze the conjugation of glutathione (GSH) to a variety of electrophilic substances. Their best known role is as cell housekeepers engaged in the detoxification of xenobiotics. Recently, GSTs have also been shown to act as modulators of signal transduction pathways that control cell proliferation and cell death. Their involvement in cancer cell growth and differentiation, and in the development of resistance to anticancer agents, has made them attractive drug targets. This review is focused on the inhibition of GSTs, in particular GSTP1-1, as a potential therapeutic approach for the treatment of cancer and other diseases associated with aberrant cell proliferation.

  4. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jane CJ Chao; Chia Chou Chu

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761)containing 22-27% fiavonoids (ginkgo-flavone glycosides)and 5-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.METHODS: Human HCC cell lines (HepG2 and Hep3B) were incubated with various concentrations (0-1 000 mg/L) of EGb 761 solution. After 24 h incubation, cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and lactate dehydrogenase (LDH)release, respectively. After 48 h incubation, the expression of proliferating cell nuclear antigen (PCNA) and p53 protein was measured by Western blotting.RESULTS: The results showed that EGb 761 (50-1 000 mg/L)significantly suppressed cell proliferation and increased LDH release (P<0.05) in HepG2 and Hep3B cells compared with the control group. The cell proliferation of HepG2 and Hep3B cells treated with EGb 761 (1 000 mg/L) was 45% and 39% of the control group (P<0.05), respectively. LDH release of HepG2 cells without and with EGb 761 (1 000 mg/L) treatment was 6.7% and 37.7%, respectively, and that of Hep3B cells without and with EGb 761 (1 000 mg/L) treatment was 7.2% and 40.3%, respectively. The expression of PCNA and p53 protein in HepG2 cells treated with EGb 761 (1 000 mg/L)was 85% and 174% of the control group, respectively.CONCLUSION: Ginkgobilobaextract significantly can suppress proliferation and increase cytotoxicity in HepG2 and Hep3B cells. Additionally, Ginkgo biloba extract can decrease PCNA and increase p53 expression in HepG2 cells.

  5. Effects of Spinach Powder Fat-Soluble Extract on Proliferation of Human Gastric Adenocarcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    HE TAo; HUANG CHENG-YU; CHEN HAl; HOU YUN-HUA

    1999-01-01

    Four kinds of assays were used to study the effect of a fat-soluble extract of spinach powder(SPFE) on the proliferation of human gastric adenocarcinoma cell line (SGC-7901) in vitro.These studies included: ( i ) cell growth assay, ( ii ) colony forming assay, ( iii ) MTT colorimetric assay, and ( iv ) 3H-TdR incorporation assay. The concentrations of SPFE expressed as the level of β-carotene in the medium were 2 × 10-s, 2 × 10-7 and 2 × 10-6 mol/L β-carotene in assays ( i ) ~ ( iii ), but 4 × 10-8, 4 × 10-7 and 4 × 10-6 mol/L β-carotene in assay ( iV ) respectively. The results indicated that SPFE inhibited the proliferation and colony forming ability of SGC-7901 cells. And in MTT assay, SPFE inhibited the viability of SGC-7901 cells, but no inhibitory effect of SPFE was observed on the viability of lymphocytes in peripheral blood of healthy people. Finally, in the 3H-TdR incorporation test, both SPFE and β-carotene showed significant inhibitory effects on DNA synthesis in SGC-7901 cells, but SPFE was more effective than 3-carotene.

  6. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O

    2015-09-01

    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  7. Mechanism by which nuclear factor-kappa beta (NF-kB regulates ovine fetal pulmonary vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Uchenna D. Ogbozor

    2015-09-01

    Full Text Available Platelet activating factor (PAF modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR in pulmonary vascular smooth muscle cells (PVSMC to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a PAF induces NF-kB p65 DNA binding and (b NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  8. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    Science.gov (United States)

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

  9. Antisense RNA of Survivin Gene Inhibits the Proliferation of Leukemia Cells and Sensitizes Leukemia Cell Line to Taxol-induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wenhan LI; Xiaojuan WANG; Ping LEI; Qing YE; Huifen ZHU; Yue ZHANG; Jinfang SHAO; Jing YANG; Guanxin SHEN

    2008-01-01

    The effectS of survivin antisense RNA on proliferation of leukemia cell line HL-60 and taxol.induced chemotherapy was explorcd.A cDNA fragment of survivin obtained by RT-PCR was inserted into a plamid vector named pcDNA3 in the reverse direction.The vector encoding antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing.The recombi-nant plasmid was delivered into HL-60 cells by electroporation.Growth curves were plotted based on cell counting.Trypan blue dye exclusion assay and MTT assay were carried out after the cells were incubated with taxol.DNA gel electrophoresis and nuclear staining were performed for cell apoptosis assay.The correct construction of the recombinant plasmid has been identificd bv restriction enzy.me digestion and DNA sequencing.A stable down.regulation has been achieved in HL-60 SVVas cells after G418 selection.Compared tO HL-60 cells.the proliferation of HL-60 SVVaS cells was signifi.cantly inhibited(P<0.05).Cytotoxicity assays indicated that IC50 of HL-60 SVVas for taxol was rela-tively lower than controls(P<0.01).Apoptosis assays revealed that taxol-induced apoptosis was de-tected in HL-60 sVVas cells incubated with 50 ng/ml taxol for 12 h,while in HL-60 cells incubated with 100 ng/ml taxol for 72 h.It was suggested that Survivin antisense RNA could inhibit the prolif-eration of HL-60 cells and enhance taxol-induced apoptosis in HL-60 cells.which may lay an ex-perimental foundation for further research on gene therapy in leukemia.

  10. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    OpenAIRE

    Au-Yeung, Byron B.; Zikherman, Julie; James L. Mueller; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M; Weiss, Arthur

    2014-01-01

    Biochemical signals triggered by the T-cell receptor (TCR) are required for stimulating T cells and can be initiated within seconds. However, a hallmark of T-cell activation, cell division, occurs hours after TCR signaling has begun, implying that T cells require a minimum duration and/or accumulate TCR signaling events to drive proliferation. To visualize the accumulated signaling experienced by T cells, we used a fluorescent reporter gene that is activated by TCR stimulation. This technique...

  11. Regulatory substances produced by lymphocytes. V. Production of inhibitor of DNA synthesis (IDS) by proliferating T lymphocytes.

    Science.gov (United States)

    Namba, Y; Jegasothy, B V; Waksman, B H

    1977-04-01

    The conditions neccessary for production of inhibitor of DNA synthesis (IDS) by rat lymphocytes were investigated. In concanavalin A (Con A)-stimulated lymph node cell (LNC) cultures, IDS production was not detected in the culture supernatant during the first 24 hr, and it increased gradually after that to reach a maximum at 3 to 4 days. When the cells were pretreated with mitomycin C, IDS was not produced, suggesting that DNA synthesis of LNC or a LNC subpopulation is necessary for IDS production. In contrast, Con A-stimulated spleen cells priduced a high level of IDS within 24 hr, and its production fell off sharply thereafter. Con A-stimulated rat thymocytes also produced IDS reaching a maximum at 2 to 3 dyas. However, thymus cells from rats treated with hydrocortisone 48 hr previously did not produce IDS. This finding implies that cortisol-sensitive (cortical) thymocytes are capable of producing IDS and cortisol-resistant (medullary) thymocytes are not. IDS production by lymphoblasts was proportional to cell number and unaffected eith by cell density (1 to 10 x 106/ml) or by the concomitant presence of normal cells from spleen, lymph node, or thymus. Thus Con A-stimulated cells, after becoming blasts, appear to produce IDS automatically wihtout affecting or being affected by other cells. Both spleen and thymus cells from rats injected with a large dose of antigen (ovalbumin, 100 mg, i.p.) 24 hr in advance produced substantial amounts of IDS in culture within 24 hr in the absence of mitogen or additional antigen, but not the cells from rats injected with an immunizing dose (1 mg) of the same antigen. The cells producing IDS in the spleen were shown to be adherent to glass wool, and those in the thymus were partially so. IDS production by antigen-stimulated spleen cells was abrogated by injecting rats with bromodexyuridine (BUdR) at 0 and 12 hr after the ovalbumin. These findings suggest that a subpopulation ofadherent spleen cells (possibly resembling cortical

  12. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  13. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2012-12-01

    Full Text Available Abstract Background The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. Results In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. Conclusions The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and

  14. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    Science.gov (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  16. Isolation of genomic DNA from mammalian cells.

    Science.gov (United States)

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Retinal homeobox genes and the role of cell proliferation in cavefish eye degeneration.

    Science.gov (United States)

    Strickler, Allen G; Famuditimi, Kuburat; Jeffery, William R

    2002-05-01

    The teleost Astyanax mexicanus exhibits eyed surface dwelling (surface fish) and blind cave dwelling (cavefish) forms. Despite lacking functional eyes as adults, cavefish embryos form eye primordia, which later arrest in development, degenerate and sink into the orbit. We are comparing the expression patterns of various eye regulatory genes during surfacefish and cavefish development to determine the cause of eye degeneration. Here we examine Rx and Chx/Vsx family homeobox genes, which have a major role in cell proliferation in the vertebrate retina. We isolated and sequenced a full-length RxcDNA clone (As-Rx1) and part of a Chx/Vsx(As-Vsx2) gene, which appear to be most closely related to the zebrafish Rx1 and Alx/Vsx2 genes respectively. In situ hybridization shows that these genes have similar but non-identical expression patterns during Astyanax eye development. Expression is first detected in the optic vesicle, then throughout the presumptive retina of the optic cup, and finally in the ciliary marginal zone (CMZ), the region of the growing retina where most new retinoblasts are formed. In addition, As-Rx1 is expressed in the outer nuclear layer (ONL) of the retina, which contains the photoreceptor cells, and As-Vsx2 is expressed in the inner nuclear layer, probably in the bipolar cells. With the exception of reduced As-Rx-1 expression in the ONL, the As-Rx1 and As-Vsx2 expression patterns were unchanged in the developing retina of two different cavefish populations, suggesting that cell proliferation is not inhibited. These results were confirmed by using PCNA and BrdU markers for retinal cell division. We conclude that the CMZ is active in cell proliferation long after eye growth is diminished and is therefore not the major cause of eye degeneration.

  18. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasalkova, N. Slepickova [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepicka, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Kolska, Z. [Department of Chemistry, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Prague (Czech Republic); Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ({zeta}-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  19. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  20. Involvement of estrogen receptor-βin farrerol inhibition of rat thoracic aorta vascular Smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Qun-yi LI; Li CHEN; Yan-hui ZHU; Meng ZHANG; Yi-ping WANG; Ming-wei WANG

    2011-01-01

    AIm:TO investigate the effect of farrerol,a major active component isolated from a traditional Chinese herb"Man-shan-hong"(the dried Ieaves of Rhododendron dauncum L)on fetal bovine serum(FBS)-induced proliferation of cultured vascular smooth muscle cells (VSMCs)of rat thoracic aorta.Methods:VSMCs proliferation,DNA synthesis and cell cycle progression were studied using the MTT assay,bromodeoxyuridine(BrdU)incorporation and flow cytometry,respectively.The mRNA levels of cell cycle proteins were quantified using real-time RT-PCR, and the phosphorylation of ERKl/2 was determined using Western blotting.Reporter gene and receptor binding assays were employed to study the interaction between farrerol and estrogen receptors(ERs).Results:FarreroI(0.3-10 μmol/L)inhibited VSMC proliferation and DNA synthesis induced by 5%FBS in a concentration-dependent manner.The effects were associated with G,cell cycle arrest.down-regulation of cell cycle proteins and reduction in FBS-induced ERKl/2 phosphorylation.Using a reporter gene.it was found that farrerol(3 μmol/L)induced 2.1-fold transcription of ER.In receptor binding assays, farrerol inhibited the binding of [3H]estradiol for ERa and ERβ with IC50 values of 57 μmol/L and 2.7 μmol/L, respectively.implying that farrerol had a higher affinity for ERl3.Finally,the inhibition of VSMC proliferation by farrerol(3 μmol/L)was abolished by the specific ERβ antagonist PHTPP(5 μmol/L).Conclusion:FarreroI acts as a functional phytoestrogen to inhibit FBS-induced VSMC proliferation, mainly via interaction with ERβ,which may be helpful in the treatment of cardiovascular diseases related to abnormal VSMCs proliferation.

  1. Effects of Antioxidants and Vitamins on the Proliferation of Human Diploid Cells

    Directory of Open Access Journals (Sweden)

    Gaziza Dаnlybaeva

    2014-01-01

    Full Text Available Introduction: Microelements, essential nutrients that are needed in small amounts including minerals such as calcium, zinc, iron and other vitamins (A, B, C, and etc., are macronutrients necessary for a healthy life. The role of micronutrients in vivo is well known, and there are several publications that have examined the effects of micronutrients on genomic stability. Furthermore, a number of vitamins and microelements are substrates and/or cofactors in metabolic pathways, which regulate DNA synthesis and/or repair and gene expression. A deficiency in such nutrients may result in disruption of genomic integrity and alterations in DNA methylation patterns, linking cellular nutrition with change in gene expression. For example, lack of vitamin C is known to cause increased DNA oxidation and chromosomal damage. Vitamin A, as well as other micronutrients, have a protective effect, whereas higher concentrations are associated with increased DNA damage. Ubiquinone (coenzyme Q10 and dihydroquercetin are used in therapy as antioxidant compounds and electron carriers, which reduce lipid peroxidation of cell membranes. However, previous studies indicate that various ubiquinone analogs may cause a divergent effect on oxidative stress and oxidative phosphorylation. The aim of our study was to investigate the effect of vitamins A and C, coenzyme Q10, and dihydroquercetin on the proliferative potential of cultured human embryonic diploid fibroblasts (M-22. Methods: In the first series of experiments, nontoxic concentrations of vitamins for the cells were identified using MTT assay. Results: Vitamins A and C, dihydroquercetin of 1µM, and coenzyme Q10 of 5µM were nontoxic for human skin fibroblasts. In the second series of experiments, cell cultivation was carried out with nontoxic concentrations. A vitamin C concentration of 1µM for 7 consecutive passages increased the proliferation index (PI compared to the control. Thus, the average PI in the

  2. Insulin-like growth factor 1 regulation of proliferation and differentiation of Xenopus laevis myogenic cells in vitro.

    Science.gov (United States)

    Miyata, Sairi; Yada, Tomotaka; Ishikawa, Natsuko; Taheruzzaman, Kazi; Hara, Ryohei; Matsuzaki, Takashi; Nishikawa, Akio

    2017-03-01

    To understand the mechanism of muscle remodeling during Xenopus laevis metamorphosis, we examined the in vitro effect of insulin-like growth factor 1 (IGF-1) on growth and differentiation of three different-fate myogenic cell populations: tadpole tail, tadpole dorsal, and young adult leg muscle. IGF-1 promoted growth and differentiation of both tail and leg myogenic cells only under conditions where these cells could proliferate. Inhibition of cell proliferation by DNA synthesis inhibitor cytosine arabinoside completely canceled the IGF-1's cell differentiation promotion, suggesting the possibility that IGF-1's differentiation-promotion effect is an indirect effect via IGF-1's cell proliferation promotion. IGF-1 promoted differentiation dose dependently with maximum effect at 100-500 ng/ml. RT-PCR analysis revealed the upregulation (11-fold) of ifg1 mRNA expression in developing limbs, suggesting that IGF-1 plays a role in promoting muscle differentiation during limb development. The combined effect of triiodo-L-thyronine (T3) and IGF-1 was also examined. In adult leg cells, IGF-1 promoted growth and differentiation irrespective of the presence of T3. In larval tail cells, cell count was 76% lower in the presence of T3, and IGF-1 did not promote proliferation and differentiation in T3-containing medium. In larval dorsal cells, cell count was also lower in the presence of T3, but IGF-1 enhanced proliferation and differentiation in T3-containing medium. This result is likely due to the presence among dorsal cells of both adult and larval types (1:1). Thus, IGF-1 affects only adult-type myogenic cells in the presence of T3 and helps accelerate dorsal muscle remodeling during metamorphosis.

  3. Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva Satish; Mahato, Krishna Kishore

    2015-03-01

    Low power laser irradiation (LPLI) is becoming an increasingly popular and fast growing therapeutic modality in dermatology to treat various ailments without any reported side effects. In the present study an attempt was made to investigate the proliferative potential of red laser light during tissue repair in Swiss albino mice. To this end, full thickness excisional wounds of diameter 15 mm created on mice were exposed to single dose of Helium-Neon laser (632.8 nm; 7 mW; 4.02 mWcm-2; Linear polarization) at 2 Jcm-2 and 10 Jcm-2 along with un-illuminated controls. The granulation tissues from all the respective experimental groups were harvested on day 10 post-wounding following euthanization. Subsequently, tissue regeneration potential of these laser doses under study were evaluated by monitoring proliferating cell nuclear antigen and Ki-67 following the laser treatment and comparing it with the un-illuminated controls. The percentages of Ki-67 or PCNA positive cells were determined by counting positive nuclei (Ki-67/PCNA) and total nuclei in five random fields per tissue sections. Animal wounds treated with single exposure of the 2 Jcm-2 indicated significant elevation in PCNA (Ptested experimental groups as evidenced by the microscopy results in the study. In summary, the findings of the present study have clearly demonstrated the regulation of cell proliferation by LPLI via PCNA and Ki-67 expression during tissue regeneration.

  4. An alkylphenol mix promotes seminoma derived cell proliferation through an ERalpha36-mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Hussein Ajj

    Full Text Available Long chain alkylphenols are man-made compounds still present in industrial and agricultural processes. Their main use is domestic and they are widespread in household products, cleansers and cosmetics, leading to a global environmental and human contamination. These molecules are known to exert estrogen-like activities through binding to classical estrogen receptors. In vitro, they can also interact with the G-protein coupled estrogen receptor. Testicular germ cell tumor etiology and progression are proposed to be stimulated by lifelong estrogeno-mimetic exposure. We studied the transduction signaling pathways through which an alkyphenol mixture triggers testicular cancer cell proliferation in vitro and in vivo. Proliferation assays were monitored after exposure to a realistic mixture of 4-tert-octylphenol and 4-nonylphenol of either TCam-2 seminoma derived cells, NT2/D1 embryonal carcinoma cells or testis tumor in xenografted nude mice. Specific pharmacological inhibitors and gene-silencing strategies were used in TCam-2 cells in order to demonstrate that the alkylphenol mix triggers CREB-phosphorylation through a rapid, ERα36-PI3kinase non genomic pathway. Microarray analysis of the mixture target genes revealed that this pathway can modulate the expression of the DNA-methyltransferase-3 (Dnmt3 gene family which is involved in DNA methylation control. Our results highlight a key role for ERα36 in alkylphenol non genomic signaling in testicular germ cell tumors. Hence, ERα36-dependent control of the epigenetic status opens the way for the understanding of the link between endocrine disruptor exposure and the burden of hormone sensitive cancers.

  5. An Alkylphenol Mix Promotes Seminoma Derived Cell Proliferation through an ERalpha36-Mediated Mechanism

    Science.gov (United States)

    Ajj, Hussein; Chesnel, Amand; Pinel, Sophie; Plenat, François; Flament, Stephane; Dumond, Helene

    2013-01-01

    Long chain alkylphenols are man-made compounds still present in industrial and agricultural processes. Their main use is domestic and they are widespread in household products, cleansers and cosmetics, leading to a global environmental and human contamination. These molecules are known to exert estrogen-like activities through binding to classical estrogen receptors. In vitro, they can also interact with the G-protein coupled estrogen receptor. Testicular germ cell tumor etiology and progression are proposed to be stimulated by lifelong estrogeno-mimetic exposure. We studied the transduction signaling pathways through which an alkyphenol mixture triggers testicular cancer cell proliferation in vitro and in vivo. Proliferation assays were monitored after exposure to a realistic mixture of 4-tert-octylphenol and 4-nonylphenol of either TCam-2 seminoma derived cells, NT2/D1 embryonal carcinoma cells or testis tumor in xenografted nude mice. Specific pharmacological inhibitors and gene-silencing strategies were used in TCam-2 cells in order to demonstrate that the alkylphenol mix triggers CREB-phosphorylation through a rapid, ERα36-PI3kinase non genomic pathway. Microarray analysis of the mixture target genes revealed that this pathway can modulate the expression of the DNA-methyltransferase-3 (Dnmt3) gene family which is involved in DNA methylation control. Our results highlight a key role for ERα36 in alkylphenol non genomic signaling in testicular germ cell tumors. Hence, ERα36-dependent control of the epigenetic status opens the way for the understanding of the link between endocrine disruptor exposure and the burden of hormone sensitive cancers. PMID:23626723

  6. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  7. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  8. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  9. SET缺陷对三氯乙烯诱导L-02细胞增殖和凋亡及组蛋白去乙酰化酶的影响%Effect of SET deficiency on the trichloroethylene-induced alteration of cell proliferation and cell apoptosis and DNA methylation in human hepatic L-02 cells

    Institute of Scientific and Technical Information of China (English)

    谢光珊; 刘建军; 洪文旭; 张航; 孙烨; 朱卫国

    2016-01-01

    Objective To compare the trichloroethylene (TCE)-induced alteration in cell proliferation,cell apoptosis,histone deacetylase activity and expression levels in human hepatic L-02 cells (L-02 cells) and SET deficient cells,and reveal the TCE-induced effect in histone modification and the role of SET on epigenetic pathway.Methods The L-02 cells and preestablished SET deficient cells were treated with different TCE concentrations.For the changes of cell proliferation level and apoptosis rate,The L-02 cells and SET deficiency cells without TCE treatment were served as the control group,the TCE treatment was in the concentration of 2.0 and 8.0 mmol/L for 24 h.For histone deacetylase activity and expression levels,the TCE treatment was in the concentration of 0.25,0.50,1.0,2.0,4.0,and 8.0 mmol/L for 24 h.Results After treatment with TCE for 24 h,the cell proliferation level was significantly decreased and the apoptotic rate was significantly increased in both cell lines.When concentration of TCE were reached to 8.0 mmol/L,the difference of cell proliferation level and apoptotic rate between two groups was statistically significant (t=-4.362 for proliferation level and t =23.950 for apoptotic rate,both P<0.05).After treatment with TCE for 24 h in various concentration (0,0.25,0.50,1.00,2.00,4.00 and 8.00 mmol/L),the activity of histone deacetylases was significantly increased in both cell lines.When the TCE concentration were high than 0.50 mmol/L,compared with control group of L-02 cells,the enzymes activity were significantly increased (F=403.26,P< 0.001).When TCE concentration was reached 1.00 mmol/L,the enzyme activity is highest.Compared with control group of SET deficiency cells,the enzyme activity was significantly increased when TCE concentration was reached 1.00 mmol/L (F=44.01,P<0.001).When concentration of TCE reached 0.50 mmol/L,the difference of enzyme activity between two groups was statistically significant.For the protein expression,compared with

  10. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  11. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  12. CCDC106 promotes non-small cell lung cancer cell proliferation.

    Science.gov (United States)

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  13. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    Science.gov (United States)

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.

  14. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  15. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway.

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y M; Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L; Bernards, Rene; Barbacid, Mariano

    2014-10-21

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21C