WorldWideScience

Sample records for cell powered automobiles

  1. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  2. Study of hydrogen-powered versus battery-powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J.J. Jr.; Greayer, W.C.; Nichols, R.J.; Escher, W.J.D.

    1979-05-01

    A study conducted to compare the technological status and the resultant potential vehicle characteristics for hydrogen- and battery-powered automobiles that could be produced from 1985 to 2000 is documented in 3 volumes. The primary objectives of the study were: the assessments of applicable energy storage and propulsion technology for the two basic vehicle types (applied to four-passenger cars); a rigorous comparison of vehicle weight, size, and usefulness versus design range; and an investigation of the relative efficiencies of expending energy from various primary sources to power the subject vehicle. Another important objective, unique to hydrogen powered vehicles, was the assessment of the technology, logistics, and cost implications of a hydrogen production and delivery capability. This volume, Volume III, contains three major sections: the assessment of battery electric vehicle technology for energy storage and the drivetrain system; the technical and economic comparison of hydrogen- and battery-powered vehicles derived primarily from data in the previous vehicle technology assessments, with consideration of alternative energy sources; and a series of appendices that support the vehicle definitions and comparisons.

  3. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  4. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    A K Shukla; C L Jackson; K Scott

    2003-02-01

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of $ca$. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer–electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer–electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

  5. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  6. Fault Diagnosis of Automobile Crane Power Steering System Aided by ICP-AES

    Directory of Open Access Journals (Sweden)

    Lidan Chen

    2013-01-01

    Full Text Available The objective of this paper is to evaluate an innovative application of inductively coupled plasma atomic emission spectroscopy (ICP-AES on the fault diagnosis of automobile crane hydraulic power steering (HPS system. Contents of Fe, Cu and Al were examined by ICP-AES in the oil samples of HPS system for four different mileages of Puyuan QY50H. The mileages were 2000-9000 km, 11000-19000 km, 21000-28000 km and 32000-40000 km separately. Database of major mental contents in automobile crane HPS system of Puyuan QY50H with different mileage were calibrated. Results showed that, major mental contents were increased with the increasing of driving mileage and the normal contents laid between two trend lines. Through the determination of mental contents in HPS oil sample and further compared them with the values in their database, we could not only evaluate the wear condition of automobile crane HPS system, but also helped to diagnose the faults without dissembled the problematic vehicle. The results further indicated that, in time maintenance, high quality and low cost reparation could be realized by the application of ICP-AES technology on fault diagnosis of automobile crane power steering system.

  7. Brand rivalry, market segmentation and the pricing of optional engine power on automobiles

    OpenAIRE

    Verboven, Frank

    1996-01-01

    This paper analyzes how the prices strategies for base automobile models may differ from those for premium models, sold with extra engine power. The popular monopoly model of market segmentation according to willingness to pay for quality is compared with two models of brand rivalry. In a first scenario, consumer are fully informed of all prices; in a second scenario, consumers are initially only informed about the prices of base models , due to selective price advertising strategies. Impli...

  8. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    Science.gov (United States)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  9. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  10. Report on commissioned business for fiscal 1997. Development of new power storage system for cells and development of technology for distributed power storage (research for a zinc/air cell system for automobiles); 1997 nendo itaku gyomu hokokusho. Shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu (denki jidoshayo aen kuki denchi system chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the above, it is discussed whether such a system is feasible in Japan. A zinc/air cell system requires some special plants for zinc regeneration, etc. It is necessary to build a zinc refining plant and to install dozens of electrode replacing facilities in an area dozens of kilometers in diameter with the plant at the center. For such a system to be functional, there have to be several tens of thousands of automobile users in a limited area. In Japan, so large a number will not be found anywhere even if the appeal is directed to those in the postal service and electric utilities. There will be no economic success in Japan, different from in Germany. As for the economic comparison between a zinc/air cell system and natural gas system, the two will be equivalent to each other as far as the use of the quick filling stations for the natural gas automobiles remains as it is. When the number in consideration is so large as several tens of thousands, however, the natural gas system will turn out to be economically superior to the zinc/air cell system. 19 figs., 29 tabs.

  11. Nonpolluting automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Hoolboom, G.J.; Szabados, B. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1994-11-01

    The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller for the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.

  12. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    Science.gov (United States)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  13. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2016-08-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  14. Stirling engines for automobiles

    Science.gov (United States)

    Beremand, D. G.

    1979-01-01

    The results of recent and ongoing automobile Stirling engine development efforts are reviewed and technology status and requirements are identified. Key technology needs include those for low cost, high temperature (1300 - 1500 F) metal alloys for heater heads, and reliable long-life, low-leakage shaft seals. Various fuel economy projections for Stirling powered automobiles are reviewed and assessed.

  15. Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.

    Science.gov (United States)

    Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion

    2007-06-01

    This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (paverage peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (ppower hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered. PMID:17474028

  16. Solar Energy Automobile

    OpenAIRE

    He, Jianhua

    2014-01-01

    The thesis was to design a solar energy automobile, which is using solar power as energy re-source. At the moment, Finland was chosen as an example place. It was necessary to calculate the related data, which are the solar angle and the day length when designing the solar energy automobile. Also the seats and dashboard to improve the performance. Actually, in Finland it is possible to use solar energy automobile in summer. But in winter, the day length is so short and the solar constant i...

  17. 电动汽车:一个用电增长点的考察%Electric Automobile: Review of the Point of Growth in Electric Power Consumption

    Institute of Scientific and Technical Information of China (English)

    张媛; 杨定顺; 陈虹; 刘洁; 闫晓生

    2002-01-01

      "Spread of marketing needs to be considered from thefact of Tianjin City. At least electric automobile is a goodsuggestion on it." said Kou Shiqing, general manager ofTianjin Electric Power Company. In order to widen themarket of electric power and improve the atmosphere qual-ity of city, Tianjin Electric Power Company invited leaderfrom city economy.……

  18. Use of powered electric vehicles in automobile fleets. Help elements for decision; Utilisation de vehicules electriques dans les flottes automobiles. Elements d`aide a la decision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    One of the primary causes of degradation in the quality of urban life is automobile transportation. The introduction of electric vehicles within automobile fleets can help mitigate some of the associated impacts. This guide has assembled a set of technical tools vital to all fleet managers, whether they be with public-sector agencies or companies, who are involved in vehicle-purchasing decisions. It deals with the specific issues related to the use, maintenance and acquisition of electric vehicles. Besides those elements intended to convince both decision-makers and users alike, the automobile fleet manager will find herein, as a conclusion, some examples of comparative economic assessments. These serve to highlight the opportunities available for using electric vehicles in a wide variety of situations. (authors) 18 refs.

  19. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  20. Regulation on power efficiency in the automobile; Regulacion sobre eficiencia energetica en el automovil

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Susano, Armando; Romero de Vivar Uvaldo, Pascual [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    In this article it is presented a brief analysis of one of the regulations on the yield of fuel consumption of the light vehicles that promoted substantial changes in the Mexican automotive industry, the decree denominated PREMCE (Average of minimum fuel yield by company), as well as some international experiences relative to the subject. It is also indicated the evolution, in the last years, of the average yields of fuel consumption (Km/L) in Mexico in the new automobiles and the more important technological factors that affect their energy efficiency. [Spanish] En este articulo se presenta un breve analisis de una de las regulaciones sobre el rendimiento de consumo de combustible de los vehiculos ligeros que promovio cambios sustanciales en la industria automotriz mexicana, el decreto denominado Premce (Promedio de rendimiento minimo de combustible por empresa), asi como algunas experiencias internacionales relativas al tema. Se senala tambien la evolucion, en los ultimos anos, de los rendimientos promedio de consumo de combustible (Km/L) en Mexico en los automoviles nuevos y los factores tecnologicos mas importantes que influyen en su eficiencia energetica.

  1. 汽车电动滑门设计研讨%Design Research of automobile Power Sliding Door

    Institute of Scientific and Technical Information of China (English)

    崔炳林; 赵云聪

    2014-01-01

    Automobile Power sliding doors (PSD) system is advanced sliding door system which integrated electronic intelligent control technology and sensor technology based on the sliding door system,and which is widely used in luxury commercial car, and which is more and more popular for consumers because of both the opening convenience of sliding side door and human-machine intelligent controlling.Refer to JAC M6 item,this article describes the technical components and theory of the automotive power sliding door subsystem, and achieves the innovative development of the power sliding door system.%汽车电动滑门(PSD)系统是在滑门系统的基础上,集成电子智能控制技术和传感器防夹技术的高级滑门系统,广泛应用于高档豪华商务车,兼具了滑门侧开启方便性和人机智能控制性,越来越受到消费者的青睐。本文结合江淮M6项目,介绍了汽车电动滑门的各子系统构成和原理,实现了电动滑门系统的自主开发。

  2. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    Directory of Open Access Journals (Sweden)

    Ozomata David AHMED

    2011-06-01

    Full Text Available Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, opening of any door will disengage the device and the engine will stop. To restart the engine, the doors must be closed and the codes rendered sequentially-in this case the codes are 1974.

  3. Automobile with fuel cell and supercapacitor drive; Personenwagen mit Brennstoffzellen und Supercap-Antrieb - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Ph.

    2002-12-15

    In a Volkswagen BORA a power train has been realized, which includes a fuel cell system consisting of 6 stacks of 8 kW electrical power output each, an electrical storage device made of 282 supercap cells storing 360 Wh of electrical energy, a DC/DC converter and an electric motor which delivers up to 75 kW. The power distribution between supercaps and fuel cell is managed by an energy management device, which optimizes the distribution taking the actual operation points into account. The fuel cell system operates in a wide range with an efficiency higher than 40%. The power train has been integrated in a five seat car. This car named HY.POWER{sup R}, realized as technology platform, drove over the Simplon pass (elevation 2000 m over sea level) on 16 January 2002. This test drive proved the maturity of this concept to drive using this technology on public roads and that also severe operating conditions can be handled successfully. The key aspects of that concepts are the new manufacturing process of the bipolar plates for the fuel cells, the system configuration of the fuel cell system and the enhanced energy density of the supercap cells. The combination of a fuel cell system and of a supercap storage device, together with the integration of the DC/DC converter lead to a new power train concept. The consumption in the NEDC is equal to the energy of 5-6 l gasoline, which is quite impressive if it is remembered that the car has an empty mass of nearly 2000 kg. The HY.POWER{sup R} has been used heavily for the communication of the new technology to the public. The first event was the test drive across the Simplon pass. The main other events was the international auto motor show in Geneva in March 2002 and the presentation of the vehicle at the Earth Summit in Johannesburg in September 2002. (author)

  4. 基于温差发电的汽车电源系统设计%Design of Automobile Power System Based on Thermoelectric Generation

    Institute of Scientific and Technical Information of China (English)

    刘贻华

    2014-01-01

    为了减少传统汽车的燃油消耗以及提高汽车电池的使用寿命,通过对温差发电技术的研究,利用汽车燃烧产生的废气热量进行发电,将温差发电系统与传统汽车电源系统进行优化,为汽车的用电设备进行充电,可以有效的减少汽车燃油消耗以及提高车用电池的寿命,同时也达到相应的环保功用。%In order to reduce the fuel consumption of traditional automobiles and improve the battery life of cars, on the basis of the re-search of the thermoelectric generation technology, waste heat from cars is used for power generation. The optimization with the combi-nation of thermoelectric power generation system and the traditional automobile power system, which is used for automobile electric e-quipment charging can effectively reduce vehicle fuel consumption and improve vehicle battery life, at the same time, have correspond-ing environmental protection function.

  5. Environmentally Benign Automobiles

    OpenAIRE

    Sperling, Daniel; Schipper, Lee; Deluchi, Mark; Wang, Quanlu

    1992-01-01

    His dream has come true. There's now more than one vehicle for every licensed driver in the United States, and other developed countries are not far behind. But has the car's success created the conditions for its own demise? Conventional wisdom of market researchers, consultants, and other experts is that the automobile and its petroleum-powered internal combustion engine will be with us for a long time and that any energy and environmental problems can be readily solved. T...

  6. Fuel cell power trains for road traffic

    Science.gov (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  7. 汽车电站自主开发策划理论研究%The Theory Research of Automobile Power Station Independent Development Planning

    Institute of Scientific and Technical Information of China (English)

    杜遥

    2014-01-01

    From the importance of independent product development in the market competition of the automo -bile power station , analysis of new product development planning theory present situation and demand , put forward from the market research , demand transformation , comprehensive evaluation three aspects to build automobile pow-er station development planning framework of theoretical system , market research , demand analysis , the conceptual design of the conversion system of the importance of , has the guiding sense to the independent development of new products of automobile power station .%从产品自主开发在市场竞争中的重要性入手,分析了汽车电站新产品开发策划理论现状和需求,提出了从市场研究、需求转换、综合评价三方面来搭建汽车电站自主开发策划理论体系架构,分析市场研究、需求转换、概念设计对该体系的重要性。对汽车电站新产品的自主开发具有指导意义。

  8. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  9. Hybrid Voltage Regulator for Automobiles

    OpenAIRE

    Sei-Ichi Denda; Tadashi Takahashi; Akihiro Sawamura

    1981-01-01

    In the course of the development of hybrid voltage regulators for automobile use, increasing the reverse blocking voltage with decreasing of saturation voltage for output power darlington transistors, the capability of monolithic IC chip against surge pulses generated in cars, and an improvement of the pattern design of thick film in order to withstand temperature cycling, have been important subjects. Power darlingtons have more than 150 V of reverse voltage as well as large secondary breakd...

  10. Automobile accessories: Assessment and improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M. [Univ. of Nevada, Las Vegas, NV (United States)

    1995-11-01

    With mandates and regulatory policies to meet both the California Air Resources Board (CARB) and the Partnership for a New Generation of Vehicles (PNGV), designing vehicles of the future will become a difficult task. As we look into the use of electric and hybrid vehicles, reduction of the required power demand by influential automobile components is necessary in order to obtain performance and range goals. Among those automobile components are accessories. Accessories have a profound impact on the range and mileage of future vehicles with limited amounts of energy or without power generating capabilities such as conventional vehicles. Careful assessment of major power consuming accessories helps us focus on those that need improvement and contributes to attainment of mileage and range goals for electric and hybrid vehicles.

  11. The automobile share

    International Nuclear Information System (INIS)

    Out of a conversion of 120 billions metric tons of fossil carbon per year 1 billion are traffic related. But this amount is growing steadily. The global automobile density is about 10 automobiles per capita. It grows with 1.7% per year, as fast as the population. The number of automobiles doubles in 25 years. In all groups of developed countries the automobile density increased from 5 to 50 automobiles per capita in less than 50 years so far. Where is the fuel for the 1 billion automobiles of the year 2030 or 2050? Can one reduce this number or what chances does one have to reduce the adverse consequences? Whatever the number of motor vehicles will be, man will have the chance to reduce fuel consumption and therefore CO2-emission together with other emissions considerably

  12. Electric automobil - wishes and reality

    OpenAIRE

    Duchoň, Bedřich; Opava, Jaroslav

    2010-01-01

    The demands on cars energy resources are given by the following items: power, speed, acceleration, operation range. All these factors are under balance: future wishes and contemporary reality. The proposal is dedicated to the analysis of demands related to the electric automobiles. As a hopefulness solution of these transport means can be seen for city transport (forwarding, shopping, postal services etc). The technical and economic approaches are discussed, too.

  13. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies.

    Science.gov (United States)

    Gill, Saar

    2016-08-01

    Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer.

  14. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies.

    Science.gov (United States)

    Gill, Saar

    2016-08-01

    Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer. PMID:27136938

  15. 磷酸铁锂电池及其新能源汽车启动电源性能研究%Performance Study on Lithium Iron Phosphate Battery as Starting Power for New Energy Automobile

    Institute of Scientific and Technical Information of China (English)

    饶睦敏; 汪佐龙; 陈柯宇; 钱龙; 李晶

    2015-01-01

    In view of the serious environmental pollution of lead-acid battery of Starting Power for New Energy Automobile, a 25.6 V/65 A·h lithium iron phosphate battery pack was assembled with 32650 type of cylindrical lithium iron phosphate cell to replace the lead-acid battery for starting power for new energy automobile. The room temperature and low-temperature starting capability, rate capability and low-temperature discharge performance were investigated. The battery pack provided a capacity of 67.03 A·h at 0.33 C and retained 98.24% capacity at 3 C. The battery pack obtained 84.7% of capacity at−30oC. The voltage of every single battery was higher than the discharge protection voltage when the battery pack was discharged at 600 A under 25oC and−20oC, respectively. The battery pack retained 99.37% of capacity after storage at 25oC for 28 days. All these data can meet the requirements of the starting power, indicating that the lithium iron phosphate battery pack can replace the lead-acid battery as starting power for new energy automobile.%鉴于汽车启动电源铅酸电池存在严重环境污染隐患,本文采用环保型32650圆柱磷酸铁锂电池组装成25.6 V/65 A·h电池组代替铅酸电池应用于汽车启动电源,并分别对磷酸铁锂电池组的常温和低温启动能力、倍率性能和低温放电性能等进行测试。实验结果表明,电池组0.33 C放电容量为67.028 A·h,3 C放电容量为0.33 C放电容量的98.24%,电池组具有较好的倍率性能;电池组在−30℃放电容量为额定容量的84.7%,具有良好的低温性能;电池组在25℃和−20℃下以600 A电流放电,单串电池电压均高于放电保护电压;电池组在25℃搁置28 d之后,容量恢复率为99.37%;磷酸铁锂电池组性能均满足汽车启动电源性能要求,可以代替铅酸电池作为汽车启动电源。

  16. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  17. The automobile in Japan

    OpenAIRE

    Lone, Stewart; Madeley, Christopher

    2005-01-01

    Lone: The 1920s saw the emergence in Kansai of modern industrial urban living with the development of the underground, air services; wireless telephones, super express trains etc. Automobiles dominated major streets from the early 1920s in the new Age of Speed. Using Kyoto city as an example, the article covers automobile advertising, procedures for taxis, buses and cars and traffic safety and regulation. Madeley: Nissan Motor Company had a longer connection with the British industry than any...

  18. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  19. Reliability-based design for automobiles in China

    Institute of Scientific and Technical Information of China (English)

    Yimin ZHANG

    2008-01-01

    The level of automobile design and manufac-turing is an important sign of leadership in science and technology and economic power. The achievements of theories and methods for reliability-based design of auto-mobiles in China are reviewed. For reliability-based design, the theories and practices, optimization, sensitiv-ity, and robustness are estimated. The techniques of reli-ability-based design for automobiles are developed. The techniques service to the "hollow" phenomena of kernel technology, product innovative power, and independent development power can be solved.

  20. Price Variability in Automobile Insurance

    OpenAIRE

    Joseph A. Fields; Emilio C. Venezian; David Jou

    1992-01-01

    In this paper the causes of variation in automobile insurance prices are examined within a small and homogenous state. The central hypothesis of interest is the relation between the price of automobile insurance and the quality of the product. The findings here indicate that the market is one which contains substantial frictions, making the search for automobile insurance products a worthwhile activity for consumers.

  1. Northeast:Automobile Feast

    Institute of Scientific and Technical Information of China (English)

    Janet

    2008-01-01

    @@ The northeast has a lot of firsts in the history of China's industrial development,including the first automobile factory-FAW.Due to the system problem and many other complicated factors,quite a number of the northeastern industry enterprises are out of date during the China's economic transition period.

  2. On the automobile lightweight

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Yi Hongliang; Lu Hongzhou; Wan Xinming

    2012-01-01

    The significance, description parameters, evaluation method, implement way and design for lightweight of au- tomobile are comprehensively reviewed. The relationship among the performances of auto parts & components, the prop- erties of materials and application of advanced technologies is also elaborated. According to recently related progress of lightweight and authors' research and developing work, lightweight of automobile is comprehensively and systematically overviewed.

  3. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  4. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang;

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  5. 49 CFR 523.4 - Passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Passenger automobile. 523.4 Section 523.4... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.4 Passenger automobile. A passenger automobile is any automobile (other than an automobile capable of off-highway operation)...

  6. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  7. The challenges of automobile-dependent urban transport strategy

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir

    2015-01-01

    Full Text Available The fundamental aims of sustainable urban development and the pro-automobile oriented economic development are on a collision course. It is obvious that automobile-dependent urban development is under heavy/powerful influence of the automobile lobby (automobile and oil industries, along with construction. In this domain famous land-use-transportation studies (or ‘grand transportation studies’ are, unfortunately, still prevailing - a vicious circle of self-fulfilling prophecy of congestion, road building, sprawl, congestion and more road building. Until recently, it was commonly thought that investment in public transport was not economically sustainable and that focusing on the development of the automobile industry and financing the construction of roadways stimulated economic growth. In this paper we clearly show that automobile industry is now overcapitalized, less profitable than many other industries (and may become even less profitable in the future, that transport market is characterized with huge distortions (more than a third of motor-vehicle use can be explained by underpriced driving, while new road investment does not have a major impact on economic growth (especially in a region with an already well-developed infrastructure, and that pro-automobile transport strategy inexorably incurs harmful global, regional and local ecological consequences. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  8. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.

    1999-01-01

    Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

  10. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700oC. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  11. The automobile after tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L. [Swiss Federal Inst. of Technology (ETH), Zurich (Switzerland)

    1996-11-01

    This talk discusses the technical options available for automobiles within the next 5 to 10 years. With the objective to reduce consumption and pollution, several alternative approaches are presented and analyzed using simplified but realistic calculations. Main emphasis is laid on CO{sub 2} emission of the complete energy transformation path from the primary energy carrier to the energy dissipated in test cycles. It is shown that no single optimal solution exist but that a trade-off between consumption, pollution and cost must be made for each specific situation. (author) 17 figs., 2 tabs.

  12. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  13. Automobile Club CERN

    CERN Multimedia

    Automobile Club CERN

    2010-01-01

     L’Assemblée Générale Ordinaire de «L’Automobile Club du CERN» s’est tenue le mercredi 12 janvier 2010. Le Président, J. Pierlot, souhaite la bienvenue aux membres présents, annonce l’agenda et résume les activités et événements du club pour l’année 2009. Le Club compte environ 600 membres, une petite diminution par rapport aux précédentes années dû surtout aux départs anticipés à la retraite. La cotisation reste inchangée : 50 CHF. Notre trésorier, E. Squadrani, présente de façon détaillée la situation du compte d’exploitation pour 2009 ainsi que le bilan de l’Automobile Club. Les comptes sont équilibrés, la situation de la trés...

  14. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  15. Regulation of Power Conversion in Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SHEN Mu-zhong; ZHANG J.; K. Scott

    2004-01-01

    Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the equilibrium potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs. the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.

  16. 19 CFR 148.39 - Rented automobiles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rented automobiles. 148.39 Section 148.39 Customs... automobiles. (a) Importation for temporary period. An automobile rented by a resident of the United States... (HTSUS) (19 U.S.C. 1202), without payment of duty. The automobile shall be used for the transportation...

  17. System Studies of Fuel Cell Power Plants

    OpenAIRE

    Kivisaari, Timo

    2001-01-01

    This thesis concerns system studies of power plants wheredifferent types of fuel cells accomplish most of the energyconversion. Ever since William Grove observed the fuel cell effect inthe late 1830s fuel cells have been the subject or more or lessintense research and development. Especially in the USA theseactivities intensified during the second part of the 1950s,resulting in the development of the fuel cells used in theApollo-program. Swedish fuel cell activities started in themid-1960s, w...

  18. Design of dual lithium battery packs applied to hybrid power automobile%一种双锂电池组供电的混合动力汽车电池组设计

    Institute of Scientific and Technical Information of China (English)

    方莹; 陈军峰; 吴智正

    2015-01-01

    The power supply method of the dual lithium battery packs applied to hybrid power automobile is presented. The dual lithium battery packs are composed of two battery packs. The method makes one battery pack supply power for the vehicle while another is charged. The lifetime and reliability of the battery pack are influenced by the poor consistency of the batteries while they are connected in series or parallel. The design can eliminate the unbalanced current problem created by the poor con-sistency of the paralleled batteries,and improve the reliability of the battery packs.%这里提出一种适用于混合动力汽车的双锂电池组供电方法.该混合动力汽车电池组由两个锂电池组组成,交替供电和充电.大量锂电池单体的串并联会因单体之间一致性差而降低电池组寿命和可靠性.这种设计不仅可以消除电池并联中因一致性差引起的不均衡电流,还能进一步提高电池组的可靠性.

  19. The Linguistic Features of English Automobile Advertisements

    Institute of Scientific and Technical Information of China (English)

    李琼璐

    2014-01-01

    Household cars are largely demanded today, stimulating the economic development throughout the automobile industry. To enlarge market, all automobile producers pay great efforts to advertisements which result in a large quantity of automobile advertisements. Due to the rare analysis on the linguistic features of automobile advertisements, this essay makes a specific study on this. Analysis will be done through the perspectives of the lexical level, the syntactic level and the rhetoric level. Hence, valid references could be offered to future automobile advertisers.

  20. Comfort model for automobile seat.

    Science.gov (United States)

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz

    2012-01-01

    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  1. Automobile Driving and Aggressive Behavior

    OpenAIRE

    Novaco, Raymond W.

    1991-01-01

    Automobile driving and aggressive behavior have had an extensive association. Themes of dominance and territoriality have long been part of automobile driving, which has also involved flagrant assaultive actions. Recent episodes of roadway violence in metropolitan areas have raised community concern about aggressive behavior in driving, although common beliefs about why such violence occurs can be seen as pseudoexplanations. Various themes in the psychology of aggression are presented as they...

  2. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  3. Developing more ecological automobile technology; Kohti ekologisempaa autotekniikkaa

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland)

    2001-07-01

    than that of a gasoline-fueled Otto cycle-cycle engine, especially in urban transport, in which it is impossible to use the optimal operation range of the engines. Utilization of microprocessors for control of the operation of engines, different engine and power transmission alternatives, hybrid engine systems and the role of them in improving the operation and efficiency of the engines are discussed in this article. Development of fuel-cell technology for to be used in automobiles, e.g. so called on-board reformer technology, different means for reduction of the driving resistances and the effects of them on the weight of vehicles, new fuel and driving force alternatives, and possible obstacles and restraints are also reviewed.

  4. Air breathing lithium power cells

    Science.gov (United States)

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  5. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  6. Wireless sensors powered by microbial fuel cells.

    Science.gov (United States)

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver. PMID:16053108

  7. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-03-30

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  8. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  9. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... of magnetic components especially for large production volumes. At last, the complete converter design is presented in detailed and characterized in efficiency terms. Both benefits, provided by SiC power devices and by a redesign of the converter layout increased the converter power density up to 2.2 k...

  10. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  11. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  12. Determinants of automobile loan default and prepayment

    OpenAIRE

    Sumit Agarwal; Ambrose, Brent W.; Souphala Chomsisengphet

    2008-01-01

    The authors examine whether a borrower’s choice of automobile reveals information about future loan performance. They find that loans on most luxury automobiles have a higher probability of prepayment, while loans on most economy automobiles have a lower probability of default, even when holding traditional risk factors, such as income and credit score, constant.

  13. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  14. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  15. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...

  16. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  17. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  18. Bundled automobile insurance coverage and accidents.

    Science.gov (United States)

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang

    2013-01-01

    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.

  19. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; Hassanzadeh, F.

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  20. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  1. Fuel cells for electric power generation

    International Nuclear Information System (INIS)

    After having first briefly illustrated the basic design, construction and operating principles of fuel cells, this paper assesses the progress that has been achieved to date in the development of the phosphoric acid (PAFC), molten carbonate (MCFC) and solid oxide (SOFC) fuel cells. Special attention is given to the design, performance and cost characteristics of the phosphoric acid fuel cells. For example, the paper cites the IFC/Toshiba 4.8 and 11.0 MW models, which have attained efficiencies of 37.5 and 41.0% respectively, and points out that these fuel cells, with efficiencies comparable to those of conventional poly-fuelled and combined cycle power plants, offer the advantages of compact size and better environmental compatibility with respect to the latter. However, fuel cells cannot yet compete with the lower per kWh costs of fossil fuel power plants. The paper concludes with an assessment of Italian fuel cell commercialization efforts, especially those centered around the use of methane fuelled PAFC's, and reviews the status of coordinated international research programs involving Japan, the USA and Italy

  2. Solid Oxide Fuel Cell Auxiliary Power Unit

    International Nuclear Information System (INIS)

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market

  3. Prelaunch Forecasting of New Automobiles

    OpenAIRE

    Urban, Glen L.; John R. Hauser; John H. Roberts

    1990-01-01

    This paper develops and applies a prelaunch model and measurement system to the marketing planning of a new automobile. The analysis addresses active search by consumers, dealer visits, word-of-mouth communication, magazine reviews, and production constraints---issues that are important in understanding consumer response to durable goods. We address these issues with a detailed consumer flow model which monitors and projects key consumer transitions in response to marketing actions. A test-vs...

  4. Quality Change in Brazilian Automobiles

    OpenAIRE

    Renato Fonseca

    2015-01-01

    In this paper I investigate the quality evolution of Brazilian autos. To measure the quality evolution of Brazilian autos, I have assembled a data set for Brazilian passenger cars for the period 1960/94, to which I have applied the hedonic pricing methodology. To the best of my knowledge, this is the first time an index of quality change has been constructed for the Brazilian automobile industry. The results presented here have two major implications. They allow a better understanding of prod...

  5. PROSPECTS OF AUTOMOBILE TIRE RECYCLING

    OpenAIRE

    A. D. Gusev; V. S. Demyanova

    2012-01-01

    Statement of the problem. The legislative system of legal handling of waste in the Russian Fed-eration is focused on governing the handling waste as an environment pollutant. There is almost no legal regulations for handling waste as secondary material resources. Therefore, there is a pressing need to describe directions to be taken in the recycling of automobile tires.Results and conclusions. The system of legal regulations for handling wastes has been analyzed. A growing need to utilize aut...

  6. Automobile technology of the future

    International Nuclear Information System (INIS)

    Looking ahead to the year 2000, this fascinating publication takes an in-depth look at new technology which will impact the passenger car of tomorrow. New developments in the areas of performance, reliability, comfort, fuel economy, safety, and environmental compatibility are examined. In this book the authors offer analysis on subjects such as the impact of legislation, the acceptance of ABS, and features of the future dashboard. Offering insight to readers with both technical and general interest in automobiles

  7. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  8. Analytical description of the modern steam automobile

    Science.gov (United States)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  9. 49 CFR 523.5 - Non-passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Non-passenger automobile. 523.5 Section 523.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.5 Non-passenger automobile. A non-passenger automobile means an automobile that is not a passenger automobile or a work truck and...

  10. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  11. Automobile Fuel Economy: What is it Worth?

    OpenAIRE

    Nair, Santosh; Espey, Molly

    2004-01-01

    The marginal value of increased automobile fuel economy is estimated using a hedonic model of 2001 model year automobiles sold in the United States. This value is then compared to the average expected lifetime fuel savings attributable to increased fuel economy. Results indicate that automobile buyers fully internalize fuel cost savings attributable to improved fuel economy at low discount rates, and may partially internalize other perceived benefits of improved fuel economy such as reduction...

  12. Pulmonary function in automobile repair workers

    OpenAIRE

    Chattopadhyay O

    2007-01-01

    Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 ), Forced Vital Capacity (FVC), Peak Expiratory Flow Rate (...

  13. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  14. The construction of a Danish automobile culture

    DEFF Research Database (Denmark)

    Wagner, Michael

    The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation.......The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation....

  15. The Emergence of the Chinese Automobile Sector

    OpenAIRE

    Mark Baker; Markus Hyvonen

    2011-01-01

    The Chinese automobile sector has experienced rapid growth over the past decade, with China recently becoming the world’s largest producer of automobiles. Given the steel-intensive nature of automobile production, the expansion of China’s automobile sector has seen it become an important end-user of steel. With the number of cars in China still very low relative to its large population, car sales are likely to remain at a high level for the foreseeable future; accordingly, Chinese car mak...

  16. STRATEGIC ENTREPRENEURSHIP: A CASE IN THE BRAZILIAN AUTOMOBILE INDUSTRY

    OpenAIRE

    Afonso Carneiro Lima; Edison Fernandes Polo; Fátima Regina Ney Matos

    2010-01-01

    This work addresses an entrepreneurial phenomenon of strategic administration within the automobile industry: the creation of the automaker Troller Veículos Especiais (TVE). The case study at hand is justified by the positioning of this company around two market niches and its relative success in an industry characterized by few and powerful players. Our aim was to analyze the entrepreneurial and strategic process of discovering opportunity, the analysis used for internal and external factors...

  17. DAARIA: Driver Assistance by Augmented Reality for Intelligent Automobile

    OpenAIRE

    George, Paul; Thouvenin, Indira; Fremont, Vincent; Cherfaoui, Véronique

    2012-01-01

    International audience Taking into account the drivers' state is a major challenge for designing new advanced driver assistance systems. In this paper we present a driver assistance system strongly coupled to the user. DAARIA 1 stands for Driver Assistance by Augmented Reality for Intelligent Automobile. It is an augmented reality interface powered by several sensors. The detection has two goals: one is the position of obstacles and the quantification of the danger represented by them. The...

  18. Solar Powered Automobile Interior Climate Control System

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  19. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  20. CRUISE FUZZY CONTROL FOR AUTOMOBILE WITH CVT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To develop cruise control system of an automobile with the metal pushing V-belt type CVT, the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.

  1. Your Automobile Dollar, [Revised.] Money Management

    Science.gov (United States)

    Baran, Nancy H., Ed.; Law, Jean L., Ed.

    This booklet on automobile purchasing and maintenance, 1 in a series of 12, covers all the basic aspects of personal- and family-money management. Suitable for use by high school and college students as well as adults, this handbook discusses buying, maintaining, and operating cars. Section 1 discusses managing automobile dollars. Topics include…

  2. Anhui Jianghuai Automobile Group Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Anhui Jianghuai Automobile Group Co., Ltd (hereafter referred to as "Jiangqi Group"),established on May 18, 1997 with approval of Anhui provincial government, is one of 12 key provincial owned enterprises. Its predecessor was Hefei Jianghuai Automobile Factory built in 1964.……

  3. Anhui Jianghuai Automobile Group Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Anhui Jianghuai Automobile Group Co., Ltd (hereafter referred to as "Jiangqi Group"),established on May 18, 1997 with approval of Anhui provincial government, is one of 12 key provincial owned enterprises. Its predecessor was Hefei Jianghuai Automobile Factory built in 1964.

  4. PROSPECTS OF AUTOMOBILE TIRE RECYCLING

    Directory of Open Access Journals (Sweden)

    A. D. Gusev

    2012-11-01

    Full Text Available Statement of the problem. The legislative system of legal handling of waste in the Russian Fed-eration is focused on governing the handling waste as an environment pollutant. There is almost no legal regulations for handling waste as secondary material resources. Therefore, there is a pressing need to describe directions to be taken in the recycling of automobile tires.Results and conclusions. The system of legal regulations for handling wastes has been analyzed. A growing need to utilize automobile tires has been indicated. Physical and mechanical indicators have been established and the residual durability of metal cord as a product of tire processing has been evaluated. The comparative analysis with an industrial fiber has been carried out. The most technological and economic directions to be taken in the recycling of rubber scraps in order to do-mestically manufacture tile and of metal cord to manufacture fiber-concrete of various types are suggested for a “floating floor” structure.

  5. Study of automobile exhaust particles by spectromicroscopy

    International Nuclear Information System (INIS)

    In this paper,automobile exhaust particles of Gol and Santana 3000 were studied by spectro microscopy. The STXM results show that the single particulate is sized at 500 nm, with the mass distribution reducing towards the center. The N 1s NEXAFS spectra of automobile exhaust particles have similar structure with those of nitrates, which can be deduced as the main chemical species of nitrogen in automobile exhaust particles. There are minor amounts of ammonium and organic nitrogen compounds in automobile exhaust particles. A single Gol automobile exhaust particle was stack scanned in the energy range of 396-416 eV. By principal component analysis and cluster analysis, it can be deduced that there are main three chemical species of nitrogen. The particle surface consists of mainly nitrates, the inside consists of mainly ammonium and organic nitrogen compounds, and the middle layer is an inter gradation consisting of mainly nitrates and organic nitrogen compounds. (authors)

  6. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  7. Novel power electronic interface for grid-connected fuel cell power generation system

    International Nuclear Information System (INIS)

    Highlights: • A fuel cell power generation system was composed of a DC–DC power converter and a DC–AC inverter. • A voltage doubler based topology was adopted to configure the DC–DC power converter. • A dual buck power converter and a full-bridge power converter were applied to the DC–AC inverter. • The DC–AC inverter outputs a five-level voltage. • The DC–AC inverter performs the functions of DC–AC power conversion and active power filter. - Abstract: A novel power electronic interface for the grid-connected fuel cell power generation system is proposed in this paper. This power electronic interface is composed of a DC–DC power converter and a DC–AC inverter. A voltage doubler based topology is adopted to configure the DC–DC power converter to perform high step-up gain for boosting the output voltage of the fuel cell to a higher voltage. Moreover, the input current ripple of the fuel cell is suppressed by controlling the DC–DC power converter. The DC–AC inverter is configured by a dual buck power converter and a full-bridge power converter to generate a five-level AC output voltage. The DC–AC inverter can perform the functions of DC–AC power conversion and active power filtration. A 1.2 kW hardware prototype is developed to verify the performance of the proposed power electronic interface for the grid-connected fuel cell power generation system. The experimental results show that the proposed power electronic interface for the grid-connected fuel cell power generation system has the expected performance

  8. AC power generation from microbial fuel cells

    Science.gov (United States)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  9. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  10. EVOLUTIONS IN GLOBAL AUTOMOBILES INDUSTRY

    Directory of Open Access Journals (Sweden)

    Viorel Pop

    2013-09-01

    Full Text Available This paper is a brief overview of the evolution of the global automotive industry during the 20th century, with reference to the main manufacturers, oil crises of 1970-1980, and also the global financial and economic crisis that began in 2008. The analyzed period covers the rise of the Asian Continent, beginning with Japan, then South Korea and more recently the emerging countries: China and India. What was predicted 20-25 years ago, became reality: Asia becomes the economic centre of the world, surpassing unexpectedly fast even the Euro-Atlantic area. Regarding Romania, the revival delay of the automobiles industry, led to the loss of the trucks and bus industry, and after a much awaited rehabilitation of car production, this has stuck now at an unsatisfactory level.

  11. 20 CFR 416.1218 - Exclusion of the automobile.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Exclusion of the automobile. 416.1218 Section..., BLIND, AND DISABLED Resources and Exclusions § 416.1218 Exclusion of the automobile. (a) Automobile; defined. As used in this section, the term automobile includes, in addition to passenger cars,...

  12. 10 CFR 611.207 - Small automobile and component manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207... VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and component... individuals; and (2) Manufactures automobiles or components of automobiles. (b) Set Aside—Of the amount...

  13. OFF-ROAD CAPABILITY IMPROVEMENT OF MAZ-AUTOMOBILE HAVING AGRICULTURAL MODIFICATION

    Directory of Open Access Journals (Sweden)

    A. I. Bobrovnik

    2015-01-01

    Full Text Available The paper contains requirements to parameters of an automobile being designed with axle arrangement 6x4 and technically permissible mass of 25 tons with its all year round operation in agricultural industry with the purpose to ensure in-time load transportation and technological cycle in crop production of the agricultural complex in accordance with time schedule of the executed mechanized works. The future automobile should also have a power takeoff device.The paper presents operation chart flowsheets for cultivation of main crops on mineral and peat soils with indication of automobile motion modes and type of transported loads. Specific properties of peat-bog soils are given in the paper. The paper considers off-road capability of mobile machines when they are moving on soils with low bearing capacity. The paper indicates field applications of automobiles with limited and high off-road capability. Description of wheel interaction with bearing surface area, values of soil resistivity after multiple automobile passages have been given in the paper.The paper specifies values of rolling resistance coefficient and adhesion coefficient of the automobile undercarriage systems in spring and autumn for wheeled and crawler units. Schemes of the automobile front axle drives (electric, hydraulic, mechanical and their characteristics have been analyzed in the paper. An elastic flexible drive with separation of flow power has been proposed for reduction of dynamic loads in a power transmission drive. The paper describes a drive system of auto-analogue steering wheels with hydraulic hydrostatic drive which is located within a front wheel hub that ensure additional thrust. Recommendations for MAZ-automobile modernization with axle arrangement 6x4 have been given with the purpose to improve its off- road capability.Metallic anti-skid chain, segment and small link, track and crawler chains, wideners have obtained a wide application for improvement of automobile

  14. Random torsional vibration in automobile transmissions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The action of a road profile to the torsional vibrations in automobile transmissions is studied. The model to calculate the random torsional vibrations in the transmissions is proposed and the values of the model parameters are determined by both computation and experiment. Furthermore, the dynamic characteristics and the responses of automobile transmissions to the random excitation of road profile are calculated. The results of road experiment demonstrate that the theoretic analyses and the calculation are correct, which imply that the low frequency torsional vibrations in automobile transmissions are caused by the random excitation of a road profile.

  15. Lessons from China’s automobile industry

    Institute of Scientific and Technical Information of China (English)

    刘世锦

    2009-01-01

    Two controversies have emerged in the development of China’s automobile industry.The first is the role of government approval in economy of scale,industrial concentration and redundant construction.Second is the role of foreign-funded companies in the growth of China’s automobile industry.Correct understanding of these matters offers a unique"intellectual asset"for approaching the institutional and policy matters of China’s automobile industry and other sectors.It also serves as guidance in the selection of growth patterns.

  16. STRATEGIC ENTREPRENEURSHIP: A CASE IN THE BRAZILIAN AUTOMOBILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Afonso Carneiro Lima

    2010-07-01

    Full Text Available This work addresses an entrepreneurial phenomenon of strategic administration within the automobile industry: the creation of the automaker Troller Veículos Especiais (TVE. The case study at hand is justified by the positioning of this company around two market niches and its relative success in an industry characterized by few and powerful players. Our aim was to analyze the entrepreneurial and strategic process of discovering opportunity, the analysis used for internal and external factors, and the adoption of its strategic positioning in exploring two automobile market niches: in the B2B market, vehicles adapted to specific operational functions; and in the B2C, off-road vehicles with a strong appeal to consumers’ life styles. This case study allowed us to visualize the challenging path of a genuinely Brazilian small company in a sector dominated by large multinational groups, besides demonstrating decision-related dilemmas and aspects related to managerial creativity.Key-words: Automobile industry. Case study. Strategic entrepreneurship. Discovery theory. Strategic positioning.

  17. The Honey Trap:The democratization of leisure through automobilism

    OpenAIRE

    Wagner, Michael

    2013-01-01

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilismThe automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis in the article is that the culture of Danish automobilism was constructed around and appropriated through leisure activities conducted primarily by the automobile consumer’s organisation Touring Club d...

  18. Information searches by consumers of miniature automobiles

    Institute of Scientific and Technical Information of China (English)

    CHEN Dao-ping; LIU Wei

    2008-01-01

    We studied the information search behaviors of Chinese consumers of miniature automobiles. First, we identified the main sources where consumers acquire or seek information about miniature automobiles and discussed their extent of information search. Then, based on logistic regression and optimal scaling regression of statistics, we studied the influences of characteristics of consumers of miniature automobiles on the extent of information search and on Internet usage. The results indicate that consumers often utilize four sources to obtain information about miniature automobiles. The dominant information source for consumers is their friends/family, followed by dealers, newspapers, and TV. Age, occupation, education and income significantly affect the extent of information search, but gender and city of residence do not have significant impacts. Age, city of residence, occupation, education and income produce significant influences on Internet usage. Gender has an insignificant influence on whether a consumer uses the Internet to search for information.

  19. The rolling and skidding of automobile tyres

    Science.gov (United States)

    Tabor, D.

    1994-09-01

    This article deals in simple terms with the rolling and skidding of automobile tyres. It shows that skid resistance on slippery road surfaces may be significantly increased by using tyre treads of high hysteresis loss.

  20. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  1. CHOICE OF STRATEGY DIVERSIFICATION ON AUTOMOBILE TRANSPORT

    OpenAIRE

    Bilichenko, V.; Tsymbal, S.

    2005-01-01

    The block diagram which with use of imitating modelling will allow to choose optimum strategy diversification the enterprises of automobile transport is developed, having received the maximal profit at the minimal expenses.

  2. The Eighth China (Guangzhou) International Automobile Exhibition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The annual China (Guangzhou) International Automobile Exhibition was held at the China Import and Export Commodity Fair on December 21-27, 2010. This year’s exhibition covered about 160,000 square meters. The world’s most

  3. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  4. 助力冬奥张家口市汽车污染治理问题研究%The Winter Olympics in Zhangjiakou city power automobile pollution management research

    Institute of Scientific and Technical Information of China (English)

    孙志刚; 赵春

    2016-01-01

    北京—张家口经过多轮角逐成为2022年冬奥会举办城市,此次冬奥会,张家口市提出“绿色奥运、低碳奥运”的承办理念,本课题基于张家口市汽车污染问题的现状、通过对张家口市汽车污染原因进行分析,提出治理方案,为有关部门提供相应的理论支持和智力保证,多措并举助推京张联合办冬奥,推进绿色崛起。%Beijing - Zhangjiakou after several rounds of competition become the 2022 Winter Olympics host city, the Winter Olympics, Zhangjiakou city put forward the "Green Olympics, low carbon Olympic" undertaking idea, this topic based on the status quo of Zhangjiakou City automobile pollution problems, through of Zhangjiakou City automobile pollution raw as a result of an analysis, put forward treatment schemes, provide corresponding theoretical support and intellectual guarantee for the relevant departments, Duocuobingju boost Jing Zhang combined with the Winter Olympics, promote the rise of the green.

  5. China's Automobile:Walk into Africa

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The press conference and flag presentation ceremony of the 6th China Auto International fAlgeria & Egypt)Exhibition Tour was held on November 3,2008 at China Council for the Promotion of International Trade (CCPIT),Beijing.An international exhibition automobile team,which is composed of China's independent brands and represents the independent research,development and manufacturing level of Chinese automobile industry,is ready to set out for Africa.

  6. Competition in the IndianAutomobile Industry

    OpenAIRE

    Singh, Gagandeep

    2009-01-01

    ABSTRACT “Following India's growing openness, the arrival of new and existing models, easy availability of finance at relatively low rate of interest and price discounts offered by the dealers and manufacturers all have stirred the demand for vehicles and a strong growth of the Indian automobile industry”. The main focus of my dissertation will be the Indian automobile industry due to its rich diversity and ever-changing patterns. The Research Question which I would follow would be t...

  7. Community Essay: Sustainable approach to automobile society in Japan

    Directory of Open Access Journals (Sweden)

    Jun Fujimoto

    2013-02-01

    Full Text Available What is the difference between electric vehicles (EVs in society and an EV society? “EVs in society” means simply the replacement of gasoline-powered cars with EVs without taking into consideration pervasive social issues. By contrast, an “EV society” is a concept whereby EVs are more fundamentally woven into the fabric of society with the aim of solving a range of social problems, while at the same time questioning the meaning of what an automobile “is” and “can be.” It is this “game-changing” principle of integration that drives our research.

  8. Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile

    DEFF Research Database (Denmark)

    Cernat, M.; Scortarul, P.; Tanase, A.;

    2007-01-01

    A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak...... current needed for ZVS operation is kept constant and no in excess circulating current losses at light load conditions are encountered. Inductor current ripple decreases with load reduction. Automatic changes in operation between buck and boost modes are accomplished without transient currents. Power...

  9. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  10. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  11. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  12. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites

    NARCIS (Netherlands)

    Ende, D.A. van den; Wiel, H.J. van de; Groen, W.A.; Zwaag, S. van der

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  13. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  14. Photovoltaic cells for laser power beaming

    Science.gov (United States)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  15. Summary of semi-initiative and initiative control automobile engine vibration

    Science.gov (United States)

    Qu, Wei; Qu, Zhou

    2009-07-01

    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  16. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  17. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  18. WAYS AND PERSPECTIVES OF TECHNICAL DEVELOPMENT ON AUTOMOBILE TRANSPORT

    OpenAIRE

    Bilichenko, V.; Smyrnov, E.

    2005-01-01

    Modern conditions of enterprise on automobile transport are analyzed. Technical development of enterprise on automobile transport as one of the ways of increasing competitive abilities and there profits is considered.

  19. Renewing Marketing Strategy in Kenyan Automobile Industry

    OpenAIRE

    Kalliokuusi, Miriam

    2013-01-01

    This thesis studies how to renew existing marketing strategies for case company; in so doing, the thesis fulfills its main objective. Company X, a market leader in the Kenyan automobile sector and has various well-known brands under their corporate umbrella. The automobile industry in Kenya has faced some hardship with steady decline in sales in the last couple of years and Mercedes-Benz as a brand suffered under the circumstances. One major cause of the drop in sales is due to the influx of ...

  20. Automobile Exhaust Pollution and Purification Methods

    OpenAIRE

    Tang, Dawei

    2014-01-01

    As we all know, the automobile gas exhaust pollution has become more and more severe at recent years. It influences both to the human beings health and to quality of environment. The purpose of this thesis is to find out what are the main components of the exhaust gases, and give a basic and effective way to solve the problem. In this thesis, first the danger of exhaust pollution and its components will be presented. Then the writer will give the general mechanism of automobile exhaust ...

  1. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    OpenAIRE

    Ana Belen Alvarez Palomo; Michaela Lucas; Dilley, Rodney J.; Samuel McLenachan; Fred Kuanfu Chen; Jordi Requena; Marti Farrera Sal; Andrew Lucas; Inaki Alvarez; Dolores Jaraquemada; Michael J. Edel

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and rege...

  2. 77 FR 63917 - WTO Dispute Settlement Proceeding Regarding China-Certain Measures Affecting the Automobile and...

    Science.gov (United States)

    2012-10-17

    ... Automobile and Automobile-Parts Industries AGENCY: Office of the United States Trade Representative. ACTION... export performance to ] automobile and automobile-parts enterprises in China. These measures appear to be... automobile and automobile-parts enterprises in China. Specifically, the United States is challenging...

  3. A Lemon Cell Battery for High-Power Applications

    Science.gov (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  4. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  5. A STUDY ON ASYNCHRONOUS SERIAL COMMUNICATON BETWEEN COMPONENTS IN AUTOMOBILES

    OpenAIRE

    ŞAHİN, Yaşar Güneri

    2010-01-01

    ABSTRACTIn connection with the developments in the automobile sector, the number of in-automobile components, the amount of cable used for providing in-automobile communication between these components and costs are increased gradually. In this study, a method is presented in which asynchronous serial connection is used for decreasing the initial and maintenance costs by means of decreasing the amount of cables used in middle and lower class automobiles. The electronic circuits required to es...

  6. The Strategic Transformation of Automobile Industry in China

    OpenAIRE

    Som Techakanjanakit; Meifang Huang

    2012-01-01

    In the past few years, the global automobile industry is developing difficultly because of the influence from the financial crisis. In contrast, China's automobile production and sales are still having a blowout type growth, and jumped into the world's largest automobile production and sales market. At the same time, Chinese automobile companies continue to deepen and join with international brand cooperation; independent research and development of the independent brand production, and their...

  7. Research on automobile culture and entertainment industry in China

    OpenAIRE

    Li Qing-song; Tang Lan; Cai Yun

    2012-01-01

    Rapid development of the automotive Industry and culture Industry is promoted the rapid rise of automobile industry of the culture and entertainment. With the further development of the automobile industry and people's living standards, automobile industry of the culture and entertainment in the proportion of China's economy is more and more important, but theoretical research in this area is nearly blank. With previous researches, automobile industry of the culture and entertainment in China...

  8. 38 CFR 17.156 - Eligibility for automobile adaptive equipment.

    Science.gov (United States)

    2010-07-01

    ... automobile adaptive equipment. 17.156 Section 17.156 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Automotive Equipment and Driver Training § 17.156 Eligibility for automobile adaptive equipment. Automobile adaptive equipment may be authorized if the Under Secretary for Health...

  9. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Science.gov (United States)

    2010-10-01

    ... determined by the incomplete automobile manufacturer for the automobile in accordance with 40 CFR part 600... economy label specified in paragaph (b)(2) of this section to that automobile in accordance with 40 CFR... take into account the presence of air conditioning. (2) A fuel economy label conforming with 40...

  10. 38 CFR 3.808 - Automobiles or other conveyances; certification.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Automobiles or other....808 Automobiles or other conveyances; certification. (a) Entitlement. A certificate of eligibility for financial assistance in the purchase of one automobile or other conveyance in an amount not exceeding...

  11. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  12. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  13. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  14. 49 CFR 523.3 - Automobile.

    Science.gov (United States)

    2010-10-01

    ... multi-stage vehicles per year; or (3) A work truck. (b) The following vehicles rated at more than 6,000... which would satisfy the criteria in § 523.4 (relating to passenger automobiles) but for their gross vehicle weight rating. (2) Vehicles which would satisfy the criteria in § 523.5 (relating to light...

  15. American Automobile and Light Truck Statistics Update

    Science.gov (United States)

    Feldman, Bernard J.

    2014-01-01

    Given that transportation is an essential topic in any Physics and Society or Energy course, it is necessary to have useful statistics on transportation in order to have a reasoned discussion on this topic. And a major component of the transportation picture is the automobile. This paper presents updated transportation statistics for American…

  16. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  17. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cell

  18. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao;

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  19. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-01

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216

  20. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    MOhammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  1. DESIGNING OF AN AUTOMOBILE FLEET NETWORK

    Directory of Open Access Journals (Sweden)

    R. B. Ivut

    2016-01-01

    Full Text Available Investment volume is considered as an important factor in regional development under current conditions. Logistical infrastructure which ensures a complex transport, distributive, information and other services exerts a significant influence on regional investment attractiveness. Lack of clear vision on development and execution of development strategy for logistics infrastructure from the side of regional authorities results in unwillingness of large federal and transnational companies to provide investments in infrastructure projects. Network of automotive transport terminals is one of the main elements in logistics infrastructure. The network allows to optimize a flow of material goods from the point of their origin to the point of their consumption with the lowest possible costs and the required level of service. Automobile transport is one of the main objects of transport infrastructure and it is characterized by rather high flexibility in comparison with other types of transport facilities that preconditions its widespread application. Network of automobile fleets (terminals has been formed for redistribution of goods traffic within the concerned regions. The purpose of the present research is to develop a mathematical model for formation of transport infrastructure on the territory of regions. The paper proposes an approach for formation of automobile fleet (terminal network on the territory of a large region with due account of the established network of distribution and sorting-out warehouse facilities. A model has been developed for solving the problem pertaining to minimization of aggregate costs related to maintenance of automobile fleets, delivery of goods to and from distribution and sorting-out warehouse facilities to consumers, ferry of empty trucks and goods handling. The model makes it possible to determine optimal number and location area of automobile fleets (terminals while accounting for their possible locations, capacity

  2. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  3. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  4. Design and performance of a prototype fuel cell powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.A.; Chamberlin, C.E. [Humboldt State Univ., Arcata, CA (United States)

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  5. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    Science.gov (United States)

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  6. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  7. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  8. A high-power carbohydrate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Ragnar [SuFuCell AB, Bytaregatan 23, SE 222 21 Lund (Sweden); Folkesson, Boerje [Bronsaaldersvaegen 21, SE-226 54 Lund (Sweden); Spaziante, Placido M. [Cellennium Co., Ltd., 14th Floor Gypsum Metropolitan Tower, 539 Sri Ayudhaya Rd., Bangkok 10400 (Thailand); Veerasai, Waret [Chemistry Department, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Exell, Robert H.B. [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 91 Prachauthit Rd., Bangmod, Tungkru, Bangkok 10140 (Thailand)

    2006-04-01

    This paper reports the development of a fuel cell consisting of a vanadium flow battery in which the vanadium ions are reduced by sugar (from a carbohydrate) to oxidation state +3 on one side of a membrane, and are oxidized to state +5 on the other side by oxygen. The theoretical upper limit to the conversion efficiency of the energy in sugar by this method under standard conditions is 54%. We have obtained efficiencies up to 45% in our laboratory tests. This way of using biomass for electricity production avoids the Carnot cycle losses in heat engines. (author)

  9. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  10. Performance Analysis of Reconfigurable SRAM Cell for Low Power Applications

    Directory of Open Access Journals (Sweden)

    Dillibabu.Mannem

    2012-06-01

    Full Text Available The majority of space taken in an integrated circuit is the memory. SRAM design consists of key considerations, such as increased speed, low power and reduced layout area. A cell which is functional at the nominal supply voltage, can fail at a lower voltage. From a system perspective this leads to a higher bit-error rate with voltage scaling and limits the opportunity for power saving. While this is a serious bottleneck for SRAM arrays used for data storage. This paper presents a performance analysis of reconfigurable SRAM cell for low power application. Simulations using TSMC 0.35um technology show that the SRAM cell read & write access times are 1.53ns and 1.93ns. Mentor Graphics ELDO and EZ-wave are used for simulations.

  11. Design Considerations for a PEM Fuel Cell Powered Truck APU

    OpenAIRE

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    In recent years interest has been growing in using fuel cell powered auxiliary power units (APUs) to reduce idling in line-haul trucks. Demonstrations of this technology have been constructed at universities and within industry, each with its own advantages and disadvantages. Invariably, in every design, tradeoffs need to be made and this has resulted in a multitude of different APU solutions that address different aspects of the problem. This paper reviews some of the recent work re...

  12. Hybridní pohon automobilů

    OpenAIRE

    Tvrdý, Josef

    2014-01-01

    Obsahem této bakalářské práce je přehled možných hybridních pohonů automobilů a jejich praktické využití. Je zaměřena na hlavní výhody a nevýhody hybridního pohonu a zabývá se dopadem takto vybavených automobilů na životní prostředí, především na produkci skleníkových plynů. Také uvádí pohled na hybridy z finančního hlediska. This bachelor thesis deals with an overview of all possible hybrid vehicle propulsion systems and their practical usage. It is focused on the main advantages and disa...

  13. Automobile active suspension system with fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘少军; 黄中华; 陈毅章

    2004-01-01

    A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.

  14. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  15. Amarok Pikap: interactive percussion playing automobile

    OpenAIRE

    Artut, Selçuk Hüseyin; Artut, Selcuk Huseyin

    2013-01-01

    Alternative interfaces that imitate the audio-structure of authentic musical instruments are often equipped with sound generation techniques that feature physical attributes similar to those of the instruments they imitate. Amarok Pikap project utilizes an interactive system on the surface of an automobile that is specially modified with the implementation of various electronic sensors attached to its bodywork. Sur-faces that will be struck to produce sounds in percussive instrument modeling ...

  16. Estimation of Claim Numbers in Automobile Insurance

    OpenAIRE

    Arató, Miklós; Martinek, László

    2012-01-01

    The use of bonus-malus systems in compulsory liability automobile insurance is a worldwide applied method for premium pricing. If certain assumptions hold, like the conditional Poisson distribution of the policyholders claim number, then an interesting task is to evaluate the so called claims frequency of the individuals. Here we introduce 3 techniques, two is based on the bonus-malus class, and the third based on claims history. The article is devoted to choose the method, which fits to the ...

  17. Statistical machine translation for automobile marketing texts

    OpenAIRE

    Läubli, Samuel; Fishel, Mark; Weibel, Manuela; Volk, Martin

    2013-01-01

    We describe a project on introducing an in-house statistical machine translation system for marketing texts from the automobile industry with the final aim of replacing manual translation with post-editing, based on the translation system. The focus of the paper is the suitability of such texts for SMT; we present experiments in domain adaptation and decompounding that improve the baseline translation systems, the results of which are evaluated using automatic metrics as well as manual evalua...

  18. Pulmonary function in automobile repair workers

    Directory of Open Access Journals (Sweden)

    Chattopadhyay O

    2007-01-01

    Full Text Available Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 , Forced Vital Capacity (FVC, Peak Expiratory Flow Rate (PE FR, age, smoking habit, duration of work, type of work, and respiratory symptoms. The study was analysed using Regression equations, and Chi-square test. Results : All the workers were male. Obstructive impairment was seen in 25.83% of the workers whereas restrictive impairment was seen in 21.19% of the workers. Mixed obstructive and restrictive impairment was seen in 10.6% of the workers. The frequency of obstructive impairment was higher in older workers. In the age group of less than 20 years, 13.6% of the workers had obstructive impairment while 42.86% of workers above 40 years of age had obstructive impairment. Obstructive impairment was more frequently observed in battery repair workers (58.33% and spray painters (37.5% while 16.67% of the body repair workers and 30.19% of the engine mechanics had obstructive impairment. Obstructive impairment was more frequently observed in smokers (53.1 % as compared to ex-smokers (33.3% and non-smokers (6.4%. Obstructive impairment was more frequently observed in workers who had been working for a longer duration. Conclusion: Nearly 36.4% of the automobile garage workers had some form of pulmonary function impairment; obstructive and/or restrictive. The use of personal protective equipment, worker education, and discontinuation of the use of paints containing toxic pigments are recommended.

  19. New type air (automobile) gamma spectroscopic system

    International Nuclear Information System (INIS)

    A new type air (automobile) gamma spectroscopic system for identification and measuring of contamination with natural and artificial gamma isotopes is described. developed. Its main principle is a maximal use of the energy resolution of NaJ(Tl) detectors. The system consists of a spectrometer working simultaneously with a set of 1-16 scintillator blocks and a registration/ data processing unit. The operational mode, optimal performance and control subsystem are described

  20. Telematics Strategy for Automobile Insurers : Whitepaper

    OpenAIRE

    Paefgen, Johannes; Fleisch, Elgar; Staake, Thorsten; Ackermann, Lukas; Best, Jonas; Egli, Lukas

    2013-01-01

    This whitepaper investigates the business implications telematics services and Pay-as-you-drive (PAYD) insurance in particular, from the perspective of automobile insurance providers. Specifically, it discusses - the PROFITABILITY and competitive dynamics of PAYD insurance, - a simplified BUSINESS CASE for a new market entrant with a PAYD product, - the present STRUCTURE OF INTERNATIONAL MARKETS for insurance telematics services, - DRIVERS AND BARRIERS for the focus markets Swit...

  1. CMOS Low Power Cell Library for Digital Design

    Directory of Open Access Journals (Sweden)

    Kanika Kaur

    2013-06-01

    Full Text Available Historically, VLSI designers have focused on increasing the speed and reducing the area of digital systems. However, the evolution of portable systems and advanced Deep Sub-Micron fabrication technologies have brought power dissipation as another critical design factor. Low power design reduces cooling cost and increases reliability especially for high density systems. Moreover, it reduces the weight and size of portable devices. The power dissipation in CMOS circuits consists of static and dynamic components. Since dynamic power is proportional to V2 dd and static power is proportional to Vdd, lowering the supply voltage and device dimensions, the transistor threshold voltage also has to be scaled down to achieve the required performance. In case of static power, the power is consumed during the steady state condition i.e when there are no input/output transitions. Static power has two sources: DC power and Leakage power. Consecutively to facilitate voltage scaling without disturbing the performance, threshold voltage has to be minimized. Furthermore it leads to better noise margins and helps to avoid the hot carrier effects in short channel devices. In this paper we have been proposed the new CMOS library for the complex digital design using scaling the supply voltage and device dimensions and also suggest the methods to control the leakage current to obtain the minimum power dissipation at optimum value of supply voltage and transistor threshold. In this paper CMOS Cell library has been implemented using TSMC (0.18um and TSMC (90nm technology using HEP2 tool of IC designing from Mentor Graphics for various analysis and simulations.

  2. FINFET-BASED LOW POWER & HIGH SPEED SRAM CELL DESIGN

    Directory of Open Access Journals (Sweden)

    SHILPA SAXENA

    2016-07-01

    Full Text Available In digital circuits designing the SRAM design constraints are very important. In the integrated circuits fabrication the majority of space is taken by the memories.. The design considerations of SRAM consist of: increased speed and reduced power. CMOS devices are shrinking to nanometer regime, thereby, increasing short channel effects and process parameter variations that degrades the reliability of the circuit as well as performance. To solve these issues of CMOS, FinFET proves to be better technology, without sacrificing reliability and performance for its applications and the circuit design. The use of FinFETs, transmission gates are used in the access path of the SRAM Cell and the Sleep transistors power gating technique are used for low leakage power and high performance. The transient and dc analysis of the proposed ST11T, ST13T and with sleep transistors SRAM cell has been obtained using Cadence Virtuoso tool and BSIMCMG model 107.0.0 for 22nm FinFETs to achieve high performance. It can be observed from the results that the percentage improvement of 97.30% in power dissipation 27.77% in delay, 98.05% in PDP and 38.37% increase in speed is obtained for the proposed finFET-based ST13T circuit with power gating technique are that shows the high performance for SRAM Cell as compared to design based on CMOS technology.

  3. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    Science.gov (United States)

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  4. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.

    Science.gov (United States)

    Lisney, Thomas J; Collin, Shaun P

    2008-01-01

    The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison

  5. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  6. Corrosion protection and finishing of automobiles

    International Nuclear Information System (INIS)

    finishing of automobiles is an important aspect. There have been considerable reductions of weight in automobiles by the use of composites components replacing heavy metallic components. Fenders previously based on metal have been replaced with plastic and painted with the same colour shade as of the metallic body, this has eps for proper adhesion of the paints on the plastic fender to avoid chipping off the paint form it. This paper discusses the necessary processes required for finishing of an automobile along with the corrosion protection measures. Automobiles contains a variety of engineering materials, engine main body fuel tanks connecting rods heat radiators and other mechanical parts are made from different types of engineering alloys having varying chemical compositions. Other parts like dashboard, front panel and other are made from composites. The main body made from cold roll ed steel having various contours 'c' it due to the different designs is the potential site for corrosion attack, The main body is exposed to the hostile environment through out its life period. An automobile is given a particular finish with a view to counter the hostile environments as they are not limited for plying in a limiting conditions and are taken to different weather conditions in one day thus facing severe stresses and strain. Thus it is essential that an automobile before rolling 'out of the assembly line should properly corrosion resistant and aesthetically pleasant also. Finishing for automobiles being very specialized, the main requirement being maximum durability with minimum numbers of coats baked, at the fastest possible schedule. High gloss and range of good eye catching colours being important to increase sales appeal. In the near past the car finishes were based on alkyd-amino resins baking materials and force drying lacquers, which have excellent appearance originally and maintain it on aging. The finishing system for the synthetic baking type may consist of

  7. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Barreto Gomez, L.; Dietrich, Ph. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A.; Jacoby, H.D. [MIT, Cambridge (United States)

    1999-08-01

    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  8. Globalization of the Automobile Industry ; Traditional Locations under Pressure?

    OpenAIRE

    Spatz, Julius; Nunnenkamp, Peter

    2002-01-01

    Even though the automobile industry is technologically advanced, the increasing integration of low-income countries into the global division of labor has put competitive pressure on traditional automobile producing countries. New end-producers emerged in Asia, Latin America as well as Southern and Central Europe. In addition, the automobile industries of Germany, Japan and the United States engaged in outsourcing of relatively labor intensive segments of the value chain, especially on a regio...

  9. Influence of brand on Chinese consumers’ behaviours in Automobile choice: An investigation on Chinese customers’ buying attitudes towards domestic and foreign car brands

    OpenAIRE

    Wang, Luqi

    2015-01-01

    In recent years, branding as a powerful tool to influence consumer behaviors has becoming a hot topic in the marketing literature. But few studies focus on the influence of brands on Chinese consumers’ behaviors, especially their buying attitudes in the automobile market. This dissertation attempts to investigate the influence of brand on Chinese consumers’ behaviors in automobile choice and their buying attitudes towards domestic and foreign brands. The author chose the qualitative research ...

  10. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  11. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  12. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  13. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  14. How Does Outsourcing Affect Performance Dynamics? Evidence from the Automobile Industry

    OpenAIRE

    Sharon Novak; Scott Stern

    2007-01-01

    This paper examines the impact of vertical integration on the dynamics of performance over the automobile product development lifecycle. Building on recent work in organizational economics and strategy, we evaluate the relationship between vertical integration and different performance margins. Outsourcing facilitates access to cutting-edge technology and the use of high-powered performance contracts. Vertical integration allows firms to adapt to unforeseen contingencies and customer feedback...

  15. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  16. 76 FR 44402 - Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Science.gov (United States)

    2011-07-25

    ... AFFAIRS Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...' eligibility for automobile adaptation equipment or other conveyance allowance. DATES: Written comments and... techniques or the use of other forms of information technology. Title: Application for Automobile or...

  17. Inverters for interfacing of solar cells with the power grid

    Science.gov (United States)

    Karamanzanis, G. N.; Jackson, R. D.

    In this work, based on a research course in the Engineering Dep. Cambridge University, some non-classical inverter circuits are studied. They can be used for interfacing solar cells with the power grid at low voltage (230V) and at low power level. They are based on d.c. choppers which have a fast switching transistor. Their theoretical efficiency is 100 percent and they provide a satisfactory output current waveform in phase to the a.c. line voltage. The problems of control are also studied using a suitable mathematical model.

  18. High power bipolar lead-acid batteries

    Science.gov (United States)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  19. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2009-03-05

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  20. Wireless Feedback Contact-Less Power Supply Circuit Design for Lights of Automobiles%基于车灯的无线反馈非接触供电电路设计

    Institute of Scientific and Technical Information of China (English)

    周成虎; 李娜; 瓮嘉民; 陈冰洋; 张昆

    2011-01-01

    为了能在汽车的引擎盖等活动部位装设车灯,给出了一种无线反馈稳压的非接触供电车灯电路.无线反馈稳压电路通过无线反馈控制电路的输出电压,达到稳定负载功率的目的,实验证明电路可行.%In order to install lights in car hoods in activities, this paper gives a wireless feedback circuit of contact-less power supply. Wireless voltage feedback circuit through wireless feedback controls output voltage, achieves the purpose of stable load power. Experiments show the circuit is feasible.

  1. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR SINHA

    2011-01-01

    Full Text Available This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant current to the battery.

  2. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  3. Fuel cells - a new contributor to stationary power

    Science.gov (United States)

    Dufour, Angelo U.

    Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility

  4. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    OpenAIRE

    Li, Yujing

    2012-01-01

    Today, proton electrolyte membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are attractive power conversion devices that generate fairly low or even no pollution, and considered to be potential to replace conventional fossil fuel based power sources on automobiles. The operation and performance of PEMFC and DMFC depend largely on electro-catalysts positioned between the electrode and the membranes. The most commonly used electro-catalysts for PEMFC and DMFC are Pt-based noble me...

  5. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  6. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  7. 基于GT-Power软件的汽车排气系统消声器的设计%Design of Automobile Exhaust Muffler Based on GT—Power Software

    Institute of Scientific and Technical Information of China (English)

    马雪皎

    2011-01-01

    介绍了一种新的发动机性能仿真软件GT- Power,它是以一维模型计算为基础,采用有限容积法对流体进行模拟运算的软件.综述了排气消声器的几种常用的研究方法,介绍了各种方法的优点和缺点,井分析了不同参数对各种消声器消声效果的影响.

  8. Investigation of Solar Cells Power Degradation Due to Electrostatic Discharge

    Directory of Open Access Journals (Sweden)

    Hossein Fayazi

    2014-07-01

    Full Text Available Satellites are surrounded with protons, electrons and heavy charged particles. Space radiation impact on satellite sub-systems cause several anomalies which are important problem for satellite designers. Until recently, the majority of spacecraft primary power systems used solar arrays and rechargeable batteries to supply 28 V. For low-inclination spacecraft, 28 V systems have not been observed to arc. As the power requirements for spacecraft increased, however, high-voltage solar arrays were baselined to minimize total mass and increase power production efficiency. With the advent of 100 V systems in the late 1980s, arcing began to be observed on a number of spacecraft. The mechanism proposed in this paper, described electrical and physical degradation of solar cells due to electrostatic discharge anomalies on satellites. The cell was characterized again after arcing to determine the change in efficiency. This paper details the process for designing the circuit to create the arcing, and the different setups used to degrade the cells electrically and physically. It also describes the final setups to be used in space laboratory. This model is designed using Matlab and SPENVIS. Identification and simulation this mechanism is an important step in solar array design for space application

  9. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  10. STRATEGY AND PROSPECTS OF UKRAINIAN AUTOMOBILE MOTOR INDUSTRY DEVELOPMENT

    OpenAIRE

    Kryvokon, A.; Bondarenko, A.

    2012-01-01

    Research of strategy and prospects of Ukrainian automobile motor industry development has been done: the measures of public policy, which must be realized for the development of national automobile industry, a car production volume and expected working place in motor industry under state support have been described.

  11. The Impact of Price Controls on Mandatory Automobile Insurance Markets

    OpenAIRE

    Strauss, Jason

    2006-01-01

    This is a theoretical paper that models a mandatory automobile insurance market using a partial equilibrium concept where automobile insurance is one good and a composite good represents all others. Price controls, heterogeneous service, administrative, and adjusting costs, as well as capital reserves and capital costs are all included in this simple model.

  12. STRATEGY AND PROSPECTS OF UKRAINIAN AUTOMOBILE MOTOR INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Kryvokon

    2012-01-01

    Full Text Available Research of strategy and prospects of Ukrainian automobile motor industry development has been done: the measures of public policy, which must be realized for the development of national automobile industry, a car production volume and expected working place in motor industry under state support have been described.

  13. 40 CFR 600.315-82 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... accordance with 49 CFR part 523. (1) The Administrator will classify passenger automobiles by car line into..., Department of Transportation (DOT), 49 CFR 571.3. (ii) Minicompact cars. Interior volume index less than 85... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles....

  14. 40 CFR 600.315-08 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... accordance with 49 CFR part 523. (1) The Administrator will classify passenger automobiles by car line into... National Highway Traffic Safety Administration, Department of Transportation (DOT), 49 CFR 571.3. (ii... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles....

  15. 买方势力、资产专用性与技术创新——基于中国汽车工业的实证检验%Buyer Power,Asset Specificity and Technological Innovation——An Empirical Research on Chinese Automobile Industry

    Institute of Scientific and Technical Information of China (English)

    孙晓华; 郑辉

    2011-01-01

    Buyer power and asset specificity are important factors of affecting technological innovation in vertical market.Taking Chinese automobile industry statistics from 2000 to 2008 as samples,this paper empirically tests the relationship between buyer power,asset specificity and technological innovation through the panel data model.The results show that technological innovation depends not only on supplier market conditions,but also on the competitive conditions of downstream industry.Buyer market power helps promote upstream technological innovation activities;buyer asset specificity has a significant negative effect on their own technological innovation,the higher the proportion of fixed assets is,the less RD inputs will be.In addition,buyer technological capabilities and the rapid growth of market demand have a positive impact on technological innovation,while equal market power between upstream and downstream industries is an obstacle to technological innovation.%在纵向关联市场中,买方势力和资产专用性是影响企业技术创新的重要因素。本文以我国汽车工业2000-2008年统计数据为样本,利用面板数据模型对买方市场势力、资产专用性与技术创新的关系进行了实证检验,研究结果表明:技术创新行为不仅取决于企业自身所处的市场条件,还与作为买方的下游行业市场竞争状况有关,买方市场势力的增强有利于上游企业技术创新活动的开展;下游企业的资产专用性对上游企业技术创新具有显著的负效应,固定资产比例越高,研发投入越少。此外,较快的市场需求增长率和买方技术能力对技术创新具有积极影响,上下游行业之间较为对等的市场势力会阻碍技术创新。

  16. ERC product improvement activities for direct fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C.; Carlson, G.; Doyon, J. [and others

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  17. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine.

  18. Alternativní pohony automobilů

    OpenAIRE

    Filip, Vojtěch

    2016-01-01

    Náplní této bakalářské práce je analýza aktuálně používaných alternativních pohonů automobilů, jejich srovnání se současnými zážehovými a vznětovými spalovacími motory. Seznámení s technickým řešením jednotlivých pohonů a jejich kategorizace do několika základních skupin, podle charakteristických klíčových rysů. Dále obsahuje bližší seznámení s nejdůležitějšími komponenty automobilů, vyžívajících tyto alternativní pohony a současně jejich přednostmi ale také nedostatky, které nyní brzdí rozší...

  19. Development of a methanol reformer for fuel cell vehicles

    OpenAIRE

    Lindström, Bård

    2003-01-01

    Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. T...

  20. Design of automobile electric power steering system based on PIC18F458%基于 PIC18 F458的汽车电动助力转向控制系统设计

    Institute of Scientific and Technical Information of China (English)

    苏庆列; 王麟珠

    2015-01-01

    针对国内汽车电动助力转向系统( EPS)的发展现状和性能要求,基于PIC18F458系列单片机对EPS系统电控单元软硬件进行设计,着重阐述了方向盘扭矩传感器信号采集和带有CAN总线的信息采集模块,以及通过全控桥电机驱动电路实现的PWM脉宽调制永磁无刷直流电机控制模块的工作原理及其实现方法。试验结果表明该电控单元工作正常、性能可靠,满足汽车助力转向的舒适性和安全性要求。%According to the domestic development status and performance requirements of electric power steering system ( EPS) , the software and hardware of electronic control unit of EPS is designed based on PIC18F458 Series MCU.Focuses on the principle and realization method of the information acquisition module that contains steering wheel torque sensor signals and the information of CAN Bus, and the control module of permanent magnet brushless DC motor which drives by fully controlled bridge circuit.The experimental results show that the electronic control unit works normally and reliably, comfort and safety meets the requirements of automotive power steering.

  1. 基于 PIC18 F458的汽车电动助力转向控制系统设计%Design of automobile electric power steering system based on PIC18F458

    Institute of Scientific and Technical Information of China (English)

    苏庆列; 王麟珠

    2015-01-01

    According to the domestic development status and performance requirements of electric power steering system ( EPS) , the software and hardware of electronic control unit of EPS is designed based on PIC18F458 Series MCU.Focuses on the principle and realization method of the information acquisition module that contains steering wheel torque sensor signals and the information of CAN Bus, and the control module of permanent magnet brushless DC motor which drives by fully controlled bridge circuit.The experimental results show that the electronic control unit works normally and reliably, comfort and safety meets the requirements of automotive power steering.%针对国内汽车电动助力转向系统( EPS)的发展现状和性能要求,基于PIC18F458系列单片机对EPS系统电控单元软硬件进行设计,着重阐述了方向盘扭矩传感器信号采集和带有CAN总线的信息采集模块,以及通过全控桥电机驱动电路实现的PWM脉宽调制永磁无刷直流电机控制模块的工作原理及其实现方法。试验结果表明该电控单元工作正常、性能可靠,满足汽车助力转向的舒适性和安全性要求。

  2. Metal hydride work pair development and its application on automobile air conditioning systems

    Institute of Scientific and Technical Information of China (English)

    QIN Feng; CHEN Jiang-ping; ZHANG Wen-feng; CHEN Zhi-jiu

    2007-01-01

    Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/La0.6Y0.4Ni4.8Mn0.2 was developed working at 393~473 K/293~323 K/263~273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1~1.6 W/(m·K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.

  3. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine

    International Nuclear Information System (INIS)

    Over two-thirds energy of fuel consumed by an automobile is discharged to the surroundings as waste heat. The fuel usage can be more efficient if thermoelectric generators (TEG) are used to convert heat energy into electricity. In this study, a thermoelectric module composed of thermoelectric generators and a cooling system is developed to improve the efficiency of an IC engine. Two potential positions on an automobile are chosen to apply this module, e.g. exhaust pipe and radiator to examine the feasibility. To predict the behaviors of this module, a one dimensional thermal resistance model is also build, and the results are verified with experiments. The maximum power produced from the module is 51.13 mWcm-2 at 290 oC temperature difference. The model results show that, TE module presents better performance on the exhaust pipe than on the radiator.

  4. Evaluating the performance of microbial fuel cells powering electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Dewan, Alim; Beyenal, Haluk [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Center for Environmental, Sediment and Aquatic Research, Pullman, WA (United States); Donovan, Conrad; Heo, Deukhyoun [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163-2710 (United States)

    2010-01-01

    A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the ''optimum charging capacitor value,'' and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the ''optimum charging potential.'' Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1

  5. 32 CFR 220.11 - Special rules for automobile liability insurance and no-fault automobile insurance.

    Science.gov (United States)

    2010-07-01

    ... regarding tort liability. In addition, the provisions of 28 CFR part 43 (Department of Justice regulations... 32 National Defense 2 2010-07-01 2010-07-01 false Special rules for automobile liability insurance and no-fault automobile insurance. 220.11 Section 220.11 National Defense Department of...

  6. Fuel Cell Shaft Power Pack - Regulering af brændselsceller

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Afsluttende formidling af forskningsresultater i forbindelse med projektet Fuel Cell Shaft Power Pack......Afsluttende formidling af forskningsresultater i forbindelse med projektet Fuel Cell Shaft Power Pack...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  8. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  9. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  10. The Numerical Study on the Transfer Performance of Lithium-ion Power Battery for Automobile%车用锂离子动力电池组散热特性数值研究

    Institute of Scientific and Technical Information of China (English)

    李友才; 贾振华; 杨宗田

    2014-01-01

    针对车用锂离子动力电池的散热问题,对电池组的结构进行优化设计。建立锂离子动力电池三维模型,利用 Fluent 进行数值仿真。通过对仿真结果的对比分析得出:电池间距的增大和减小分别使电池组的散热性能提高和降低,且其间距减小时,电池间温度差异明显;发现动力电池组入口风速升高,电池表面空气流速相对提高,电池组换热能力增强,但电池间流场的一致性变差、温差变大。%As to the heat dissipation issues lithium-ion power battery for vehicles,the structure of the battery pack is optimized. Building lithium-ion battery three dimensional model and simulating by fluent software. The comparison and analysis on simulation results show that the battery space of the battery pack is increased and decreased, respectively, the thermal performance of battery pack is raised and fallen. Moreover,the space is reduced,the temperature difference among batteries is obvious.Air velocity is increased on the surface of battery and the heat exchange capacity of the battery pack is raised when the inlet velocity of battery pack rises.However,the consistency of the flow field between the batteries become bad, the temperature difference becomes larger.

  11. 车用锂离子动力电池组散热特性数值研究%The Numerical Study on the Transfer Performance of Lithium-ion Power Battery for Automobile

    Institute of Scientific and Technical Information of China (English)

    李友才; 贾振华; 杨宗田

    2014-01-01

    As to the heat dissipation issues lithium-ion power battery for vehicles,the structure of the battery pack is optimized. Building lithium-ion battery three dimensional model and simulating by fluent software. The comparison and analysis on simulation results show that the battery space of the battery pack is increased and decreased, respectively, the thermal performance of battery pack is raised and fallen. Moreover,the space is reduced,the temperature difference among batteries is obvious.Air velocity is increased on the surface of battery and the heat exchange capacity of the battery pack is raised when the inlet velocity of battery pack rises.However,the consistency of the flow field between the batteries become bad, the temperature difference becomes larger.%针对车用锂离子动力电池的散热问题,对电池组的结构进行优化设计。建立锂离子动力电池三维模型,利用 Fluent 进行数值仿真。通过对仿真结果的对比分析得出:电池间距的增大和减小分别使电池组的散热性能提高和降低,且其间距减小时,电池间温度差异明显;发现动力电池组入口风速升高,电池表面空气流速相对提高,电池组换热能力增强,但电池间流场的一致性变差、温差变大。

  12. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, Conrad; Peng, Huan; Heo, Deukhyoun [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163-2710 (United States); Dewan, Alim; Beyenal, Haluk [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Center for Environmental, Sediment and Aquatic Research, Washington State University, Pullman, WA 99163-2710 (United States)

    2011-02-01

    One of the challenges in using wireless sensors that require high power to monitor the environment is finding a renewable power source that can produce enough power. Sediment microbial fuel cells (SMFCs) are considered an alternative renewable power source for remote monitoring, but current research on SMFCs has demonstrated that they can only produce several to tens of mW of continuous power. This limits the use of SMFCs as an alternative renewable remote power source to mW-level power. Such low power is only enough to operate a low-power sensors. However, there are many remote sensors that require higher power, on the order of watts. Current technology using a SMFC to power a remote sensor requiring watts-level intermittent power is limited because of limitations of power management technology. Our goal was to develop a power management system (PMS) that enables a SMFC to operate a remote sensor consuming 2.5 W of power. We designed a custom PMS to store microbial energy in capacitors and use the stored energy in short bursts. Our results demonstrate that SMFCs can be a viable alternative renewable power source for remote sensors requiring high power. (author)

  13. Advanced coal gasifier-fuel cell power plant systems design

    Science.gov (United States)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  14. Competition and alliances in fuel cell power train development

    Energy Technology Data Exchange (ETDEWEB)

    Schlecht, L. [Technische Universitaet Berlin (Germany). Fuel Cell and Hydrogen Research Centre

    2003-07-01

    For the realisation of the effective application and cost effectiveness of fuel cell power trains, and competitiveness with the current internal combustion engine technology, it will be necessary to either: (a) produce a large number of vehicles, (b) reduce the production costs by permanent production optimisation, or (c) introduce new materials. Learning curves, which have been derived from empirical data of past energy technologies, are initially used to provide a cost prognosis for the market launch of fuel cell power trains. Drawing on game theory the paper then describes a basic model which addresses the issue of the optimal strategy of the automotive industry, in either a monopoly or oligopoly structure. When this model's outputs are combined with the anticipated rate of fuel cell vehicles (FCVs), learning curves and network effects, from the first section of the paper we can see that if the successful market launch of FCVs is desired, an alliance structure within the automotive industry is the optimal path. (author)

  15. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions

    Science.gov (United States)

    Medhurst, Laura L.

    2005-01-01

    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  16. The power of glove: Soft microbial fuel cell for low-power electronics

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D.; Stinchcombe, Andrew; Rossiter, Jonathan; Ieropoulos, Ioannis

    2014-03-01

    A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the anode. A soft, conductive, synthetic latex cathode is developed that coats the outside of the glove. This inexpensive, lightweight reactor can without any external power supply, start up and energise a power management system (PMS), which steps-up the MFC output (0.06-0.17 V) to practical levels for operating electronic devices (>3 V). The MFC is able to operate for up to 4 days on just 2 mL of feedstock (synthetic tryptone yeast extract) without any cathode hydration. The MFC responds immediately to changes in fuel-type when the introduction of urine accelerates the cycling times (35 vs. 50 min for charge/discharge) of the MFC and PMS. Following starvation periods of up to 60 h at 0 mV the MFC is able to cold start the PMS simply with the addition of 2 mL fresh feedstock. These findings demonstrate that cheap MFCs can be developed as sole power sources and in conjunction with advancements in ultra-low power electronics, can practically operate small electrical devices.

  17. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  18. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  19. Consumer preferences for automobile energy-efficiency grades

    International Nuclear Information System (INIS)

    Recently, increases in energy prices have made energy conservation and efficiency improvements even more essential than in the past. However, consumers experience difficulty in obtaining reliable information regarding energy efficiency, so that many countries have implemented regulations to enforce energy-efficiency grade labeling. In this study, consumer preferences regarding energy efficiency grades are analyzed by the mixed logit and MDCEV model based on the revealed preference data of past automobile purchases. Findings show that consumers rationally apply information on energy efficiency grades when purchasing automobiles. However, they tend to show inefficiency in automobile usage patterns. This study discusses political implications of energy efficiency policies as they might impact consumer behaviors of automobile purchase and usage. - Highlights: ► We model discrete choice model to evaluate energy-efficiency grade regulation. ► Consumers apply information on energy efficiency grades when purchasing automobiles. ► However, they tend to show inefficiency in automobile usage patterns. ► The policies for efficient automobile usage are discussed.

  20. Female identity discourse in automobile advertisements

    Directory of Open Access Journals (Sweden)

    Montserrat López Díaz

    2012-01-01

    Full Text Available The article analyzes the way in which the modern car-advertisement defines the identity of women as potential purchasers – to whom it is designed to get through. The research includes language and iconic instruments by which this type of advertisement aims to create a feminized market of products formerly recognized as traditionally masculine. The identification of the addressee of each publicity material might be subsumed under a set of stereotypes, thus enabling advertisers to get across their message using the code of addressee’s own values. The present paper concentrates on the linguistic specifity of the ads for high-tech goods (automobiles targeting the feminine public and eventually points out their high degree of markedness according to the sex of addressees. Discourse analysis and a closer look at linguistic means appearing in French, Spanish and Polish automotive commercials both reveals a stereotyped woman’s image and shows how they happen to perpetutate it.

  1. Perception of risk from automobile safety defects.

    Science.gov (United States)

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates. PMID:3675807

  2. PRODUCT EFFICIENCY IN THE SPANISH AUTOMOBILE MARKET

    Directory of Open Access Journals (Sweden)

    González, Eduardo

    2013-01-01

    Full Text Available This paper evaluates product efficiency in the Spanish automobile market. We use non parametric frontier techniques in order to estimate product efficiency scores for each model. These scores reflect the minimum price for which each car could be sold, given the bundle of tangible features it offers in comparison to the best-buy models. Unlike previous research, we use discounted prices which have been adjusted by car dealerships to meet sale targets. Therefore, we interpret the efficiency scores as indicators of the value of the intangible features of the brand. The results show that Audi, Volvo, Volkswagen and Mercedes offer the greatest intangible value, since they are heavily overpriced in terms of price/product ratios. Conversely, Seat, Kia, Renault and Dacia are the brands that can be taken as referent in terms of price/product ratios.

  3. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  4. Standardization Boosts the Development ofCHANGAN AUTOMOBILE

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In the past two decades,CHANGAN AUTOMOBILE has been sticking to its core value of "technology innovation and consistent care" and dedicating to lead the automobile culture by technology innovation.Till now,it has a complete product range of micro vehicles,passenger cars,buses,trucks,SUV,MPV,etc.,and engineplatforms ranging from 0.8L to 2.5L.CHANGAN AUTOMOBILE brand output ranked 13th in the world and first in China in 2009.Its brand value reached 30.515 billion RMB in 2011,among most valuable brands in China.

  5. A Study of the Translation of Automobile Trademark

    Institute of Scientific and Technical Information of China (English)

    刘硕

    2014-01-01

    Name is an interesting thing, almost everything has its name. Nowadays along with the rising of consumption levels in China, the brand name of the car becomes an important topic. And the translation of the name of the automobile is the primary task for establishing the global image of the brand. In this paper, I summarize the translation methods for automobile trademarks and point out the importance of the translation of automobile’s trademarks. In addition, this paper explores the trend in the trans-lation of automobile names in China.

  6. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  7. The Business Case for Fuel Cells 2012. America's Partner in Power

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  8. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  9. Fuzzy analytic network process based multi criteria decision making methodology for a family automobile purchasing decision

    OpenAIRE

    Yesim Yayla, A.; Yildiz, A

    2013-01-01

    Nowadays, in parallel with the advancing technology, automobiles that have substantially advanced technological properties are being manufactured. Intended uses of the automobiles have been changing in our days in contrast to 1960s when automobiles were only used for transportation. Consumers, in our day and age, expect profoundly different properties from an automobile. In this context, more than one criterion become effective on making decision on purchasing an automobile that has the requi...

  10. Efficient Cells Cut the Cost of Solar Power

    Science.gov (United States)

    2013-01-01

    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  11. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  12. Effect of aftermarket automobile window tinting films on driver vision.

    Science.gov (United States)

    LaMotte, J; Ridder, W; Yeung, K; De Land, P

    2000-01-01

    This study was conducted to determine the level of automobile window tint that causes a significant reduction of vision for automobile drivers. Contrast sensitivity was measured on 20 participants, of whom 10 were age 20 to 29 years and 10 were age 60 to 69 years, through a stock automobile window (control) and two windows darkened with plastic film. For the younger drivers, a car window with 37% transmittance did not significantly reduce contrast sensitivity, but a darker tint of 18% transmittance reduced contrast sensitivity at higher spatial frequencies. For the older drivers, a tint of 37% transmittance significantly reduced mid-to- high spatial frequency contrast sensitivity. The typical state standard (no tint with less than 35% transmittance) would thus seem to be appropriate for younger drivers; however, further examination of the standard may be necessary in regard to older drivers. Actual or potential applications of this research include guidelines and regulations regarding tinting of automobile windows. PMID:11022888

  13. Analysis for the Dynamic Characteristic of the Automobile Transmission Gearbox

    Directory of Open Access Journals (Sweden)

    Fujin Yu

    2013-02-01

    Full Text Available Automobile transmission gearbox, as one of the major components, which will inevitably bring about the vibration and noise of automobile vehicle. The objective of this study to reduce the noise and vibration of automobile transmission by structural optimization of the gearbox in order to better control its functional operation and improve its performance. For this purpose, based on the working characteristics of the gearbox, modal analysis of automobile transmission gearbox is formulated using 3D graphics software Pro/E together with Finite Element Method. In addition, the modal test of gearbox is conducted also. Through comparing model analysis results to test results, test results verify the correctness of the finite element analysis results, thus provide the theoretic basis to analyze its dynamic characteristics of the gearbox structure as well as its improvement to reduce vibration and noise.

  14. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    Science.gov (United States)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  15. Supply Chain Management Practices of Indian Automobile Industry

    OpenAIRE

    B. S. Sahay; Vikram Sharma; G. D. Sardana

    2011-01-01

    The automobile industry is a major contributor to India’s economy. The Indian automobile manufacturers face stiff international competition in the wake of all major US and European car manufacturers entering the Indian market. In the contemporary scenario, supply chain management practices can be adopted to improve operational efficiency and profits. This paper presents the current status of Indian automotive supply chains. For this, data was collected by conducting a nationwide survey. The...

  16. Measures of Technical Efficiency in Two Sectors: Banks and Automobiles

    OpenAIRE

    Rapacciuolo Ciro

    2007-01-01

    The aim of this paper is to evaluate technical efficiency in the automobile and the banking industry, using balance sheet data on businesses in the two sectors: the world leading automobile producers and the top-20 Italian banking groups. The measurement of inefficiency, a strand of literature started by Farrell (1957), is conducted by means of the Data Envelopment Analysis (DEA), which is one of the existing approaches in this field; Fare, Grosskopf e Lovell (1994) prepared the ground for th...

  17. Evolution of organizational structure and strategy of the automobile industry

    OpenAIRE

    Heng, S.H.; Wibbelink, R.

    2000-01-01

    This paper is a historically oriented study of the automobile industry. It sets out to understand why have the structure and strategy of the dominant companies in the automobile industry changed in the way they have done. Our findings suggest three factors at work, namely the knowledge of car production and of customers, the capability of the technological system, and the business environment. The knowledge system represents the level of know-how and the availability of information. In a sens...

  18. Characteristics of motorcyclists involved in accidents between motorcycles and automobiles

    OpenAIRE

    Amanda Lima de Oliveira; Andy Petroianu; Dafne Maria Villar Gonçalves; Gisele Araújo Pereira; Luiz Ronaldo Alberti

    2015-01-01

    Introduction: traffic accidents are one of the main causes of death and disability, with motorcyclists representing the great majority of both the victims and the perpetrators. Objective: this work studied the characteristics of motorcyclists injured in accidents involving motorcycles and automobiles. Method: this study sought to interview 100 motorcyclists who had been injured in collisions between motorcycles and automobiles, and who were undergoing emergency hospital treatment in the regio...

  19. Emissions reductions as a result of automobile improvement.

    Science.gov (United States)

    Pokharel, Sajal S; Bishop, Gary A; Stedman, Donald H; Slott, Robert

    2003-11-15

    Remote sensing of light duty vehicle on-road tailpipe exhaust has been used to measure on-road mass emissions of automobile fleets in Denver for 13 years and in two other U.S. cities for 5 years. Analysis of these fleets shows that newer automobiles, during a period of fairly constant new car standards, have become continually less polluting independent of measurement location. Improving emissions control technology spurred by federal regulations is thought to have brought about these trends.

  20. Computer Model for Automobile Climate Control System Simulation and Application

    Directory of Open Access Journals (Sweden)

    Emin Oker

    1999-06-01

    Full Text Available A software to simulate the dynamic operation of climate control system for a generic automobile has been developed. The transient nature of passenger cabin temperature and relative humidity are predicted using the principles of thermodynamics. Analysis include detailed simulations of every component of the automobile air conditioning network. The methodology is validated by comparing the simulation results with the experimental results.

  1. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  2. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  3. Power generation from furfural using the microbial fuel cell

    Science.gov (United States)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m -3, respectively, when 1000 mg L -1 glucose, a mixture of 200 mg L -1 glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m -2 (18 W m -3) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m -2, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology.

  4. Direct Numerical Simulation of Automobile Cavity Tones

    Science.gov (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  5. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  6. Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network

    Directory of Open Access Journals (Sweden)

    Bahman Bahmanifirouzi

    2012-03-01

    Full Text Available This paper presents a new Fuzzy Adaptive Modified Particle Swarm Optimization algorithm (FAMPSO for the placement of Fuel Cell Power Plants (FCPPs in distribution systems. FCPPs, as Distributed Generation (DG units, can be considered as Combined sources of Heat, Power, and Hydrogen (CHPH. CHPH operation of FCPPs can improve overall system efficiency, as well as produce hydrogen which can be stored for the future use of FCPPs or can be sold for profit. The objective functions investigated are minimizing the operating costs of electrical energy generation of distribution substations and FCPPs, minimizing the voltage deviation and minimizing the total emission. In this regard, this paper just considers the placement of CHPH FCPPs while investment cost of devices is not considered. Considering the fact that the objectives are different, non-commensurable and nonlinear, it is difficult to solve the problem using conventional approaches that may optimize a single objective. Moreover, the placement of FCPPs in distribution systems is a mixed integer problem. Therefore, this paper uses the FAMPSO algorithm to overcome these problems. For solving the proposed multi-objective problem, this paper utilizes the Pareto Optimality idea to obtain a set of solution in the multi-objective problem instead of only one. Also, a fuzzy system is used to tune parameters of FAMPSO algorithm such as inertia weight. The efficacy of the proposed approach is validated on a 69-bus distribution system.

  7. Government Policy and Environmental Innovation in the Automobile Sector in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aahman, Max

    2004-01-01

    The aim of this paper is to analyse the role that the Japanese Government has played, and still plays, in the development of alternatives to conventional vehicles and the effect of government policy. The focus in this paper is on battery-powered electric vehicles (BPEVs), hybrid electric vehicles (HEVs), and fuel cell electric vehicles (FCEVs) These alternatives present an interesting case of technical choices in government policy. The effects of government policy and the process of innovation are analysed from a comprehensive view drawing on the literature regarding technical change and innovation. The whole chain of government support, including the context in which these different policies have been implemented since the early 1970s, is studied. Based on this analysis, current and suggested future government policy is discussed, as the development of alternative vehicles is still an ongoing process. The Japanese Government has adopted a comprehensive strategy and drafted long-term strategic plans including R and D, demonstration and market support. This strategy has enabled the Japanese Government to influence the direction of technical development within the domestic automobile industry with relatively limited government funding. In the development process analysed here, market support have been equally important for the development process as the R and D efforts. The history of BPEVs in Japan illustrates the conventional wisdom that 'picking winners' in government policy is not easy. Our conclusion is that governments should, if possible, focus on technologies that fulfil several policy aims and which can be used in several different applications. This increases the chance of a technology surviving the long journey from idea to competitive product. This study also shows that established dominating companies do not necessarily resist radical changes in their core designs.

  8. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  9. Lithium Dinitramide as an Additive in Lithium Power Cells

    Science.gov (United States)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  10. DESIGN AND ANALYSIS OF A COMPOSITE BEVEL GEAR IN AN AUTOMOBILE DIFFERENTIAL GEAR BOX

    OpenAIRE

    Mr. Rohit Sreekumar *, Prof. T. Jeyapoovan

    2016-01-01

    In automotive Industry,the differential gear plays an important role in power transmission as well as in the handling of the automobile.It transmits torque through three different shafts. This project deals with the design and optimization of the differential gear box through use of composite material. The solid modelling is done by using SOLIDWORKS. Static analysis is performed on the gear using Ni-CR steel, malleable cast iron, aluminium alloy and glass filled polyamide using ANSYS 14.5 The...

  11. Impact of air conditioning system operation on increasing gases emissions from automobile

    Science.gov (United States)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  12. High efficiency parallel-parallel LLC resonant converter for HV/LV power conversion in electric/hybrid vehicles

    OpenAIRE

    YANG, GANG; Sardat, Pierre; Dubus, Patrick; Sadarnac, Daniel

    2014-01-01

    Print ISBN: 978-3-8007-3603-4 International audience The design of a hybrid/electric automobile oriented 2.5kW, 250kHz, HV/LV double phase parallel-parallel connected LLC resonant converter is presented. This paper proposed the concept of double phase LLC with its double loop control strategy to share the power equally between the two power cells and to maintain a high efficiency among a wide output power range. Design considerations, including the MOSFETs power module, magnetic compone...

  13. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  14. External magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiencyExternal magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiency

    OpenAIRE

    ZERBO, ISSA; ZOUNGRANA, MARTIAL; SOURABIE, IDRISSA; Ouedraogo, Adama; ZOUMA, BERNARD; BATHIEBO, DIEUDONNE JOSEPH

    2015-01-01

    This article presents a modelling study of external magnetic field effect on a bifacial silicon solar cell's electric power and conversion efficiency. After the resolution of the magnetotransport equation and continuity equation of excess minority carriers, we calculate the photocurrent density and the photovoltage and then we deduce the solar cell's electric power before discussing the influence of the magnetic field on those electrical parameters. Using the electric power curves...

  15. Multiphase Isolated DC-DC Converters for Low-Voltage High-Power Fuel Cell Applications

    OpenAIRE

    Moon, Seung-Ryul

    2007-01-01

    Fuel cells provide a clean and highly efficient energy source for power generation; however, in order to efficiently utilize the energy from fuel cells, a power conditioning system is required. Typical fuel cell systems for stand-alone and utility grid-tied stationary power applications are found mostly with low nominal output voltages around 24 V and 48 V, and power levels are found to be 3 to 10 kW [1][2]. A power conditioning system for such applications generally consists of a dc-dc con...

  16. 49 CFR 536.9 - Use of credits with regard to the domestically manufactured passenger automobile minimum standard.

    Science.gov (United States)

    2010-10-01

    ... manufactured passenger automobile minimum standard. 536.9 Section 536.9 Transportation Other Regulations... domestically manufactured passenger automobile minimum standard. (a) Each manufacturer is responsible for..., the domestically manufactured passenger automobile compliance category credit excess or shortfall...

  17. 闭孔泡沫铝力学特性及其在汽车碰撞吸能中的应用研究进展%Progress on Research of Mechanical Properties of Closed-cell Aluminum Foams and Its Applications in Automobile Crashworthiness

    Institute of Scientific and Technical Information of China (English)

    兰凤崇; 曾繁波; 周云郊; 陈吉清

    2014-01-01

    Low energy consumption, safety and lightweight are the topic issues of the automobile industry. As a sort of lightweight and energy absorbing metallic material, the closed-cell aluminum foam has some advantage features of strong specific stiffness and specific strength with a low density, good impact resistance and energy absorbability, so it is brought to the new forefront of the automotive industry. The test criteria of uniaxial compression is described and the definition of several important parameters are clarified, such as Young modulus, compressive strength, yield strength, plateau stress and densification strain. The constitutive models of closed-cell aluminum foams are reviewed, among which the yield surface models are further emphasized. The modeling approaches of microstructure are summarized, and the macro material models integrated into commercial softwares are compared. Under summarizing the features of energy absorbing materials, the impact resistance and energy absorbability of closed-cell aluminum foams are especially analyzed. The influences of impact speed and strain rate are reviewed, and also some possible reasons are offered. The application of closed-cell aluminum foams in vehicle lightweight and crashworthiness is summarized, and several typical cases are analyzed. The problems and difficulties on understanding closed-cell aluminum foams’ mechanical properties and its applications in automobile structures are raised, and several feasible research directions are suggested.%汽车低能耗、安全和轻量化已经成为汽车领域研究的热点问题,闭孔泡沫铝作为一种轻质吸能金属材料,在低密度下具有良好的比刚度和比强度,同时具有良好的抗冲击性和能量吸收性,已逐渐引起汽车产业界地重视。简述泡沫铝单轴压缩试验中弹性模量、抗压强度、屈服强度、平台应力、致密化应变等参数的定义和试验标准;综述闭孔泡沫铝的本构方程

  18. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans.

    Science.gov (United States)

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2014-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  19. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  20. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    Directory of Open Access Journals (Sweden)

    Qihong Chen

    2014-01-01

    Full Text Available This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX, and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  1. Nonlinear recurrent neural network predictive control for energy distribution of a fuel cell powered robot.

    Science.gov (United States)

    Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  2. Modeling of High Efficiency Solar Cells Under Laser Pulse for Power Beaming Applications

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells may be used as receivers for laser power beaming. To understand the behavior of solar cells when illuminated by a pulsed laser, the time response of gallium arsenide and silicon solar cells to pulsed monochromatic input has been modeled using a finite element solar cell model.

  3. Metalworking Lasers In Automobile Fabrication - A View From The UK

    Science.gov (United States)

    Dawes, C. J.

    1986-11-01

    The development of the CO2 gas laser in the mid-sixties, has paved the way for the potential use of lasers in the fabrication of various driveline and body parts for automobiles. Much laser and laser metalworking research has been conducted in the United Kingdom and Europe (early research on cutting dates back to 1967). However, the automobile industries in both communities have been cautious in using lasers in production for heat treatment and welding. This paper outlines, in respect to the automobile industry, developments in laser equipments, current production applications, potential application studies and particular problem areas which are being researched. The application areas discussed cover: laser cutting, heat treatment and welding.

  4. Power

    OpenAIRE

    Samuel Bowles; Herbert Gintis

    2007-01-01

    We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...

  5. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stiebitz, Paul [Rochester Institute of Technology, NY (United States)

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  6. Design and modeling of power system for a fuel cell hybrid switcher locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Guo Liping, E-mail: lguo@niu.ed [Department of Engineering Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Yedavalli, Karthik; Zinger, Donald [Department of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115 (United States)

    2011-02-15

    This paper discusses the design and modeling of power system for a fuel cell hybrid locomotive. Different types of fuel cells for appropriate application to locomotives were compared, fuel cell and auxiliary storage devices were modeled, and a control strategy for the overall system was developed in this paper. By using the proposed control strategy, the power control system regulates the sharing of power demand between fuel cell and auxiliary storage units including batteries and ultracapacitors. Experimental data of the power duty cycle of a typical switcher locomotive is analyzed. The proposed control system is tested using the experimental data. Results show that the control system is able to maintain output voltage from different power sources within a certain range, keep the state of charge of the batteries within an optimal range and meet power demand of the locomotive at a high efficiency.

  7. Design and modeling of power system for a fuel cell hybrid switcher locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liping [Department of Engineering Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Yedavalli, Karthik; Zinger, Donald [Department of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115 (United States)

    2011-02-15

    This paper discusses the design and modeling of power system for a fuel cell hybrid locomotive. Different types of fuel cells for appropriate application to locomotives were compared, fuel cell and auxiliary storage devices were modeled, and a control strategy for the overall system was developed in this paper. By using the proposed control strategy, the power control system regulates the sharing of power demand between fuel cell and auxiliary storage units including batteries and ultracapacitors. Experimental data of the power duty cycle of a typical switcher locomotive is analyzed. The proposed control system is tested using the experimental data. Results show that the control system is able to maintain output voltage from different power sources within a certain range, keep the state of charge of the batteries within an optimal range and meet power demand of the locomotive at a high efficiency. (author)

  8. Design of a TFT-LCD Based Digital Automobile Instrument

    Directory of Open Access Journals (Sweden)

    Yunsong Xu

    2014-01-01

    instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading.

  9. Atmospheric pollution coming from automobiles and public health

    International Nuclear Information System (INIS)

    The air pollution coming from automobile is responsible of different diseases in respiratory or cardiovascular system. epidemiological studies in professional or general media give information in term of public health. If the role of air pollution from automobile at short terms is well established, for effects at long term (such cancers or chronic diseases of respiratory system) the measurement or estimation of the exposure is not sufficient for the moment and makes the epidemiology unable to quantify effects. In spite of these lacks, it is important to reduce the risk for the most fragile people. (N.C.)

  10. Adhesion coefficient of automobile tire and road surface

    Institute of Scientific and Technical Information of China (English)

    刘长生

    2008-01-01

    The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic accidents were presented.The results show that the adhesion coefficient is a function with the extreme value.If there is atmospheric pressure in the tire,the load of the vehicle and the degree of the coarse on the road surface is not selected properly,it will reach the least and affect the safety of the running automobile.

  11. Evaluating the Economic Impacts of Technological Innovation in the Automobile Industry: The Input-Output Approach

    OpenAIRE

    Shibusawa, Hiroyuki; Sugawara, Takafumi

    2011-01-01

    In this paper, the economic impacts of technological innovation, such as electric and hybrid vehicles, in the automobile industry in Japan are examined. The automobile industry has to develop environmentally friendly vehicles in the face of the global warming issue and the exhaustion problem of petroleum. The conventional automobiles with gasoline and diesel oil don’t meet the demands of present age. The new generation automobiles will become popular for coming several decades. The indust...

  12. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    Science.gov (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  13. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  14. 76 FR 61779 - Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Science.gov (United States)

    2011-10-05

    ... AFFAIRS Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive... refer to ``OMB Control No. 2900-0067.'' SUPPLEMENTARY INFORMATION: Title: Application for Automobile or..., servicepersons and their survivors complete VA Form 21-4502 to apply for automobile or other conveyance...

  15. 26 CFR 48.4061(a)-5 - Sale of automobile truck bodies and chassis.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sale of automobile truck bodies and chassis. 48..., Tread Rubber, and Taxable Fuel Automotive and Related Items § 48.4061(a)-5 Sale of automobile truck bodies and chassis. (a) Sale of completed vehicle. An automobile truck (as defined by §...

  16. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or...

  17. 40 CFR 600.311-86 - Range of fuel economy for comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... automobiles. 600.311-86 Section 600.311-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-86 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of city and the range of highway...

  18. 40 CFR 600.311-08 - Range of fuel economy for comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... automobiles. 600.311-08 Section 600.311-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-08 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of combined fuel economy values...

  19. 17 CFR 256.309 - Automobiles, other vehicles, and related garage equipment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Automobiles, other vehicles... § 256.309 Automobiles, other vehicles, and related garage equipment. This account shall include the delivered cost of all service company owned automobiles, vans, trucks, and other vehicles used by...

  20. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  1. Advanced welding technology of automobile body%先进的车身焊接技术

    Institute of Scientific and Technical Information of China (English)

    王广勇

    2013-01-01

    With the application of new material of galvanized steel and high strength steel and aluminum alloy in the body manufacturing, automobile body welding technology based on the power frequency of resistance welding and MAG welding doesn't meet the development trend "lightweight, safety, energy saving" of the body manufacturing.Advanced welding techniques such as MF resistance welding and laser penetration welding and laser filler wire welding and laser tailor-welded blanks and CMT welding technology and friction stir welding technology has been applied in automobile body manufacturing.This paper describes the working principle and technical characteristics of the above several advanced welding technology, and their application in automobile body manufacturing and economic benefits .There is some reference function to the body design and welding process.%随着镀锌钢板、高强度钢、铝合金等新材料在车身制造中的应用,以工频电阻焊为主,辅以MAG焊的车身焊接技术,逐步难以满足车身制造“轻量、安全、节能”的发展趋势.先进的焊接技术,例如中频电阻焊、激光钎焊、激光熔焊、激光拼焊板技术、CMT焊接技术、摩擦搅拌点焊技术等在车身制造中逐步得到应用.简述了几种先进焊接技术的工作原理和技术特点,及其在车身制造中的应用特点和经济效益.对车身设计和焊装工艺方案规划有一定的借鉴作用.

  2. The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry

    Directory of Open Access Journals (Sweden)

    Chao-Wu Chou

    2015-06-01

    Full Text Available The impact of global warming and climate change is one of the most critical challenges of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. The continuous improvement in automobile energy consumption is one of the most effective ways to reduce global warming. A comparative analysis is proposed to examine the various automobiles that utilize technological innovation to improve their energy consumption. Their contribution to CO2 emissions is then investigated. This study focuses on technical innovation and output power of a conventional engine. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi have improved energy consumption and reduce CO2 emissions. In addition, the Toyota hybrid vehicles have also improved energy consumption and reduced greenhouse gases emissions.

  3. Performance evaluation of aluminum/phosphate cell for powering small electronic devices

    Directory of Open Access Journals (Sweden)

    Gymama Slaughter

    2015-12-01

    Full Text Available We report on an innovative membrane-free aluminum/phosphate cell based on the activation of aluminum (Al as anodic material using ZnO nanocrystal in phosphate rich electrolyte that is capable of generating sufficient power to power a light-emitting diode (LED, selected as a model of a small electronic device. The energy from the cell is periodically supplied in high power bursts due to the charge and discharge cycle of the capacitor. The entire process is controlled by a switched capacitor regulator. The Al/phosphate cell was studied in neutral 100 mM phosphate buffer solution (7.4 at a temperature of 25 °C. We demonstrate that two Al/phosphate cells connected in series can generate an open circuit voltage (Voc up to 1.66 V to continuously power a LED via a switched capacitor regulator circuit. The switched capacitor regulator circuit enabled the 1 μF capacitor to store the incoming power from the cell and discharge it in a large power burst to supply the necessary drive strength required by the LED. This new Al/phosphate cell configuration is a ‘green’ alternative to the use of glucose abiotic and biofuel cells for powering ultra-low power implantable electronic devices.

  4. Low emission fuel cell ship. Environmental account of fuel cell powered ships

    International Nuclear Information System (INIS)

    Shipping is the dominant mode of global transport, accounting for total global anthropogenic NOx and SOx emissions of 10-14% and 4-6% respectively. Future environmental requirements signalled for shipping may exceed the possibilities within current conventional technology. The work presented document the environmental benefits of using fuel cells compared to diesel engines. The work describes the general principles for modelling emissions to air for ships. The model was calibrated by measurements onboard an offshore supply vessel and a car carrier. For the offshore vessel, the FC model includes 100% of onboard power delivered by FC's. For the car carrier, the FC replaces the auxiliary engines. FC type modelled was a high temperature FC running on natural gas. The work quantifies yearly reduction in atmospheric emissions of CO2, NOx, SOx and PM. Our results show that the installation of fuel cells in ships will improve the environmental performance significantly (e.g. global warming and acidification). (author)

  5. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  6. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  7. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns

    Science.gov (United States)

    Kwon, Cheong Hoon; Lee, Sung-Ho; Choi, Young-Bong; Lee, Jae Ah; Kim, Shi Hyeong; Kim, Hyug-Han; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2014-06-01

    Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm-2 that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.

  8. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2010-01-01

    The fuel cell powered vehicle is one of the most attractive candidates for the future due to its high efficiency and capability to use hydrogen as the fuel. However, its relatively poor dynamic response, high cost, and limited life time have impeded its widespread adoption. With the emergence of large supercapacitors (also know as ultracapacitors, UCs) with high power density and the shift to hybridization in the vehicle technology, fuel cell/supercapacitor hybrid fuel cell vehicles are gaini...

  9. Solid Oxide Fuel Cell – Gas Turbine Hybrid Power Plant

    OpenAIRE

    Henke, Moritz; Willich, Caroline; Steilen, Mike; Kallo, Josef; Friedrich, K. Andreas

    2013-01-01

    A model of a hybrid power plant consisting of SOFC and a gas turbine is presented. Simulations are carried out for a different number of SOFC stacks while keeping the output power of the SOFC constant. Results show that the effect of stack number on system performance is only marginal within the investigated range. Operating conditions of the SOFC, however, are strongly influenced.

  10. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  11. A Review of the Fatigue Analysis of an Automobile Frames

    Directory of Open Access Journals (Sweden)

    Jadav Chetan S., Panchal Khushbu C., Patel Fajalhusen*

    2012-12-01

    Full Text Available In this paper an effort is made to review theinvestigations that have been made on the differentfatigue analysis techniques of automobile frames. Anumber of analytical and experimental techniquesare available for the fatigue analysis of theautomobile frames. Determination of the differentanalysis around different condition in anautomobile frames has been reported in literature.

  12. ASE Program Certification Standards for Automobile Technician Training Programs.

    Science.gov (United States)

    National Automotive Technicians Education Foundation, Herndon, VA.

    This document presents and explains the development and application of the National Institute for Automotive Service Excellence (ASE) program certification standards that were developed to improve the quality of secondary- and postsecondary-level automobile technician training by implementing a certification program that certifies programs in…

  13. Market Energy efficient and new fuel automobile developments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Tsinghua University develops mini electric car OUYANG Mingbao, dean of automotive engineering and director of the key national laboratory of automobile safety and energy efficiency, has recently delivered a speech on the development of mini electric car in the university.

  14. Technology Demonstration of General Black box Standard for Automobiles (GBSA

    Directory of Open Access Journals (Sweden)

    Kishor R

    2014-05-01

    Full Text Available GBSA is an upcoming proposal towards Automobile industry and to the federal governing bodies around the world. Here we are intent to create a disciplinary system to save city sons from accident death and to abolish insurance piracy. The proposal is actually developed from the loss of mankind in society but pulled by technology and humanity facts..

  15. Development of amorphous wire type MI sensors for automobile use

    International Nuclear Information System (INIS)

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40 deg. C and 85 deg. C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on

  16. Making cars smarter: The growing role of electronics in automobiles

    OpenAIRE

    Thomas H. Klier; James M. Rubenstein

    2011-01-01

    Electronics make up nearly 40% of the content of today’s average new automobile, and their share will continue to grow. On June 2, 2011, as part of the eighteenth annual Automotive Outlook Symposium (AOS), the Chicago Fed hosted a panel of experts at its Detroit Branch to examine the current and future roles of electronics in motor vehicles.

  17. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.;

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  18. Magnetic properties and heavy metal contents of automobile emission particulates

    Institute of Scientific and Technical Information of China (English)

    LU Sheng-gao; BAI Shi-qiang; CAI Jing-bo; XU Chuang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χfd)showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT)being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution.

  19. Six changes with the new Regulations on Automobile Loans

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> On Aug 16, 2004, the People’s Bank of China and China Banking Regulatory Commission (CBRC) jointly issued the new version of the Regulations on Automobile Loans. Due to be put into implementation on Oct 1, the new Regulations change radically compared with the previous version in terms of creditors, possible borrowers, rate of down payments, loan periods, etc.

  20. Classification of Surface Quality of Automobile Lamp—Reflector

    Institute of Scientific and Technical Information of China (English)

    袁旭军; 贺莉清; 等

    2002-01-01

    This paper introduces an installation for quickly classifying automobile's metal reflectors based on their roughness.The measuring principle and the mechanical structure are presented.Schematics of circuits and experimental results are given.Elimination and reduction of the effect of background lights or different bulbs on the measuring results are also described in detail.

  1. Dynamic modeling and control of power density in a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Meidanshahi, V.; Karimi, G.; Farsi, M. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Chemical and Petroleum Engineering

    2010-07-01

    Polymer electrolyte membrane (PEM) fuel cells are well suited to transportation applications because they provide a continuous electrical energy supply from fuel at high levels of efficiency and power density. However a robust control strategy is necessary to satisfy power demand fluctuations. This study considered a nonlinear one-dimensional along-the-channel dynamic model to model and simulate the power generation in a PEM fuel cell. The proposed model was based on conservation laws and electrochemical and auxiliary equations. A proper fuzzy controller designed to control the average power density in the fuel cell was also proposed. The fuzzy controller was applied to the process and the results were compared with those of a tuned conventional PI controller. The dynamic properties of PEM fuel cell system showed that the average power density can be controlled by using fuzzy controller and the fuzzy controller has a faster response than the PI controller. 15 refs., 1 tab., 7 figs.

  2. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro

    2011-01-01

    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  3. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Bang, Mads; Korsgaard, Anders;

    2006-01-01

    . This work demonstrates the use of HTPEM fuel cells (HTPEM) in a 400 W fuel cell power pack. The fuel cell system concept uses a 30 cell HTPEM fuel cell stack designed at the Institute of Energy Technology, Aalborg University. The MEAs employed are Celtec P-series by Pemeas, with an active area of 45cm...... in a power pack, a high efficiency DC/DC-converter is designed. The overall control of the power conditioning and the power pack itself is also derived from modelling of the DC/DC converter. Comparing the LTPEM and the HTPEM, the HTPEM fuel cell has a lower cell voltage than the LTPEM, but the developed...... power pack demonstrates some of the advantages by using a HTPEM fuel cell. This initial system is very simple and there is no need for humidification of the species like in a LTPEM fuel cell system. The use of the HTPEM fuel cell makes it possible to use reformed gas at high CO concentrations without...

  4. The electrification of the automobile. Technical and economical challenges

    Energy Technology Data Exchange (ETDEWEB)

    Niestroj, Arwed; Mohrdieck, Christian [Daimler AG (Germany)

    2010-07-01

    Sustainable drive systems and innovative safety technologies are the mainstays of Daimler's vision of mobility for the future. Vehicles with hydrogen-powered fuel cells and battery powered drivetrains provide ideal conditions for environmentally friendly mobility that saves natural resources. Already several years ago Daimler launched a vehicle fleet of 100 smart electric drive that are operated by customers in London Metropolitan area. Key enabler for this powertrain technology is the high voltage battery. The customer feedbacks of the smart electric drive vehicles well prove that battery electric vehicles are a successful answer to zero emission mobility in urban areas. As the pioneer of the fuel cell technology, Daimler already presented the first vehicle with this highly efficient and environment-friendly drive concept in 1994. With more than 100 test vehicles that have altogether covered more than four million kilometres, Daimler has the most experience in fuel cell vehicles worldwide - from compact A-Class passenger cars to Sprinter vans and large Citaro fuel cell buses. The Mercedes-Benz B-Class F-CELL is the first series-produced vehicles with a zeroemission fuel-cell drive. Small-series production of the passenger car has started in late 2009. A new generation of fuel-cell drive is used to power this innovative vehicle. The fuel cell system is much more compact while at the same time offers higher performance. It is also completely suitable for everyday use. The fuel cell system used in the Mercedes-Benz B-Class F-CELL is also demonstrating its suitability for heavy-duty operation in commercial vehicles. By means of combining two B-Class systems with an energy storage unit, a highly powerful aggregate is created for application in the new FuelCELL-Hybrid bus. (orig.)

  5. A Simple and Efficient MPPT Method for Low-Power PV Cells

    Directory of Open Access Journals (Sweden)

    Maria Teresa Penella

    2014-01-01

    Full Text Available Small-size PV cells have been used to power sensor nodes. These devices present limited computing resources and so low complexity methods have been used in order to extract the maximum power from the PV cells. Among them, the fractional open circuit voltage (FOCV method has been widely proposed, where the maximum power point of the PV cell is estimated from a fraction of its open circuit voltage. Here, we show a generalization of the FOCV method that keeps its inherent simplicity and improves the tracking efficiency. First, a single-diode model for PV cells was used to compute the tracking efficiency versus irradiance. Computations were carried out for different values of the parameters involved in the PV cell model. The proposed approach clearly outperformed the FOCV method, specially at low irradiance, which is significant for powering sensor nodes. Experimental tests performed with a 500 mW PV panel agreed with these results.

  6. Divorce your car: ending the love affair with the automobile

    Energy Technology Data Exchange (ETDEWEB)

    Alvord, K.

    2000-07-01

    This book is a guide for people wishing to liberate themselves from their addiction to cars and the automobile culture. It is a repository of examples and actions that individuals and communities can take to reduce dependence on the automobile. The range of possibilities run from using cars less to not owning one at all. The book provides a humorous yet clear-headed approach to a greener world and maps out the road to how people can live happily ever after by breaking free of 'auto-cracy', without insisting on people in car-dependent countries quit their automotive addiction instantly. Nevertheless, it clearly articulates the connection between automobiles, their arteries (i.e. highways) and effluents (i.e. greenhouse gases and particulate emissions), and the increasing number and severity of natural disasters between the urban renewal and freeway construction that, in the author's view, helped ignite the riots in Watts, Newark and Detroit. The disastrous societal and geophysical effects of the automobile are demonstrated in great abundance, and the mountain of evidence of the systematic abuse of the planet that the book provides is a stunning refutation of the notion that technology is neutral. The automobile is accused of being not only the linchpin of Western and primarily American industrialism and resource extraction, it is also accused of being the chief suspect in a century-long theft of time, conviviality and beauty. How to bring about a change in people's love affair with their cars is difficult to comprehend but this author has a multitude of useful suggestions which seem to suggest that it is possible. There is a list of 104 'selected references' and an extensive list of 'other resources'.

  7. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  8. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj;

    2002-01-01

    power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during......%) and the inverter operates with a near unity power factor and a low current THD....

  9. Binary co-generation power plant with night-temperature (SOFC) fuel cells of natural gas, v. 15(57)

    International Nuclear Information System (INIS)

    Binary co-generation power plant with height-temperature SOFC fuel cells of natural gas are presented in this paper. Based on before optimization calculations for this type of power plants is made: basic measures, number of modules, electric power and fuel cell efficiency; gas turbine electric power and efficiency; co-generation steam turbine electric and heat power efficiency. Compare analysis of binary co-generation power plant with SOFC fuel cells and co-generative power plant without fuel cells in relation of efficiency, ecological benefits and profitability (economy analysis) is given. (Author)

  10. Mind the gap; The vicious circle of measuring automobile fuel use

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Figueroa, M.J.; Price, L. (Strategic Air Command, Offutt AFB, NE (United States). Aircraft Engineering Div.); Espey, M. (California Univ., Davis, CA (United States). Dept. of Agricultural Economics)

    1993-12-01

    We review the circularity between estimates of automobile use, fuel consumption and fuel intensity. We find that major gaps exist between estimates of road gasoline, the quantity most often used to represent automobile fuel use in economic studies of transport fuel use, and the actual sales data of gasoline, diesel and other fuels used for automobiles. Significant uncertainties exist in values of both the number of automobiles in use and the distance each is driven, which together yield total automobile use. We present our own calculations for total automobile fuel use for a variety of OECD countries. We comment briefly on the impact of these gaps on econometric estimates of the price and income elasticities of automobile fuel use. (author)

  11. Hopes in the Crisis——Chinese Automobile Market in the World Auto manufacturing Industry Shuffle

    Institute of Scientific and Technical Information of China (English)

    Gao Shurong

    2009-01-01

    @@ Global automobile markets shuffle against the economic crisis The economic crisis spread rapidly around the world,making automobile industry one of the victims who are shocked hardest,leading to an industrial shuffle in global automobile industry.USA,EU and Japan,the traditional top three leading countries in global automobile industry,could not have their lucks to escape from the crisis.The weak global automobile market forces these transnational auto companies to be more cautious about the future than ever.As reflected in the latest performance reports,though governments took measures to maintain the market,the sharp decline in global automobile sales volume continued in the first quarter.Automobile market bottomed out in the second quarter.US auto industrywas affected the most,with two out of the top three manufacturers getting bankrupt and regrouped.

  12. 面向观点挖掘的汽车评价本体知识库的构建%AUTOMOBILE REVIEWS ONTOLOGY KNOWLEDGE BASE CONSTRUCTION ORIENTED TOWARDS OPINION MINING

    Institute of Scientific and Technical Information of China (English)

    冯淑芳; 王素格

    2011-01-01

    The automobile reviews ontology knowledge base oriented towards opinion mining is established to offer powerful data resources to mine automobile entity information and feature information opinions. The paper relies on the background knowledge of the automobile field and builds the automobile reviews ontology knowledge base concept relations according to relations of automobile knowledge. Further on,taking advantage of web automobile reviews real corpus, the core concepts of ontology knowledge base is automatically acquired. Finally, the ontology knowledge base oriented towards opinion mining is constructed with OWL description language.%建立了面向观点挖掘的汽车评价本体知识库,可为挖掘汽车整体信息和特性信息观点提供强大的数据资源.以汽车领域知识为背景,根据汽车知识的关系,构建了汽车评价本体知识库的概念关系.在此基础上,利用Web汽车评论真实语料库,自动获取了本体知识库中的核心概念.最后,采用OWL描述语言,构建了面向观点挖掘的本体知识库.

  13. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  14. Development of a thin film solar cell interconnect for the PowerSphere concept

    International Nuclear Information System (INIS)

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  15. Hybrid Power Management Program Evaluated Fuel Cell/Ultracapacitor Combinations and Developed Other New Applications

    Science.gov (United States)

    Eichenberg, Dennis J.

    2004-01-01

    In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.

  16. Impute DC link (IDCL) cell based power converters and control thereof

    Energy Technology Data Exchange (ETDEWEB)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  17. Harnessing the power of Vδ2 cells in cancer immunotherapy.

    Science.gov (United States)

    Fowler, D W; Bodman-Smith, M D

    2015-04-01

    γδ T cells are a subset of T lymphocytes that have been implicated in immunosurveillance against infections and tumours. In the peripheral blood of humans the γδ T cell pool is made up predominantly of Vδ2 cells, which can detect both foreign and self-metabolites of the isoprenoid biosynthesis pathway. This unique axis of antigen recognition enables Vδ2 cells to respond to a range of pathogenic infections as well as perturbations in endogenous isoprenoid biosynthesis that can occur during cell stress and malignant transformation. There has been growing interest in Vδ2 cells as a potential avenue for cancer immunotherapy, and a number of strategies have been utilized in an attempt to boost the anti-tumour response of Vδ2 cells in patients. In this review we discuss critically the evidence that Vδ2 cells contribute to the cytotoxic response against tumours and evaluate current immunotherapeutic approaches that target these cells in cancer patients, with specific focus on their shortcomings and how they may be improved.

  18. Multi-cell thermionic fuel element for nuclear electric power and propulsion system

    Science.gov (United States)

    Nikolaev, Yuri V.; Gontar, Alexander S.; Eremin, Stanislav A.; Lapochkin, Nikolai V.; Andreev, Pavel V.; Zhabotinsky, Evgeny E.

    1999-01-01

    Conceptual problems of development of two-mode multi-cell thermionic fuel element (TFE) for nuclear electric power and propulsion system are considered. The results of analysis of the design and TFE output parameters are presented. It is shown that application of advanced high effective materials and technologies provides operating of the TFE in two modes: a) in nominal mode of power generation for power supply of spacecraft payload at operational orbit and b) in forced mode of power generation for power supply of electric thrusters under spacecraft orbit transfer from intermediate to operational one.

  19. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  20. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  1. A Lemon Cell Battery for High-Power Applications

    Science.gov (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-01-01

    The use of lemon cell battery to run an electric DC motor is demonstrated for chemistry students. This demonstration aids the students in understanding principles behind the design and construction of the lemon cell battery and principles governing the electric DC motor and other basic principles.

  2. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Vora

    2008-02-01

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  3. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  4. DPAL: A new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths

    Science.gov (United States)

    Krupke, W. F.; Beach, R. J.; Payne, S. A.; Kanz, V. K.; Early, J. T.

    2004-03-01

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies ~40% (Si) and ~60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected. The potential application to power beaming propulsion to raise satellites from LEO to Geo is discussed.

  5. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  6. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    OpenAIRE

    Yanli Wang; Steele, Charles R.; Sunil Puria

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar m...

  7. Hydrogen-chlorine fuel cell for production of hydrochloric acid and electric power : chlorine kinetics and cell design

    OpenAIRE

    Thomassen, Magnus Skinlo

    2005-01-01

    This thesis work is the continuation and final part of a joint project between the Department of Materials Technology, NTNU and Norsk Hydro Research Center in Porsgrunn, looking at the possibility of using fuel cells for production of hydrogen chloride and electric power. The experimental work encompass an evaluation of three hydrogen - chlorine fuel cell design concepts, development and implementation of a mathematical fuel cell model and a kinetic study of the chlorine reduction reaction. T...

  8. Power loss analysis of n-PASHA cells validated by 2D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Gutjahr, A.; Burgers, A.R.; Saynova, D.S.; Cesar, I.; Romijn, I.G.

    2013-10-15

    To reach >21% efficiency for the n-Pasha (passivated all sides H-pattern) cell of ECN, reliable power-loss analyses are essential. A power-loss analysis is presented that is based on experimental data but validated and completed by 2D simulations. The analysis is used to identify the key factors that will contribute most to achieving >21% efficiency.

  9. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    A new very high efficiency 10 kW isolated R4 boost converter for low-voltage high-power fuel cell applications is presented. Using a new concept for partially paralleling of isolated boost converters, only the critical high ac-current parts are paralleled. Four 2.5 kW power stages, consisting...

  10. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  11. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  12. Power loss for high-voltage solar-cell arrays

    Science.gov (United States)

    Parker, L. W.

    1979-01-01

    Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.

  13. Fuel cell programs in the United States for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  14. Using a Voltage Domain Programmable Technique for Low-Power Management Cell-Based Design

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Cheng

    2011-09-01

    Full Text Available The Multi-voltage technique is an effective way to reduce power consumption. In the proposed cell-based voltage domain programmable (VDP technique, the high and low voltages applied to logic gates are programmable. The flexible voltage domain reassignment allows the chip performance and power consumption to be dynamically adjusted. In the proposed technique, the power switches possess the feature of flexible programming after chip manufacturing. This VDP method does not use an external voltage regulator to regulate the supply voltage level from outside of the chip but can be easily integrated within the design. This novel technique is proven by use of a video decoder test chip, which shows 55% and 61% power reductions compared to conventional single-Vdd and low-voltage designs, respectively. This power-aware performance adjusting mechanism shows great power reduction with a good power-performance management mechanism.

  15. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Science.gov (United States)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  16. AN FE ANALYSIS OF REINFORCED SUBGRADE UNDER AUTOMOBILE LOADING

    Institute of Scientific and Technical Information of China (English)

    YAN Shuwang; ZHANG Xinqiang; LIU Run

    2004-01-01

    An FE analysis procedure was presented to predict the behavior of soil-geogrid interaction under automobile loading. The dynamic interactions between the transverse bars, the longitudinal ribs and the soil were simulated by a system consisting of nonlinear springs, dashpots and masses, to study the deformation properties of the reinforced soil. The equivalent stiffness and damping ratios could be determined with the shaking table. The dynamic responses of a reinforced subgrade were analyzed with the 3D finite element approach. This approach is programmed and applied to analyze the soil-geogrid interaction under dynamic loading. The comparative analysis of the response of the reinforced subgrade and that of the subgrade without reinforcement shows that the geogrid placed at the bottom of the base layer may effectively reduce the accumulative plastic deformation due to the cyclic automobile loading.

  17. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  18. Automobile ride quality experiments correlated to iso-weighted criteria

    Science.gov (United States)

    Healey, A. J.; Young, R. K.; Smith, C. C.

    1975-01-01

    As part of an overall study to evaluate the usefulness of ride quality criteria for the design of improved ground transportation systems an experiment was conducted involving subjective and objective measurement of ride vibrations found in an automobile riding over roadways of various roughness. Correlation of the results led to some very significant relationships between passenger rating and ride accelerations. The latter were collapsed using a frequency-weighted root mean square measure of the random vibration. The results suggest the form of a design criterion giving the relationship between ride vibration and acceptable automobile ride quality. Further the ride criterion is expressed in terms that relate to rides with which most people are familiar. The design of the experiment, the ride vibration data acquisition, the concept of frequency weighting and the correlations found between subjective and objective measurements are presented.

  19. The Inherited Traditional Culture of Automobile Molding DNA Design Research

    Directory of Open Access Journals (Sweden)

    Song Qiang

    2013-01-01

    Full Text Available Design of automobile modeling DNA is the core that makes enterprises establish a good and unique brand image to win on market. This paper described the definition and meaning of production DNA, also discussed the composition of production DNA and researched the design ideas of production DNA from both macro and micro aspects. Finally, it recommended would research the traditional culture into the past, present and future of three periods, explored the idea of traditional culture that the automobile modeling DNA inherited under these three periods and analyzed with the red flag car as an example. This research provided a guideline to help automotive corporations to implement brand strategies, and helped to design autos with Chinese elements, sense of the times and fashion trends and can perform the modern mental outlook of Chinese people.

  20. Study on the Fuzzy COntrol Strategy of Automobile with CVT

    Institute of Scientific and Technical Information of China (English)

    HuJianjun; QINDatong; 等

    2002-01-01

    In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established.On the base of the simulation state space equations that are established with bond graph theory,a fuzzy control strategy with an expert system of starting process has been introduced.Considering uncertain system parameters and exterior resistance disturbing,the effect of the profile of membership function and the defuzzification algorthm on the capacity of the fuzzy controller has been studied.The result of simulation proves that the proposed fuzzy controller is effective and feasible,Such controller has been employed in the actual control and has proved practicable.The study lays a foundation for design of the fuzzy controller for automobile with a CVT system.

  1. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  2. Translation of Automobile Brands from the Perspective of Skopos Theory

    Institute of Scientific and Technical Information of China (English)

    刘竹林; 王俊

    2013-01-01

    With the steady growth of the Chinese economy, more and more countries are focusing on China. A great number of brands are entering the Chinese market and auto brand is one of them. Brand translation plays an important role for success of opening international market. This paper applies the Skopos theory to automobile brand translation, so as to provide a new angle to translation practice.

  3. Design of a TFT-LCD Based Digital Automobile Instrument

    OpenAIRE

    Yunsong Xu; Shen Yin; Jinyong Yu; Hamid Reza Karimi

    2014-01-01

    The traditional mechanical instrument lacks the ability to satisfy the market with characters of favorable compatibility, easy upgrading, and fashion. Thus the design of a TFT-LCD (thin film transistor-liquid crystal display) based automobile instrument is carried out. With a 7-inch TFT-LCD and the 32-bit microcontroller MB91F599, the instrument could process various information generated by other electronic control units (ECUs) of a vehicle and display valuable driving parameters on the 7-in...

  4. Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives

    OpenAIRE

    Anderson, Soren; Parry, Ian; James M. Sallee; FISCHER, Carolyn

    2010-01-01

    This paper discusses fuel economy regulations in the United States and other countries. We first describe how these programs affect the automobile market, including their impacts on fuel use and other dimensions of the vehicle fleet. We then review different methodologies for assessing the costs of fuel economy regulations and discuss what the results of these methodologies imply for policy. Following that, we compare the welfare effects of fuel economy regulations to those of fuel taxes and ...

  5. Comparative Frictional Analysis of Automobile Drum and Disc Brakes

    OpenAIRE

    H.P. Khairnar; V.M. Phalle; S. S. Mantha

    2016-01-01

    In the present work, a comparative frictional behaviour of drum brakes and disc brakes in automobiles has been investigated. The influential factors; contact force and friction radius were modeled for the estimation of the friction coefficient for drum as well as disc brakes. The effect of contact force and friction radius is studied with varying conditions of parameters; longitudinal force, caliper force and torque on piston side as well as non-piston side. The numerical results obtained hav...

  6. Coatings Manufacturing Technology for China's Automobile Industry Conference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China's automobile industry is experiencing continued phenomenal growth with the first 11 months of 2003 seeing an output of over 4 million units.This has lead to a huge growth in the consumption of automotive coatings with a 30% growth expected in 2004,reaching 200,000 tons-compared to a 7% average growth for the coatings industry as a whole.Output is predieted to reach 300,000 tons by 2010!

  7. 130 Modeling of the automobile suspension by the functional model

    OpenAIRE

    桐山, 啓; 角田, 鎭男; 長松, 昭男; 御法川, 学; 岩原, 光男; Kiriyama, Akira; Sumida, Shizuo; Nagamatsu, Akio; Minorikawa, Gaku; Iwahara, Mitsuo

    2003-01-01

    Modeling for an action simulation is performed focusing on the suspension system of a car using the modeling technique called the functional model that had been developed by one of the authors. Simulation analysis of the suspension system of a car was performed in the three dimensional field. It was shown that the method based on the modeling concept of functional model can express the general dynamic characteristic of the automobile suspension.

  8. Teamwork in the Automobile Industry - an Anglo-German Comparison

    OpenAIRE

    Niels-Erik Wergin

    2004-01-01

    Teamwork in the automotive industry varies significantly from plant to plant. This article compares teamwork in four automobile plants in Germany and Britain, and addresses two questions: (1) Do different models of teamwork fit into a bi-polar model of teamwork, being either innovative or structural conservative? (2) Do current models of teamwork signify a development towards post-fordism, or are they merely part of a neo-fordist rationalisation of production? The following answers are sugges...

  9. Promoting automobile safety belt use by young children.

    OpenAIRE

    Sowers-Hoag, K M; Thyer, B A; Bailey, J S

    1987-01-01

    A program using behavioral practice, assertiveness training, and social and contrived reinforcers was developed to establish and maintain automobile safety belt use by young children. Sixteen children (ages 4.8 to 7 years) who never used their safety belts during a 5-day preexperimental observation period were randomly assigned to two groups of eight each. A multiple baseline design across groups was used to evaluate the effectiveness of the training program. During the 8-day baseline period ...

  10. Loyalty marketing in automobile dealerships : case: car dealer X

    OpenAIRE

    Hyyryläinen, Heidi

    2012-01-01

    The purpose of this thesis is to study how customer loyalty is taken into account in automobile dealerships, what loyalty marketing means are used to improve customer loyalty, and what potential new loyalty marketing means can be implemented. The thesis is commissioned by Car dealer X. In the theoretical part, areas covered are customership and loyalty marketing. Customership includes customer satisfaction, customer loyalty, customer value and customer retention. Loyalty marketing contain...

  11. Digital Laser Welding System for Automobile Side Panel

    OpenAIRE

    Park, Hong-Seok; Choi, Hung-Won

    2010-01-01

    The laser as economical and flexible tool has established a solid ground in industrial manufacturing area. Specially at welding BIW (Body In White) in automobile industry, the importance of it has been increased due to the technological characteristics such as high process speed, slim seam and good capability of automation and so on. For application of laser welding technique, welding principle and influential factors were investigated based on the analysis of laser welding processes. With th...

  12. A Flowchart Approach to Malaysia's Automobile Industry Cluster Policy

    OpenAIRE

    Kuchiki, Akifumi

    2007-01-01

    In this paper, we apply a flowchart approach to investigate Malaysia's automobile cluster policy. We investigate whether the industrial cluster policy has been successful or not, suggest policy prescriptions, and propose a way to prioritize policy measures. Our flowchart approach leads to the following three policy prescriptions: (1) Malaysian firms should establish sites for exporting compact cars with automatic transmissions; (2) actors in the public, semi-public and private sector should w...

  13. KEY FACTORS INFLUENCING PURCHASE INTENTIONS TOWARDS AUTOMOBILES IN PAKISTAN

    OpenAIRE

    SYED NAVEED ALTAF; NOOR AZMI HASHIM

    2016-01-01

    In this paper the authors identify and investigate the key factors which influence intentions to purchase passenger cars among consumers in Pakistan. A questionnaire was developed to check the significance of these key variables identified from previous studies, especially those conducted in the context of automobile purchasing in Asian countries. Faculty members from universities of two major cities in Pakistan were selected at random as respondents for this study. The findings of the study ...

  14. Determinants of Expenditure in Automobile Maintenance: Some Evidence from Greece

    OpenAIRE

    Bitros, George C.

    2004-01-01

    This paper derives a model of maintenance expenditures from an analytical framework in which maintenance, utilization and service life are appropriately integrated and estimates it with the help of automobile data from Greece. On the theoretical plain it is shown that the model allows endogenously for most of the variables that have been identified in the relevant literature as important determinants of maintenance expenditures. Also the model yields sharp sign predictions for the included va...

  15. Market Analysis of RFID Systems in Indian Automobile Industry

    OpenAIRE

    Mariappan, Ramachandran

    2010-01-01

    RFID is an emerging hot technology in tracking and tracing physical objects. The market for RFID ranges from technological artefacts like tags and reader infrastructure to software solutions and supply chain services. One of the key business sectors that have seen the initial benefits of RFID applications is the Automobile sector through improvements in local processes related to better production control and increased handling efficiency. In recent years, there has been a palpable shift in t...

  16. A New Method for Estimation of Automobile Fuel Adulteration

    OpenAIRE

    Gupta, Anil; Sharma, R. K.

    2010-01-01

    The problem of increasing urban air pollution due to fast increasing number of auto mobiles and adulteration of automobile fuel has been pointed out in the context of developing countries. For prevention of the adulteration, the monitoring of fuel quality at the distribution point is essential. For the detection/estimation of the commonly used adulterants (i.e. diesel in petrol and kerosene in diesel), a number of possible methods have been reviewed. As such there is no standard method/equipm...

  17. Chang Jiang and Her "Automobiles and China" Program

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    ANCHORWOMAN Chang Jiang of China Central Television (CCTV) enjoys popularity for her Automobiles and China program, which she writes and hosts. The program which started in 1994 aroused a comparatively strong response in the society because of its serious and deep thought about this absorbing topic. It took her twenty months to finish this program. Hundreds of people were interviewed and five notebooks were filled with reference materials. The script was revised seven times.

  18. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  19. The direct borohydride fuel cell for UUV propulsion power

    Science.gov (United States)

    Lakeman, J. Barry; Rose, Abigail; Pointon, Kevin D.; Browning, Darren J.; Lovell, Keith V.; Waring, Susan C.; Horsfall, Jackie A.

    The development of proton exchange membrane and direct methanol fuel cell stacks is now well advanced for many applications. However, the significant performance advantages that these have over the battery for small to moderate scale applications will not be realised until a credible fuel source has been developed. The deficiencies of the PEMFC and DMFC can be eliminated by cation or anion-conducting membranes incorporated into a direct sodium borohydride fuel cell (DSBFC). The characterisation of membranes for the DSBFC is discussed. Novel membranes have been prepared which have resistance of an equal magnitude to the commercially available Nafion ® membrane.

  20. Coupled analysis of engine noise and interior noise of an automobile

    Institute of Scientific and Technical Information of China (English)

    郑旭; 毛杰; 郝志勇

    2015-01-01

    The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise, respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.

  1. The impact of fixed and variable cost on automobile demand: Evidence from Denmark

    DEFF Research Database (Denmark)

    Mulalic, Ismir; Rouwendal, Jan

    2015-01-01

    and derive an expression for the full willingness to pay for characteristics that takes into account the impact on fixed as well as variable costs. We apply the model to the demand for automobiles using rich Danish register data. Estimation reveals considerable heterogeneity and a non-negligible contribution......Many car characteristics, for instance cabin space and engine power, have a positive impact on fixed and variable costs. We extend the hedonic model, that considers only one type of cost, to the situation in which fixed as well as variable costs depend on the characteristics of the durable...... of the variable costs in total willingness to pay. Next we show that under suitable assumptions a structural interpretation of our estimates is possible. We show that the willingness to pay per kilometer driven can be interpreted as a parameter of the utility function and study how it is related to household...

  2. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef;

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS) te...

  3. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains

    Science.gov (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  4. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  5. Reliability considerations of a fuel cell backup power system for telecom applications

    Science.gov (United States)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  6. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.;

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then, a...... multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...

  7. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    OpenAIRE

    Yong-Song Chen; Sheng-Miao Lin; Boe-Shong Hong

    2013-01-01

    A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investig...

  8. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant

    OpenAIRE

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-01-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The prop...

  9. Analysis on the R-R interval time series of automobile long distance drivers; Kosoku doro no chojikan soko ni yoru R-R kankakuji keiretsu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Moyoshi, M.; Takata, K. [Daido Institute of Technology, Nagoya (Japan); Yokoyama, K. [Nagoya Municipal Women`s College, Nagoya (Japan); Yoshioka, T.; Watanabe, Y. [Toyota National College of Technology, Aichi (Japan)

    1995-04-20

    Analyses were performed on change in living body information as time elapses while driving a car, the differences between automobile drivers and fellow passengers, and between automobile drivers and motorcycle drivers. A comparison on body temperatures in automobile drivers and motorcycle drivers shows sharper changes in the motorcycle drivers. Motorcycles, being different from automobiles, put the drivers exposed to atmosphere during driving, applying larger living body load. Adrenalin increases its concentration when a human is under mental load, so does noradrenalin when under physical load. Both of adrenalin and noradrenalin showed an increasing trend in the afternoon as compared with in the morning. From the comparison with the normal daily life, fellow passengers have also large mental living body load, who were found to have concentration change of nearly two times or more than that in normal conditions. A subject who rode in a car in the first experiment and drove a motorcycle in the second experiment was discovered to have his right hand grasping power decreased remarkably after the second experiment. Fatigue factors unique to motorcycle driving are thought the engine vibration, the hot air, the need of taking balance of the motorcycle attitudes, and stress from noise. 14 refs., 8 figs.

  10. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel;

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source of...... energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  11. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  12. 41 CFR 301-10.310 - What will I be reimbursed if I am authorized to use a Government automobile and I use a privately...

    Science.gov (United States)

    2010-07-01

    ... reimbursed if I am authorized to use a Government automobile and I use a privately owned automobile instead... automobile and I use a privately owned automobile instead? (a) Reimbursement based on Government costs—Unless you are committed to using a Government automobile as provided in paragraph (b) of this section,...

  13. Power

    OpenAIRE

    Hafford-Letchfield, Trish

    2015-01-01

    This chapter looks at the concept of power in social work by focusing on what this means as a ‘professional’ and theorizes competing discourses of empowerment in social work and its key concepts, drawing in particular on the explanatory powers of critical theorist Michel Foucault (1991). The chapter problematizes the concept of power by explicitly drawing on both users’ and carers’ accounts from the literature to demonstrate different external and internal influences on the root causes of dis...

  14. Design and analysis of single- ended robust low power 8T SRAM cell

    Directory of Open Access Journals (Sweden)

    Gupta Neha

    2016-01-01

    Full Text Available This paper is based on the observation of 8T single ended static random access memory (SRAM and two techniques for reducing the sub threshold leakage current, power consumption are examined. In the first technique, effective supply voltage and ground node voltages are changed using a dynamic variable voltage level technique(VVL. In the second technique power supply is scaled down. This 8T SRAM cell uses one word line, two bitlinesand a transmission gate. Simulations and analytical results show that when the two techniques combine the new SRAM cell has correct read and write operation and also the cell contains 55.6% less leakage and the dynamic power is 98.8% less than the 8T single ended SRAM cell. Simulations are performed using cadence virtuoso tool at 45nm technology.

  15. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  16. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  17. Impact of power converter current ripple on the durability of a fuel cell stack

    OpenAIRE

    WAHDAME, B; GIRARDOT, L; Hissel, D.; Harel, F.; Francois, X.; Candusso, D.; PERA, MC; DUMERCY, L

    2008-01-01

    The durability and performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) have a major impact on the most important challenges facing fuel cell commercialization including final cost, mass production, system integration, functionality and reliability. This work is supported by French Government via an ANR' project (PAN'H) named SPACT80. The global objective is to develop and validate the use of a fuel cell based power system for heavy-duty vehicles (dedicated to railway applications or...

  18. A Power Allocation Algorithm Based on Cooperative Game Theory in Multi-cell OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-11-01

    Full Text Available A centralized resource allocation algorithm in multi-cell OFDM systems is studied, which aims at improving the performance of wireless communication systems and enhancing user’s spectral efficiency on the edge of the cell. The proposed resource allocation algorithm can be divided into two steps. The first step is sub-carrier allocation based on matrix searching in single cell and the second one is joint power allocation based on cooperative game theory in multi-cell. By comparing with traditional resource allocation algorithms in multi-cell scenario, we find that the proposed algorithm has lower computational complexity and good fairness performance.

  19. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  20. Globalization of the automobile industry in China: dynamics and barriers in greening of the road transportation

    International Nuclear Information System (INIS)

    This article describes the state of the automobile industry and urban road transportation management in China. It reviews how the automobile industry is evolving to respond to challenges in economic development, environmental regulations, and technological change. The dynamics and barriers resulting from technological change of automobiles in response to reduction of exhaust emissions and energy-efficiency improvement are analyzed. It is argued that consideration of externality costs should be integrated in automobile industrial policymaking and transportation management. Efforts need to be made to use more economic incentives for emissions reduction, and to promote technological change for cleaner vehicle development. This paper questions the current government policy of encouraging private car ownership, and suggests that improvement in public transportation systems, stronger emissions control, and technology innovation on environmental friendly automobile technologies would be relevant to China's drive toward sustainable transportation development. Social inequities resulted from automobile use is also stressed in the analysis

  1. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  2. Automobiles on Steroids: Product Attribute Trade-O�s and Technological Progress in the Automobile Sector

    OpenAIRE

    Christopher R. Knittel

    2009-01-01

    New car fleet fuel economy, weight and engine power have changed drastically since 1980. These changes represent both movements along and shifts in the "fuel economy/weight/engine power production possibilities frontier." This paper estimates the technological progress that has occurred since 1980 and the trade-offs that manufacturers and consumers face when choosing between fuel economy, weight and engine power characteristics. The results suggest that if weight, horsepower and torque were h...

  3. Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector

    OpenAIRE

    Christopher R. Knittel

    2009-01-01

    New car fleet fuel economy, weight and engine power have changed drastically since 1980. These changes represent both movements along and shifts in the "fuel economy/weight/engine power production possibilities frontier". This paper estimates the technological progress that has occurred since 1980 and the trade-offs that manufacturers and consumers face when choosing between fuel economy, weight and engine power characteristics. The results suggest that if weight, horsepower and torque were h...

  4. Abuse behavior of high-power, lithium-ion cells

    Science.gov (United States)

    Spotnitz, R.; Franklin, J.

    Published accounts of abuse testing of lithium-ion cells and components are summarized, including modeling work. From this summary, a set of exothermic reactions is selected with corresponding estimates of heats of reaction. Using this set of reactions, along with estimated kinetic parameters and designs for high-rate batteries, models for the abuse behavior (oven, short-circuit, overcharge, nail, crush) are developed. Finally, the models are used to determine that fluorinated binder plays a relatively unimportant role in thermal runaway.

  5. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  6. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  7. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  8. "Electronic Procurement networks and Parts Transaction Systems: A Case of the Automobile Industry"(in Japanese)

    OpenAIRE

    Je-Wheon Oh; Takahiro Fujimoto

    2001-01-01

    Inter-firm information systems in the automobile industry have evolved from firm-specific networks to industrial standard networks and further to internet. This paper examines how electronic parts procurement systems in the automobile industry affected its patterns of inter-firm transactions through empirical studies on information networks, transaction systems, and architectural characteristics of automobile parts. We argue that choice of a certain parts transaction system tends to affect ch...

  9. The influence of globalisation on automobile manufacturers in South Africa / Kalanther Ishaq

    OpenAIRE

    Ishaq, Kanther

    2003-01-01

    The South African automobile manufacturing industry has grown since 1920 from an import and assembly industry to an import-substitute industry. From the inception, the automobile manufacturing industry developed under the careful monitoring of the Government to obtain the objectives of the economy of the country. Until 1960, all automobile manufacturers imported completely knocked down sets from abroad to assemble vehicles. These excessive imports drained the South African fore...

  10. “Separation -A Better Tomorrow-Economy” A Study of Marketing Strategies On Automobile

    OpenAIRE

    Ekta Chakravarty

    2013-01-01

    Automobile is one of the largest industries in global market. Being the leader in product and process technologies in the manufacturing sector, it has been recognized as one of the drivers of economic growth. During the last decade, well directed efforts have been made to provide a new look to the automobile policy for realizing the sector's full potential for the economy. Aggressive marketing by the auto finance companies have also played a significant role in boosting automobile demand, esp...

  11. The effects of automobile production and local government expenditure on poverty in alabama

    OpenAIRE

    Sooriyakumar Krishnapillai; Henry Kinnucan

    2012-01-01

    This paper studies the impact of automobile production on the poverty rate of Alabama's counties. The findings suggest that automobile production in Alabama significantly reduces the poverty rate in all counties. The impact of automobile production on poverty reduction in distressed black belt counties is greater than in other counties. The local government expenditure is not very effective in reducing the poverty. This implies that industrial development may be more effective in reducing pov...

  12. Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use

    OpenAIRE

    Silvis, Julia; Leighty, Wayne; Karner, Alex

    2007-01-01

    In this paper we seek to document what, if any, divergences exist between how experts and ‘lay’ people conceptualize the energy used in automobiles, motivated by previously-documented divergences in the home energy sector. From a total of 15 interviews with 19 individuals, we identify several common ways ‘lay’ people think about automobile energy use, and draw a number of conclusions relevant to the development of transportation energy policy. In our informants’ minds, automobiles us...

  13. Globalization of the automobile industry in China: Dynamics and barriers in the greening of road transportation

    OpenAIRE

    2001-01-01

    This article describes the state of the automobile industry and urban road transportation management in China. It reviews how the automobile industry is evolving to respond to challenges in economic development, environmental regulations, and technological change. The dynamics and barriers resulting from technological change of the automobile in response to reduction of exhaust emissions and energy-efficiency improvement are analyzed. It is argued that consideration of externality costs shoul...

  14. Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output

    Directory of Open Access Journals (Sweden)

    C. Ulbrich

    2013-01-01

    Full Text Available We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in the JV characterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.

  15. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  16. Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects

    Science.gov (United States)

    Zhang, Fan; Wu, Min; Kwoh, Chee Keong; Zheng, Jie

    2016-01-01

    Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model. PMID:27764199

  17. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  18. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Daxing Zhang

    2016-05-01

    Full Text Available Microbial fuel cells (MFCs are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  19. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  20. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  1. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  2. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    Science.gov (United States)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction.

  3. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  4. Fuel cell-shaft power packs (FC-SPP)

    Energy Technology Data Exchange (ETDEWEB)

    Elefsen, F.; Frandsen, S. [Danish Technological Institute, Renewable Energy and transport (Denmark)

    2007-05-15

    Danish companies will be able to obtain a unique international competitive position by combining our leadership in renewable energy with a focused and dedicated effort in hydrogen technology. The purpose of the present consortium is to establish the foundation for producing small hydrogen-based motor units. The consortium develops the technology in three concrete projects within two areas: small transportation equipment and mobile units. This assures that the research is directed towards specific market segments and that a synergy is obtained between technology development and market demand. Furthermore, the consortium involves developing concepts and tools for commercializing the technology and employing user-driven innovation. The consortium includes a number of innovative SMEs in close interaction with larger established companies. The large companies are primarily component suppliers, thus assuring that the necessary components are developed and produced. The participating SME's are both component and system suppliers, thus assuring that the products developed will also be carried to the market. Ultimately, the projects may contribute to the start of a new industrial success story similar to the Danish wind power industry, which would simultaneously lead to exports and an improved environment. (au)

  5. A low-power DCO using inverter interlaced cascaded delay cell

    Institute of Scientific and Technical Information of China (English)

    Huang Qiang; Fan Tao; Dai Xiangming; Yuan Guoshun

    2014-01-01

    This paper presents a low-power small-area digitally controlled oscillator (DCO) using an inverters interlaced cascaded delay cell (ⅡCDC).It uses a coarse-fine architecture with binary-weighted delay stages for the delay range and resolution.The coarse-tuning stage of the DCO uses ⅡCDC,which is power and area efficient with low phase noise,as compared with conventional delay cells.The ADPLL with a DCO is fabricated in the UMC 180-nm CMOS process with an active area of 0.071 mm2.The output frequency range is 140-600 MHz at the power supply of 1.8 V.The power consumption is 2.34 mW@a 200 MHz output.

  6. The changing nature of the power generation market — does it create opportunities for fuel cells?

    Science.gov (United States)

    Cragg, C. T.

    This paper surveys the global power industry seeking trends that might encourage greater use of full cells. The subject is broken into four basic themes: (i) an increasing demand for electricity, and this may not be solved by the traditional form of the integrated state-owned, centralised power utility, with a large infrastructure grid attached, the load curves of these integrated grids becoming unmanageable; (ii) a general trend towards privatisation and deregulation in the power sector, that is shifting its control from an engineering to a commercial paradigm, with unforseen consequences; (iii) contrary to (ii), the need for supplying security in its most basic sense is increasing rather than declining as power-dependent technology becomes progressively more important in the modern economy, and (iv) the trend in technology, particularly environmental-friendly technology, is towards smaller size of production centres. Within these inter-related themes these are encouraging prospects for the fuel cell community.

  7. Photo-Activated Low Temperature, Micro Fuel Cell Power Source

    Energy Technology Data Exchange (ETDEWEB)

    Harry L. Tuller

    2007-03-30

    A Key objective of this program is to identify electrodes that will make it possible to significantly reduce the operating temperature of micro-SOFC and thin film-based SOFCs. Towards this end, efforts are directed towards: (a) identifying the key rate limiting steps which limit presently utilized electrodes from performing at reduced temperatures, as well as, (b) investigating the use of optical, as opposed to thermal energy, as a means for photocatalyzing electrode reactions and enabling reduced operating temperatures. During Phase I, the following objectives were achieved: (a) assembly and testing of our unique Microprobe Thin Film Characterization System; (b) fabrication of the model cathode materials system in thin film form by both PLD and ink jet printing; and (c) the successful configuration and testing of the model materials as cathodes in electrochemical cells. A further key objective (d) to test the potential of illumination in enhancing electrode performance was also achieved.

  8. Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Güray eGüven

    2016-02-01

    Full Text Available The requirement for a miniature, high density, long life, rechargeable power source is common to a vast majority of microsystems, including the implantable devices for medical applications. A model biofuel cell system operating in human serum has been studied for future applications of biomedical and implantable medical devices. Anodic and cathodic electrodes were made of carbon nanotube –buckypaper modified with PQQ-dependent glucose dehydrogenase and laccase, respectively. Modified electrodes were characterized electrochemically and assembled in a biofuel cell set-up. Power density of 16.12 μW/cm2 was achieved in human serum for lower than physiological glucose concentrations. Increasing the glucose concentration and biofuel cell temperature caused an increase on power output leading up to 49.16 μW/cm2.

  9. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  10. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  11. DPAL: A New Class of Lasers for CW Power Beaming at Ideal Photovoltaic Cell Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W F; Beach, R J; Payne, S A; Kanz, V K; Early, J T

    2003-09-15

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies {approx}40% (Si) and {approx}60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected.

  12. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    International Nuclear Information System (INIS)

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts on the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements

  13. Numerical Investigation of Thermal Effect in Plasma Electrode Pockels Cell for High Average Power

    Institute of Scientific and Technical Information of China (English)

    CAO Ding-Xiang; ZHANG Xiong-Jun; ZHENG Wan-Guo; HE Shao-Bo; SUI Zhan

    2006-01-01

    @@ The average power of a Pockels cell is limited by thermal effects arising from the optical absorption of the laser pulse. These thermal effects can be managed by configuring the switch as a plasma-electrode thin plate Pockels cell, which works under heat-capacity operation. Simulation results show that, based on KD*P (in thickness 0.5cm) at an average power loading of 1 kW, the aperture integrated depolarization loss at 1.06 um is less than 10% in 5min working time.

  14. Subcarrier and power allocation algorithm based on inter-cell interference mitigation for OFDMA system

    Institute of Scientific and Technical Information of China (English)

    ZOU Ting; DENG Gang; WANG Ying; ZHANG Ping

    2007-01-01

    This article proposes a dynamic subcarrier and power allocation algorithm for multicell orthogonal frequency division multiple access (OFDMA) downlink system, based on inter-cell interference (ICI) mitigation. Different from other ICI mitigation schemes, which pay little attention to power allocation in the system, the proposed algorithm assigns channels to each user, based on proportional-fair (PF) scheduling and ICI coordination, whereas allocating power is based on link gain distribution and the loading bit based on adaptive modulation and coding (AMC) in base transceiver station (BTS). Simulation results show that the algorithm yields better performance for data services under fast fading.

  15. Characteristics of motorcyclists involved in accidents between motorcycles and automobiles

    Directory of Open Access Journals (Sweden)

    Amanda Lima de Oliveira

    2015-02-01

    Full Text Available Introduction: traffic accidents are one of the main causes of death and disability, with motorcyclists representing the great majority of both the victims and the perpetrators. Objective: this work studied the characteristics of motorcyclists injured in accidents involving motorcycles and automobiles. Method: this study sought to interview 100 motorcyclists who had been injured in collisions between motorcycles and automobiles, and who were undergoing emergency hospital treatment in the region of Belo Horizonte, Brazil. The questionnaires included demographic information (age, gender, skin color, education level, profession and questions about years of licensed driving practice, how often they would drive an automobile, how long they had had a motorcycle driver’s license, how often they would ride a motorcycle, the number of prior accidents involving a car, and the number of prior accidents not involving a car. Results: of the 100 consecutive accidents studied, 91 occurred with men and 9 with women, aged between 16 and 79 (m = 29 ± 11 years. Regarding their reason for using a motorcycle, 83% reported using it for transport, 7% for work, and 10% for leisure. Most of these accident victims had secondary or higher education (47%. Of the motorcyclists who held a car driver’s license, 68.3% drove the vehicle daily or weekly and held the license for more than one year. Sixty-seven percent of the accident victims used a motorcycle daily and had a motorcycle driver’s license for at least one year. Conclusion: among the motorcyclists injured, most were men aged 20 years or older, with complete secondary education, and experienced in driving both motorcycles and cars, indicating that recklessness while driving the motorcycle is the main cause of traffic accidents.

  16. Individualized solutions to environmental problems: a case of automobile pollution

    Energy Technology Data Exchange (ETDEWEB)

    Urmetzer, P.; Blake, D. E.; Guppy, N. [British Columbia Univ., Vancouver, BC (Canada)

    1999-09-01

    Air pollution associated with motor vehicle use is one of the prime indicators of the tension between consumerism and the environment. The use of private automobiles seems so convenient, whereas the alternatives are off-putting enough to make significant changes in personal transportation behaviour well-nigh impossible. At the same time, combating the air pollution associated with extensive use of cars has become one of the major policy objectives for cities around the world. Available policy alternatives can be divided into two categories: (1) incentives, such as improved public transportation, and (2) disincentives, such as environmental tax on gasoline. This paper attempt to directly assess links between these two alternatives, associated attitudes towards them, the level of public support for command and control (i.e. regulatory) policy approaches as well as for economic incentive/disincentive policies. Answers are sought and findings discussed relative to the link between opinions about the environment and support for different types of environmental policies, the usefulness of a rational choice perspective in explaining support for environmental policy alternatives, the role that partisan political attachments play in support of environmental policy approaches, and the roles played by environmental activism, knowledge, and action in shaping support for environmental policy alternatives. Overall results indicate that while most people living in urban environments support the ideas of environmental protection and would be willing to incur costs to confront the problem, exposure to air pollution plays an inconsequential (actually nearly non-existent) role in support of automobile-related environmental problems. Automobile users act like 'free-riders' i.e. they tend to support policies that socialize the cost of solutions rather than policies that attempt to pass the cost of pollution directly on to individual car owners. A sample of the responses to

  17. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong

    2012-01-01

    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  18. Thoughts about automotive industry in 2050 with respect to the objective of division by 4 of CO{sub 2} emissions; Reflexions sur l'automobile de 2050 face a l'objectif de division du CO{sub 2} par le facteur 4

    Energy Technology Data Exchange (ETDEWEB)

    Douaud, A.

    2005-07-01

    The long-term strategy of the automotive industry is to minimize its CO{sub 2} emissions and to progressively abandon petroleum. Today, the diesel technology is the most efficient in terms of CO{sub 2} emissions and the hybrid technology will be the medium-term challenge with the development of biofuels and synthetic fuels from biomass. According to the author, there is no certitude that the hydrogen fuel cell will be tomorrows' automobile engine and the nuclear option would be necessary to produce huge quantities of hydrogen without CO{sub 2} emissions. The alternate strategies with interesting potentialities remain the electric-powered vehicle supplied with batteries or supplied with methanol fuel cells, methanol being obtained by biomass transformation. (J.S.)

  19. An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

    2008-01-01

    An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.

  20. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  1. Improvement of hydrogenated microcrystalline silicon solar cell performance by VHF power profiling technique

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiaoyan; Hou, Guofu; Zhang, Xiaodan; Wei, Changchun; Li, Guijun; Zhang, Jianjun; Chen, Xinliang; Zhang, Dekun; Sun, Jian; Zhao, Ying; Geng, Xinhua [Institute of Photo-electronics, Nankai University, Weijin Road 94, Tianjin 300071 (China)

    2010-02-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) solar cells were deposited with very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) process at high deposition rates in high-power and a high-pressure regime. A novel VHF power profiling technique, designed by dynamically decreasing the VHF power step by step during the deposition of {mu}c-Si:H intrinsic layers, has been developed for the first time to control the structural evolution along the growth direction. The profiling parameters such as the amount and the rate of change in VHF power were optimized in detail and the experimental results demonstrate that this technique not only controls the microstructure evolution but also results in reduced ion bombardments on growth surface. Using this method, a significant improvement in the solar cell performance has been achieved. A high conversion efficiency of 9.36% (V{sub oc}=542 mV, J{sub sc}=25.4 mA/cm{sup 2}, FF=68%) was obtained for a single-junction {mu}c-Si:H p-i-n solar cell at a deposition rate of 12 Aa/s. Then, the single-junction solar cell was used as a bottom component in micromorph solar cell, which leads to an efficiency of 11.14% (V{sub oc}=1.367 V, J{sub sc}=11.92 mA/cm{sup 2}, FF=69.4%). (author)

  2. Study of a molten carbonate fuel cell combined heat, hydrogen and power system

    International Nuclear Information System (INIS)

    To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP (combined heat, hydrogen and power) system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the fuel cell system at peak capacity. Following the resource assessment study, the team selects FuelCell Energy DFC (direct fuel cell) 1500™ unit as a molten carbonate fuel cell. The CHHP system provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. In conclusion, the CHHP system will be able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus. - Highlights: • A molten carbonate fuel cell tri-generation by using anaerobic digestion system. • Anaerobic digestion system will be able to supply fuel for the DFC1500™ unit. • Use locally available feedstock to production electric power, hydrogen and heat. • Application energy end-uses on the university. • CHHP system will reduce energy consumption, fossil fuel usage, and GHG emissions

  3. Multi-cell uplink power allocation game for user minimum performance guarantee in OFDMA systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-kui; XIAO Lin; ZENG Zhi-min; Laurie Cuthbert

    2010-01-01

    The multi-cell uplink power allocation problem for orthogonal frequency division multiplexing access (OFDMA) cellular networks is investigated with the uplink transmission power allocation on each co-frequency subchannel being defined as a multi-cell non-cooperative power allocation game (MNPG). The principle of the design oftbe utility function is given and a novel utility function is proposed for MNPG. By using this utility function, the minimum signal to interference plus noise ratio (SINR) requirement of a user can be guaranteed. It can be shown that MNPG will converge to the Nash equilibrium and that this Nash equilibrium is unique. In considering the simulation results, the effect of the algorithm parameters on the system performance is discussed, and the convergence of the MNPG is verified. The performance of MNPG is compared with that of traditional power allocation schemes, the simulation results showing that the proposed algorithm increases the cell-edge user throughput greatly with only a small decrease in cell total throughput; this gives a good tradeoff between the throughput of cell-edge users and the system spectrum efficiency.

  4. SCHEDULING OF MECHANICS IN AUTOMOBILE REPAIR SHOPS USING ANN

    Directory of Open Access Journals (Sweden)

    N. SHIVASANKARAN

    2014-05-01

    Full Text Available Scheduling problems are NP – Hard combinatorial optimization problems, since many algorithms have been developed which offers new promising insights for solving resource allocation problems. Considering the problems faced in automobile repair shops, who sets the customer due dates of the car based on processing time, jobs already waiting for processing and mechanic available time. Also the workload of the mechanic should be balanced and minimize the make-span of the work. So this paper is concerned with determination of optimal allocation of repair jobs to the mechanic using Artificial Neural Network and hence to determine the minimum Total cost and make span of repair.

  5. Measuring the environmental impacts and sustainability of automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Lave, L.B.; Cobas Flores, E.; McMichael, F.C.; Hendrickson, C.T.; Horvath, A.; Joshi, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-11-01

    In the paper the following topics are discussed: - the need for public education and involvement in the decision process, - the difficulty of defining sustainability, - the occasional difference between the goals of sustainability and environmental quality, - the need for life cycle analysis to analyze the sustainability and environmental quality implications of a product, process, or material. The importance of environmental input-output analysis is stressed. This new tool can provide the life cycle information cheaply, quickly, and with much less uncertainty. Examples are presented for making an automobile, a seat out of plastic or aluminium, and an electric vehicle. (author) 4 tabs., refs.

  6. Photorealistic ray tracing to visualize automobile side mirror reflective scenes.

    Science.gov (United States)

    Lee, Hocheol; Kim, Kyuman; Lee, Gang; Lee, Sungkoo; Kim, Jingu

    2014-10-20

    We describe an interactive visualization procedure for determining the optimal surface of a special automobile side mirror, thereby removing the blind spot, without the need for feedback from the error-prone manufacturing process. If the horizontally progressive curvature distributions are set to the semi-mathematical expression for a free-form surface, the surface point set can then be derived through numerical integration. This is then converted to a NURBS surface while retaining the surface curvature. Then, reflective scenes from the driving environment can be virtually realized using photorealistic ray tracing, in order to evaluate how these reflected images would appear to drivers.

  7. A Review of Voiture Minimum. Le Corbusier and the Automobile

    Directory of Open Access Journals (Sweden)

    Christoph Schnoor

    2013-03-01

    Full Text Available Here is a full-on celebration of cars and someone’s addiction to cars. In its midst drives Le Corbusier. The book, Voiture Minimum. Le Corbusier and the Automobile (Cambridge, Mass. and London: MIT Press, 2011, has recently been published by Spanish architect and academic Antonio Amado. What a curious book. It is something between a detective story circling around determining the date of a single drawing (1928 or 1936 and, simultaneously, it is “Everything you always wanted to know about Le Corbusier and cars but were afraid to ask”.

  8. Preparation of composite aluminum automobile radiator by inversion casting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The inversion casting technics of producing three-ply Al-Mn/Al-Si composite strap used in automobile radiator was studied. The physical processes of inversion casting, including the flux-supporting reacting and volatilizing at high temperature, the melting and solidification when the elements of solid and liquid fresh alloys meet with each other, the mutual diffusion of elements in solid and liquid, the crystallization and forming of metallurgical combination and the following rolling process, were analyzed. At the same time, the composite mechanism of this technique was also discussed.

  9. CUSTOMER IMPORTANCE RATING OF SERVICE QUALITY DIMENSIONS FOR AUTOMOBILE SERVICE

    Directory of Open Access Journals (Sweden)

    SATYENDRA SHARMA

    2014-12-01

    Full Text Available Customers are the center of an organization’s universe: they define quality. They expect performance, reliability, responsiveness, competitive prices, on-time delivery, service, clear and correct transaction processing and more. Customer satisfaction/Service quality management has become a strategic imperative for most firms. In the present circumstances, it is vital to measure customer perceptions and how well the company delivers on the critical factors/dimensions of the business. The main objective of this paper is to be acquainted with customer importance rating of service quality dimensions or Voice of Customers for an Automobile service centre. A questionnaire has been used for the purpose.

  10. Automated Sequencing and Subassembly Detection in Automobile Body Assembly Planning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The choice of the sequence in which parts or subass em blies are put together in the mechanical assembly of a product can drastical ly affect the efficiency of the assembly process. Unlike metal cutting operation s where computer aided system have been available for some 15 to 25 years to hel p manufacturing engineers in generating cutting sequences and NC programs, the m ajority of assembly planning tasks in automobile body design is still manually p erformed by assembly designers according to their pa...

  11. WHO KILLED SAAB AUTOMOBILE?:Obituary of an Automotive Icon

    OpenAIRE

    Oliver, Nick; Holweg, Matthias

    2011-01-01

    Saab Automobile AB was declared bankrupt on December 19, 2011. This marked the end of 62 years of car production for the iconic brand, which during its final years was beset with financial problems and changes of ownership. More than 3,700 workers lost their jobs when the Trollhättan factory finally closed its doors after producing a total of 4.5 million Saab vehicles over the years. But what was the root cause for the company’s demise? Was it preventable? And who was to blame? The failure o...

  12. Differences between pickup truck and automobile driver-owners.

    Science.gov (United States)

    Anderson, C L; Winn, D G; Agran, P F

    1999-01-01

    This study compares pickup truck driver-owners and drivers who owned only automobiles with respect to demographic factors, conditions of use, risk-taking driving behavior, prior driving history and attitudes towards motor vehicle laws. A telephone survey conducted in Riverside County, CA determined that 36% of the households had a pickup truck. Pickup truck owners were primarily male, aged 30-39 years, married, reported lower restraint use and more risky driving behaviors, and had more traffic citations. Differences in behaviors and attitudes were largely a function of age and gender. There is a need to design appropriate occupant safety interventions for those most likely to own pickup trucks. PMID:10084620

  13. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  14. 基于MATLAB GUI的汽车外灯控制系统演示模型%DEMONSTRATION MODEL OF CONTROL SYSTEM FOR EXTERIOR AUTOMOBILE LIGHTING BASED ON MATLAB GUI

    Institute of Scientific and Technical Information of China (English)

    郭洪源; 许维胜; 余有灵

    2012-01-01

    This paper proposes a demonstration model of control system for exterior automobile lighting based on Matlab GUI after analysed the control pattern of exterior automobile lighting of existing electronic appliances in automobile industry, and which has been adopted at last. The Matlab software has the characteristic of good scalability, and has powerful computation function, the Matlab Guide development environment it integrates is convenient in establishing friendly man-machine interface. The application of this scheme makes the function management of exterior automobile lighting more intuitive; moreover, it facilitates the modification of control logic and function of exterior automobile lighting.%在分析现有汽车行业电子电器汽车外灯控制方式的基础上,提出一种基于Matlab GUI的汽车外灯控制系统演示模型,并最终得到应用.Matlab软件具有很好的拓展性,并且具有强大的计算功能,其集成的Matlab Guide开发环境方便建立良好的人机交互界面.该方案的应用使得汽车外灯功能管理变得更加直观,并且便于对汽车外灯控制逻辑以及功能进行修改.

  15. A power pack based on organometallic perovskite solar cell and supercapacitor.

    Science.gov (United States)

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle.

  16. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  17. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  18. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant

    OpenAIRE

    Marc Folcher; Sabine Oesterle; Katharina Zwicky; Thushara Thekkottil; Julie Heymoz; Muriel Hohmann; Matthias Christen; Marie Daoud El-Baba; Peter Buchmann; Martin Fussenegger

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain–computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered...

  19. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells.

  20. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  1. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  2. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  3. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  4. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  5. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users\\' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.

  6. 76 FR 31467 - Guide Concerning Fuel Economy Advertising for New Automobiles

    Science.gov (United States)

    2011-06-01

    ... prevent deceptive fuel economy advertising for new automobiles and to facilitate the use of fuel economy... the Fuel Economy Guide, to help marketers avoid making advertising claims that are unfair or deceptive... CFR Part 259 Guide Concerning Fuel Economy Advertising for New Automobiles AGENCY: Federal...

  7. A Tractor or an Automobile? A 1920s Farm Family Faces a Decision.

    Science.gov (United States)

    Kunze, Joel P.

    1991-01-01

    Outlines a lesson plan in which students role play a 1920s farm family deciding whether to buy an automobile or a tractor. Other students act as automobile and tractor sales groups. Explains how the lesson illuminates relationships between technological advance and social history. Includes handouts identifying benefits of purchasing cars or…

  8. 41 CFR 102-34.45 - How are passenger automobiles classified?

    Science.gov (United States)

    2010-07-01

    ... MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.45 How are passenger automobiles classified... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are passenger automobiles classified? 102-34.45 Section 102-34.45 Public Contracts and Property Management Federal...

  9. Designing Logistic Information Platform to Fostering Development Trend in China Automobile Manufacturing Group

    Institute of Scientific and Technical Information of China (English)

    Wang Yue

    2009-01-01

    The logistics resource in China's automobile group can't be optimized and allocated because of the "information island" problem in the group's logistics information platform in the whole group. In addition, it is the development trend of China's automobile group LIN to build a logistics e - market in the range of the group.

  10. 32 CFR 552.73 - Minimum requirements for automobile insurance policies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold...

  11. 29 CFR 785.40 - When private automobile is used in travel away from home community.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false When private automobile is used in travel away from home community. 785.40 Section 785.40 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... WORKED Application of Principles Traveltime § 785.40 When private automobile is used in travel away...

  12. 75 FR 72965 - Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile...

    Science.gov (United States)

    2010-11-29

    ....O 11609, 36 FR 13747, 3 CFR, 1971-1973 Comp. p. 586. Sec. 302-7.1 0 30. Amend Sec. 302-7.1-- 0 a. In...-AJ09 Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile Mileage Reimbursement When Government Owned Automobiles Are Authorized; Miscellaneous Amendments...

  13. 75 FR 80350 - Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile...

    Science.gov (United States)

    2010-12-22

    ... date for the final rule published on November 29, 2010 at 75 FR 72965 remains November 29, 2010. The...-AJ09 Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile Mileage Reimbursement When Government Owned Automobiles Are Authorized; Miscellaneous...

  14. Automobile industry and Japan’s strategy for the global environment

    OpenAIRE

    Şerban Georgescu

    2007-01-01

    Japan’s automobile industry evolution for the last five years was a succes story, based on long-term strategy and strong innovative development. This article makes a review of the automobile industry’s main trends and challenges for the Japanese manufacturers.

  15. La Securite des Enfants vs. la Circulation - Auto. (Children's Safety vs. Automobile Traffic).

    Science.gov (United States)

    Canada Mortgage and Housing Corp., Ottawa (Ontario).

    This report, the sixteenth in a series of twenty reports undertaken by the Children's Environments Advisory Service for the 1979 International Year of the Child, analyzes the difficulties of designing automobile traffic patterns for areas in which children reside. Automobile traffic and play patterns in 21 multiple-housing projects in the…

  16. 25 CFR 11.419 - Unauthorized use of automobiles and other vehicles.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Unauthorized use of automobiles and other vehicles. 11... OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.419 Unauthorized use of automobiles and other vehicles. A person commits a misdemeanor if he or she operates another person's...

  17. Strategies for the commercial introduction of modular low power fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, H.V.; Laufer, A. [EnergiaH, Rio de Janeiro (Brazil); Miranda, P.E.V. [Coppe-Federal Univ., Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The reality of the infrastructure in emerging economies brings the opportunity to build up a hydrogen compatible economy. For the Brazilian case, the fast development in many fields coexists with a considerable amount of potential renewable fuels available. Costs of energy distribution and of power grid maintenance throughout a continental size country may lead to a distributed generation system based in a diversified fuels matrix. This pathway drives attention to simpler low power fuel cell devices, with easier maintenance procedures, friendly integration with small power demands, and the capability of being applied separately or integrated to deliver higher power demands. Big cities and small distant agriculture based locations, such as Rio de Janeiro or rain forest extractive communities, could be able to produce fuel and energy in their own infrastructure projects. This article presents a market roadmap for the commercial introduction of direct oxidation type solid oxide fuel cells in Brazil, specifying fuel cell technological features and the specificities for each type of application, either in grid connected or in stand alone low power electric energy generation. (orig.)

  18. A direct methanol fuel cell system to power a humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Han-Ik [Center for Fuel Cell Research, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongyang, Seoul 130-650 (Korea); School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744 (Korea); Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Ha, Heung Yong [Center for Fuel Cell Research, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongyang, Seoul 130-650 (Korea); Cho, Baek-Kyu; Oh, Jun-Ho [HUBO Laboratory, Humanoid Robot Research Center, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Sang Heup [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744 (Korea)

    2010-01-01

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%. (author)

  19. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  20. Ergonomic and usability analysis on a sample of automobile dashboards.

    Science.gov (United States)

    Carvalho, Raíssa; Soares, Marcelo

    2012-01-01

    This is a research study based on an analysis which sets out to identify and pinpoint ergonomic and usability problems found in a sample of automobile dashboards. The sample consisted of three dashboards, of three different makes and characterized as being a popular model, an average model and a luxury model. The examination was conducted by observation, with the aid of photography, notes and open interview, questionnaires and performing tasks with users, the bases of which are on the principles laid down by methodologies. From this it was possible to point to the existence of problems such as: complaints about the layout, lighting, colors, available area, difficult access to points of interaction, such as buttons, and the difficult nomenclature of dials. Later, the findings and recommendations presented show the need for a further, deeper study, using more accurate tools, a larger sample of users, and an anthropometric study focused on the dashboard, since reading and understanding it have to be done quickly and accurately, and that more attention be given to the study of automobile dashboards, particularly in the most popular vehicles in order to maintain the standards of usability, and drivers' comfort and safety.

  1. Ergonomic and usability analysis on a sample of automobile dashboards.

    Science.gov (United States)

    Carvalho, Raíssa; Soares, Marcelo

    2012-01-01

    This is a research study based on an analysis which sets out to identify and pinpoint ergonomic and usability problems found in a sample of automobile dashboards. The sample consisted of three dashboards, of three different makes and characterized as being a popular model, an average model and a luxury model. The examination was conducted by observation, with the aid of photography, notes and open interview, questionnaires and performing tasks with users, the bases of which are on the principles laid down by methodologies. From this it was possible to point to the existence of problems such as: complaints about the layout, lighting, colors, available area, difficult access to points of interaction, such as buttons, and the difficult nomenclature of dials. Later, the findings and recommendations presented show the need for a further, deeper study, using more accurate tools, a larger sample of users, and an anthropometric study focused on the dashboard, since reading and understanding it have to be done quickly and accurately, and that more attention be given to the study of automobile dashboards, particularly in the most popular vehicles in order to maintain the standards of usability, and drivers' comfort and safety. PMID:22316929

  2. Development of automobile brake lining using pulverized cow hooves

    Directory of Open Access Journals (Sweden)

    Katsina C. BALA

    2016-06-01

    Full Text Available Asbestos has been used for so long as automobile brake lining material because of its good physical and chemical properties. However, due to the health hazard associated with its handling, it has lost favour and several alternative materials are being increasingly used. Asbestos-free brake lining was developed in this work using pulverized cow hooves along with epoxy resin, barium sulphate, graphite and aluminium oxide. This was with a view to exploiting the characteristics of cow hooves, which are largely discarded as waste materials to replace asbestos which has been found to be carcinogenic. Samples of brake linings were produced using compressive moulding in which the physical and mechanical properties of the samples were studied. The results obtained showed that proper bonding was achieved as the percentage by weight of epoxy resin increased and percentage by weight of pulverized cow hooves decreased. The hardness, compressive strength, coefficient of friction, water and oil absorption, relative density and wear rate of the brake linings were determined and compared with existing brake lining properties. The result indicates that pulverized cow hooves can be used as brake lining material for automobiles.

  3. SYNTHESIS OF AUTOMOBILE IGNITION SYSTEM USING OZONIZED FUEL

    Directory of Open Access Journals (Sweden)

    O. M. Pilipenko

    2015-01-01

    Full Text Available The paper presents a mathematical model for electronic control system of the angular ignition timing (AIT in the (ICE, which is running on ozonized fuel. An algorithm for  ignition system control of internal combustion engine using ozonized fuel has been developed in the paper. A structure of the dynamic ignition system while using a control unit for supplying  ozone into fuel with a purpose to improve automobile ecological and economical indices adapted to operational conditions. Application of the given system allows to ensure minimum reduction of operational petrol consumption and concentration of incomplete combustion products due to optimum ozone dosage into the fuel.  The paper proposes a controlled automobile ignition system as a sequential scheme which has a great number of discrete inputs and outputs and many discrete internal  states. The scheme establishes a functional dependence between input and output states. The paper provides an assessment of ecological indices according to massive emissions of carbon monoxide СО, hydrocarbon СпНт and nitric oxide NOx .  The analysis of  investigations results has been carried out in the paper.

  4. ASSES SMENT OF PREVALENCE OF HEALTH PROBLEMS AMONG AUTOMOBILE WORKERS

    Directory of Open Access Journals (Sweden)

    Pradeep P.

    2015-06-01

    Full Text Available BACKGROUND: The global automotive repair and maintenance service industries are expected to be worth almost $306 billion by 2015. The automotive service sectors currently are having employees an estimated 787 , 77702 and increasing at rate of 12% per annum. AIMS & OBJECTIVES: ( 1 To assess the prevalence morbidities among automobile workers (2 To increase the awareness about safety (PPE at work place (3 To motivate about social security schemes coverage. MATERIAL & METHODS: A cross - sectional study was carried out in the territory area of IMSR M edical C ollage of Satara districts. The total no of 117 participants were included for the study. A pretested , predesigned Prof o rma was used to collect the Information’s under supervisi on & analyzed & interpreted with help of percentages & chi square test. RESULT: About 32.76% were only having less than 10 years of service. 68.41% of subjects have dropped their study before high school. Only 25.74% have their own garage , along with 29.25 % of subjects were having specialized training. PPE was available with 29.25% of subjects. Stress , Muscle/bony pain & dyspepsia along with bowl disorders were significant morbidities observed. CONCLUSION: P revalence of morbidities is significant in this st udy & need more medical attention towards automobile workers.

  5. Installation in Dakar of a pump powered by solar cell pannels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Naaijer, C.J.

    1976-06-01

    The installation of a solar-powered water pumping system in Dakar (Franch Sahara) is described. The interrelation of the various constraints is detailed together with the reasons for choosing photovoltaic cells. The solar collector pump, engine, buffer battery, and control unit are discussed. The functional characteristics for the automation of the system is elaborated upon.

  6. Fuel Cell-Powered Go-Kart: Project Mimics Real-World Product Development

    Science.gov (United States)

    Fuller, Amanda

    2010-01-01

    Five years ago, Leon Strecker's technology education class at Darien High School came up with the idea of building a fuel cell-powered go-kart. In previous years, the class had worked on other creations, such as electric cars that competed in a state-sponsored race and a full-size hovercraft. But students had not taken on anything anywhere near…

  7. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  8. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly

    DEFF Research Database (Denmark)

    Min, Booki; Poulsen, Finn Willy; Thygesen, Anders;

    2012-01-01

    Membrane electrode assemblies (MEAs) were incorporated into the cathode chamber of a submersible microbial fuel cell (SMFC). A close contact of the electrodes could produce high power output from SMFC in which anode and cathode electrodes were connected in parallel. In polarization test, the maxi...

  9. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  10. Delegating to the automobile: experimenting with automotive restraints in the 1970s.

    Science.gov (United States)

    Wetmore, Jameson M

    2015-04-01

    This article explores the attempts in the United States in the 1970s to implement a new paradigm for automobile safety-crashworthiness, the idea that automobile passengers should be protected in the event of a crash. A large number of strategies were proposed, including air bags, seatbelt modifications, mandatory belt-use laws, and ignition interlocks. Many of these did not initially come to fruition, but they did give the automobile safety community a chance to experiment with different ways of distributing responsibilities between automobile occupants, automobile manufacturers, and, to a lesser extent, government agencies. These experiments helped pave the way for the successful implementation of a number of new strategies in the 1980s, 1990s, and 2000s.

  11. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    Science.gov (United States)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  12. A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell/Grid Fed Hybrid Power Supply Designed for Industrial Loads

    OpenAIRE

    Saravanan, S.; S. Thangavel

    2014-01-01

    This paper proposes a new power conditioner topology with an intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy, and fuel cell energy with battery and AC grid supply as backup to make the best use of their operating characteristics with better reliability than that could be obtained by single renewable energy source based power supply. The proposed embedded controller is programmed to perform MPPT for solar PV panel and ...

  13. Advanced power electronics and electric machinery program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  14. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    Minxiu Yan

    2013-05-01

    Full Text Available Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has better control effect than conventional fuzzy sliding mode control.

  15. Design of a high voltage input ? output ratio dc-dc converter dedicated to small power fuel cell systems

    OpenAIRE

    O. Béthoux; Cathelin, J.

    2010-01-01

    Abstract Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andujar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells ar...

  16. 29 CFR 779.371 - Some automobile, truck, and farm implement establishments may qualify for exemption under section...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Some automobile, truck, and farm implement establishments... OR SERVICES Exemptions for Certain Retail or Service Establishments Automobile, Truck, Farm Implement, Trailer, and Aircraft Sales and Services § 779.371 Some automobile, truck, and farm...

  17. 41 CFR 301-10.220 - What requirements must I meet to operate a Government automobile for official travel?

    Science.gov (United States)

    2010-07-01

    ... meet to operate a Government automobile for official travel? 301-10.220 Section 301-10.220 Public... ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Government Vehicle Government Automobiles § 301-10.220 What requirements must I meet to operate a Government automobile for official travel? You must...

  18. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Science.gov (United States)

    2010-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter...

  19. 77 FR 29922 - Guides for the Rebuilt, Reconditioned and Other Used Automobile Parts Industry, Request for Comments

    Science.gov (United States)

    2012-05-21

    ... CFR Part 20 Guides for the Rebuilt, Reconditioned and Other Used Automobile Parts Industry, Request... FTC's ``Guides for the Rebuilt, Reconditioned and Other Used Automobile Parts Industry.'' DATES... used parts (e.g., engines and transmissions). The Commission first addressed the used automobile...

  20. 19 CFR 123.51 - Commercial samples transported by automobile through Canada between ports in the United States.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Commercial samples transported by automobile... Commercial samples transported by automobile through Canada between ports in the United States. (a) General... samples by automobile through Canada to another place in the United States without displaying the...