Sample records for cell powered automobiles

  1. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)


    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  2. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of c a . 50 kW supplemented with ...

  3. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)


    Abstract. Fuel cell-based automobiles have gained attention in the last few years due to growing public con- cern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of ca. 50 kW ...

  4. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)


    The fuel cell system energy efficiency at present is about 60%, which is much higher than both the Otto (ca. 20%) as well as Diesel (ca. 30%) versions of ICEVs (Jeong and Oh 1999). Although, the 80 kW of the power needed to provide the acceleration to the fuel cell-based automobile could be supplied by an appropri-.

  5. The promise of fuel cell-based automobiles


    Shukla, AK; Jackson, CL; Scott, K


    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of ca. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. T...

  6. Study of hydrogen-powered versus battery-powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J.J. Jr.; Greayer, W.C.; Nichols, R.J.; Escher, W.J.D.


    A study conducted to compare the technological status and the resultant potential vehicle characteristics for hydrogen- and battery-powered automobiles that could be produced from 1985 to 2000 is documented in 3 volumes. The primary objectives of the study were: the assessments of applicable energy storage and propulsion technology for the two basic vehicle types (applied to four-passenger cars); a rigorous comparison of vehicle weight, size, and usefulness versus design range; and an investigation of the relative efficiencies of expending energy from various primary sources to power the subject vehicle. Another important objective, unique to hydrogen powered vehicles, was the assessment of the technology, logistics, and cost implications of a hydrogen production and delivery capability. This volume, Volume III, contains three major sections: the assessment of battery electric vehicle technology for energy storage and the drivetrain system; the technical and economic comparison of hydrogen- and battery-powered vehicles derived primarily from data in the previous vehicle technology assessments, with consideration of alternative energy sources; and a series of appendices that support the vehicle definitions and comparisons.

  7. Intelligent solar-powered automobile-ventilation system

    International Nuclear Information System (INIS)

    Huang, K. David; Tzeng, S.-C.; Ma Weiping; Wu Mingfung


    This study adopts airflow management technology to improve the local temperature distributions in an automobile to counteract the greenhouse effect. The automobile's temperature can be reduced to almost the outside temperature before the driver or passenger gets into the vehicle. When the engine is idling, the greenhouse-control system can be activated to remove the hot air from the car. An appropriate negative pressure is maintained to prevent stuffiness and save energy. The greenhouse-control system requires electrical power when the engine is idle, and a battery cannot supply sufficient power. An auxiliary solar-power supply can save energy and reduce the greenhouse effect of sunlight, while creating a comfortable traveling environment. It ensures that the engine is not overburdened and increases its service life, conserving energy, protecting the environment and improving comfort

  8. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.


    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  9. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System (United States)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.


    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  10. Thermal energy storage for the Stirling engine powered automobile (United States)

    Morgan, D. T. (Editor)


    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  11. Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shuqin; Douvartzides, Savvas; Tsiakaras, Panagiotis [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 383 34 Volos (Greece)


    An integrated ethanol fuelled proton exchange membrane fuel cell (PEMFC) power system was investigated following a second law exergy analysis. The system was assumed to have the typical design for automobile applications and was comprised of a vaporizer/mixer, a steam reformer, a CO-shift reactor, a CO-remover (PROX) reactor, a PEMFC and a burner. The exergy analysis was applied for different PEMFC power and voltage outputs assuming the ethanol steam reforming at about 600K and the CO-shift reaction at about 400K. A detailed parametric analysis of the plant is presented and operation guidelines are suggested for effective performance. In every case, the exergy analysis method is proved to allow an accurate allocation of the deficiencies of the subsystems of the plant and serves as a unique tool for essential technical improvements. (author)

  12. Wind power demonstration and siting problems. [for recharging electrically driven automobiles (United States)

    Bergey, K. H.


    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  13. Solar-Powered Cooler and Heater for an Automobile Interior (United States)

    Howard, Richard T.


    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  14. Determination of minimum sample size for fault diagnosis of automobile hydraulic brake system using power analysis

    Directory of Open Access Journals (Sweden)

    V. Indira


    Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.

  15. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian


    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  16. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators (United States)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.


    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  17. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai


    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  18. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng


    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  19. Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment

    International Nuclear Information System (INIS)

    Schaefer, Andreas; Heywood, John B.; Weiss, Malcolm A.


    Hydrogen fuel cell (FC) vehicles are receiving increasing attention as a potential powerful technology to reduce the transportation sector's dependence on petroleum and substantially decrease emissions of greenhouse gases (GHGs) at the same time. This paper projects energy use and GHG emissions from different FC vehicle configurations and compares these values to the projected characteristics of similarly sized and performing gasoline and diesel fueled automobiles on a life cycle, well to wheels and cradle to grave basis. Our analysis suggests that for the next 20 or more years, new internal combustion engine (ICE) hybrid drive train vehicles can achieve similar levels of reduction in energy use and GHG emissions compared to hydrogen FC vehicles, if the hydrogen is derived from natural gas. The fleet impact of more fuel-efficient vehicles depends on the time it takes for new technology to (i) become competitive, (ii) increase its share of the new vehicles produced, and finally (iii) penetrate significantly into the vehicle fleet. Since the lead times for bringing improved ICE vehicle technology into production are the shortest, its impact on vehicle fleet energy use and emissions could be significant in 20-30 years, about half the time required for hydrogen FC vehicles to have a similar impact. Full emission reduction potential of FC vehicles can only be achieved when hydrogen is derived from zero or very low-carbon releasing production processes on a large scale-an option that further increases the impact leadtime. Thus, a comprehensive short- and long-term strategy for reducing automobile energy use and emissions should include both the continuous improvement of ICE vehicles and simultaneous research and development of hydrogen FC cars

  20. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel


    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  1. Regulation on power efficiency in the automobile; Regulacion sobre eficiencia energetica en el automovil

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Susano, Armando; Romero de Vivar Uvaldo, Pascual [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)


    In this article it is presented a brief analysis of one of the regulations on the yield of fuel consumption of the light vehicles that promoted substantial changes in the Mexican automotive industry, the decree denominated PREMCE (Average of minimum fuel yield by company), as well as some international experiences relative to the subject. It is also indicated the evolution, in the last years, of the average yields of fuel consumption (Km/L) in Mexico in the new automobiles and the more important technological factors that affect their energy efficiency. [Spanish] En este articulo se presenta un breve analisis de una de las regulaciones sobre el rendimiento de consumo de combustible de los vehiculos ligeros que promovio cambios sustanciales en la industria automotriz mexicana, el decreto denominado Premce (Promedio de rendimiento minimo de combustible por empresa), asi como algunas experiencias internacionales relativas al tema. Se senala tambien la evolucion, en los ultimos anos, de los rendimientos promedio de consumo de combustible (Km/L) en Mexico en los automoviles nuevos y los factores tecnologicos mas importantes que influyen en su eficiencia energetica.

  2. Automobile with fuel cell and supercapacitor drive; Personenwagen mit Brennstoffzellen und Supercap-Antrieb - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Ph.


    In a Volkswagen BORA a power train has been realized, which includes a fuel cell system consisting of 6 stacks of 8 kW electrical power output each, an electrical storage device made of 282 supercap cells storing 360 Wh of electrical energy, a DC/DC converter and an electric motor which delivers up to 75 kW. The power distribution between supercaps and fuel cell is managed by an energy management device, which optimizes the distribution taking the actual operation points into account. The fuel cell system operates in a wide range with an efficiency higher than 40%. The power train has been integrated in a five seat car. This car named HY.POWER{sup R}, realized as technology platform, drove over the Simplon pass (elevation 2000 m over sea level) on 16 January 2002. This test drive proved the maturity of this concept to drive using this technology on public roads and that also severe operating conditions can be handled successfully. The key aspects of that concepts are the new manufacturing process of the bipolar plates for the fuel cells, the system configuration of the fuel cell system and the enhanced energy density of the supercap cells. The combination of a fuel cell system and of a supercap storage device, together with the integration of the DC/DC converter lead to a new power train concept. The consumption in the NEDC is equal to the energy of 5-6 l gasoline, which is quite impressive if it is remembered that the car has an empty mass of nearly 2000 kg. The HY.POWER{sup R} has been used heavily for the communication of the new technology to the public. The first event was the test drive across the Simplon pass. The main other events was the international auto motor show in Geneva in March 2002 and the presentation of the vehicle at the Earth Summit in Johannesburg in September 2002. (author)

  3. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    Directory of Open Access Journals (Sweden)

    Ozomata David AHMED


    Full Text Available Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, opening of any door will disengage the device and the engine will stop. To restart the engine, the doors must be closed and the codes rendered sequentially-in this case the codes are 1974.

  4. Fuel cell power trains for road traffic (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  5. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln. (United States)

    Kim, Hwajin


    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low


    battery provides required power density and instantly available power while the fuel cell efficiently converts a primary fuel to electrical power at a...field supply, afford an extremely high energy density making the hybrid fuel cell system competitive on cost per kilowatt hour with standard military zinc-carbon primary batteries. (Author)

  7. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices. (United States)

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian


    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  8. Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits. (United States)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu


    Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of

  9. Voice control in automobiles; Sprachbedienung im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, D.; Sitter, W. [Siemens VDO Automotive AG (Germany). Div. Infotainment Solutions; Kaemmerer, B. [Siemens Corporate Technology (Germany). Fachzentrum Professional Speech Processing


    Voice control simplifies handling the growing number of assistance, communication and convenience systems in automobiles. Siemens VDO Automotive have used the company's comprehensive know-how in the field of voice and communications machines from other sectors - particularly the telecommunications sector - to develop a voice control system for automobiles. It is distinguished by its intelligent architecture with high performance and extremely user-friendly features. (orig.)

  10. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)


    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  11. Automobile dependence: The irresistible force

    Energy Technology Data Exchange (ETDEWEB)

    Kenworthy, J.; Newman, P. [Murdoch Univ., WA (Australia). Inst. for Science and Technology Policy


    The proposition by Charles Lave that the automobile is `unstoppable`, an irresistible force` and that transit has `lost the battle` in the US and is losing it in Europe, is examined in this paper. It also examines Lave`s proposition that, despite this power of the automobile, car use in the US will probably plateau because of saturation in car ownership, and therefore it may be possible to expand the US highway network without new roads immediately filling up, as they have done until now. The paper presents 1990/91 data on private and public transport for US, Australian, European and Asian cities and updates previously published data. The update to 1990 is attempting to see the extent to which these patterns are continuing or changing in different cities. Overall the paper finds that although automobile dependence is a powerful force, it is not `irresistible` or `unstoppable` and it is certainly not an inevitable outcome of growing wealth. (author). 7 tabs., 17 figs., refs.

  12. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  13. Illustrating Newton's Second Law with the Automobile Coast-Down Test. (United States)

    Bryan, Ronald A.; And Others


    Describes a run test of automobiles for applying Newton's second law of motion and the concept of power. Explains some automobile thought-experiments and provides the method and data of an actual coast-down test. (YP)

  14. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian


    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  15. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang


    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  16. Automobile Driver Fingerprinting

    Directory of Open Access Journals (Sweden)

    Enev Miro


    Full Text Available Today’s automobiles leverage powerful sensors and embedded computers to optimize efficiency, safety, and driver engagement. However the complexity of possible inferences using in-car sensor data is not well understood. While we do not know of attempts by automotive manufacturers or makers of after-market components (like insurance dongles to violate privacy, a key question we ask is: could they (or their collection and later accidental leaks of data violate a driver’s privacy? In the present study, we experimentally investigate the potential to identify individuals using sensor data snippets of their natural driving behavior. More specifically we record the in-vehicle sensor data on the controllerarea- network (CAN of a typical modern vehicle (popular 2009 sedan as each of 15 participants (a performed a series of maneuvers in an isolated parking lot, and (b drove the vehicle in traffic along a defined ~ 50 mile loop through the Seattle metropolitan area. We then split the data into training and testing sets, train an ensemble of classifiers, and evaluate identification accuracy of test data queries by looking at the highest voted candidate when considering all possible one-vs-one comparisons. Our results indicate that, at least among small sets, drivers are indeed distinguishable using only incar sensors. In particular, we find that it is possible to differentiate our 15 drivers with 100% accuracy when training with all of the available sensors using 90% of driving data from each person. Furthermore, it is possible to reach high identification rates using less than 8 minutes of training data. When more training data is available it is possible to reach very high identification using only a single sensor (e.g., the brake pedal. As an extension, we also demonstrate the feasibility of performing driver identification across multiple days of data collection

  17. Trends in chassis and automobile electronics components

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Ulrich [Volkswagen AG, Wolfsburg (Germany)


    The rapidly-growing importance of electronics in automobile construction is in part determined by the debate on sustainability and the clear trend towards electric power trains. Another factor, however, is the decisive impact of electronics on the further development of components, e.g. for chassis. Apart from environmental protection, key motivators for component development include comfort, safety, infotainment and driver assistance. (orig.)

  18. Water reactive hydrogen fuel cell power system (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael


    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Fuel cells for distributed power generation (United States)

    Tarman, Paul B.

    Deregulation has caused a major change in power distribution in the USA. Large central power stations are being and will continue to be replaced by smaller, distributed power generation sources of less than 20 kW. Fuel cells, specifically molten carbonate fuel cells (MCFCs), are best suited to serve this need. Small turbines cannot achieve the efficiency or environmental friendliness of MCFCs in this power range. This paper discusses the goals of M-C Power Corporation and the advantages of its IMHEX® MCFC technology. M-C Power's factory, demonstration testing program, and its market-entry power plant are also described, as are its commercialization strategy and schedule.


    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  1. Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.


    Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

  2. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.


    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  3. Critical assessment of power trains with fuel-cell systems and different fuels (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  4. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang


    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power......, whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental...

  5. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh


    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  6. 49 CFR 523.4 - Passenger automobile. (United States)


    ... 49 Transportation 6 2010-10-01 2010-10-01 false Passenger automobile. 523.4 Section 523.4... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.4 Passenger automobile. A passenger automobile is any automobile (other than an automobile capable of off-highway operation) manufactured...

  7. Okoliš i automobil

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger


    Full Text Available Constant increase of the number of automobiles causes demand for individual materials to get on the rise, thus giving an impulse to the development of recycling logistics. Used automobiles get disassembled and individual parts which can be used as raw materials or additives get recycled. Automobile tires can be reclaimed or vulcanized. In July 1978 the environmental-friendly "Blauer Engel" or "Blue Angel" symbol was first introduced for reclaimed tires. Later, emblems were introduced for other recycled automobile pans. The awarding of the emblem is being controlled and approved by authorized institutes, because the emblem rightfully designates traffic safety.

  8. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov


    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  9. The automobile after tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L. [Swiss Federal Inst. of Technology (ETH), Zurich (Switzerland)


    This talk discusses the technical options available for automobiles within the next 5 to 10 years. With the objective to reduce consumption and pollution, several alternative approaches are presented and analyzed using simplified but realistic calculations. Main emphasis is laid on CO{sub 2} emission of the complete energy transformation path from the primary energy carrier to the energy dissipated in test cycles. It is shown that no single optimal solution exist but that a trade-off between consumption, pollution and cost must be made for each specific situation. (author) 17 figs., 2 tabs.

  10. The challenges of automobile-dependent urban transport strategy

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir


    Full Text Available The fundamental aims of sustainable urban development and the pro-automobile oriented economic development are on a collision course. It is obvious that automobile-dependent urban development is under heavy/powerful influence of the automobile lobby (automobile and oil industries, along with construction. In this domain famous land-use-transportation studies (or ‘grand transportation studies’ are, unfortunately, still prevailing - a vicious circle of self-fulfilling prophecy of congestion, road building, sprawl, congestion and more road building. Until recently, it was commonly thought that investment in public transport was not economically sustainable and that focusing on the development of the automobile industry and financing the construction of roadways stimulated economic growth. In this paper we clearly show that automobile industry is now overcapitalized, less profitable than many other industries (and may become even less profitable in the future, that transport market is characterized with huge distortions (more than a third of motor-vehicle use can be explained by underpriced driving, while new road investment does not have a major impact on economic growth (especially in a region with an already well-developed infrastructure, and that pro-automobile transport strategy inexorably incurs harmful global, regional and local ecological consequences. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  11. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.


    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  12. Automobile Club CERN

    CERN Multimedia

    Automobile Club CERN


     L’Assemblée Générale Ordinaire de «L’Automobile Club du CERN» s’est tenue le mercredi 12 janvier 2010. Le Président, J. Pierlot, souhaite la bienvenue aux membres présents, annonce l’agenda et résume les activités et événements du club pour l’année 2009. Le Club compte environ 600 membres, une petite diminution par rapport aux précédentes années dû surtout aux départs anticipés à la retraite. La cotisation reste inchangée : 50 CHF. Notre trésorier, E. Squadrani, présente de façon détaillée la situation du compte d’exploitation pour 2009 ainsi que le bilan de l’Automobile Club. Les comptes sont équilibrés, la situation de la trés...

  13. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)


    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  14. Air breathing lithium power cells (United States)

    Farmer, Joseph C.


    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  15. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.


    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  16. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.


    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  17. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.


    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  18. 19 CFR 148.39 - Rented automobiles. (United States)


    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rented automobiles. 148.39 Section 148.39 Customs... automobiles. (a) Importation for temporary period. An automobile rented by a resident of the United States... (HTSUS) (19 U.S.C. 1202), without payment of duty. The automobile shall be used for the transportation of...

  19. 49 CFR 523.3 - Automobile. (United States)


    ... 49 Transportation 6 2010-10-01 2010-10-01 false Automobile. 523.3 Section 523.3 Transportation..., DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.3 Automobile. (a) An automobile is any 4-wheeled... pounds and less than 10,000 pounds gross vehicle weight are determined to be automobiles: (1) Vehicles...


    Directory of Open Access Journals (Sweden)

    Tirshu M.


    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  1. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh


    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  2. Automobile Crash Sensor Signal Processor (United States)


    The crash sensor signal processor described interfaces between an automobile-installed doppler radar and an air bag activating solenoid or equivalent electromechanical device. The processor utilizes both digital and analog techniques to produce an ou...

  3. United Kingdom Automobile Insurance Market (United States)


    The report represents a limited study of the United Kingdom Automobile Insurance Industry: (1) the structure, size, and relationships within the industry; (2) the basis of premium calculation, rate structure, types of policies, and payment of compens...

  4. Automobile age and risk : summary (United States)


    The partial relationship between automobile age and risk is studied by means of logistic regression as applied to a large insurance policy data set. Annual mileage and car owner's gender, age and county of residence are controlled for.

  5. Drowsy driving and automobile crashes (United States)


    Drowsy driving is a serious problem that leads to : thousands of automobile crashes each year. This : report, sponsored by the National Center on : Sleep Disorders Research (NCSDR) of the National : Heart, Lung, and Blood Institute of the : National ...

  6. Comfort model for automobile seat. (United States)

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz


    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  7. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies......The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...

  8. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)


    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  9. High power density solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Ai Quoc; Glass, Robert S.


    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at C. and 900 mW/cm.sup.2 at C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  10. An impending platinum crisis and its implications for the future of the automobile

    International Nuclear Information System (INIS)

    Yang, C.-J.


    The global demand for platinum has consistently outgrown supply in the past decade. This trend likely will continue and the imbalance may possibly escalate into a crisis. Platinum plays pivotal roles in both conventional automobile emissions control and the envisioned hydrogen economy. A platinum crisis would have profound implications on energy and environment. On the one hand, inadequate platinum supply will prevent widespread commercialization of hydrogen fuel-cell vehicles. On the other hand, expensive platinum may enhance the competitiveness of hybrid, plug-in hybrid, and battery-powered electric cars. Policymakers should weigh the potential impacts of a platinum crisis in energy policy.

  11. Fuel-cell based power generating system having power conditioning apparatus (United States)

    Mazumder, Sudip K.; Pradhan, Sanjaya K.


    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  12. Fuel processor for fuel cell power system (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.


    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  13. Noise exposure in convertible automobiles. (United States)

    Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N


    To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.

  14. Historical Financial Data - Domestic Automobile Manufacturers (United States)


    A historical financial data base was developed for the four major U.S. automobile manufacturers, focusing on the specific operations associated with production and marketing of automobiles and light trucks. The years subject to analysis were 1967-197...

  15. Sea water magnesium fuel cell power supply (United States)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.


    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  16. Automobile Starting and Lighting System Maintenance Training ...

    African Journals Online (AJOL)

    The ATMQ, APT and ARS were subjected to face validation by five experts from the University, Technical Colleges and the Automobile Industry. The ATMQ was trial tested on students of Government Technical College Minna and Automobile Supervisors in automobile companies in Minna to establish its reliability. Cronbach ...

  17. The Hybrid Automobile and the Atkinson Cycle (United States)

    Feldman, Bernard J.


    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  18. 49 CFR 176.90 - Private automobiles. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...

  19. Electric automobile: Commercialization prospects

    International Nuclear Information System (INIS)

    Tabasso, L.


    Performance results during one-month test driving of a small FIAT car (normally equipped with a 30-45 Hp internal combustion engine), retrofitted to operate with a set of electric batteries delivering 15 Hp, demonstrated that, unless the design of an electric car's transmission and control systems are based completely on electric power operation, the vehicle loses its competitiveness with conventional cars. Making reference to the findings of an ENEA (Italian Agency for New Technology, Energy and Environment) electric powered vehicle R ampersand D program, this paper assesses the feasibility of electric powered vehicles and points out their major drawbacks: battery volume, weight, cost and recharging requirements in densely populated urban environments. The paper also notes that mass conversion to these vehicles by itself will not solve the urban traffic congestion problem for which optimum traffic control and parking areas are required

  20. 40 CFR 600.315-82 - Classes of comparable automobiles. (United States)


    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles. 600... 1977 and Later Model Year Automobiles-Labeling § 600.315-82 Classes of comparable automobiles. (a) The Secretary will classify automobiles as passenger automobiles or light trucks (nonpassenger automobiles) in...

  1. 40 CFR 600.315-08 - Classes of comparable automobiles. (United States)


    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles. 600... 1977 and Later Model Year Automobiles-Labeling § 600.315-08 Classes of comparable automobiles. (a) The Secretary will classify automobiles as passenger automobiles or light trucks (nonpassenger automobiles) in...

  2. Automobile characteristics historical data base (United States)


    A collection of data concerning the physical, operating, and performance characteristics of automobiles for the model years 1955, 1960, 1965, 1968, and 1970 to 1974. Data is to be added to the data base already established by DOT/TSC, for the 1975 mo...

  3. Hydrogen: implications for the future automobile

    International Nuclear Information System (INIS)

    Frise, P. R.; Woodward, W.


    'Full text:' The presentation will focus upon the challenges within the automotive manufacturing industry related to the hydrogen fuelled automobile of the future. Challenges and opportunities include issues of power train design and packaging as well as on-road performance capabilities, fuel system packaging and materials for body structures. Due to the size and complexity of the automotive sector, technology changes tend to be evolutionary rather than revolutionary, but changes are being made to today's cars in preparation for the evolution toward the future hydrogen automobile. Real world applications of new technologies will be described that are assisting automakers to prepare for the hydrogen future today. The work will be described in the context of AUTO21, a national Network of Centres of Excellence (NCE), is helping to position Canada as a leader in automotive research and development. More than 250 researchers in 34 Canadian universities and over 110 industry and government partners contribute to AUTO21 through applied research projects in six themes of study ranging from health and societal issues to pure engineering applications. (author)

  4. Energy autonomous sensors in the automobile; Energieautarke Sensorik im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Ingo [Hochschule Heilbronn (Germany). Studiengang Energieoekologie; Schreiter, Matthias [Siemens AG, Muenchen (Germany); Li, Xiaoming [Daimler AG, Sindelfingen (Germany); Hehn, Thorsten [Hahn-Schickard-Gesellschaft fuer angewandte Forschung e.V., Freiburg (Germany). HSG-IMIT, Inst. fuer Mikro- und Informationstechnik; Thewes, Marcell; Scholl, Gerd [Helmut-Schmidt-Univ., Univ. der Bundeswehr, Hamburg (Germany); Wagner, Dieter [Continental Automotive GmbH, Regensburg (Germany); Manoli, Yiannos [Univ. Freiburg (Germany). IMTEK; Frey, Alexander [Hochschule Augsburg (Germany). Fakultaet Elektrotechnik


    A brief outline of energy autonomous sensors in the automobile is given. For this purpose the variety of sensors in today's automotive vehicles is reported. The rationale for the deployment of energy autonomous sensors is given. In addition the potential of using environmental energy and the possibilities of their energy conversion are presented. As part of the funded project ASYMOF, two pioneer applications - a tire pressure monitoring and an anti-theft alarm system - are studied and discussed.

  5. Assessing Cognitive Distraction in the Automobile. (United States)

    Strayer, David L; Turrill, Jonna; Cooper, Joel M; Coleman, James R; Medeiros-Ward, Nathan; Biondi, Francesco


    The objective was to establish a systematic framework for measuring and understanding cognitive distraction in the automobile. Driver distraction from secondary in-vehicle activities is increasingly recognized as a significant source of injuries and fatalities on the roadway. Across three studies, participants completed eight in-vehicle tasks commonly performed by the driver of an automobile. Primary, secondary, subjective, and physiological measures were collected and integrated into a cognitive distraction scale. In-vehicle activities, such as listening to the radio or an audio book, were associated with a low level of cognitive workload; the conversation activities of talking to a passenger in the vehicle or conversing with a friend on a handheld or hands-free cell phone were associated with a moderate level of cognitive workload; and using a speech-to-text interfaced e-mail system involved a high level of cognitive workload. The research established that there are significant impairments to driving that stem from the diversion of attention from the task of operating a motor vehicle and that the impairments to driving are directly related to the cognitive workload of these in-vehicle activities. Moreover, the adoption of voice-based systems in the vehicle may have unintended consequences that adversely affect traffic safety. These findings can be used to help inform scientifically based policies on driver distraction, particularly as they relate to cognitive distraction stemming from the diversion of attention to other concurrent activities in the vehicle. © 2015, Human Factors and Ergonomics Society.

  6. Solar Powered Automobile Interior Climate Control System (United States)

    Howard, Richard T. (Inventor)


    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.



    Phd. Candidate Mrs. Chai Feng xia


    China's auto industry also had a golden decade of explosive growth. In 2009, China's auto market has exceeded the United States, the wo rld's largest car market, and in 2013, China's auto production both breaks t hrough twenty million. However, through the presentation of China's auto m arket booming, we should be acutely aware that the status of China's automobile industry in the global automotive industry value chain is still very low, this paper did analysis regarding the current situation...

  8. Automobile technology of the future

    International Nuclear Information System (INIS)

    Seiffert, U.; Walzer, P.


    Looking ahead to the year 2000, this fascinating publication takes an in-depth look at new technology which will impact the passenger car of tomorrow. New developments in the areas of performance, reliability, comfort, fuel economy, safety, and environmental compatibility are examined. In this book the authors offer analysis on subjects such as the impact of legislation, the acceptance of ABS, and features of the future dashboard. Offering insight to readers with both technical and general interest in automobiles

  9. Environmental implications of the automobile

    International Nuclear Information System (INIS)


    There are over 12 million automobiles in Canada, each travelling over 16,000 km annually. The value of motor vehicles and parts produced in Canada accounts for over 6% of the gross domestic product, and vehicle-related sales account for the largest proportion of Canadian retail activity. The environmental issues related to the high impact of the automobile on Canadian life are discussed. In the manufacture of motor vehicles, over 2 billion kg of metal are used a year; although much of this comes from recycled materials, some depletion of nonrenewable resources is required. It is also estimated that 66-105 GJ of energy are needed to produce a motor vehicle, equivalent to as much as 20% of all the energy consumed during the vehicle's lifetime. Environmental impacts result from this use of resources and energy, including land disturbances and air pollution. Land use impacts are also those related to appropriation of urban and rural land for roadway and service uses, plus pollution of adjoining lands by road runoff. In 1990, the transportation sector used 29% of end-use energy, of which retail gasoline sales for motor vehicles accounted for 54%. Environmental impacts from oil refining, fuel combustion, and waste disposal are described, and programs to mitigate these impacts are outlined. Significant reductions in automobile emissions have already occurred from the increased use of emission control devices, improved fuel efficiency, and stricter standards. Further improvements are possible via such means as better manufacturing procedures, increased recycling of automobile components, better inspection and maintenance, and use of alternative fuels and alternate transportation modes. 35 refs., 3 figs., 4 tabs

  10. Prelaunch Forecasting of New Automobiles


    Glen L. Urban; John R. Hauser; John H. Roberts


    This paper develops and applies a prelaunch model and measurement system to the marketing planning of a new automobile. The analysis addresses active search by consumers, dealer visits, word-of-mouth communication, magazine reviews, and production constraints---issues that are important in understanding consumer response to durable goods. We address these issues with a detailed consumer flow model which monitors and projects key consumer transitions in response to marketing actions. A test-vs...

  11. Analytical description of the modern steam automobile (United States)

    Peoples, J. A.


    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  12. AC power generation from microbial fuel cells (United States)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason


    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  13. Airport electric vehicle powered by fuel cell (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  14. 49 CFR 523.5 - Non-passenger automobile. (United States)


    ...-passenger automobile means an automobile that is not a passenger automobile or a work truck and includes... the automobile's manufacturer or with simple tools, such as screwdrivers and wrenches, so as to create... standard equipment, permit expanded use of the automobile for cargo-carrying purposes or other nonpassenger...

  15. Acid fuel cell technologies for vehicular power plants (United States)

    Lynn, D. K.; McCormick, J. B.; Bobbett, R. E.; Huff, J. R.; Srinivasan, S.

    Three fuel cell technologies were assessed specifically for application as vehicular power plants. The considered cells include the phosphoric acid fuel cell (PAFC), the trifluoromethanesulfonic acid (TFMSA) fuel cell, and the solid polymer electrolyte (SPE) fuel cell. The results of the assessments were used to calculate the performance of a consumer vehicle with a number of different fuel cell power plants. It was found that the near-term PAFC system can power the base-line vehicle with reasonable acceleration, a range of over 400 miles on 20 gallons of methanol, and a 92% improvement in energy efficiency over the gasoline internal combustion engine (ICE) version. An SPE fuel cell system provides substantially improved performance and range with a 149% higher energy efficiency than the ICE-powered version. The advanced vehicle (ETV-1) with an SPE system provides performance competitive with today's gasoline ICE-powered vehicles and a gasoline energy equivalent of 66 mpg.

  16. Geotechnical Monitoring of the Automobile Road (United States)

    Matsiy, Vladimir


    In the present article, the results of geotechnical monitoring of A-147 automobile road “Dzhubga-Sochi” are given. Some sections of the automobile road suffered from the landslide adjustment movements; it resulted in many deformations of the retaining structures, the damages of the roadbed and ground crawling over the retaining walls. The observation data made it possible to specify the borders of the active landslide and to form a forecast of the landslide activity in the sections of the automobile roads. Due to monitoring being carried out, there was substantiated the necessity to correct the service forms and records connected with the automobile road reconstruction.

  17. The construction of a Danish automobile culture

    DEFF Research Database (Denmark)

    Wagner, Michael

    The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation.......The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation....

  18. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)


    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  19. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty


    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  20. Power conditioning of fuel cell systems in portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Brey, J.J.; Bordallo, C.R. [Hynergreen Technologies S.A. Avenida de la Buhaira, 2. 41018 SEVILLE (Spain); Carrasco, J.M.; Galvan, E.; Jimenez, A. [School of Engineering, University of Seville, Camino de los Descubrimientos s/n. 41092 SEVILLE (Spain); Moreno, E. [Instalaciones Inabensa S.A., c/Manuel Velasco Pando no. 7, 41007, SEVILLE (Spain)


    Fuel cells are emerging as main power source for portable applications. These devices need power management circuit to connect varying output fuel cell voltage to desired regulated voltage load with high efficiency. Maintaining high efficiency of the converter over a wide loading range can improve stored fuel longevity. The purpose of this paper is to report a general review of most used topologies in fuel cell power conditioning applied to portable systems. Finally, a 100 W DC-DC converter for a particular fuel cell portable application will be presented. This converter was designed to fulfill several specifications of input and output voltage. (author)


    Directory of Open Access Journals (Sweden)

    Viorel Pop


    Full Text Available This paper is a brief overview of the evolution of the global automotive industry during the 20th century, with reference to the main manufacturers, oil crises of 1970-1980, and also the global financial and economic crisis that began in 2008. The analyzed period covers the rise of the Asian Continent, beginning with Japan, then South Korea and more recently the emerging countries: China and India. What was predicted 20-25 years ago, became reality: Asia becomes the economic centre of the world, surpassing unexpectedly fast even the Euro-Atlantic area. Regarding Romania, the revival delay of the automobiles industry, led to the loss of the trucks and bus industry, and after a much awaited rehabilitation of car production, this has stuck now at an unsatisfactory level.

  2. Fuel cell power supply with oxidant and fuel gas switching (United States)

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.


    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  3. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric


    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  4. Bundled automobile insurance coverage and accidents. (United States)

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang


    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.


    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  6. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU


    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  7. Photovoltaic power generation system with photovoltaic cells as bypass diodes (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat


    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  8. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)


    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  9. 20 CFR 416.1218 - Exclusion of the automobile. (United States)


    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Exclusion of the automobile. 416.1218 Section..., BLIND, AND DISABLED Resources and Exclusions § 416.1218 Exclusion of the automobile. (a) Automobile; defined. As used in this section, the term automobile includes, in addition to passenger cars, other...

  10. 10 CFR 611.207 - Small automobile and component manufacturers. (United States)


    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207... VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and component... individuals; and (2) Manufactures automobiles or components of automobiles. (b) Set Aside—Of the amount of...

  11. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers. (United States)


    ... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  12. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre


    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  13. Detection of mutagenic activity in automobile exhaust. (United States)

    Ohnishi, Y; Kachi, K; Sato, K; Tahara, I; Takeyoshi, H; Tokiwa, H


    Using the Ames Salmonella-microsome system, we detected mutagenic activity in the exhaust from two kinds of 4-cycle gasoline engines of unregulated and regulated cars, and from diesel engines, as well as in the particulates from air collected in tunnels. The mutagenicity of particulates from a car equipped with a catalyst (regulated car), as compared with that from an unregulated car, was reduced very much (down to 500 from 4500 revertants/plate/m3 in tester strain TA98). However, the mutagenicity of the ether-soluble acid and neutral fractions from the condensed water of emissions from a regulated car was still high (down to 2880 from 10 900 revertants/plate/m3 in tester strain TA100). The mutagenic activity of emission exhaust from old diesel car engines was very high; the particulates showed 9140 and 19 600 revertants/plate/m3 from strain TA98 incubated with an activating rat-liver S9 fraction. A small diesel engine of the type used for the generation of electric power or in farm machinery also produced exhaust with highly mutagenic particulates. The mutagenic activity of a methanol extract of particulate air pollutants collected in a highway tunnel showed 39 revertants/plate/m3 toward strain TA98 and 87 toward strain TA100. The ether-soluble neutral fraction yielded 86 revertants/plate/m3 from strain TA98 and 100 from strain TA100. This fraction also contained carcinogenic compounds, including benzo[a]pyrene, benzo[e]pyrene, benz[a]anthracene, benzo[ghi]perylene and chrysene. Very high mutagenic activity was detected, especially in the particulate air pollutants collected at night, in another tunnel on a superhighway: 60-88 revertants/plate/m3 from strain TA100 for the sample collected by day, but 121-238, by night. Night traffic includes many more diesel-powered vehicles compared with gasoline-powered automobiles.


    Directory of Open Access Journals (Sweden)

    A. I. Bobrovnik


    Full Text Available The paper contains requirements to parameters of an automobile being designed with axle arrangement 6x4 and technically permissible mass of 25 tons with its all year round operation in agricultural industry with the purpose to ensure in-time load transportation and technological cycle in crop production of the agricultural complex in accordance with time schedule of the executed mechanized works. The future automobile should also have a power takeoff device.The paper presents operation chart flowsheets for cultivation of main crops on mineral and peat soils with indication of automobile motion modes and type of transported loads. Specific properties of peat-bog soils are given in the paper. The paper considers off-road capability of mobile machines when they are moving on soils with low bearing capacity. The paper indicates field applications of automobiles with limited and high off-road capability. Description of wheel interaction with bearing surface area, values of soil resistivity after multiple automobile passages have been given in the paper.The paper specifies values of rolling resistance coefficient and adhesion coefficient of the automobile undercarriage systems in spring and autumn for wheeled and crawler units. Schemes of the automobile front axle drives (electric, hydraulic, mechanical and their characteristics have been analyzed in the paper. An elastic flexible drive with separation of flow power has been proposed for reduction of dynamic loads in a power transmission drive. The paper describes a drive system of auto-analogue steering wheels with hydraulic hydrostatic drive which is located within a front wheel hub that ensure additional thrust. Recommendations for MAZ-automobile modernization with axle arrangement 6x4 have been given with the purpose to improve its off- road capability.Metallic anti-skid chain, segment and small link, track and crawler chains, wideners have obtained a wide application for improvement of automobile

  15. Application of Fuel Cells to Marine Power Generation Systems


    Senichi, Sasaki


    Fuel cells are one of the future technologies for marine energy sources. A fuel cell combines hydrogen and oxygen to produce electricity, with water and heat as its by-product. Since the conversion of the fuel to energy takes place via an electrochemical process, the process is clean, quiet and highly efficient. This paper presents the types and characteristics of fuel cells, the status of marine use, and the outline of safety requirements which apply to fuel cell power generation systems.

  16. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.


    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  17. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  18. A factual survey of automobile usage (United States)


    In anticipation of the problems in civilian transportation that the : defense effort would bring to the motor vehicle user, to business and industry, and to Government, the Automobile Manufacturers Association in the fall of 1940 undertook a factual ...

  19. Locomotive to Automobile Baseline Crash Tests (United States)


    Four Locomotive to Automobile Crash tests were performed by the Dynamic Science Division of Ultrasystems at DOT's High Speed Ground Test Center under contract to the Transportation Systems Center, which is conducting the work for the Federal Railroad...

  20. Development of Anticipatory Automobile Crash Sensors (United States)



  1. Topology Explains Why Automobile Sunshades Fold Oddly (United States)

    Feist, Curtis; Naimi, Ramin


    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  2. Contact Dermatitis In Automobile Repair workers

    Directory of Open Access Journals (Sweden)

    Joshi M P


    Full Text Available Automobile repair workers are at risk of developing skin morbidity including occupational dermatoses because of their exposure to mineral oils, petroleum products and its derivatives and lubricating oil. This cross- sectional study was carried out at Maharashtra State Road Transport Corporation workshops in Nagpur city to investigate prevalence of skin morbidity including contact dermatitis in automobile repair workers. The study included 288 (49.9% automobile repair workers 180 (31.3% workshop office staff and 109 (18.8% divisional office employees. Dermatitis was the commonest skin morbidity in all the study subjects and it was significantly more prevalent in automobile repair workers. Folliculitis was detected in 13.2% of auto â€" repair workers and was not seen in the other two groups. Increasing trend of skin morbidity was correlated with the length of service of employees. Proper protective measures along with suitable washing facilities should be provided

  3. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.


    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  4. 32 CFR 220.11 - Special rules for automobile liability insurance and no-fault automobile insurance. (United States)


    ... and no-fault automobile insurance. 220.11 Section 220.11 National Defense Department of Defense... insurance and no-fault automobile insurance. (a) Active duty members covered. In addition to Uniformed.... 1095 and this part. (c) Exclusion of automobile liability insurance and no-fault automobile insurance...

  5. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher


    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  6. High power density yeast catalyzed microbial fuel cells (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  7. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells. (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum


    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  8. Puzzling Out the Cell's Power Plant. (United States)

    Miller, Julie Ann


    The biological research, of Gottfried Schatz at the University of Basel and Gunter Blobel at Rockefeller University, which explains a mechanism by which mitochondrial proteins are transported across membranes is described. Results indicate that the construction and heredity of mitochondria have surprising differences from other cell processes. (BT)

  9. Improved automobile gas turbine engine (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.


    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  10. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    MOhammad S. Alam


    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  11. Adaptive maximum power point tracking control of fuel cell power plants (United States)

    Zhong, Zhi-dan; Huo, Hai-bo; Zhu, Xin-jian; Cao, Guang-yi; Ren, Yuan

    A fuel cell's output power depends nonlinearly on the applied current or voltage, and there exists a unique maximum power point (MPP). This paper reports a first attempt to trace MPPs by an extremum seeking controller. The locus of MPPs varies nonlinearly with the unpredictable variations in the fuel cell's operation conditions. Thus, a maximum power point tracking (MPPT) controller is needed to continuously deliver the highest possible power to the load when variations in operation conditions occur. A two-loop cascade controller with an intermediate converter is designed to operate fuel cell power plants at their MPPs. The outer loop uses an adaptive extremum seeking algorithm to estimate the real-time MPP, and then gives the estimated value to the inner loop as the set-point, at which the inner loop forces the fuel cell to operate. The proposed MPPT control system provides a simple and robust control law that can keep the fuel cell working at MPPs in real time. Simulation shows that this control approach can yield satisfactory results in terms of robustness toward variations in fuel cell operation conditions.

  12. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M


    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  13. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zelenay, Piotr [Los Alamos National Laboratory


    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  14. Solar energy powered microbial fuel cell with a reversible bioelectrode. (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N


    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  15. Asbestos-related diseases in automobile mechanics. (United States)

    Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude


    Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyse the frequency of pleural and parenchymal abnormalities on high-resolution computed tomography (HRCT) in a population of automobile mechanics. The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos-related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers; who in the case of disagreement discussed until they reached agreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Pleural plaques were observed in five cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in one case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers.

  16. Asbestos-related diseases in automobile mechanics (United States)

    Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude


    Purpose Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyze the frequency of pleural and parenchymal abnormalities on HRCT in a population of automobile mechanics. Methods The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos–related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers, with further consensus in the case of disagreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Results Pleural plaques were observed in 5 cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in 1 case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. Conclusions The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers. PMID:21965465

  17. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)


    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  18. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.


    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang


    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  20. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites

    NARCIS (Netherlands)

    Ende, D.A. van den; Wiel, H.J. van de; Groen, W.A.; Zwaag, S. van der


    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  1. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    NARCIS (Netherlands)

    Van den Ende, D.A.; Van de Wiel, H.J.; Groen, W.A.; Van der Zwaag, S.


    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  2. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)


    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  3. Automobile Collisions, Kinematics and Related Injury Patterns (United States)

    Siegel, A. W.


    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  4. Fuel Cell Power Plants Renewable and Waste Fuels (United States)


    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  5. Summary of semi-initiative and initiative control automobile engine vibration (United States)

    Qu, Wei; Qu, Zhou


    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  6. Analysis of CO2, CO and HC emission reduction in automobiles (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan


    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  7. Technological Improvements to Automobile Fuel Consumption : Volume 1. Executive Summary. (United States)


    This report is a priliminary survey of the technological feasibility of reducing the fuel consumption of automobiles. The study uses as a reference information derived from literature, automobile industry contacts, and testing conducted as part of th...

  8. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj


    startup. The inverter is controlled as a power factor controller with resistor emulation.Experimental results of converter efficiency, grid performance and fuel cell response are shown for a 1 kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92......This paper presents a new grid connected inverter for fuel cells. It consists of a two stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25 V-45 V) this volt- age must be transformed to around 350-400 V in order to invert this dc power into ac...... power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during...

  9. Electrochemical Power Sources-Fuel Cells and Supercapacitors

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 8. Electrochemical Power Sources - Fuel Cells and Supercapacitors. A K Shukla. General Article Volume 6 Issue 8 August 2001 pp 72-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Scale up sediment microbial fuel cell for powering Led lighting

    Directory of Open Access Journals (Sweden)

    Jeetendra Prasad


    Full Text Available Sediment microbial fuel cells (SMFCs are expected to be utilized as a sustainable power source for remote environmental observing 30 day’s investigations of experiment to understand the long-term performance of SMFCs. The point of this investigation is to increase power generation, 8 individual sediment microbial fuel cells is stacked together either in series or in hybrid connection. Two combinations, of the hybrid connection, are proving to be the more effective one, step-up both the voltage and current of the framework, mutually. Polarization curve tests are done for series and hybrid connected sediment microbial fuel cell. The maximum study state voltage and current are obtained 8.150V and 435.25µA from series and 4.078V and 870.75µA hybrid connected SMFC. This study suggests that power of SMFC scale-up by connecting series and hybrid for practical use of the device. Article History: Received : September 26th 2017; Received: December 24th 2017; Accepted: January 4th 2018; Available online How to Cite This Article: Prasad, J and Tripathi, R.K. (2018 Scale Up Sediment Microbial Fuel Cell For Powering Led Lighting. International Journal of Renewable Energy Development, 7(1, 53-58.

  11. The Strategic Transformation of Automobile Industry in China


    Som Techakanjanakit; Meifang Huang


    In the past few years, the global automobile industry is developing difficultly because of the influence from the financial crisis. In contrast, China's automobile production and sales are still having a blowout type growth, and jumped into the world's largest automobile production and sales market. At the same time, Chinese automobile companies continue to deepen and join with international brand cooperation; independent research and development of the independent brand production, and their...

  12. Diagnosis of power fade mechanisms in high-power lithium-ion cells (United States)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.


    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones


    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  14. Heat exchanger for fuel cell power plant reformer (United States)

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.


    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  15. 38 CFR 3.808 - Automobiles or other conveyances; certification. (United States)


    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Automobiles or other....808 Automobiles or other conveyances; certification. (a) Entitlement. A certificate of eligibility for financial assistance in the purchase of one automobile or other conveyance in an amount not exceeding the...

  16. 38 CFR 17.156 - Eligibility for automobile adaptive equipment. (United States)


    ... automobile adaptive equipment. 17.156 Section 17.156 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Automotive Equipment and Driver Training § 17.156 Eligibility for automobile adaptive equipment. Automobile adaptive equipment may be authorized if the Under Secretary for Health or...

  17. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy


    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  18. American Automobile and Light Truck Statistics Update (United States)

    Feldman, Bernard J.


    Given that transportation is an essential topic in any Physics and Society or Energy course, it is necessary to have useful statistics on transportation in order to have a reasoned discussion on this topic. And a major component of the transportation picture is the automobile. This paper presents updated transportation statistics for American…

  19. Past and Future Trends in Automobile Sales (United States)


    The report uses the Wharton EFA Motor Vehicle Demand Model (Mark I) and its associates data bases to discuss and analyze past and future trends in the automobile market. Part A analyzes the historical trends, generally covering the 1958-1976 period, ...

  20. Chery Automobile: Chinese Firms catching up

    NARCIS (Netherlands)

    Y. Zhang (Ying); S.Y. Yang (Sheng Yun)


    textabstractChery Automobile is a top Chinese car exporter. Due to the global financial crisis, intense competition, and fast technological change, Chery has seen decreasing sales domestically and diminishing opportunities abroad. The carmaker needs to figure out the next stage of strategic


    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)


    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand


    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  3. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.


    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products


    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer


    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  5. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation

    DEFF Research Database (Denmark)

    Gadsbøll, Rasmus Østergaard; Thomsen, Jesper; Bang-Møller, Christian


    efficiencies, flexibility and possibly costs of current biomass power generating systems, a power plant concept combining solid oxide fuel cells (SOFC) and gasification is investigated experimentally. The aim of the study is to examine the commercial operation system potential of these two technologies......Increased use of bioenergy is a very cost-effective and flexible measure to limit changes in the climate and the infrastructure. One of the key technologies toward a higher implementation of biomass is thermal gasification, which enables a wide span of downstream applications. In order to improve...

  6. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao


    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  7. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre


    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  8. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.


    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  9. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry


    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  10. Fuel cells - a new contributor to stationary power (United States)

    Dufour, Angelo U.

    Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility

  11. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)


    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)


    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  13. Formaldehyde monitor for automobile exhausts (United States)

    Easley, W. C.


    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  14. Starting characteristics of direct current motors powered by solar cells (United States)

    Singer, S.; Appelbaum, J.


    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  15. Fuel cell power generation facility; Nenryo denchi hatsuden sochi

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Kato, K. [Aishin AW Co. Ltd., Aichi (Japan); Tanizaki, K.; Ishiko, C. [Equos Research Co. Ltd., Tokyo (Japan)


    In a fuel cell power generation facility with a carbon monoxide removal equipment to remove carbon monoxide in a reformed gas by oxidation, a reversed flow of the residual reformed gas in the reformed gas feeding line to the fuel reforming equipment cannot be prevented by a previous suspension technique. This invention aims to present a method to prevent a reversed flow of the residual reformed gas and to protect effectively the fuel cell power generation facility against the danger of catching fire or explosion. This invention relates to a fuel cell power generation facility installed with a fuel reforming equipment and a carbon monoxide removal equipment to remove carbon monoxide in the reformed gas by oxidation, which is equipped with reversed flow prevention devices on the oxidizer gas feeding duct to the carbon monoxide removal equipment, on the reformed gas feeding duct from the fuel reforming equipment to the carbon monoxide removal equipment and on the source fuel feeding duct to the fuel reforming equipment. The reversed flow prevention devices are made of direction control valves or pressure control valves. 2 figs.

  16. New perspectives for advanced automobile diesel engines (United States)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.


    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  17. Pulmonary function in automobile repair workers

    Directory of Open Access Journals (Sweden)

    Chattopadhyay O


    Full Text Available Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 , Forced Vital Capacity (FVC, Peak Expiratory Flow Rate (PE FR, age, smoking habit, duration of work, type of work, and respiratory symptoms. The study was analysed using Regression equations, and Chi-square test. Results : All the workers were male. Obstructive impairment was seen in 25.83% of the workers whereas restrictive impairment was seen in 21.19% of the workers. Mixed obstructive and restrictive impairment was seen in 10.6% of the workers. The frequency of obstructive impairment was higher in older workers. In the age group of less than 20 years, 13.6% of the workers had obstructive impairment while 42.86% of workers above 40 years of age had obstructive impairment. Obstructive impairment was more frequently observed in battery repair workers (58.33% and spray painters (37.5% while 16.67% of the body repair workers and 30.19% of the engine mechanics had obstructive impairment. Obstructive impairment was more frequently observed in smokers (53.1 % as compared to ex-smokers (33.3% and non-smokers (6.4%. Obstructive impairment was more frequently observed in workers who had been working for a longer duration. Conclusion: Nearly 36.4% of the automobile garage workers had some form of pulmonary function impairment; obstructive and/or restrictive. The use of personal protective equipment, worker education, and discontinuation of the use of paints containing toxic pigments are recommended.

  18. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.


    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells


    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  20. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.


    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  1. Fuel Cell Shaft Power Pack - Regulering af brændselsceller

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl


    Afsluttende formidling af forskningsresultater i forbindelse med projektet Fuel Cell Shaft Power Pack......Afsluttende formidling af forskningsresultater i forbindelse med projektet Fuel Cell Shaft Power Pack...

  2. Progress Towards Environmentally Friendlier Automobiles (United States)

    Culver, Robert


    The United States Council for Automotive Research (USCAR), the umbrella organization of DaimlerChrysler, Ford, and General Motors, has been conducting pre-competitive research in the areas of improving fuel efficiency and reducing tailpipe emissions. One of the major collaborations is with the U.S. Government in the Partnership for a New Generation of Vehicles (PNGV). The USCAR/PNGV technology portfolio includes lightweight materials, improved conventional internal combustion engine systems, electric traction and hybridization, and fuel cells. Significant progress has been made in developing these technologies and marketing them through today’s vehicles. New product announcements of hybrids demonstrate the commitment of the industry to bring the new technologies to market. Yet, breakthroughs and innovations will be required before many of the technologies can fully realize their promise. In addition, government policies and programs will be required to promote market acceptance and ensure an infrastructure to provide new fuels.

  3. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.


    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  4. Cloud Instrument Powered by Solar Cell Sends Data to Pachube

    Directory of Open Access Journals (Sweden)

    Doru Ursutiu


    Full Text Available Despite the economic downturn, there have been quite a few new developments in the world of remote measurements lately. Tag4M ( introduced the concept of cloud instrument where sensors connected to WiFi tags send data to off-the-shelf Access Points which are part of the WiFi infrastructure that exists in enterprises, retail outlets, factories, and warehouses. Access Points route the data to the Internet where specialized web applications receive the information for processing and display. One of these specialized web applications is Pachube, ( which bills itself as a “real-time data brokerage platform”. Pachube enables people to tag and share real time sensor data from objects, devices and spaces around the world. This article presents the pachube cloud instrument where sensors connected to Tag4M WiFi tags send digitized data to for public display. The article contains very detailed analysis of the solar cell power source that is used to continuously power the Tag4M tag during this application. Cloud Instruments powered by solar cells enable people around the world to share real time sensor data using web pages on the Internet. This is a very interesting and exciting technology development that we want to bring to your attention.

  5. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.


    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  6. Corrosion protection and finishing of automobiles

    International Nuclear Information System (INIS)

    Sheikh, S.T.


    finishing of automobiles is an important aspect. There have been considerable reductions of weight in automobiles by the use of composites components replacing heavy metallic components. Fenders previously based on metal have been replaced with plastic and painted with the same colour shade as of the metallic body, this has eps for proper adhesion of the paints on the plastic fender to avoid chipping off the paint form it. This paper discusses the necessary processes required for finishing of an automobile along with the corrosion protection measures. Automobiles contains a variety of engineering materials, engine main body fuel tanks connecting rods heat radiators and other mechanical parts are made from different types of engineering alloys having varying chemical compositions. Other parts like dashboard, front panel and other are made from composites. The main body made from cold roll ed steel having various contours 'c' it due to the different designs is the potential site for corrosion attack, The main body is exposed to the hostile environment through out its life period. An automobile is given a particular finish with a view to counter the hostile environments as they are not limited for plying in a limiting conditions and are taken to different weather conditions in one day thus facing severe stresses and strain. Thus it is essential that an automobile before rolling 'out of the assembly line should properly corrosion resistant and aesthetically pleasant also. Finishing for automobiles being very specialized, the main requirement being maximum durability with minimum numbers of coats baked, at the fastest possible schedule. High gloss and range of good eye catching colours being important to increase sales appeal. In the near past the car finishes were based on alkyd-amino resins baking materials and force drying lacquers, which have excellent appearance originally and maintain it on aging. The finishing system for the synthetic baking type may consist of

  7. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng


    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  8. Thermally regenerative hydrogen/oxygen fuel cell power cycles (United States)

    Morehouse, J. H.


    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  9. Advanced coal gasifier-fuel cell power plant systems design (United States)

    Heller, M. E.


    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  10. Biofuel cell as a power source for electronic contact lenses. (United States)

    Falk, Magnus; Andoralov, Viktor; Blum, Zoltan; Sotres, Javier; Suyatin, Dmitry B; Ruzgas, Tautgirdas; Arnebrant, Thomas; Shleev, Sergey


    Here we present unequivocal experimental proof that microscale cofactor- and membrane-less, direct electron transfer based enzymatic fuel cells do produce significant amounts of electrical energy in human lachrymal liquid (tears). 100 μm diameter gold wires, covered with 17 nm gold nanoparticles, were used to fashion three-dimensional nanostructured microelectrodes, which were biomodified with Corynascus thermophilus cellobiose dehydrogenase and Myrothecium verrucaria bilirubin oxidase as anodic and cathodic bioelements, respectively. The following characteristics of miniature glucose/oxygen biodevices operating in human tears were registered: 0.57 V open-circuit voltage, about 1 μW cm(-2) maximum power density at a cell voltage of 0.5 V, and more than 20 h operational half-life. Theoretical calculations regarding the maximum recoverable electrical energy can be extracted from the biofuel and the biooxidant, glucose and molecular oxygen, each readily available in human lachrymal liquid, fully support our belief that biofuel cells can be used as electrical power sources for so called smart contact lenses. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Evaluation of purchase intention of customers in two wheeler automobile segment: AHP and TOPSIS (United States)

    Sri Yogi, Kottala


    Winning heart of customers is preeminent main design of any business organization in global business environment. This paper explored customer’s priorities while purchasing a two wheeler automobile segment using Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) as a multi criteria decision making tools to accomplish the research objectives. Study has been done to analyze different criteria to be considered during purchasing of two wheeler automobiles among respondents using structured questionnaire based on SAATY scale. Based on our previous work on empirical & fuzzy logic approach to product quality and purchase intention of customers in two wheeler- operational, performance, economic, brand value and maintenance aspects are considered as decision criteria of customers while purchasing a two wheeler. The study suggests high pick up during overtaking, petrol saving, reasonable spare parts price, unique in design and identity and easy to change gear as main criterion in purchasing process. We also found some leading two wheeler automobiles models available in Indian market using some objective function criterion in choosing some important characteristics like price, cylinder capacity, brake horse power and weight during purchasing process of two wheeler automobile in Indian market based on respondents perception.

  12. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M


    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  13. Kryptonate-based instrumentation development for automobile exhaust pollutants. Phase III report: design and construction of four (4) experimental models

    International Nuclear Information System (INIS)

    Goodman, P.; Donaghue, T.

    This phase of the program encompasses the design, construction and evaluation of four (4) prototype instruments for the detection of automobile exhaust pollutant. These instruments employ the radio release mechanism utilized by Panametrics in detection of various trace gases. The prototype instruments are of two (2) designs. One design is operable from a power source supplied by an automobile battery. The second design is operable from 110 volts AC power. Successful evaluation in the laboratory as well as with various automobiles were performed with both type instruments. Scale-up of the quantity of sensor material prepared introduced unexpected problems with respect to detection lifetime which were not satisfactorily resolved within the time and funds available to the program. Nevertheless, a Kryptonate-based instrument using a single detection method for the measurement of hydrocarbons, CO and NO/sub x/ as pollutants by automobile exhausts was shown to be operable with actual automobile exhausts, to provide more than adequate sensitivity for inspection purposes, and to provide response and recovery times for full scale reading in the range 10-15 secs. (auth)

  14. Peeled film GaAs solar cells for space power (United States)

    Wilt, D. M.; Deangelo, F. L.; Thomas, R. D.; Bailey, S. G.; Landis, G. A.; Brinker, D. J.; Fatemi, N. S.


    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg.

  15. Peeled film GaAs solar cells for space power (United States)

    Wilt, D. M.; Deangelo, F. L.; Thomas, R. D.; Bailey, S. G.; Landis, G. A.; Brinker, D. J.; Fatemi, N. S.


    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg.

  16. Globalization of the automobile industry: traditional locations under pressure?


    Spatz, Julius; Nunnenkamp, Peter


    Even though the automobile industry is technologically advanced, the increasing integration of low-income countries into the global division of labor has put competitive pressure on traditional automobile producing countries. New end-producers emerged in Asia, Latin America as well as Southern and Central Europe. In addition, the automobile industries of Germany, Japan and the United States engaged in outsourcing of relatively labor intensive segments of the value chain, especially on a regio...

  17. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Barreto Gomez, L.; Dietrich, Ph. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A.; Jacoby, H.D. [MIT, Cambridge (United States)


    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  18. Credit constraints, consumer leasing and the automobile replacement decision


    Kathleen W. Johnson


    This paper presents a model of consumer automobile replacement in the presence of leasing. The model incorporates credit constraints to distinguish between the leasing and purchasing options. It demonstrates how leasing increases the probability that a household replaces its automobile and how households that lease choose higher quality automobiles. The qualitative choice model of the household's decision to lease provides support for the observation that households that lease face credit con...

  19. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation. (United States)

    Palomo, Ana Belen Alvarez; Lucas, Michaela; Dilley, Rodney J; McLenachan, Samuel; Chen, Fred Kuanfu; Requena, Jordi; Sal, Marti Farrera; Lucas, Andrew; Alvarez, Inaki; Jaraquemada, Dolores; Edel, Michael J


    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids), bone, optic vesicle-like structures (eye), cardiac muscle tissue (heart), primitive pancreas islet cells, a tooth-like structure (teeth), and functional liver buds (liver). Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1) such transplants will stimulate host immune responses; and (2) whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  20. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo


    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  1. Life cycle models of conventional and alternative-fueled automobiles (United States)

    Maclean, Heather Louise

    development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  2. The Business Case for Fuel Cells 2012. America's Partner in Power

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)


    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  3. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping


    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  4. Microtubular Fuel Cell with Ultrahigh Power Output per Footprint. (United States)

    Miao, Shiding; He, Shulian; Liang, Mengnan; Lin, Gungun; Cai, Bin; Schmidt, Oliver G


    A novel realization of microtubular direct methanol fuel cells (µDMFC) with ultrahigh power output is reported by using "rolled-up" nanotechnology. The microtube (Pt-RuO 2 -RUMT) is prepared by rolling up Ru 2 O layers coated with magnetron-sputtered Pt nanoparticles (cat-NPs). The µDMFC is fabricated by embedding the tube in a fluidic cell. The footprint of per tube is as small as 1.5 × 10 -4 cm 2 . A power density of ≈257 mW cm -2 is obtained, which is three orders of magnitude higher than the present microsized DFMCs. Atomic layer deposition technique is applied to alleviate the methanol crossover as well as improve stability of the tube, sustaining electrolyte flow for days. A laminar flow driven mechanism is proposed, and the kinetics of the fuel oxidation depends on a linear-diffusion-controlled process. The electrocatalytic performance on anode and cathode is studied by scanning both sides of the tube wall as an ex situ working electrode, respectively. This prototype µDFMC is extremely interesting for integration with micro- and nanoelectronics systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluation of genotoxicity in automobile mechanics occupationally exposed to polycyclic aromatic hydrocarbons using micronuclei and other nuclear abnormalities. (United States)

    Khan, Mohammed Rafiq; Sudha, Sellappa


    Occupational and environmental exposures mostly represent mixtures of genotoxic agents, whereas the specificity of biomarker measurements varies widely. Exploration of correlations among biomarkers contributes to the further progress of molecular cancer epidemiology and to the selection of the optimal biomarkers for the investigation of human exposure to carcinogens. The aim of this study was to assess the potential cytogenetic damage associated with occupational exposure to Polycyclic Aromatic Hydrocarbons (PAHs) among automobile mechanics by using Micronuclei (MN) and other Nuclear Abnormalities (NA) as a biomarker. The study population composed of 110 occupationally exposed automobile mechanics and 100 unexposed controls. All the study participants were males. Both the exposed and control individuals were selected from automobile garages located in the urban area of Coimbatore City, South India. Exfoliated buccal cells were collected from 110 automobile mechanics and 100 age and sex matched controls. Further, cells were examined for MN frequency and Nuclear Abnormalities (NA) other than micronuclei, such as binucleates, broken eggs and karyolysis. Results showed a statistically significant difference between occupationally exposed automobile mechanics and control groups. MN and NA frequencies in automobile mechanics were significantly higher than those in control groups (p < 0.05) and also significantly related to smoking habit (p < 0.05). In addition, a higher degree of NA was observed among the exposed subjects with smoking, drinking, tobacco chewing, which is an indicative of cytogenetic damage in these individuals. MN and other NA reflect genetic changes, events associated with carcinogenesis. Therefore, the results of this study indicate that automobile mechanics exposed to PAHs are under risk of significant cytogenetic damage. Therefore, it is important to provide and offer better awareness of occupational hazards among these workers to promote

  6. Recycling scheme for scrapped automobiles in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masao [AI Tech Associates, Tokyo (Japan); Nakajima, Akira [Car Steel Co., Ltd., Gunnma (Japan); Taya, Sadao [Shinsei Co., Ltd., Osaka (Japan)


    Over 5 million cars are scrapped yearly in Japan. After dismantling scrapped automobiles, they are put into a shredder for differential recovery of ferrous and nonferrous metals. The residue, which is called shredder dust, runs over 1.2 million tons per year. This paper reports a entire sequence of scrapping cars in Japan with the following sections: (1) production and scrapped car management, (2) material composition, (3) dismantling, (4) shredder plant, (5) differential recovery of metals including specific gravity and newly developed color separation.

  7. Information, complexity and efficiency: The automobile model

    Energy Technology Data Exchange (ETDEWEB)

    Allenby, B. [Lucent Technologies (United States)]|[Lawrence Livermore National Lab., CA (United States)


    The new, rapidly evolving field of industrial ecology - the objective, multidisciplinary study of industrial and economic systems and their linkages with fundamental natural systems - provides strong ground for believing that a more environmentally and economically efficient economy will be more information intensive and complex. Information and intellectual capital will be substituted for the more traditional inputs of materials and energy in producing a desirable, yet sustainable, quality of life. While at this point this remains a strong hypothesis, the evolution of the automobile industry can be used to illustrate how such substitution may, in fact, already be occurring in an environmentally and economically critical sector.

  8. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.


    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  9. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik


    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  10. Efficient Cells Cut the Cost of Solar Power (United States)


    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  11. Automobile wheel clearance estimation using magnetism (United States)

    Le Goff, A.; Lacoume, J.-L.; Blanpain, R.; Dauvé, S.; Serviere, C.


    With development and miniaturization of magnetic sensors for several years, it is now possible to imagine new applications using magnetic measures for monitoring and diagnostics. In this article this new way of research and development is presented with a concrete example concerning monitoring of wheels in an automobile. Our approach consists in using the low magnetic field created by the metallic elements of the wheel in order to localize them with low-cost high-sensitivity miniature magnetic sensors. The measures are made via a sensor network set up on a vehicle around the wheel. Then we use a physical model of the wheel in order to interpret the signals we get from the sensors. This method shows the interest of the magnetic measurement for monitoring in automobile. In this paper we present the magnetic signal created by a wheel, the mechanical model of the wheel and we present how we use them for an application: the real-time estimation of the distance between wheels and chassis (wheel clearance).

  12. Odhad rychlosti automobilů ve videu


    Hájek, Pavel


    Tato diplomová práce se zabývá návrhem a tvorbou aplikace pro odhadování rychlosti automobilů jak ze záznamu kamery, tak realtime ze streamu. Práce popisuje kalibraci kamery, detekci a trackování automobilů a odhad jejich rychlosti a věnuje se robotickému operačnímu systému pro nějž je určená. Vytvořená aplikace používá knihovnu OpenCV k většině úkonů, pro přístup k videu používá knihovnu FFmpeg. Výsledky může vypsat na terminál, do souboru nebo je například dále publikovat v rámci ROSu. Apli...


    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha


    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine.


    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha


    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,

  15. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  16. Automobile fuel economy standards : Impacts, efficiency, and alternatives

    NARCIS (Netherlands)

    Anderson, Soren T.; Parry, Ian W H; Sallee, James M.; Fischer, Carolyn

    This article discusses automobile fuel economy standards in the United States and other countries. We first describe how these programs affect the automobile market, including impacts on fuel consumption and other dimensions of the vehicle fleet. We then review two different methodologies for


    Directory of Open Access Journals (Sweden)

    A. Kryvokon


    Full Text Available Research of strategy and prospects of Ukrainian automobile motor industry development has been done: the measures of public policy, which must be realized for the development of national automobile industry, a car production volume and expected working place in motor industry under state support have been described.

  18. The Training Needs of Michigan Automobile Suppliers: Initial Report. (United States)

    Jacobs, James

    In June 1985, a survey was sent by the Industrial Technology Institute to 397 Michigan automobile supplier firms concerning their industrial training in modern manufacturing technologies. The purposes of this survey were to investigate the training needs of Michigan automobile suppliers, with particular emphasis on how they met their training…

  19. Effects of automobile battery wastes on physicochemical properties ...

    African Journals Online (AJOL)

    Difference in soil qualities has been noticeable in many soils due to anthropogenic sources, especially of automobile battery wastes. This study examines the effects of automobile battery wastes on the physicochemical properties of the soil. Soil samples for this study were collected in triplicates from three battery chargers' ...

  20. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)


    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  1. Development of a methanol reformer for fuel cell vehicles


    Lindström, Bård


    Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. T...

  2. Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network

    Directory of Open Access Journals (Sweden)

    Bahman Bahmanifirouzi


    Full Text Available This paper presents a new Fuzzy Adaptive Modified Particle Swarm Optimization algorithm (FAMPSO for the placement of Fuel Cell Power Plants (FCPPs in distribution systems. FCPPs, as Distributed Generation (DG units, can be considered as Combined sources of Heat, Power, and Hydrogen (CHPH. CHPH operation of FCPPs can improve overall system efficiency, as well as produce hydrogen which can be stored for the future use of FCPPs or can be sold for profit. The objective functions investigated are minimizing the operating costs of electrical energy generation of distribution substations and FCPPs, minimizing the voltage deviation and minimizing the total emission. In this regard, this paper just considers the placement of CHPH FCPPs while investment cost of devices is not considered. Considering the fact that the objectives are different, non-commensurable and nonlinear, it is difficult to solve the problem using conventional approaches that may optimize a single objective. Moreover, the placement of FCPPs in distribution systems is a mixed integer problem. Therefore, this paper uses the FAMPSO algorithm to overcome these problems. For solving the proposed multi-objective problem, this paper utilizes the Pareto Optimality idea to obtain a set of solution in the multi-objective problem instead of only one. Also, a fuzzy system is used to tune parameters of FAMPSO algorithm such as inertia weight. The efficacy of the proposed approach is validated on a 69-bus distribution system.

  3. Direct fuel cell power plants: the final steps to commercialization (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  4. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.

  5. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen


    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  6. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio


    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  7. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry


    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  8. Diffusion of lead in automobile exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, S.; Ohmori, K.; Saito, H.; Tanizaki, A.


    The pattern of diffusion of lead from automobile exhaust gas was investigated by studying the amount of lead adhering to or contained in leaves of ginkgo trees growing along less-travelled roads that cross a busy highway. Samples were dried at 100 C, then pulverized, and a definite portion wet-digested. After extraction by dithizone, lead was determined by atomic absorption spectrophotometry. The same routine was followed for surface soil at the root of the trees. Leaves at heights of 3 and 6 m were examined. At one of the two sampling sites, the lead content in surface soil tended to decrease with distance from the trunk highway. At both sites, the amount of lead in leaves was found in larger amounts in the leaves at the lower level. Also, those leaves collected in October contained more lead than those assembled earlier in the year.

  9. Perception of risk from automobile safety defects. (United States)

    Slovic, P; MacGregor, D; Kraus, N N


    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.


    Directory of Open Access Journals (Sweden)

    González, Eduardo


    Full Text Available This paper evaluates product efficiency in the Spanish automobile market. We use non parametric frontier techniques in order to estimate product efficiency scores for each model. These scores reflect the minimum price for which each car could be sold, given the bundle of tangible features it offers in comparison to the best-buy models. Unlike previous research, we use discounted prices which have been adjusted by car dealerships to meet sale targets. Therefore, we interpret the efficiency scores as indicators of the value of the intangible features of the brand. The results show that Audi, Volvo, Volkswagen and Mercedes offer the greatest intangible value, since they are heavily overpriced in terms of price/product ratios. Conversely, Seat, Kia, Renault and Dacia are the brands that can be taken as referent in terms of price/product ratios.

  11. Stability analysis of automobile driver steering control (United States)

    Allen, R. W.


    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  12. Research on embedded automobile collision avoidance system

    Directory of Open Access Journals (Sweden)

    TAO Feng


    Full Text Available Taking ARM embedded Linux operating system as the development platform,combined with AVR microcontroller,while optimizing the ranging algorithm and using air ultrasonic transducer,the measurement range of which can be up to 50 meter,this paper designs a high-precision,range far,low price,various models suitable automobile collision avoidance warning system.The system adopts Forlinx OK6410 development board for the master.AVR microcontroller is responsible for taking the data of traveling distance between vehicles,and with the ARM development board via RS232 communication transfers vehicle′s distance and speed information to the ARM development boards.The system uses the established collision avoidance model to get alarm information.Experiments show that the system can accurately send out alarm information within a certain range.It is innovative and practical.

  13. Talking about the Automobile Braking System (United States)

    Xu, Zhiqiang


    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  14. Female identity discourse in automobile advertisements

    Directory of Open Access Journals (Sweden)

    Montserrat López Díaz


    Full Text Available The article analyzes the way in which the modern car-advertisement defines the identity of women as potential purchasers – to whom it is designed to get through. The research includes language and iconic instruments by which this type of advertisement aims to create a feminized market of products formerly recognized as traditionally masculine. The identification of the addressee of each publicity material might be subsumed under a set of stereotypes, thus enabling advertisers to get across their message using the code of addressee’s own values. The present paper concentrates on the linguistic specifity of the ads for high-tech goods (automobiles targeting the feminine public and eventually points out their high degree of markedness according to the sex of addressees. Discourse analysis and a closer look at linguistic means appearing in French, Spanish and Polish automotive commercials both reveals a stereotyped woman’s image and shows how they happen to perpetutate it.

  15. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal (United States)

    Masters, R. M.


    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  16. Flexible and Lightweight Fuel Cell with High Specific Power Density. (United States)

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun


    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm 2 working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L -1 , which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  17. Consumer preferences for automobile energy-efficiency grades

    International Nuclear Information System (INIS)

    Koo, Yoonmo; Kim, Chang Seob; Hong, Junhee; Choi, Ie-Jung; Lee, Jongsu


    Recently, increases in energy prices have made energy conservation and efficiency improvements even more essential than in the past. However, consumers experience difficulty in obtaining reliable information regarding energy efficiency, so that many countries have implemented regulations to enforce energy-efficiency grade labeling. In this study, consumer preferences regarding energy efficiency grades are analyzed by the mixed logit and MDCEV model based on the revealed preference data of past automobile purchases. Findings show that consumers rationally apply information on energy efficiency grades when purchasing automobiles. However, they tend to show inefficiency in automobile usage patterns. This study discusses political implications of energy efficiency policies as they might impact consumer behaviors of automobile purchase and usage. - Highlights: ► We model discrete choice model to evaluate energy-efficiency grade regulation. ► Consumers apply information on energy efficiency grades when purchasing automobiles. ► However, they tend to show inefficiency in automobile usage patterns. ► The policies for efficient automobile usage are discussed.

  18. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions (United States)

    Medhurst, Laura L.


    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  19. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.


    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  20. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans. (United States)

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi


    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  1. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Meng, Jing-Hui; Wang, Xiao-Dong; Chen, Wei-Hsin


    Highlights: • A new model for automobile exhaust thermoelectric generator system is proposed. • Based on the system reliability, the counter flow cooling pattern is recommended. • There exists an optimal thermoelectric unit number to maximize system output power. • Better performance is predicted with less thermoelectric materials consumption. - Abstract: This work develops a multiphysics thermoelectric generator model for automobile exhaust waste heat recovery, in which the exhaust heat source and water-cooling heat sink are actually modeled. Special emphasis is put on the non-uniformity of temperature difference across thermoelectric units along the streamwise direction, which may affect the performance of exhaust thermoelectric generator systems significantly. The main findings are: (1) The counter flow cooling pattern is recommended, although it cannot elevate the overall output power as compared with the parallel flow counterpart, it reduces the temperature non-uniformity effectively, and hence ensures the system reliability. (2) The temperature non-uniformity strikingly deteriorates the output power of thermoelectric unit along the streamwise direction; meanwhile, an additional lateral heat conduction effect exists within the exhaust channel wall, the both mechanisms leads to that the maximum output power of the system is not enhanced but is actually reduced when too many thermoelectric units are adopted. (3) When the exhaust channel length is fixed, the maximum output power of the system can be elevated by increasing the thermoelectric unit number but keeping thermoelectric unit spacing unchanged. This means that the system performance can be improved under the condition of less thermoelectric materials consumption.

  2. 75 FR 72965 - Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile... (United States)


    ... Rates; Privately Owned Automobile Mileage Reimbursement When Government Owned Automobiles Are Authorized... reimbursement amount for travelers who are authorized to use a Government Owned Automobile (GOA) for temporary duty travel (TDY) and choose to use their privately owned automobile (POA) instead; updates the...

  3. The Political Economy of the Automobile Industry in ASEAN: a Cross-Country Comparison


    Tai, Wan-Ping


    The automobile industry plays a leading role in a country's industrialization. Various countries have used different methods to identify a model of industrial development. For developing countries, establishing the automobile industry is crucial for promoting industrialization. After Southeast Asian countries achieved independent, their automobile industries underwent establishment and development stages. The domestic and overseas competiveness of the automobile industries in ASEAN have recei...

  4. Measurement and analysis to DIW of chassis dynamometers for automobile emissions testing (United States)

    Zhu, Weimin; Wang, Dayong; Qi, Fang; Yang, Dengcai


    DIW (Dynamometer Inertia Weight) of 'chassis dynamometers for automobile emissions testing' is a total inertia weight of all rotating components in the chassis dynamometer. Total Inertia weight is a inertia device simulates translational and rotational kinetic energy of a traveling vehicle which is equivalent to the mass of the car. DIW is an important technical indicator, whether it is accurate or not will affect the calibration of all technical characteristics of 'chassis dynamometers for automobile emissions testing'. In this paper,first of all, we introduce a new method to measure the Dynamometer Inertia Weight, that is, coast-down testing with twice constant-force loading method, and we derivate a formula to calculate the Dynamometer Inertia Weight from kinetic energy conservation law. Secondly, we have done a lot of coast-down testings with twice constant-force load method. After analyzing the data, we found out the factors that affect the testing processes and the accuracy of testing results. Finally, after comparing twice constant-force loading method with the take-down flywheel method and twice constant-power loading method, we know that this coast-down testing with twice constant-force loading method is better than other methods in stability and repeatability and testing data will be more accurate. It's a accurate and convenient way to measure the DIW of 'chassis dynamometers for automobile emissions testing'.

  5. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stiebitz, Paul [Rochester Institute of Technology, NY (United States)


    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  6. Modernization of the Russian Automobile Road Network on the Base of Innovative Technologies

    Directory of Open Access Journals (Sweden)

    E. A. Zhukov


    Full Text Available Purpose: the main goal of the article is to build a conceptual model for the organization of effective functioning of the points of economic and innovative growth of the region in modern conditions, taking into account regional and municipal limitations of internal and external nature, with the aim of ensuring economic security, effective interaction of subjects of the "business-power" system Taking into account the influence of institutional factors. Methods: in the present study the following methods were used: systemic approach, methods of social diagnosis, comparative analysis, method of expert evaluations, and method of statistical processing of information. Results: the short characteristic of modern development and technical level of the Russian automobile roads network as the important part of the automobile roads material-technical base is presented. Realization process of the actual task putted by Russian President V.V. Putin to transport builders: two times increasing construction of automobile roads is analyzed. The reality of decision this task due to modernization roads economy material-technical base on the base of innovative technologies and progressive world experience in the field of roads construction is scientifically proved. Conclusions and Relevance: in spite of losing now in decision of the actual task putted by Russian President V.V. Putin to transport builders: two times increasing construction of automobile roads, nevertheless the real possibilities to reach the important aim still remain. It may be done only due to scientifically grounded modernization of the roads economy material-technical base on the base of innovative technologies and progressive world experience in the field of roads construction 

  7. Drowsy driving and automobile crashes : report and recommendations. (United States)


    Drowsy driving is a serious problem that leads to thousands of automobile crashes each year. This report, sponsored by the National Center on Sleep Disorders Research (NCSDR) of the National Heart, Lung, and Blood Institute of the National Institutes...

  8. Restraint of the Automobile in American Residential Neighborhoods (United States)


    Two techniques for restraining the use of the automobile have recently become popular in the United States: residential parking permit programs and traffic restraint devices. While both the these approaches are aimed at restraining the use of the aut...

  9. Study of Automobile Market Dynamics : Volume 2. Analysis. (United States)


    Volume II describes the work in providing statistical inputs to a computer model by examining the effects of various options on the number of automobiles sold; the distribution of sales among small, medium and large cars; the distribution between aut...

  10. Scenes of fathering: The automobile as a place of occupation. (United States)

    Bonsall, Aaron


    While occupations are increasingly analyzed within contexts, other than the home, the ordinary places that facilitate occupations have been overlooked. The aim of this article is to explore the automobile as a place of occupation using data from an ethnographic study of fathers of children with disabilities. Qualitative data obtained through observations and interviews with the fathers and their families were analyzed using a narrative approach. Properties that influence interactions include opportunities to communicate, the vehicle itself, and electronics. Driving children in the automobile fulfills fathering responsibilities and is a time for connecting. For the fathers in this study, the automobile represents a place for negotiating complex demands of fathering. This study demonstrates not only the importance of the automobile, but also the influence of the immediate space on the construction of occupations.

  11. Legislative Committee Simulation: Regulation in the Automobile Industry. (United States)

    Hoffman, Alan J.; And Others


    Examined are ways to overcome obstacles which often prevent creative teaching of legislative decision-making processes to high school students. A simulation dealing with regulation in the automobile industry is used for illustrative purposes. (RM)

  12. Learning Activities: Students and Recycling. [and] Automobile Aerodynamics. (United States)

    McLaughlin, Charles H., Jr.; Schieber, Rich


    The first learning activity is intended to heighten students' awareness of the need for recycling, reuse, and reduction of materials; the second explores the aerodynamics of automobiles. Both include context, concept, objectives, procedure, and materials needed. (SK)

  13. Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Directory of Open Access Journals (Sweden)

    M. Mileusnic


    Full Text Available In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature.

  14. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan


    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  15. Power output and carrier dynamics studies of perovskite solar cells under working conditions. (United States)

    Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng


    Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

  16. Characteristics of motorcyclists involved in accidents between motorcycles and automobiles


    Oliveira,Amanda Lima de; Petroianu,Andy; Gonçalves,Dafne Maria Villar; Pereira,Gisele Araújo; Alberti,Luiz Ronaldo


    Introduction: traffic accidents are one of the main causes of death and disability, with motorcyclists representing the great majority of both the victims and the perpetrators. Objective: this work studied the characteristics of motorcyclists injured in accidents involving motorcycles and automobiles. Method: this study sought to interview 100 motorcyclists who had been injured in collisions between motorcycles and automobiles, and who were undergoing emergency hospital treatment in the regio...


    Directory of Open Access Journals (Sweden)

    V. К. Jaroshevich


    Full Text Available Ecological safety of automobile transport systems is considered on the basis of the account of transportation process efficiency. It is shown that ecological safety of transportations is estimated to a great extent by the automobile usage level in respect of run and capacity. It is proposed a criterion of a passenger transport system optimality on the basis of carrying capacity proceeding from ecological safety of transportation.

  18. Can urban rail transit curb automobile energy consumption?

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili


    With the rapid development of China's economy and the speed of urbanization, China's automobile sector has experienced rapid development. The rapid development of the automobile sector has increased energy consumption. According to the results of this paper, automobile energy consumption accounted for about 10.73% of total energy consumption in China in 2015, about 3.6 times the proportion a decade ago. With the deterioration of urban traffic conditions, relying on expanding the amount of vehicles and city road network cannot solve the problem. Urban rail transit is energy-saving and less-polluting, uses less space, has large capacity, and secure. Urban rail transit, according to the principle of sustainable development, is a green transportation system and should be especially adopted for large and medium-sized cities. The paper uses the binary choice model (Probit and Logit) to analyze the main factors influencing the development of rail transit in Chinese cities, and whether automobile energy consumption is the reason for the construction of urban rail transit. Secondly, we analyze the influence of urban rail transit on automobile energy consumption using DID model. The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly, with continuous impact in the second year. - Highlights: • Investigate the main factors influencing the building of rail transit for Chinese cities. • Analyze the influence of urban rail transit on automobile energy consumption by DID model. • The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly.

  19. Challenges for fuel cells as stationary power resource in the evolving energy enterprise (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  20. Recent advances and challenges of fuel cell based power system architectures and control – A review

    DEFF Research Database (Denmark)

    Das, Vipin; Sanjeevikumar, Padmanaban; Venkitusamy, Karthikeyan


    Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit...... by bit with expansion in current because of losses associated with fuel cell. It is difficult in handling large rated fuel cell based power system without regulating mechanism. The issue connected with fuel based structural planning and the arrangements are widely investigated for all sorts...... of utilization. In order to improve the reliability of fuel cell based power system, the integration of energy storage system and advanced research methods are focused in this paper. The control algorithms of power architecture for the couple of well-known applications are discussed. Additionally, the paper...

  1. Microgrid with Solar Power and Fuel Cell Technology (United States)


    fashion – Supply excess power to the grid, when appropriate – Make intelligent decisions when the PV array (and other sources) should power to the load – Make intelligent decisions when the PV array (and other sources) should supply power to charge the battery energy storage...Supply a maximum of 50 kW output 7 Requirements - Site • Environmental and weather concerns – Lightning protection • Stand-off distances from tents and

  2. Power Converters Maximize Outputs Of Solar Cell Strings (United States)

    Frederick, Martin E.; Jermakian, Joel B.


    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  3. Overview of commercialization of stationary fuel cell power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hooie, D.T.; Williams, M.C.


    In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.

  4. Direct power generation from waste coffee grounds in a biomass fuel cell (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung


    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  5. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy (United States)

    Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe


    Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long

  6. Direct Numerical Simulation of Automobile Cavity Tones (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.


    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  7. Assessing location attractiveness for manufacturing automobiles

    International Nuclear Information System (INIS)

    Hanawalt, Edward; Rouse, William


    Evaluating country manufacturing location attractiveness on various performance measures deepens the analysis and provides a more informed basis for manufacturing site selection versus reliance on labor rates alone. A short list of countries can be used to drive regional considerations for site-specific selection within a country. Design/methodology/approach: The two-step multi attribute decision model contains an initial filter layer to require minimum values for low weighted attributes and provides a rank order utility score for twenty three countries studied. The model contains 11 key explanatory variables with Labor Rate, Material Cost, and Logistics making up the top 3 attributes and representing 54% percent of the model weights. Findings: We propose a multi attribute decision framework for strategically assessing the attractiveness of a country as a location for manufacturing automobiles. Research limitations/implications: Consideration of country level wage variation, specific tariffs, and other economic incentives provides a secondary analysis after the initial list of candidate countries is defined. Practical implications: The results of our modeling shows China, India, and Mexico are currently the top ranked countries for manufacturing attractiveness. These three markets hold the highest utility scores throughout sensitivity analysis on the labor rate attribute weight rating, highlighting the strength and potential of manufacturing in China, India, and Mexico. Originality/value: Combining MAUT with regression analysis to simplify model to core factors then using a “must have” layer to handle extreme impacts of low weight factors and allowing for ease of repeatability.

  8. Assessing location attractiveness for manufacturing automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, Edward; Rouse, William


    Evaluating country manufacturing location attractiveness on various performance measures deepens the analysis and provides a more informed basis for manufacturing site selection versus reliance on labor rates alone. A short list of countries can be used to drive regional considerations for site-specific selection within a country. Design/methodology/approach: The two-step multi attribute decision model contains an initial filter layer to require minimum values for low weighted attributes and provides a rank order utility score for twenty three countries studied. The model contains 11 key explanatory variables with Labor Rate, Material Cost, and Logistics making up the top 3 attributes and representing 54% percent of the model weights. Findings: We propose a multi attribute decision framework for strategically assessing the attractiveness of a country as a location for manufacturing automobiles. Research limitations/implications: Consideration of country level wage variation, specific tariffs, and other economic incentives provides a secondary analysis after the initial list of candidate countries is defined. Practical implications: The results of our modeling shows China, India, and Mexico are currently the top ranked countries for manufacturing attractiveness. These three markets hold the highest utility scores throughout sensitivity analysis on the labor rate attribute weight rating, highlighting the strength and potential of manufacturing in China, India, and Mexico. Originality/value: Combining MAUT with regression analysis to simplify model to core factors then using a “must have” layer to handle extreme impacts of low weight factors and allowing for ease of repeatability.

  9. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  10. Performance evaluation of aluminum/phosphate cell for powering small electronic devices

    Directory of Open Access Journals (Sweden)

    Gymama Slaughter


    Full Text Available We report on an innovative membrane-free aluminum/phosphate cell based on the activation of aluminum (Al as anodic material using ZnO nanocrystal in phosphate rich electrolyte that is capable of generating sufficient power to power a light-emitting diode (LED, selected as a model of a small electronic device. The energy from the cell is periodically supplied in high power bursts due to the charge and discharge cycle of the capacitor. The entire process is controlled by a switched capacitor regulator. The Al/phosphate cell was studied in neutral 100 mM phosphate buffer solution (7.4 at a temperature of 25 °C. We demonstrate that two Al/phosphate cells connected in series can generate an open circuit voltage (Voc up to 1.66 V to continuously power a LED via a switched capacitor regulator circuit. The switched capacitor regulator circuit enabled the 1 μF capacitor to store the incoming power from the cell and discharge it in a large power burst to supply the necessary drive strength required by the LED. This new Al/phosphate cell configuration is a ‘green’ alternative to the use of glucose abiotic and biofuel cells for powering ultra-low power implantable electronic devices.

  11. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others


    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  12. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)


    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  13. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns (United States)

    Kwon, Cheong Hoon; Lee, Sung-Ho; Choi, Young-Bong; Lee, Jae Ah; Kim, Shi Hyeong; Kim, Hyug-Han; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong


    Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm-2 that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.

  14. Government Policy and Environmental Innovation in the Automobile Sector in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aahman, Max


    The aim of this paper is to analyse the role that the Japanese Government has played, and still plays, in the development of alternatives to conventional vehicles and the effect of government policy. The focus in this paper is on battery-powered electric vehicles (BPEVs), hybrid electric vehicles (HEVs), and fuel cell electric vehicles (FCEVs) These alternatives present an interesting case of technical choices in government policy. The effects of government policy and the process of innovation are analysed from a comprehensive view drawing on the literature regarding technical change and innovation. The whole chain of government support, including the context in which these different policies have been implemented since the early 1970s, is studied. Based on this analysis, current and suggested future government policy is discussed, as the development of alternative vehicles is still an ongoing process. The Japanese Government has adopted a comprehensive strategy and drafted long-term strategic plans including R and D, demonstration and market support. This strategy has enabled the Japanese Government to influence the direction of technical development within the domestic automobile industry with relatively limited government funding. In the development process analysed here, market support have been equally important for the development process as the R and D efforts. The history of BPEVs in Japan illustrates the conventional wisdom that 'picking winners' in government policy is not easy. Our conclusion is that governments should, if possible, focus on technologies that fulfil several policy aims and which can be used in several different applications. This increases the chance of a technology surviving the long journey from idea to competitive product. This study also shows that established dominating companies do not necessarily resist radical changes in their core designs.

  15. The fuel cell: a coming technology for the cogeneration and the automotive; La pile a combustible: une technologie d'avenir pour la cogeneration et l'automobile

    Energy Technology Data Exchange (ETDEWEB)



    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the fuel cell use in the automotive and cogeneration industries. This book presents the six papers proposed at this colloquium bringing information on the fuel cell market, design and advantages. In the automotive domain, the fuel cell integration in the future car at Renault is presented. The PEM (Proton Exchange Membrane) concept is also detailed. (A.L.B.)

  16. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin


    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  17. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.


    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  18. Impact of air conditioning system operation on increasing gases emissions from automobile (United States)

    Burciu, S. M.; Coman, G.


    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  19. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro


    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  20. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. (United States)

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang


    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Schaltz, Erik; Jespersen, Jesper Lebæk; Rasmussen, Peter Omand


    power pack demonstrates some of the advantages by using a HTPEM fuel cell. This initial system is very simple and there is no need for humidification of the species like in a LTPEM fuel cell system. The use of the HTPEM fuel cell makes it possible to use reformed gas at high CO concentrations without...

  2. A Simple and Efficient MPPT Method for Low-Power PV Cells

    Directory of Open Access Journals (Sweden)

    Maria Teresa Penella


    Full Text Available Small-size PV cells have been used to power sensor nodes. These devices present limited computing resources and so low complexity methods have been used in order to extract the maximum power from the PV cells. Among them, the fractional open circuit voltage (FOCV method has been widely proposed, where the maximum power point of the PV cell is estimated from a fraction of its open circuit voltage. Here, we show a generalization of the FOCV method that keeps its inherent simplicity and improves the tracking efficiency. First, a single-diode model for PV cells was used to compute the tracking efficiency versus irradiance. Computations were carried out for different values of the parameters involved in the PV cell model. The proposed approach clearly outperformed the FOCV method, specially at low irradiance, which is significant for powering sensor nodes. Experimental tests performed with a 500 mW PV panel agreed with these results.

  3. High specific power, direct methanol fuel cell stack (United States)

    Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM


    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  4. Diesel-powered Passenger Cars and Light Trucks (United States)


    Diesel-powered automobiles are in the news following emission concerns raised by the U.S. Environmental Protection Agency. This fact sheet contains background information on diesel-powered motor vehicles and diesel fuel.

  5. Compact Fuel Cell Power Supplies with Safe Fuel Storage

    National Research Council Canada - National Science Library

    Powell, M. R; Chellappa, A. S; Vencill, T. R


    .... Despite its energy-density advantage, this ammonia-based power supply will not likely be deployed in military or commercial markets unless safety concerns related to the possible rapid release of ammonia are resolved...

  6. Standard-Cell, Open-Architecture Power Conversion Systems

    National Research Council Canada - National Science Library

    Boroyevich, D; Wang, F; Lee, F. C; Odendaal, W. G; Edwards, S


    ...). This project was purposefully aimed to develop a standardized hierarchical design and analysis methodology for modular power electronics conversion systems using as basis the ISO/OSI seven-layer reference model...

  7. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  8. Effect of Topology Structure on the Output Performance of an Automobile Exhaust Thermoelectric Generator (United States)

    Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.


    The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.

  9. A simple and efficient MPPT method for low-power PV cells


    Penella López, María Teresa; Gasulla Forner, Manuel


    Small-size PV cells have been used to power sensor nodes. These devices present limited computing resources and so low complexity methods have been used in order to extract the maximum power from the PV cells. Among them, the fractional open circuit voltage (FOCV) method has been widely proposed, where the maximum power point of the PV cell is estimated from a fraction of its open circuit voltage. Here, we show a generalization of the FOCV method that keeps its inherent simplicity and improve...

  10. Self-regulating control of parasitic loads in a fuel cell power system (United States)

    Vasquez, Arturo (Inventor)


    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  11. Indirect-fired gas turbine dual fuel cell power cycle (United States)

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.


    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. The cancer cell's "power plants" as promising therapeutic targets: an overview. (United States)

    Pedersen, Peter L


    This introductory article to the review series entitled "The Cancer Cell's Power Plants as Promising Therapeutic Targets" is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., "power plants." All nucleated animal/human cells have two types of power plants, i.e., systems that make the "high energy" compound ATP from ADP and P( i ). One type is "glycolysis," the other the "mitochondria." In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen ("Warburg effect"). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing "necrotic cell death" and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83-91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269-275, 2004). A second approach is to induce only cancer cells to undergo "apoptotic cell death." Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce "necrotic," "apoptotic" or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.

  13. Development of a thin film solar cell interconnect for the PowerSphere concept

    International Nuclear Information System (INIS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen E.; Curtis, Henry B.; Kerslake, Thomas W.; Peterson, Todd T.


    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  14. Impute DC link (IDCL) cell based power converters and control thereof (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad


    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  15. Development of automobile tyre lateral runout measurement sensor (United States)

    Ma, Xie; Ye, Lingjian; Yao, Guanghui; Wang, Di; Zhi, Xiongfei


    Automobile tyre lateral runout is one of the important indexes to measure the quality of the tyre, it will affect the safety of the automobile in moving. This paper introduces a sensor for automobile tyre lateral runout measurement. The variation of the automobile tyre lateral runout causes the change of guide rod probe displacement and deforms of the cantilever beam which connects with the guide bar. The deformation of the cantilever beam leads to the change of the resistance value of strain gauge which is pasted on the cantilever beam. Through measuring circuit, the resistance value of the strain gauge is converted into output voltage that has a certain relationship with automobile tyre lateral runout. Then, the voltage signal is transformed by A/D convertor and send to SCM to process and display the value of runout. Meanwhile, SCM output control signal to control the actuator and adjust the equipment running status in real time so as to ensure the tyre lateral runout is within the allowed range.

  16. Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use

    DEFF Research Database (Denmark)

    Figueroa, Maria; author), L. Schipper (main; Price, L.


    We review the circularity between estimates of automobile use, fuel consumption and fuel intensity. We find that major gaps exist between estimates of road gasoline, the quantity most often used to represent automobile fuel use in economic studies of transport fuel use, and the actual sales data...... of gasoline, diesel and other fuels used for automobiles. We note that significant uncertainties exist in values of both the number of automobiles in use and the distance each is driven, which together yield total automobile use. We present our own calculations for total automobile fuel use for a variety...

  17. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications (United States)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri


    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  18. Fuel Cell Backup Power Unit Configuration and Electricity Market Participation: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  19. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Vora


    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  20. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith


    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  1. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell (United States)


    presented at the conference. DNA extraction, PCR-DGGE (denaturant gradient gel electrophoresis ) of 16 S ribosomal RNA gene, band excision and...are able to directly produce electrical energy by bacteria consuming biodegradable compounds in marine sediments. In sediments with low carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology; iron-reducing bacteria

  2. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto


    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  3. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System (United States)

    Veyo, S.E.


    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  4. A compact BrFAFC (bio-reformed formic acid fuel cell) converting formate to power. (United States)

    Shin, Jong-Hwan; Jung, Namgee; Yoo, Sung Jong; Cho, Yong-Hun; Sung, Yung-Eun; Park, Tai Hyun


    A compact BrFAFC can directly convert formate to power without hydrogen storage and poisoning effect by CO at mild temperature. We are the first to establish the performance of the BrFAFC with high power density. Furthermore, this BrFAFC can be manufactured in a simple design for use in portable fuel cells.

  5. Robust Allocation of Reserve Policies for a Multiple-Cell Based Power System

    DEFF Research Database (Denmark)

    Hu, Junjie; Lan, Tian; Heussen, Kai


    This paper applies a robust optimization technique for coordinating reserve allocations in multiple-cell based power systems. The linear decision rules (LDR)-based policies were implemented to achieve the reserve robustness, and consist of a nominal power schedule with a series of linear modifica...... in real time operation to make a trade off....

  6. Power loss analysis of n-PASHA cells validated by 2D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Gutjahr, A.; Burgers, A.R.; Saynova, D.S.; Cesar, I.; Romijn, I.G.


    To reach >21% efficiency for the n-Pasha (passivated all sides H-pattern) cell of ECN, reliable power-loss analyses are essential. A power-loss analysis is presented that is based on experimental data but validated and completed by 2D simulations. The analysis is used to identify the key factors that will contribute most to achieving >21% efficiency.

  7. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)


    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  8. System-level Reliability Assessment of Power Stage in Fuel Cell Application

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede


    High efficient and less pollutant fuel cell stacks are emerging and strong candidates of the power solution used for mobile base stations. In the application of the backup power, the availability and reliability hold the highest priority. This paper considers the reliability metrics from...

  9. 49 CFR 536.9 - Use of credits with regard to the domestically manufactured passenger automobile minimum standard. (United States)


    ... manufactured passenger automobile minimum standard. 536.9 Section 536.9 Transportation Other Regulations... domestically manufactured passenger automobile minimum standard. (a) Each manufacturer is responsible for..., the domestically manufactured passenger automobile compliance category credit excess or shortfall is...

  10. Fuel cell programs in the United States for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M.


    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  11. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.


    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  12. Environmental change and hedonic cost functions for automobiles. (United States)

    Berry, S; Kortum, S; Pakes, A


    This paper focuses on how changes in the economic and regulatory environment have affected production costs and product characteristics in the automobile industry. We estimate "hedonic cost functions" that relate product-level costs to their characteristics. Then we examine how this cost surface has changed over time and how these changes relate to changes in gas prices and in emission standard regulations. We also briefly consider the related questions of how changes in automobile characteristics, and in the rate of patenting, are related to regulations and gas prices.

  13. Environmental change and hedonic cost functions for automobiles (United States)

    Berry, Steven; Kortum, Samuel; Pakes, Ariel


    This paper focuses on how changes in the economic and regulatory environment have affected production costs and product characteristics in the automobile industry. We estimate “hedonic cost functions” that relate product-level costs to their characteristics. Then we examine how this cost surface has changed over time and how these changes relate to changes in gas prices and in emission standard regulations. We also briefly consider the related questions of how changes in automobile characteristics, and in the rate of patenting, are related to regulations and gas prices. PMID:8917486

  14. Hinderniserkennung und -verfolgung mit einer PMD-kamera im automobil (United States)

    Schamm, Thomas; Vacek, Stefan; Natroshvilli, Koba; Marius Zöllner, J.; Dillmann, Rüdiger

    Die Detektion von Hindernissen vor dem Automobil ist eine Hauptanforderung an moderne Fahrerassistenzsysteme (FAS). In dieser Arbeit wird ein System vorgestellt, das mit Hilfe einer PMDKamera (Photomischdetektor) Hindernisse auf der Fahrspur erkennt und deren relevante Parameter bestimmt. Durch die PMD-Kamera werden zunächst 3D-Tiefenbilder der Fahrzeugumwelt generiert. Nach einem initialen Filterprozess werden im Tiefenbild mit Hilfe eines Bereichswachstumsverfahrens Hindernisse gesucht. Zur Stabilisierung des Verfahrens und zur Parameterberechnung wird ein Kaiman Filter eingesetzt. Das Ergebnis ist eine Liste aller Hindernisse im Fahrbereich des Automobils.

  15. Improved fault tolerance for air bag release in automobiles (United States)

    Yeshwanth Kumar, C. H.; Prudhvi Prasad, P.; Uday Shankar, M.; Shanmugasundaram, M.


    In order to increase the reliability of the airbag system in automobiles which in turn increase the safety of the automobile we require improved airbag release system, our project deals with Triple Modular Redundancy (TMR) Technique where we use either three Sensors interfaced with three Microcontrollers which given as input to the software voter which produces majority output which is feed to the air compressor for releasing airbag. This concept was being used, in this project we are increasing reliability and safety of the entire system.

  16. Design of a TFT-LCD Based Digital Automobile Instrument

    Directory of Open Access Journals (Sweden)

    Yunsong Xu


    instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading.

  17. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang


    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  18. Microplasma reforming of hydrocarbons for fuel cell power (United States)

    Besser, R. S.; Lindner, P. J.

    The implementation of a microplasma approach for small scale reforming processes is explored as an alternative to more standard catalyst-based processes. Plasmas are a known approach to activating a chemical reaction in place of catalysts, and microplasmas are particularly attractive owing to their extremely high electron and power densities. Their inherent compactness gives them appeal for portable applications, but their modularity leads to scalability for higher capacity. We describe the realization of experimental microplasma reactors based on the microhollow cathode discharge (MHCD) structure by silicon micromachining for device fabrication. Experiments were carried out with model hydrocarbons methane and butane in the reactors within a microfluidic flow and analytical setup. We observe several key phenomena, including the ability to liberate hydrogen from the hydrocarbons at temperatures near ambient and sub-Watt input power levels, the tendency toward hydrocarbon decomposition rather than oxidation even in the presence of oxygen, and the need for a neutral carrier to obtain conversion. Mass and energy balances on these experiments revealed conversions up to nearly 50%, but the conversion of electrical power input to chemical reaction enthalpy was only on the order of 1%. These initial, exploratory results were recorded with devices and at process settings without optimization, and are hence promising for an emerging, catalyst-free reforming approach.

  19. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten


    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  20. Aluminum-air power cell research and development (United States)

    Cooper, J. F.


    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  1. Technological Improvements to Automobile Fuel Consumption : Volume 2A. Sections 1 through 25 (United States)


    This report is a preliminary survey of the technological feasibility of reducing the fuel consumption of automobiles. The study uses as a reference information derived from literature, automobile industry contacts, and testing conducted as part of th...

  2. Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal (United States)

    Boghani, Hitesh C.; Papaharalabos, George; Michie, Iain; Fradler, Katrin R.; Dinsdale, Richard M.; Guwy, Alan J.; Ieropoulos, Ioannis; Greenman, John; Premier, Giuliano C.


    Microbial fuel cells (MFCs) are bioelectrochemical systems which can degrade organic materials and are increasingly seen as potential contributors to low carbon technologies, particularly in energy recovery from and treatment of wastewaters. The theoretical maximum open circuit voltage from MFCs lies in the region of 1.1 V, but is reduced substantially by overvoltage losses. Practical use of the power requires stacking or other means to increase voltage. Series stacking of MFCs with typically encountered variability in operating conditions and performance raises the risk of cell reversal, which diminishes overall power performance. A novel strategy of MFC subsystem series connectivity along with maximum power point tracking (MPPT) generates increased power from individual MFCs whilst eliminating cell reversal. MFCs fed with lower concentrations of substrate experienced voltage reversal when connected in normal series connection with one common load, but when MFCs and loads together were connected in series, the underperforming cell is effectively bypassed and maximum power is made available. It is concluded that stack voltage may be increased and cell reversal avoided using the hybrid connectivity along with MPPT. This approach may be suitable for stacked MFC operations in the event that large scale arrays/modules are deployed in treating real wastewaters.

  3. Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting. (United States)

    Lerchl, Alexander; Schindler, Carina; Eichhorn, Karsten; Kley, Franziska; Erren, Thomas C


    In 2007, the International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as being probably carcinogenic to humans (Group 2A). In this context, light exposure during the night plays a key role because it can suppress nocturnal melatonin levels when exposures exceed a certain threshold. Blue light around 464 nm is most effective in suppressing melatonin because of the spectral sensitivity of melanopsin, a recently discovered photopigment in retinal ganglion cells; the axons of these cells project to the suprachiasmatic nucleus, a circadian master clock in the brain. Due to advances in light technologies, normal tungsten light bulbs are being replaced by light-emitting diodes which produce quasi-monochromatic or white light. The objective of this study was to assess whether the light-melanopsin-melatonin axis might be affected in automobiles at night which employ the new generation diodes. To this end, we have tested in an experimental automobile setting whether indirect blue light (lambda(max) = 465 nm) at an intensity of 0.22 or 1.25 lx can suppress salivary melatonin levels in 12 male volunteers (age range 17-27 years) who served as their own controls. Daytime levels were low (2.7 +/- 0.5 pg/mL), and night-time levels without light exposure were high (14.5 +/- 1.1 pg/mL), as expected. Low-intensity light exposures had no significant effect on melatonin levels (0.22 lx: 17.2 +/- 2.8 pg/mL; P > 0.05; 1.25 lx: 12.6 +/- 2.0 pg/mL; P > 0.05). It is concluded that indirect blue light exposures in automobiles up to 1.25 lx do not cause unintentional chronodisruption via melatonin suppression.

  4. Characterisation of a fuel cell based uninteruptable power supply

    Energy Technology Data Exchange (ETDEWEB)

    Aklil, D.; Gazey, R.; McGrath, D.


    This report presents the findings of tests carried out to determine if a fuel cell (FC) could be used instead of external batteries in UPS systems. Details are given of the configuration of the 1kW fuel cell based test UPS system (FC-UPS), fuel cell suitability for UPS, the start-up conditions, the on-load dynamic response, comparative weight/space savings of FC-UPS, lifetime costs compared to battery installations, and market readiness of FC systems for UPS deployment. The importance of the collaboration between the FC manufacturers and system integrator for the implementation of the project and of the testing and characterisation of FC products is stressed.

  5. Micro space power system using MEMS fuel cell for nano-satellites (United States)

    Lee, Jongkwang; Kim, Taegyu


    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  6. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  7. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications (United States)

    Hoberecht, Mark A.


    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  8. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.


    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  9. Design approach for solar cell and battery of a persistent solar powered GPS tracker (United States)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio


    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  10. Real Mission Profile Based Lifetime Estimation of Fuel-cell Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede


    . This paper describes a lifetime prediction method for the power semiconductors used in the power conditioning of a fuel cell based backup system, considering both the long-term standby mode and active operation mode. The annual ambient temperature profile is taken into account to estimate its impact...... and India, respectively. The ambient temperature, occurrence frequency of power outages, active operation time and power levels are considered for the lifetime prediction of the applied MOSFETs. Comparisons of the accumulated lifetime consumptions are performed between standby mode and operation mode...

  11. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.


    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then......, a multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...... system and the effectiveness of the control methods....

  12. Evaluating the Economic Impacts of Technological Innovation in the Automobile Industry: The Input-Output Approach


    Hiroyuki Shibusawa; Takafumi Sugawara


    In this paper, the economic impacts of technological innovation, such as electric and hybrid vehicles, in the automobile industry in Japan are examined. The automobile industry has to develop environmentally friendly vehicles in the face of the global warming issue and the exhaustion problem of petroleum. The conventional automobiles with gasoline and diesel oil don't meet the demands of present age. The new generation automobiles will become popular for coming several decades. The industrial...

  13. New Car Sales and Used Car Stocks: A Model of the Automobile Market


    James Berkovec


    This article develops a short-run general equilibrium model of the automobile market by combining a discrete choice model of consumer automobile demand with simple models of new automobile production and used vehicle scrappage. The theoretical model allows an unlimited degree of heterogeneity of both consumers and automobiles, with equilibrium defined as aggregate demand equal to supply for every vehicle type. Econometric estimates of the scrappage and demand functions are then used to create...

  14. Maximizing Tandem Solar Cell Power Extraction Using a Three-Terminal Design

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deceglie, Michael G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienacker, Michael [Institute for Solar Energy Research Hamelin; Peibst, Robby [Institute for Solar Energy Research Hamelin


    Tandem or multijunction solar cells can greatly increase the efficiency of solar energy conversion by absorbing different energies of the incident solar illumination in semiconductors with different band-gaps, which can operate more efficiently than a single absorber. Many different designs of tandem cells based on high efficiency top cells and Si bottom cells have been proposed, and there is ongoing debate as to whether the sub-cells should be wired in series (to create a tandem device with two terminals) or operated independently (four terminals). An alternative cell configuration that combines some of the strengths of both is a three-terminal device consisting of a top cell optically in series with a modified interdigitated back contact (IBC) Si cell featuring a conductive top contact. Such a configuration can enable improved energy yield while only requiring external wiring on the front and back of the solar cell stack. In this paper, we investigate the operation of three terminal tandems in detail using technology computer aided design (TCAD) device physics simulations. Using III-V top cells as an example case, we show how the addition of a third terminal can deliver comparable power output to a four terminal device, and substantially more power than a two-terminal device, while also enabling power injection and extraction between the two sub-circuits under a variety of spectral conditions.

  15. Hydrogen & fuel cells: advances in transportation and power

    National Research Council Canada - National Science Library

    Hordeski, Michael F


    ... race, it became more of an economics issue since as long as petroleum was available and cheap there was no need to develop a hydrogen technology. Now, we see much more investment in fuel cell technology, hydrogen fueled vehicles and even hydrogen fuel stations. The technology is being pushed by economics as oil prices continue to rise with dwind...

  16. Safe, High Specific Energy & Power Li-ion Cells (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  17. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel


    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  18. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio


    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  19. The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry

    Directory of Open Access Journals (Sweden)

    Chao-Wu Chou


    Full Text Available The impact of global warming and climate change is one of the most critical challenges of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. The continuous improvement in automobile energy consumption is one of the most effective ways to reduce global warming. A comparative analysis is proposed to examine the various automobiles that utilize technological innovation to improve their energy consumption. Their contribution to CO2 emissions is then investigated. This study focuses on technical innovation and output power of a conventional engine. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi have improved energy consumption and reduce CO2 emissions. In addition, the Toyota hybrid vehicles have also improved energy consumption and reduced greenhouse gases emissions.

  20. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU


    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  1. 77 FR 63917 - WTO Dispute Settlement Proceeding Regarding China-Certain Measures Affecting the Automobile and... (United States)


    ... Regarding Expediting Equipment Manufacturing; Xiamen Municipal Notice on Automobile Industry Development... Proceeding Regarding China--Certain Measures Affecting the Automobile and Automobile-Parts Industries AGENCY... panel, which would hold its meetings in Geneva, Switzerland, would be expected to issue a report on its...

  2. 17 CFR 256.309 - Automobiles, other vehicles, and related garage equipment. (United States)


    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Automobiles, other vehicles... § 256.309 Automobiles, other vehicles, and related garage equipment. This account shall include the delivered cost of all service company owned automobiles, vans, trucks, and other vehicles used by the...

  3. 41 CFR 102-34.45 - How are passenger automobiles classified? (United States)


    ... automobiles classified? 102-34.45 Section 102-34.45 Public Contracts and Property Management Federal Property... MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.45 How are passenger automobiles classified? Passenger automobiles are classified in the following table: Sedan class Station wagon class Descriptive...

  4. 40 CFR 600.311-86 - Range of fuel economy for comparable automobiles. (United States)


    ... automobiles. 600.311-86 Section 600.311-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-86 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of city and the range of highway fuel...

  5. 76 FR 61779 - Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive... (United States)


    ... (Application for Automobile or Other Conveyance and Adaptive Equipment): Activity Under OMB Review AGENCY... INFORMATION: Title: Application for Automobile or other Conveyance and Adaptive Equipment (under 38 U.S.C... apply for automobile or other conveyance allowance, and reimbursement for the cost and installation of...

  6. 76 FR 44402 - Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive... (United States)


    ... (Application for Automobile or Other Conveyance and Adaptive Equipment) Activity: Comment Request AGENCY... information needed to determine claimants' eligibility for automobile adaptation equipment or other conveyance...: Application for Automobile or other Conveyance and Adaptive Equipment (under 38 U.S.C. 3901-3904), VA Form 21...

  7. 40 CFR 600.311-08 - Range of fuel economy for comparable automobiles. (United States)


    ... automobiles. 600.311-08 Section 600.311-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-08 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of combined fuel economy values for...

  8. Design and analysis of single- ended robust low power 8T SRAM cell

    Directory of Open Access Journals (Sweden)

    Gupta Neha


    Full Text Available This paper is based on the observation of 8T single ended static random access memory (SRAM and two techniques for reducing the sub threshold leakage current, power consumption are examined. In the first technique, effective supply voltage and ground node voltages are changed using a dynamic variable voltage level technique(VVL. In the second technique power supply is scaled down. This 8T SRAM cell uses one word line, two bitlinesand a transmission gate. Simulations and analytical results show that when the two techniques combine the new SRAM cell has correct read and write operation and also the cell contains 55.6% less leakage and the dynamic power is 98.8% less than the 8T single ended SRAM cell. Simulations are performed using cadence virtuoso tool at 45nm technology.

  9. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode


    Minxiu Yan; Liping Fan


    Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has be...

  10. Fabrication and Validation of a Nano Engineered Glucose Powered Biofuel Cell


    Satheesh, Srejith


    Fuel Cells are important forms of sustainable power generation and Biofuel Cells utilize the use of bio-compatible/biodegradable molecules as fuels. Glucose is an ideal candidate to serve this purpose. In this project, a Glucose Fuel Cell (GFC) has been fabricated using the nanomaterials developed in the lab. The skeletal system of this GFC is a three-layered structure; a Membrane Electrode Assembly (MEA) composed of carbon electrodes (anode and cathode) and a Poly Vinyl Alcohol/Poly Acrylic ...

  11. Radiation resistance of thin-film solar cells for space photovoltaic power (United States)

    Woodyard, James R.; Landis, Geoffrey A.


    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  12. The Japanese Automobile Worker: A Microcosm of Japan's Success. (United States)

    Kaderabeck, Elizabeth A.

    A teaching unit on the Japanese automobile worker was developed from a compilation of on-site interviews with Japanese company managers and production line employees, and official publications of the Japanese car industry. The unit is designed to present a balanced picture of Japan's economic success and labor relations and to develop global…

  13. Dynamic Models of the U.S. Automobile Fleet (United States)


    The report examines some of the dynamic properties of the automobile fleet. The focus is not on new-car demand, but rather on the overall behavior of the system. Relationships derived from previous studies have been incorporated and integrated in a s...

  14. Monitoring Report - Automobile Voluntary Fuel Economy Improvement Program (United States)


    On October 8, 1974, President Ford announced the goal of a 40% improvement in fuel economy of automobiles to be achieved in the 1980 new car fleet compared to 14.0 MPH for 1974. The Secretary of Transportation was given the lead in developing the pro...

  15. Measurement of Gamma Radiation in an Automobile Mechanic ...

    African Journals Online (AJOL)

    Environmental radiation measurement was carried out in an automobile mechanic village, Apo, Abuja, Nigeria. An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld Global Positioning System (Garmin GPS 76S) equipment. It was observed that the dose equivalent varied ...

  16. Spatial distribution and landuse planning of informal automobile ...

    African Journals Online (AJOL)

    Hence, informal automobile workshops can spring up beside, behind or within any form or type of land use along major road to distort the existing land use plan (if any). This is observed to be a great challenge for maintaining order in the city. The study therefore, recommends the establishment of mechanic complex, ...

  17. New Technology and Human Resource Development in the Automobile Industry. (United States)

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    This document contains five case studies of plants within large enterprises in the automobile industry (Ford, Toyota, Volkswagen, Renault, and Volvo), plus reports of each company's views on human resource development, new technology, and changes in work organization and skill formation. The document is composed of five narrative sections,…

  18. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)


    Abstract. Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  19. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  20. Measurement of Gamma Radiation in an Automobile Mechanic ...

    African Journals Online (AJOL)

    imeh james

    ABSTRACT: Environmental radiation measurement was carried out in an automobile mechanic village, Apo,. Abuja, Nigeria. An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld Global Positioning System (Garmin GPS 76S) equipment. It was observed that the dose ...

  1. Assessment of the Problems of Manual Automobile Tyre Bead ...

    African Journals Online (AJOL)

    The tyre-rim bead bond must be broken to carry out repairs on a failed automobile tyre. The use of the locally fabricated manual bead breaking equipment as it is being practiced today by commercial tyre repair artisans in Nigeria is characterized by drudgery. This article reports a study of the local manual bead breaking ...

  2. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project. (United States)

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  3. Reducing automobile traffic: an urgent policy for health promotion

    Directory of Open Access Journals (Sweden)

    Tapia Granados José A.


    Full Text Available In recent decades traffic injuries have become a leading cause of death and disability the world over. In congested urban areas, the noise and emissions from vehicle engines cause discomfort and disease. More than one billion people are exposed daily to harmful levels of atmospheric contamination. Because internal combustion generates carbon dioxide (CO2 , the automobile is a principal contributor to the greenhouse effect, which has significantly raised the temperature of the atmosphere. Scientists anticipate that in coming decades the greenhouse effect will produce alterations in climate that are very likely to be harmful and possibly catastrophic. Meanwhile, burgeoning traffic and rural and urban highway infrastructures are already among the principal causes of environmental degradation. Urban development, because it is nearly always "planned" to accommodate automobiles rather than people, reduces the quality of life and tears the social fabric. In contrast to private automobiles, public transportation, bicycles, and walking produce little environmental contamination or injury-related morbidity and mortality. These modes of transport involve more physical activity, with its positive health effects, and avoid contributing to the greenhouse effect. The reduction of automobile traffic and substitution of alternative modes of transport are essential policies for health promotion. They should be incorporated in "healthy cities" programs and general economic policies.

  4. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.


    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  5. Micro-electronics and employment in the Japanese automobile industry.


    Watanabe, S


    ILO pub-WEP pub. Working paper on the employment effects of microelectronics technological change and industrial robots in the motor vehicle industry in Japan - examines industrial processes, labour productivity, job requirements of automobile workers, effects on the subcontracting system and small scale industry, diffusion patterns and prospects, etc. Bibliography, references and statistical tables.

  6. Smog and Your Automobile. [Teacher's Manual, Filmstrip, Record]. (United States)

    California State Dept. of Public Health, Berkeley.

    A filmstrip, 33 1/3 RPM record, and teacher's manual are combined in this set to be used in driver education classes at the senior high school level. Their main purpose is to inform future drivers how they can minimize pollution from their automobiles through proper car maintenance and good driving habits. Content of the manual is divided into…

  7. Development of psychological test for the selection of automobile ...

    African Journals Online (AJOL)

    The purpose of this study was to develop a psychological test that will be incorporated into the selection process of automobile drivers in commercial banks in Nigeria. As is the rule in the content-oriented approach to test development, 50 incumbent drivers and 18 fleet managers and supervisors took part in a job analysis ...

  8. Wind driven mobile charging of automobile battery- A case study ...

    African Journals Online (AJOL)

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of ...

  9. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)



    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  10. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters (United States)

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.


    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  11. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.


    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  12. An overview of power electronics applications in fuel cell systems: DC and AC converters. (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A


    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  13. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell. (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai


    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  14. Use of fuel cells to meet military requirements for mobile power

    International Nuclear Information System (INIS)

    Andrukaitis, E.


    'Full text:' The use of fuel cell technology in military applications will depend on safe, high energy density systems being developed. An important part of using this technology is also the development of alternative hydrogen producing fuels with high energy densities and are easy to transport. Fuel cells are now a very large R and D effort for several military applications around the world. The major reason is because of the high power demands needed requires electrical energy sources that far exceed the capabilities of batteries currently being fielded for portable applications. Fuel cells are regarded as highly efficient, tactical energy converters that can be adapted for wide range of power requirements. They are potentially the lowest weight power source when coupled with batteries or capacitors to form hybrid systems. Generally electrical power is needed to support a number of applications from ultra-high power for electrical pulses (radios, sensors) to reliable, conditioned power for command and control systems. In the future, sustained power for electric drive systems, will also be required. Some of the promising applications in the military and the R and D challenges that remain to reach performance and reliability targets suitable for military requirements will be discussed. (author)

  15. Assessment of ethanol-fueled IMHEX{reg_sign} fuel cell power plants in distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Woods, R. [M-C Power Corp., Burr Ridge, IL (United States); Lefeld, J. [PSI Energy, Plainfield, IN (United States)


    Ethanol-fueled cell power plants presents several significant opportunities for the power generation industry. The potential exists to reduce pollution, help the nation shift from its dependence on imported fuels, reduce global warming, and strengthen the economy. Two important developments can be merged to create a clean, high-technology, bio-based energy system: the production of ethanol fuels and the application of fuel cell power plants. Utilization of ethanol will be in dual-fueled applications initially, and evolve toward the primary fuel as the need for renewable energy sources increase and the economic competitiveness improves. This assessment addresses the major issues of this proposed concept and outlines the benefits anticipated to the environment, US agriculture, energy supplies, and electric power customers. Economic and technical aspects of the concept are also reviewed. One of PSI Energy`s primary interests is the utilization of renewable fuels supplied by their customer base. The IMHEX{reg_sign} fuel cell is an advanced electric power generation technology currently under development by M-C Power. Commercial applications within the power generation industry are scheduled to begin during the late 1990s.

  16. Divorce your car: ending the love affair with the automobile

    Energy Technology Data Exchange (ETDEWEB)

    Alvord, K.


    This book is a guide for people wishing to liberate themselves from their addiction to cars and the automobile culture. It is a repository of examples and actions that individuals and communities can take to reduce dependence on the automobile. The range of possibilities run from using cars less to not owning one at all. The book provides a humorous yet clear-headed approach to a greener world and maps out the road to how people can live happily ever after by breaking free of 'auto-cracy', without insisting on people in car-dependent countries quit their automotive addiction instantly. Nevertheless, it clearly articulates the connection between automobiles, their arteries (i.e. highways) and effluents (i.e. greenhouse gases and particulate emissions), and the increasing number and severity of natural disasters between the urban renewal and freeway construction that, in the author's view, helped ignite the riots in Watts, Newark and Detroit. The disastrous societal and geophysical effects of the automobile are demonstrated in great abundance, and the mountain of evidence of the systematic abuse of the planet that the book provides is a stunning refutation of the notion that technology is neutral. The automobile is accused of being not only the linchpin of Western and primarily American industrialism and resource extraction, it is also accused of being the chief suspect in a century-long theft of time, conviviality and beauty. How to bring about a change in people's love affair with their cars is difficult to comprehend but this author has a multitude of useful suggestions which seem to suggest that it is possible. There is a list of 104 'selected references' and an extensive list of 'other resources'.

  17. Power, heat and chilliness with natural gas - fuel cells and air conditioning

    International Nuclear Information System (INIS)

    Krein, Stephan; Ruehling, Karin


    A new and innovative concept of the supply with power, heat and chilliness will realise in the new Malteser-hospital in Kamenz. The core of this demonstration-plant are a fuel cell, an adsorption cooling machine as well as multi-solar collectors. The fuel cell has two goals. Primary it produces power for the own demand. The selected dimension guarantees, that the power will consume nearly continuously. Secondly the produced heat of the fuel cell (and the solar-heat too) will use for heating and preparation of warm water. In the summer, the heat will use for the adsorption cooling machine, which produces chilliness for air-conditioning. The advantage in the face of common concepts of combining power and heat is the high-efficiently use of the fuel-energy for electric power generation on the one hand. Fuel cells work with high efficiency also at partial load. On the other hand, with the adsorption cooling machine the produced heat of fuel cell and multi-solar collectors can be used also in the summer. First experiences with this concept show, that an optimised co-operation of the components with an adaptive, self-learning control system based on the weather forecast as well as various storages for heat and chilliness can be achieve. A continuously operation, high fuel utilisation and reduced environmental pollution can be demonstrated. (author)

  18. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez


    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  19. Fuel cell/photovoltaic integrated power system for a remote telecommunications repeater

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.; Chamberlin, C.; Zoellick, J.; Engel, R.; Rommel, D. [Humbolt State University, Arcata, CA (United States). Schatz Energy Research Center


    There is a special energy supply challenge associated with remote telecommunication systems, as they require reliable, unattended power system operation in areas and locations where there is no grid power. To supply back-up power to the Schoolhouse Peak remote photovoltaic-powered radio-telephone repeater located in Redwood National Park in northwestern California, the Schatz Energy Research Center built and operated a proton exchange membrane (PEM) fuel cell power system. In those instances where solar insolation is insufficient to maintain state-of-charge of the system's battery, the fuel cell automatically starts. Remote monitoring and control is made possible with the use of a cellular modem. The original fuel cell stack logged 3239 hours of run time in 229 days of operation. Subsequent to improvements and a rebuilt fuel cell stack, it operated for 3836 hours during 269 days. In this paper, system performance, long-term fuel cell voltage decay, and lessons learned and applied in system refurbishment were discussed. During this trial, the flawless performance of the hydrogen storage and delivery subsystem, the battery voltage-sensing relay, the safety shutdowns, and the remote data acquisition and control equipment was noted. To protect the stack from sudden temperature increases while minimizing unneeded parasitic loads, experience showed that a temperature-controlled fan switch, despite its additional complexity, was justified. 4 refs., 10 figs.

  20. Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output

    Directory of Open Access Journals (Sweden)

    C. Ulbrich


    Full Text Available We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in the JV characterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.

  1. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network. (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian


    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  2. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian


    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  3. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs


    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  4. Magnetic anvil cells driven by pulsed-power generators (United States)

    Gourdain, P.-A.; Adams, M. B.; Evans, M.; McBride, R. D.; Sefkow, A. B.; Seyler, C. E.; Collins, G.


    Magnetic anvil cells (MAC) use a gas, foam or solid damper to compress a material sample via magnetic pinch forces. Unlike diamond anvil cells (DAC), which are limited by the material strength of diamond, MAC have no mechanical limits. Only the amount of current that can be delivered to the MAC limits the final pressure at which a material sample can be compressed. Another main advantage of MAC over DAC is the ability to heat the sample, allowing to produce warm dense matter. The damper that surrounds the material sample has several functions. Initially, it diverts the current away from the sample, preventing electrothermal instabilities inside the sample. When the damper has fully imploded, the current commutes from the damper to the sample in less than 10 ns. Since the current is already on its way to reach a maximum, hundreds of kilobars are suddenly applied to the sample, limiting plasma ablation and surface inhomogeneity, which can later seed magnetic Rayleigh-Taylor instabilities. This work shows that the phase and chemical composition of the damper is critical to the homogeneity of the compressed sample and will change depending on the current level required to reach the final pressure. This research is partially supported by the DOE Grant Number DE-SC0016252.

  5. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand (United States)

    Srisiriwat, A.; Pirom, W.


    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  6. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA (United States)

    Veyo, S.E.


    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  7. Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles (United States)

    Bourlot, Sandrine; Blanchard, Philippe; Robert, Stéphanie

    High power lithium-ion batteries need to exhibit long service life to meet targets of automotive applications. This article describes the deep investigation of the so-called VL6P cells, high power lithium-ion cells mass produced by Johnson Controls - Saft (JC-S), in order to understand the root causes of their aging. Cells aged by calendar and cycle life are investigated here compared to fresh cells. Among the results of the different analyses, the most significant is that more active lithium is detected in negative electrode after aging. This tends to indicate that effect of aging is due to increase of positive electrode limitation. Results of this investigation will allow JC-S to continue to improve life of the lithium-ion cells.

  8. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang


    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  9. Fuel cell-shaft power packs (FC-SPP)

    Energy Technology Data Exchange (ETDEWEB)

    Elefsen, F.; Frandsen, S. [Danish Technological Institute, Renewable Energy and transport (Denmark)


    Danish companies will be able to obtain a unique international competitive position by combining our leadership in renewable energy with a focused and dedicated effort in hydrogen technology. The purpose of the present consortium is to establish the foundation for producing small hydrogen-based motor units. The consortium develops the technology in three concrete projects within two areas: small transportation equipment and mobile units. This assures that the research is directed towards specific market segments and that a synergy is obtained between technology development and market demand. Furthermore, the consortium involves developing concepts and tools for commercializing the technology and employing user-driven innovation. The consortium includes a number of innovative SMEs in close interaction with larger established companies. The large companies are primarily component suppliers, thus assuring that the necessary components are developed and produced. The participating SME's are both component and system suppliers, thus assuring that the products developed will also be carried to the market. Ultimately, the projects may contribute to the start of a new industrial success story similar to the Danish wind power industry, which would simultaneously lead to exports and an improved environment. (au)

  10. Promotion Models and Achievements of New-energy Automobiles in Shenzhen (United States)

    Cai, Yu; Xiong, Siqin; Bai, Bo; Ma, Xiaoming


    As one of the pilot cities in China for demonstration and promotion of new-energy automobiles, Shenzhen, driven by the “two engines” of the government and the market, has made swift progress in promotion of its new-energy automobiles. This paper analyses Shenzhen’s governmental promotion policy concerning new-energy automobiles, summarizes Shenzhen’s commercial models for promoting new-energy automobiles, and is expected to provide reference for other provinces and cities to promote new-energy automobiles.

  11. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.


    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  12. Thermodynamic analysis of a fuel cell power system for transportation applications

    International Nuclear Information System (INIS)

    Hussain, M.M.; Baschuk, J.J.; Li, X.; Dincer, I.


    This study deals with the thermodynamic modeling of a polymer electrolyte membrane (PEM) fuel cell power system for transportation applications. The PEM fuel cell performance model developed previously by two of the authors is incorporated into the present model. The analysis includes the operation of all the components in the system, which consists of two major modules: PEM fuel cell stack module and system module and a cooling pump. System module includes air compressor, heat exchanger, humidifier and a cooling loop. A parametric study is performed to examine the effect of varying operating conditions (e.g., temperature pressure and air stoichiometry) on the energy and exergy efficiencies of the system. Further, thermodynamic irreversibilities in each component of the system are determined. It is found that, with the increase of external load (current density), the difference between the gross stack power and net system power increases. The largest irreversibility rate occurs in the fuel cell stack. Thus, minimization of irreversibility rate in the fuel cell stack is essential to enhance the performance of the system, which in turn reduces the cost and helps in commercialization of fuel cell power system in transportation applications. (author)

  13. [Microbial fuel cells as an alternative power supply]. (United States)

    Il'in, V K; Smirnov, I A; Soldatov, P É; Korshunov, D V; Tiurin-Kuz'min, A Iu; Starkova, L V; Chumakov, P E; Emel'ianova, L K; Novikova, L M; Debabov, V G; Voeĭkova, T A


    Purpose of the work was designing and prototyping of microbial fuel cells (MFC) and comparative evaluation of the electrogenic activity of wastewater autochthonous microorganisms as well as bacterial monocultures. Objects were model electrogenic strain Shewanella oneidensis MR-1, and an Ochrobactrum sp. strain isolated from the active anode biofilm of MFC composed as an electricity generating system. The study employed the methods typically used for aerobic and anaerobic strains, current measurement, identification of new electrogenic strains in microbial association of wastewater sludge and species definition by rRNA 16-S. As a result, two MFCs prototypes were tried out. Besides, it was shown that electrogenic activity of S. oneidensis MR-1 and Ochrobactrum sp. monocultures is similar but differs from that of the microbial association of the anode biofilm.

  14. Stem cell tourism and the power of hope. (United States)

    Murdoch, Charles E; Scott, Christopher Thomas


    This paper explores the notions of hope and how individual patient autonomy can trump carefully reasoned ethical concerns and policies intended to regulate stem cell transplants. We argue that the same limits of knowledge that inform arguments to restrain and regulate unproven treatments might also undermine our ability to comprehensively dismiss or condemn them. Incautiously or indiscriminately reasoned policies and attitudes may drive critical information and data underground, impel patients away from working with clinical researchers, and tread needlessly on hope, the essential motivator of patients, advocates and researchers alike. We offer recommendations to clinicians and health care providers to help balance the discourse with individuals seeking treatment while guarding against fraud, misconception, and patient harm.

  15. Modelling and simulation of double chamber microbial fuel cell. Cell voltage, power density and temperature variation with process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Ravi; Mondal, Prasenjit; Chand, Shri [Indian Institute of Technology Roorkee, Uttaranchal (India). Dept. of Chemical Engineering


    In the present paper steady state models of a double chamber glucose glutamic acid microbial fuel cell (GGA-MFC) under continuous operation have been developed and solved using Matlab 2007 software. The experimental data reported in a recent literature has been used for the validation of the models. The present models give prediction on the cell voltage and cell power density with 19-44% errors, which is less (up to 20%) than the errors on the prediction of cell voltage made in some recent literature for the same MFC where the effects of the difference in pH and ionic conductivity between anodic and cathodic solutions on cell voltage were not incorporated in model equations. It also describes the changes in anodic and cathodic chamber temperature due to the increase in substrate concentration and cell current density. Temperature profile across the membrane thickness has also been studied. (orig.)

  16. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Wu, Hui; Ahmad, Mashkoor; Luo, Zhixiang; Xie, Jianbo; Yan, Xinxu; Wu, Lihua; Zhu, Jing [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Fang, Ying; Li, Qiang [The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Wang, Zhong Lin [School Materials Science and Engineering, Georgia Institute of Technology, Atlanta Georgia 30332-0245 (United States)


    We report a nanowire-based biofuel cell based on a single proton conductive polymer nanowire for converting chemical energy from biofluids, such as glucose/blood, into electricity, with glucose oxidase and laccase as catalyst. The glucose is supplied from the biofluid, the nanowire serves as the proton conductor, and the whole cell can be realized at the nano/micrometer scale. The biofuel cell composed of a single nanowire generates an output power as high as 0.5-3 {mu}W, and it has been integrated with a set of nanowire-based sensors for performing self-powered sensing. This study shows the feasibility of building self-powered nanodevices for the biological sciences, environmental monitoring, defense technology, and even personal electronics. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Availability-Aware Cell Association for Hybrid Power Supply Networks with Adaptive Bias


    Parzysz, Fanny; Verikoukis, Christos


    New challenges have emerged from the integration of renewable energy sources within the conventional electrical grid which powers base stations (BS). Energy-aware traffic offloading brings a promising solution to maintain the user performance while reducing the carbon footprint. Focusing on downlink cellular networks consisting of on-grid, off-grid and hybrid BSs, we propose a novel power-aware biased cell association where each user independently partitions BSs into two sets and applies diff...

  18. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. (United States)

    Gonzalez-Solino, Carla; Lorenzo, Mirella Di


    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  19. Optimal Pilot and Payload Power Control in Single-Cell Massive MIMO Systems


    Cheng, Hei Victor; Björnson, Emil; Larsson, Erik G.


    This paper considers the jointly optimal pilot and data power allocation in single-cell uplink massive multiple-input-multiple- output systems. Using the spectral efficiency (SE) as performance metric and setting a total energy budget per coherence interval, the power control is formulated as optimization problems for two different objective functions: the weighted minimum SE among the users and the weighted sum SE. A closed form solution for the optimal length of the pilot sequence is derive...

  20. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat (Postprint) (United States)


    attractive for development of sensing technology for the monitoring of human performance. Amperometric biosensors are known to be inexpensive, repro...biofuel cells for self-powered biosensors was first discussed in 2001 and has gained momentum in recent years.32–34 Information technology has...lactate biosensor ,35,36 a glucose oxidase BFC power source, an energy har- vester and a micropotentiostat. The following sections describe the development

  1. Ice-Crystallization Kinetics during Fuel-Cell Cold-Start


    Dursch, Thomas James


    Proton-exchange-membrane fuel cells (PEMFCs) show promise in automotive applications because of their high efficiency, high power density, and potentially low emissions. To be successful in automobiles, PEMFCs must permit rapid startup with minimal energy from subfreezing temperatures, known as cold-start. In a PEMFC, reduction of oxygen to water occurs in the cathode catalyst layer (CL). Under subfreezing conditions, water generated during startup solidifies and hinders access of gaseous oxy...

  2. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population. (United States)

    Cai, PingGen; Takahashi, Ryosuke; Kuribayashi-Shigetomi, Kaori; Subagyo, Agus; Sueoka, Kazuhisa; Maloney, John M; Van Vliet, Krystyn J; Okajima, Takaharu


    Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G ∗ ). Although the ensemble variation in G ∗ of single cells has been elucidated, the detailed temporal variation of G ∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G ∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Wuhan University; Song, Zhaoning [University of Toledo; Yu, Yue [University of Toledo; Chen, Cong [University of Toledo; Zhao, Xingzhong [Wuhan University; Yan, Yanfa [University of Toledo


    We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA0.8Cs0.2Pb(I0.7Br0.3)3 perovskite top cells with 1.25 eV low-bandgap (FASnI3)0.6(MAPbI3)0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.

  4. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim


    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  5. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program (United States)


    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  6. Design of a low energy reaction cell for distributed power applications

    International Nuclear Information System (INIS)

    Miley, G.H.; Castano, C.; Okuniewski, M.; Selvaggi, G.; Lipson, A.


    Power units using Low Energy Nuclear Reactions (LENRs) potentially offer a radical new approach to power units that could provide distributed power units in the 1- 50 kW range. As described in an ICONE-8 paper (Miley, et al. 2000-c), these cells employ thin metallic film cathodes (order of 500.10 -10 m, using variously Ni, Pd and Ti) with electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cc in the films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total volume. If this is achieved, power densities of ∼20 W/cm 3 appear feasible, opening the way to a number of potential applications involving distributed power. In the present paper, prior work is briefly reviewed, and the design of a cell employing integrated electrode and solid-state electrical-conversion systems is described along with some recent experimental results. (authors)

  7. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies (United States)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  8. Joint Antenna Selection and Precoding Optimization for Small-Cell Network with Minimum Power Consumption

    Directory of Open Access Journals (Sweden)

    Qiang Sun


    Full Text Available We focus on the power consumption problem for a downlink multiuser small-cell network (SCN considering both the quality of service (QoS and power constraints. First based on a practical power consumption model taking into account both the dynamic transmit power and static circuit power, we formulate and then transform the power consumption optimization problem into a convex problem by using semidefinite relaxation (SDR technique and obtain the optimal solution by the CVX tool. We further note that the SDR-based solution becomes infeasible for realistic implementation due to its heavy backhaul burden and computational complexity. To this end, we propose an alternative suboptimal algorithm which has low implementation overhead and complexity, based on minimum mean square error (MMSE precoding. Furthermore, we propose a distributed correlation-based antenna selection (DCAS algorithm combining with our optimization algorithms to reduce the static circuit power consumption for the SCN. Finally, simulation results demonstrate that our proposed suboptimal algorithm is very effective on power consumption minimization, with significantly reduced backhaul burden and computational complexity. Moreover, we show that our optimization algorithms with DCAS have less power consumption than the other benchmark algorithms.

  9. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo


    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  10. Extension Sliding Mode Controller for Maximum Power Point Tracking of Hydrogen Fuel Cells

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang


    Full Text Available Fuel cells (FCs are characterized by low pollution, low noise, and high efficiency. However, the voltage-current response of an FC is nonlinear, with the result that there exists just one operating point which maximizes the output power given a particular set of operating conditions. Accordingly, the present study proposes a maximum power point tracking (MPPT control scheme based on extension theory to stabilize the output of an FC at the point of maximum power. The simulation results confirm the ability of the controller to stabilize the output power at the maximum power point despite sudden changes in the temperature, hydrogen pressure, and membrane water content. Moreover, the transient response time of the proposed controller is shown to be faster than that of existing sliding mode (SM and extremum seeking (ES controllers.

  11. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong


    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  12. Emissivity-corrected power loss calibration for lock-in thermography measurements on silicon solar cells

    International Nuclear Information System (INIS)

    Kasemann, Martin; Walter, Benjamin; Meinhardt, Christoph; Ebser, Jan; Kwapil, Wolfram; Warta, Wilhelm


    This paper describes power loss calibration procedures with implemented emissivity correction. The determination of our emissivity correction matrix does neither rely on blackbody reference measurements nor on the knowledge of any sample temperatures. To describe the emissivity-corrected power calibration procedures in detail, we review the theory behind lock-in thermography and show experimentally that the lock-in signal is proportional to the power dissipation in the solar cell. Experiments show the successful application of our emissivity correction procedure, which significantly improves the informative value of lock-in thermography images and the reliability of the conclusions drawn from these images

  13. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede


    based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained.......DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...

  14. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng


    In this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices...... are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four-layer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained...

  15. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane (United States)

    Brown, Gerald V.; Choi, Benjamin B.


    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  16. Component Cell-Based Restriction of Spectral Conditions and the Impact on CPV Module Power Rating

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Matthew T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Marc [Fraunhofer Institute for Solar Energy Systems ISE; Siefer, Gerald [Fraunhofer Institute for Solar Energy Systems ISE; Bett, Andreas W. [Fraunhofer Institute for Solar Energy Systems ISE


    One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670-3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are as follows. First, component cells based on the lattice-matched triple-junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules - even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with +/-3.0% of unity results in the worst case scenario in an underestimation of -1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty.

  17. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand


    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....... and ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...

  18. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa H.; Muhl, Thuy Thanh


    For use of metal supported solid oxide fuel cell (MS-SOFC) in mobile applications it is important to reduce the thermal mass to enable fast startup, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the Technical...... loss, two different routes for increasing the porosity of the support layer and thus performance were explored. The first route is the introduction of gas channels by puncturing of the green tape casted support layer. The second route is modification of the co-sintering profile. In summary, the cell...... thickness and thus weight and volume was reduced and the cell power density at 0.7 V at 700°C was increased by 46% to 1.01 Wcm−2 at a fuel utilization of 48%. All modifications were performed on a stack technological relevant cell size of 12 cm × 12 cm....

  19. A power pack based on organometallic perovskite solar cell and supercapacitor. (United States)

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui


    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle.

  20. A polymer tandem solar cell with 10.6% power conversion efficiency. (United States)

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang


    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap 60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  1. Quantifying Cell-to-Cell Variation in Power-Law Rheology (United States)

    Cai, PingGen; Mizutani, Yusuke; Tsuchiya, Masahiro; Maloney, John M.; Fabry, Ben; Van Vliet, Krystyn J.; Okajima, Takaharu


    Among individual cells of the same source and type, the complex shear modulus G∗ exhibits a large log-normal distribution that is the result of spatial, temporal, and intrinsic variations. Such large distributions complicate the statistical evaluation of pharmacological treatments and the comparison of different cell states. However, little is known about the characteristic features of cell-to-cell variation. In this study, we investigated how this variation depends on the spatial location within the cell and on the actin filament cytoskeleton, the organization of which strongly influences cell mechanics. By mechanically probing fibroblasts arranged on a microarray, via atomic force microscopy, we observed that the standard deviation σ of G∗ was significantly reduced among cells in which actin filaments were depolymerized. The parameter σ also exhibited a subcellular spatial dependence. Based on our findings regarding the frequency dependence of σ of the storage modulus G′, we proposed two types of cell-to-cell variation in G′ that arise from the purely elastic and the frequency-dependent components in terms of the soft glassy rheology model of cell deformability. We concluded that the latter inherent cell-to-cell variation can be reduced greatly by disrupting actin networks, by probing at locations within the cell nucleus boundaries distant from the cell center, and by measuring at high loading frequencies. PMID:24010652

  2. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)


    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  3. Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective

    Directory of Open Access Journals (Sweden)

    Sunil Luthra


    Full Text Available Purpose: Green Supply Chain Management (GSCM has received growing attention in the last few years. Most of the automobile industries are setting up their own manufacturing plants in competitive Indian market. Due to public awareness, economic, environmental or legislative reasons, the requirement of GSCM has increased.  In this context, this study aims to develop a structural model of the barriers to implement GSCM in Indian automobile industry.Design/methodology/approach: We have identified various barriers and contextual relationships among the identified barriers. Classification of barriers has been carried out based upon dependence and driving power with the help of MICMAC analysis. In addition to this, a structural model of barriers to implement GSCM in Indian automobile industry has also been put forward using Interpretive Structural Modeling (ISM technique. Findings: Eleven numbers of relevant barriers have been identified from literature and subsequent discussions with experts from academia and industry. Out of which, five numbers of barriers have been identified as dependent variables; three number of barriers have been identified as the driver variables and three number of barriers have been identified as the linkage variables. No barrier has been identified as autonomous variable. Four barriers have been identified as top level barriers and one bottom level barrier. Removal of these barriers has also been discussed.Research limitations/implications: A hypothetical model of these barriers has been developed based upon experts’ opinions. The conclusions so drawn may be further modified to apply in real situation problem. Practical implications: Clear understanding of these barriers will help organizations to prioritize better and manage their resources in an efficient and effective way.Originality/value: Through this paper we contribute to identify the barriers to implement GSCM in Indian automobile industry and to prioritize them

  4. Hybrid power generating systems of small wind power generators combined with solar cells or other generators.; Kogata furyoku to taiyoko, sonota tono haiburiddo hatsuden shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Koga, M. [Meidensha Corp., Ltd., Tokyo (Japan)


    Practical examples of the hybrid power generating system of small wind power generator combined with solar cells at a radio relay station at halfway up the mountain was outlined, and the effectiveness of a small hybrid power generating system of small wind power generator combined with micro hydraulic or micro gas turbine power generator was described. System interconnected large wind power generators are about to spread rapidly in Japan. But in terms of making good use of the small and unused natural energy, increasing uses of small independent and distributed power sources, as well as the international development assistance for un-electrified districts in developing countries, further technology developments and their support system are requested in small hybrid wind power generations as well. (NEDO)

  5. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny


    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  6. Automobile ride quality experiments correlated to iso-weighted criteria (United States)

    Healey, A. J.; Young, R. K.; Smith, C. C.


    As part of an overall study to evaluate the usefulness of ride quality criteria for the design of improved ground transportation systems an experiment was conducted involving subjective and objective measurement of ride vibrations found in an automobile riding over roadways of various roughness. Correlation of the results led to some very significant relationships between passenger rating and ride accelerations. The latter were collapsed using a frequency-weighted root mean square measure of the random vibration. The results suggest the form of a design criterion giving the relationship between ride vibration and acceptable automobile ride quality. Further the ride criterion is expressed in terms that relate to rides with which most people are familiar. The design of the experiment, the ride vibration data acquisition, the concept of frequency weighting and the correlations found between subjective and objective measurements are presented.

  7. Additives: The key for automobiles to meet new emission standards

    International Nuclear Information System (INIS)

    Friedman, J.R.


    Many cities have been perplexed with automobile emissions causing them to become non-attainment areas. These cities usually resort to such tactics as trying to get people to car pool. In principle the concept is excellent, however, the American public is not ready to give up the independence of using their own automobile. Reformulated gasolines are presently being produced and plans for additional plants are being made to meet EPA gasoline requirements. How much reformulated gasoline is available? Where is the present production going? Who else has needs? Does Gasohol have any possibilities still? What contribution can other additives make and are there any bright spots on the horizon and if so what are they? All this will be revealed in this talk and paper at ETE. There will also be a panel discussion for others to present their ideas and contribute to the program

  8. Recent progress of optical thin films in the automobile industry. (United States)

    Taga, Y


    There are increasing demands for the application of optical thin films to transparent substrates such as glass and plastics for windows in automobiles with the view of adding fascinating optical properties to them. These properties include surface hardening of plastics, infrared reflection, ultraviolet absorption, polarization and birefringence, and hydrophobicity. Recent examples of applications of sophisticated thin-film processes of plasma treatment and physical vapor deposition are reviewed. The novelty of the functions provided by physical vapor deposition films together with their durability for practical usage are emphasized as areas in which the thin-film process has a significant impact. Characterization of the modified surface and interface is also included to demonstrate recent advances in surface chemistry. Finally, future challenges for optical modification of transparent substrates in the automobile industry are also discussed.

  9. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN


    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  10. Design of MEMS accelerometer based acceleration measurement system for automobiles (United States)

    Venkatesh, K. Arun; Mathivanan, N.


    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  11. A micro-sized bio-solar cell for self-sustaining power generation. (United States)

    Lee, Hankeun; Choi, Seokheun


    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  12. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina


    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users\\' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.

  13. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells. (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco


    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)


    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  16. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)


    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  17. Biological fuel-cell converts sugar into electric power; Biologinen polttokenno muuttaa sokerin saehkoeksi

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.


    The Automation Technology Laboratory at the Helsinki University of Technology has developed a fuel-cell which produces electric power and water from glucose. The fuel-cell opens new possibilities for utilization of biologically disintegrable matter, e.g. different kinds of carbage, in power generation. The glucose is converted in the reactor by baking yeast into a metabolite, which is feeded into the fuel-cell of volume 55 ml. Graphite, wound into the nickel wire net, is used as anode in the system. Porous graphite is used as cathode. Anode and cathode are separated from each other by ion- exchange membrane, which is penetrable by hydrogen iones, but not by salt solution of the cathode half-cell. The metabolite is oxidized at the anode, donating electrons and hydrogen iones to the ande. The electrones flow through the circuit into the cathode there they react with hydrogen iones and oxygen feeded through the cathode to form water. The fuel-cell, based on direct oxygenation-reduction, has operated without any disturbances for 280 hours. The efficiency, calculated from the heating value of the glucose, is 44 %, which is better than that of the chemical fuel-cells. The disadvantage of the biological reactions is the low speed of them, so the current densities of the cell still remain into the class 2.0 W/m{sup 2}, which is about 1.0 % of that of the developed phosphoric acid fuel-cells

  18. Aptitude visuelle à la conduite automobile: exemple des candidats ...

    African Journals Online (AJOL)

    L'objectif était d'évaluer l'aptitude visuelle à la conduite automobile des candidats au permis de conduire à Libreville. Il s'agissait d'une étude transversale, descriptive et analytique, qui s'est déroulée à Libreville pendant la période du 4 avril 2012 au 14 juillet 2012 (soit 4 mois et 10 jours). La population d'étude concernait ...

  19. Public health, autonomous automobiles, and the rush to market. (United States)

    Kelley, Ben


    The USA has the worst motor vehicle safety problem among high-income countries and is pressing forward with the development of autonomous automobiles to address it. Government guidance and regulation, still inadequate, will be critical to the safety of the public. The analysis of this public health problem in the USA reveals the key factors that will determine the benefits and risks of autonomous vehicles around the world.


    Directory of Open Access Journals (Sweden)

    Slavomír KARDOŠ


    Full Text Available The work is aimed at visualization of working principles of microelectromechanical sensors which are used in automobile electronic systems. Attention is paid to accelerometric, inclinometric, pressure and MAF devices. These are used in systems for stability control, passive and active safety as well as comfort management. The visualizations were realized using modern animation techniques initiated by the creation of virtual materials, 2D and 3D objects, through scene exposure, pending their animation and final cutting.

  1. Loyalty marketing in automobile dealerships : case: car dealer X


    Hyyryläinen, Heidi


    The purpose of this thesis is to study how customer loyalty is taken into account in automobile dealerships, what loyalty marketing means are used to improve customer loyalty, and what potential new loyalty marketing means can be implemented. The thesis is commissioned by Car dealer X. In the theoretical part, areas covered are customership and loyalty marketing. Customership includes customer satisfaction, customer loyalty, customer value and customer retention. Loyalty marketing contain...

  2. Dynamic interaction between markets for leasing and selling automobiles


    Andrikopoulos, Athanasios; Markellos, Raphael N.


    We develop a model of dynamic interactions between price variations in leasing and selling markets for automobiles. Our framework assumes a differential game between multiple Bertrand-type competing firms which offer differentiated products to forward-looking agents. Empirical analysis of our model using monthly US data from 2002 to 2011 shows that variations in selling (cash) market prices lead rapidly dissipating changes of leasing market prices in the opposite direction. We discuss the pra...

  3. A Flowchart Approach to Malaysia's Automobile Industry Cluster Policy


    Kuchiki, Akifumi


    In this paper, we apply a flowchart approach to investigate Malaysia's automobile cluster policy. We investigate whether the industrial cluster policy has been successful or not, suggest policy prescriptions, and propose a way to prioritize policy measures. Our flowchart approach leads to the following three policy prescriptions: (1) Malaysian firms should establish sites for exporting compact cars with automatic transmissions; (2) actors in the public, semi-public and private sector should w...

  4. The Production and Inventory Behavior of the American Automobile Industry


    Olivier J. Blanchard


    Understanding inventory movements is central to an understanding of business cycles. This paper presents an empirical study of the behavior of inventories in the automobile industry. It finds that inventory behavior is well explained by the assumption of intertemporal optimization with rational expectations. The underlying cost structure appears to have substantial costs of changing production as well as substantial costs of being away from target inventory, the latter being a function of cur...

  5. Do sales tax credits stimulate the automobile market?


    Chen, Jiawei; Esteban, Susanna; Shum, Matthew


    In this paper, we quantitatively investigate the effectiveness of a sales tax reduction in stimulating sales and profits of durable goods manufacturers. Our question is motivated by policy makers' recent interest in helping ailing automobile manufacturers and in replacing a fleet of highly polluting vehicles. President Obama's economic stimulus plan, for instance, has directly targeted the primary market by including a sales tax credit on purchases of new cars and trucks. In this paper, we sh...

  6. Strategies for the commercial introduction of modular low power fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, H.V.; Laufer, A. [EnergiaH, Rio de Janeiro (Brazil); Miranda, P.E.V. [Coppe-Federal Univ., Rio de Janeiro (Brazil). Hydrogen Lab.


    The reality of the infrastructure in emerging economies brings the opportunity to build up a hydrogen compatible economy. For the Brazilian case, the fast development in many fields coexists with a considerable amount of potential renewable fuels available. Costs of energy distribution and of power grid maintenance throughout a continental size country may lead to a distributed generation system based in a diversified fuels matrix. This pathway drives attention to simpler low power fuel cell devices, with easier maintenance procedures, friendly integration with small power demands, and the capability of being applied separately or integrated to deliver higher power demands. Big cities and small distant agriculture based locations, such as Rio de Janeiro or rain forest extractive communities, could be able to produce fuel and energy in their own infrastructure projects. This article presents a market roadmap for the commercial introduction of direct oxidation type solid oxide fuel cells in Brazil, specifying fuel cell technological features and the specificities for each type of application, either in grid connected or in stand alone low power electric energy generation. (orig.)

  7. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices. (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho


    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stroke while driving: Frequency and association with automobile accidents. (United States)

    Inamasu, Joji; Nakatsukasa, Masashi; Tomiyasu, Kazuhiro; Mayanagi, Keita; Nishimoto, Masaaki; Oshima, Takeo; Yoshii, Masami; Miyatake, Satoru; Imai, Akira


    Background Cardiovascular events while driving have occasionally been reported. In contrast, there have been few studies on stroke while driving. Aim The objectives of this study were to (1) report the frequency of stroke while driving and (2) evaluate its association with automobile accidents. Methods Clinical data prospectively acquired between January 2011 and December 2016 on 2145 stroke patients (1301 with ischemic stroke, 585 with intracerebral hemorrhage, and 259 with subarachnoid hemorrhage) were reviewed to identify patients who sustained a stroke while driving. The ratio of driving to performing other activities was evaluated for each stroke type. Furthermore, the drivers' response to stroke was reviewed to understand how automobile accidents occurred. Results Among the 2145 patients, 85 (63 ischemic stroke, 20 intracerebral hemorrhage, and 2 subarachnoid hemorrhage) sustained a stroke while driving. The ratio of driving to performing other activities was significantly higher in ischemic stroke (4.8%) than in intracerebral hemorrhage (3.4%) or subarachnoid hemorrhage (0.8%). A majority of drivers either continued driving or pulled over to the roadside after suffering a stroke. However, 14 (16%) patients were involved in automobile accidents. In most patients, an altered mental status due to severe stroke was the presumed cause of the accident. Conclusion Stroke occurred while driving in 4.0% of all strokes and accidents occurred in 16% of these instances.

  9. Hybrid modeling and empirical analysis of automobile supply chain network (United States)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying


    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  10. Measuring Quality in Automobile Aftersales: AutoSERVQUAL Scale

    Directory of Open Access Journals (Sweden)

    Yasin Galip Gencer


    Full Text Available It is becoming more important to accurately measure the level of quality in services and especially automobile related services such as after sales service. This study aims to generate a survey to measure the service quality in automobile aftersales services, eventually to be called AutoSERVQUAL. The roadmap for this survey generation process starts by examining the service quality measurement scales in literature first and then continues by the adaptation process of SERVQUAL over automobile aftersales customers. Each and every step in survey generation processes is explained starting from expert interviews and finally statistical analyses. Starting with 45 candidate questions, the study offers a 28 item scale that can measure service quality in after sales car services with high reliability. The scale can be extended to cover aftersales services in general for any type of product and also could be used as input to other models such as QFD and MADM. The scale should also be empirically tested in other countries with specific requirements for after sales services.

  11. Bifurcation analysis of an automobile model negotiating a curve (United States)

    Della Rossa, Fabio; Mastinu, Giampiero; Piccardi, Carlo


    The paper deals with the bifurcation analysis of a rather simple model describing an automobile negotiating a curve. The mechanical model has two degrees of freedom and the related equations of motion contain the nonlinear tyre characteristics. Bifurcation analysis is adopted as the proper procedure for analysing steady-state cornering. Two independent parameters referring to running conditions, namely steering angle and speed, are varied. Ten different combinations of front and rear tyre characteristics (featuring understeer or oversteer automobiles) are considered for the bifurcation analysis. Many different dynamical behaviours of the model are obtained by slightly varying the parameters describing the tyre characteristics. Both simple and extremely complex bifurcations may occur. Homoclinic bifurcations, stable and unstable limit cycles (of considerable amplitude) are found, giving a sound and ultimate interpretation to some actual (rare but very dangerous) dynamic behaviours of automobiles, as reported by professional drivers. The presented results are cross-validated by exploiting handling diagram theory. The knowledge of the derived set of bifurcations is dramatically important to fully understand the actual vehicle yaw motions occurring while running on an even surface. Such a knowledge is a pre-requisite for robustly designing the chassis and for enhancing the active safety of vehicles.

  12. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis

    International Nuclear Information System (INIS)

    Agll, Abdulhakim Amer A.; Hamad, Yousif M.; Hamad, Tarek A.; Thomas, Mathew; Bapat, Sushrut; Martin, Kevin B.; Sheffield, John W.


    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy's DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus. -- Highlights: • Combined heat, hydrogen and power (CHHP) using a molten carbonate fuel cell. • Energy saving and alternative fuel of the products are determined. • Energy saving is increased when CHHP technology is implemented. • CHHP system reduces the greenhouse gas emissions and fuel consumption

  13. Micronuclei Frequencies and Nuclear Abnormalities in Oral Exfoliated Cells of Nuclear Power Plant Workers


    Sagari, Shitalkumar G; Babannavar, Roopa; Lohra, Abhishek; Kodgi, Ashwin; Bapure, Sunil; Rao, Yogesh; J., Arun; Malghan, Manjunath


    Aim: Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to evaluate the frequencies of Micronuclei (MN) and other Nuclear abnormalities (NA) from exfoliated oral mucosal cells in Nuclear Power Station (NPS) workers.


    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  15. Fuel cell based micro-combined heat and power under different policy frameworks - An economic analysis

    DEFF Research Database (Denmark)

    Hansen, Lise-Lotte Pade; Schröder, Sascha Thorsten


    systems in Germany. Especially net metering in Denmark and price premiums for fuel cells functioning as a virtual power plant in France and Portugal seems promising. The annual number of operation hours depends strongly on the operational scheme. For thermal-led units, cold start and modulation capacity...

  16. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    NARCIS (Netherlands)

    Mouthaan, A.J.


    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard

  17. Increase of power output by change of ion transport direction in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.


    The plant microbial fuel cell (PMFC) is a technology for the production of renewable and clean bioenergy based on photosynthesis. To increase the power output of the PMFC, the internal resistance (IR) must be reduced. The objective of the present study was to reduce the membrane resistance by

  18. Fuel Cell-Powered Go-Kart: Project Mimics Real-World Product Development (United States)

    Fuller, Amanda


    Five years ago, Leon Strecker's technology education class at Darien High School came up with the idea of building a fuel cell-powered go-kart. In previous years, the class had worked on other creations, such as electric cars that competed in a state-sponsored race and a full-size hovercraft. But students had not taken on anything anywhere near…

  19. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev


    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

  20. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.


    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  1. Method of Fabrication of High Power Density Solid Oxide Fuel Cells (United States)

    Pham, Ai Quoc; Glass, Robert S.


    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at C. and 900 mW/cm.sup.2 at C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  2. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants (United States)

    Lu, Cheng-Yi


    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  3. The impact of fixed and variable cost on automobile demand: Evidence from Denmark

    DEFF Research Database (Denmark)

    Mulalic, Ismir; Rouwendal, Jan


    and derive an expression for the full willingness to pay for characteristics that takes into account the impact on fixed as well as variable costs. We apply the model to the demand for automobiles using rich Danish register data. Estimation reveals considerable heterogeneity and a non-negligible contribution......Many car characteristics, for instance cabin space and engine power, have a positive impact on fixed and variable costs. We extend the hedonic model, that considers only one type of cost, to the situation in which fixed as well as variable costs depend on the characteristics of the durable...... of the variable costs in total willingness to pay. Next we show that under suitable assumptions a structural interpretation of our estimates is possible. We show that the willingness to pay per kilometer driven can be interpreted as a parameter of the utility function and study how it is related to household...

  4. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef


    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  5. A real time fuzzy logic power management strategy for a fuel cell vehicle

    International Nuclear Information System (INIS)

    Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed


    Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy

  6. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik


    Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...... as an approach for reducing and overcoming the volatility of wind power, by implementing storage technology, forecasts and predictive control. The proposed hybrid system, which is suitable for the distributed generation level, consists of a wind generator, an electrolyzer, hydrogen storage and a polymer...

  7. Maximizing power production in a stack of microbial fuel cells using multiunit optimization method. (United States)

    Woodward, Lyne; Perrier, Michel; Srinivasan, Bala; Tartakovsky, Boris


    This study demonstrates real-time maximization of power production in a stack of two continuous flow microbial fuel cells (MFCs). To maximize power output, external resistances of two air-cathode membraneless MFCs were controlled by a multiunit optimization algorithm. Multiunit optimization is a recently proposed method that uses multiple similar units to optimize process performance. The experiment demonstrated fast convergence toward optimal external resistance and algorithm stability during external perturbations (e.g., temperature variations). Rate of the algorithm convergence was much faster than in traditional maximum power point tracking algorithms (MPPT), which are based on temporal perturbations. A power output of 81-84 mW/L(A) (A = anode volume) was achieved in each MFC. 2009 American Institute of Chemical Engineers

  8. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chick, Lawrence A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  9. Power-Controlled CDMA Cell Sectorization with Multiuser Detection: A Comprehensive Analysis on Uplink and Downlink

    Directory of Open Access Journals (Sweden)

    Oh Changyoon


    Full Text Available We consider the joint optimization problem of cell sectorization, transmit power control and multiuser detection for a CDMA cell. Given the number of sectors and user locations, the cell is appropriately sectorized such that the total transmit power, as well as the receiver filters, is optimized. We formulate the corresponding joint optimization problems for both the uplink and the downlink and observe that in general, the resulting optimum transmit and receive beamwidth values for the directional antennas at the base station are different. We present the optimum solution under a general setting with arbitrary signature sets, multipath channels, realistic directional antenna responses and identify its complexity. We propose a low-complexity sectorization algorithm that performs near optimum and compare its performance with that of optimum solution. The results suggest that by intelligently combining adaptive cell sectorization, power control, and linear multiuser detection, we are able to increase the user capacity of the cell. Numerical results also indicate robustness of optimum sectorization against Gaussian channel estimation error.

  10. Power-Controlled CDMA Cell Sectorization with Multiuser Detection: A Comprehensive Analysis on Uplink and Downlink

    Directory of Open Access Journals (Sweden)

    Aylin Yener


    Full Text Available We consider the joint optimization problem of cell sectorization, transmit power control and multiuser detection for a CDMA cell. Given the number of sectors and user locations, the cell is appropriately sectorized such that the total transmit power, as well as the receiver filters, is optimized. We formulate the corresponding joint optimization problems for both the uplink and the downlink and observe that in general, the resulting optimum transmit and receive beamwidth values for the directional antennas at the base station are different. We present the optimum solution under a general setting with arbitrary signature sets, multipath channels, realistic directional antenna responses and identify its complexity. We propose a low-complexity sectorization algorithm that performs near optimum and compare its performance with that of optimum solution. The results suggest that by intelligently combining adaptive cell sectorization, power control, and linear multiuser detection, we are able to increase the user capacity of the cell. Numerical results also indicate robustness of optimum sectorization against Gaussian channel estimation error.

  11. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles (United States)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef


    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  12. Embryonic hybrid cells: a powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes

    Directory of Open Access Journals (Sweden)



    Full Text Available The properties of embryonic hybrid cells obtained by fusion of embryonic stem (ES or teratocarcinoma (TC cells with differentiated cells are reviewed. Usually, ES-somatic or TC-somatic hybrids retain pluripotent capacity at high levels quite comparable or nearly identical with those of the pluripotent partner. When cultured in vitro, ES-somatic- and TC-somatic hybrid cell clones, as a rule, lose the chromosomes derived from the somatic partner; however, in some clones the autosomes from the ES cell partner were also eliminated, i.e. the parental chromosomes segregated bilaterally in the ES-somatic cell hybrids. This opens up ways for searching correlation between the pluripotent status of the hybrid cells and chromosome segregation patterns and therefore for identifying the particular chromosomes involved in the maintenance of pluripotency. Use of selective medium allows to isolate in vitro the clones of ES-somatic hybrid cells in which "the pluripotent" chromosome can be replaced by "the somatic" counterpart carrying the selectable gene. Unlike the TC-somatic cell hybrids, the ES-somatic hybrids with a near-diploid complement of chromosomes are able to contribute to various tissues of chimeric animals after injection into the blastocoel cavity. Analysis of the chimeric animals showed that the "somatic" chromosome undergoes reprogramming during development. The prospects for the identification of the chromosomes that are involved in the maintenance of pluripotency and its cis- and trans-regulation in the hybrid cell genome are discussed.

  13. Simulation of gas and water management strategies in PEM fuel cells for UAV power (United States)

    Wade, Nasir; Smith, Sonya


    Proton exchange membrane fuel cells (PEMFC) a involve a number of complex fluid phenomena that are not well understood. The focus of this research is to design a fuel cell that addresses the issues of gas and water management for the power requirements for an Unmanned Arial Vehicle (UAV). Often in conventional stack design, PEM fuel cells are connected electrically in series to create the desired voltage and feed from a common fuel or oxidant stream. This method of fueling, often leads to an uneven distribution of fluid within the stack, causing issues such as cell flooding, dehydration of membrane and inevitably poor fuel cell performance. Generally, fuel cell designers and developers incorporate higher stoichiometric gas flow rates and use flow field designs with high pressure drops in order to counter this phenomenon, ensuring even gas distribution. This method, although effective for water removal, leads to added cost and higher levels of wasted fuel. Using a simulation based approach we demonstrate the feasibility and effectiveness of an individual fuel and oxidant flow distribution, integrated with an individual sequential exhaust technique for a 6-8 cell stack which outputs 300-500 Watts of power. Using varied exhaust configurations the most optimal active gas management strategy will be outlined and recommended to give the best stack performance.

  14. Development of planar solid oxide fuel cells for power generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q. [AlliedSignal Aerospce Equipment Systems, Torrance, CA (United States)


    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  15. A model to analyze strategic products for photovoltaic silicon thin-film solar cell power industry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Amy H.I. [Department of Technology Management, Chung Hua University, No. 707, Sec. 2, Wu Fu Rd., Hsinchu 300 (China); Chen, Hsing Hung [Faculty of Management and Administration, Macau University of Science and Technology, Avenue Wei Long, Taipa, Macau (China); Kang, He-Yau [Department of Industrial Engineering and Management, National Chin-Yi University of Technology, 35, Lane 215, Sec. 1, Chung San Rd., Taiping, Taichung 411 (China)


    With natural resource scarcity and environmental protection, the use of renewable energy has become a promise for offering clean and plentiful energy. Photovoltaic (PV) solar cell is one of the emerging renewable energy applications; however, it suffers a large difficulty in high production cost with low conversion efficiency currently. Hence, an urgent pressure to upgrade technology and to formulate product strategy is evident in the solar cell power industry. In order to prosper PV silicone solar cell power industry, the paper develops a conceptual model, which is composed of a fuzzy analytic network process with interpretive structural modeling and benefits, opportunities, costs and risks, to help analyze suitable strategic products. The empirical study shows that the conceptual model can effectively and precisely handle such a complicated problem and can lead to an outstanding performance result. (author)

  16. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner


    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  17. In-cell refabrication of experimental pencils from pencils pre-irradiated in a power reactor

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.


    For the fuel-cladding study, small irradiated pencils were fabricated in a hot cell from long elements taken from power reactors. This reconstitution in a hot cell makes it possible to: - avoid long and costly fabrications of pencils and pre-irradiations in experimental reactors, - perform re-irradiations on very long fuel elements from power reactors, - fabricate several small pencils from one pre-irradiation pencil having homogeneous characteristics. This paper describes (a) the various in-cell fabrication stages of small pre-irradiated pencils, stressing the precautions taken to avoid any pollution and modifications in the characteristics of the pencil, in order to carry out a perfectly representative re-irradiation, (b) the equipment used and the quality control made, and (c) the results achieved and the qualification programme of this operation [fr

  18. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection (United States)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart


    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  19. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. (United States)

    Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E


    Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping


    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m2. Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated atmore positive potentials, indicating that bacterial activitywas significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associatedwith a decreasing electroactivity of the anodic biofilm in the high potential region,which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials. © 2012 Elsevier B.V.

  1. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Margarida Serra

    Full Text Available The successful implementation of human embryonic stem cells (hESCs-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i single cells, ii aggregates and iii immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration and high cell recovery yields (>70% after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

  2. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells (United States)

    Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.


    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261

  3. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed (United States)

    Berton, Jeffrey J.


    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  4. Cotton fiber: a powerful single-cell model for cell wall and celluloseresearch

    Directory of Open Access Journals (Sweden)

    Candace Hope Haigler


    Full Text Available Cotton fibers are single-celled extensions of the seed epidermis. They can be isolated in pureform as they undergo staged differentiation including primary cell wall synthesis duringelongation and nearly pure cellulose synthesis during secondary wall thickening. Thiscombination of features supports clear interpretation of data about cell walls and cellulosesynthesis in the context of high throughput modern experimental technologies. Priorcontributions of cotton fiber to building fundamental knowledge about cell walls will besummarized and the dynamic changes in cell wall polymers throughout cotton fiberdifferentiation will be described. Recent successes in using stable cotton transformation to altercotton fiber cell wall properties as well as cotton fiber quality will be discussed. Future prospectsto perform experiments more rapidly through altering cotton fiber wall properties via virusinduced gene silencing will be evaluated.

  5. Multi-objective optimization for hybrid fuel cells power system under uncertainty (United States)

    Subramanyan, Karthik; Diwekar, Urmila M.; Goyal, Amit

    One of the major applications of fuel cells is as onsite stationary electric power plants. Several types of configurations have been hypothesized and tested for these kinds of applications at the conceptual level but hybrid power plants are one of the most efficient. These are designs that combine a fuel cell cycle with other thermodynamic cycles to provide higher efficiency. Generally, the heat rejected by the fuel cell at a higher temperature is used in a bottoming cycle to generate steam. In this work we are considering a conceptual design of a solid oxide fuel cell-proton exchange membrane (SOFC-PEM) fuel cell hybrid power plant [R. Geisbrecht, Compact Electrochemical Reformer Based on SOFC Technology, AIChE Spring National Meeting, Atlanta, GA, 2000] in which the high temperature SOFC fuel cell acts both as electricity producer and fuel reformer for the low temperature PEM fuel cell (PEMFC). The exhaust from the PEM fuel cell goes to a waste hydrogen burner and heat recovery steam generator that produces steam for further utilizations. Optimizing this conceptual design involves consideration of a number of objectives. The process should have low pollutant emissions as well as cost competitive with the existing technology. The solution of a multi-objective optimization problem is not a single solution but a complete non-dominated or Pareto set, which includes the alternatives representing potential compromise solutions among the objectives. This makes a range of choice available to decision makers and provides them with the trade-off information among the multiple objectives effectively. This paper presents the optimal trade-off design solutions or the Pareto set for this hybrid power plant through a multi-objective optimization framework. This hybrid technology is new and the system level models used for fuel cells performance have significant uncertainties in them. In this paper, we characterize these uncertainties and study the effect of these uncertainties

  6. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. (United States)

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang


    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  7. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  8. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.


    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  9. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)


    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  10. Globalization of the automobile industry in China: dynamics and barriers in greening of the road transportation

    International Nuclear Information System (INIS)

    Gan Lin


    This article describes the state of the automobile industry and urban road transportation management in China. It reviews how the automobile industry is evolving to respond to challenges in economic development, environmental regulations, and technological change. The dynamics and barriers resulting from technological change of automobiles in response to reduction of exhaust emissions and energy-efficiency improvement are analyzed. It is argued that consideration of externality costs should be integrated in automobile industrial policymaking and transportation management. Efforts need to be made to use more economic incentives for emissions reduction, and to promote technological change for cleaner vehicle development. This paper questions the current government policy of encouraging private car ownership, and suggests that improvement in public transportation systems, stronger emissions control, and technology innovation on environmental friendly automobile technologies would be relevant to China's drive toward sustainable transportation development. Social inequities resulted from automobile use is also stressed in the analysis

  11. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. (United States)

    Clark, Stephen J; Lee, Heather J; Smallwood, Sébastien A; Kelsey, Gavin; Reik, Wolf


    Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

  12. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.


    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  13. 75 FR 65046 - In the Matter of Cape Systems Group, Inc., Caribbean Cigar Company, Casual Male Corp., Cell Power... (United States)


    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Cape Systems Group, Inc., Caribbean Cigar Company, Casual Male Corp., Cell Power... there is a lack of current and accurate information concerning the securities of Cell Power Technologies...

  14. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Bram Veenhuizen; J.C.N. Bosma


    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this


    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...

  16. Load-following mode control of a standalone renewable/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Bizon, Nicu


    Highlights: • A FC hybrid power source (HPS) fed by renewable energy sources (RESs) is proposed. • The fuel cell (FC) operates as a backup to RESs based on the load-following strategy. • The energy storage device (ESS) will operate in charge-sustaining mode during a load cycle. • The ESS optimal design considers the peaks of RESs power and the imposed SOC window. • The FC/RES/ESS HPS is ideal to be used for standalone plug-in charge station. - Abstract: A hybrid power source (HPS), fed by renewable energy sources (RESs) and fuel cell (FC) sources, with an energy storage device (ESS) to be suitable for distributed generation (DG) applications, is proposed herein. The RESs could be a combination of photovoltaic (PV) panels and wind turbines (WT) based on common DC-bus, which are used as the primary DC source. The FC operates as a backup, feeding only the insufficiency power from the RESs based on the load-following strategy. The battery/ultracapacitor hybrid ESS operates as an auxiliary source for supplying the power deficit based on dynamic power balance strategy (the transient power – mainly via the ultracapacitors stack, and the steady-state power – mainly via the FC and batteries stack). If the FC stack is designed and operates based on average load-following strategy, then the ESS will operate in charge-sustaining mode during a load cycle. This feature permits to optimize the batteries stack capacity and extend its life time as well. The ultracapacitors stack can be designed considering the peaks of RESs power on DC-bus and the imposed window for its state-of-charge (SOC). This FC/RES/ESS HPS is ideal to be used for standalone plug-in charge station (PCS) or as DG system grid connected. In the last case, which is not analyzed here, the energy management unit (EMU) that communicates with smart grid will establish the moments to match the HPS power demand with grid supply availability, stabilizing the grid. Using load and RES power profiles that have

  17. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. (United States)

    Rezaei, Farzaneh; Richard, Tom L; Brennan, Rachel A; Logan, Bruce E


    A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 +/- 25 and 84 +/- 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 +/- 27 mW/ m2 (Chitin 20) and 76 +/- 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 +/- 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 +/- 12 to 62 +/- 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.

  18. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae


    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  19. A comparison between fuel cells and other alternatives for marine electric power generation

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya


    Full Text Available The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last half-century has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  20. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. (United States)

    Su, Chao; Shao, Zongping; Lin, Ye; Wu, Yuzhou; Wang, Huanting


    An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 μm), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 °C. It greatly promises an intriguing fuel cell concept for efficient power generation.