WorldWideScience

Sample records for cell powered automobiles

  1. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  2. Study of hydrogen-powered versus battery-powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J.J. Jr.; Greayer, W.C.; Nichols, R.J.; Escher, W.J.D.

    1979-05-01

    A study conducted to compare the technological status and the resultant potential vehicle characteristics for hydrogen- and battery-powered automobiles that could be produced from 1985 to 2000 is documented in 3 volumes. The primary objectives of the study were: the assessments of applicable energy storage and propulsion technology for the two basic vehicle types (applied to four-passenger cars); a rigorous comparison of vehicle weight, size, and usefulness versus design range; and an investigation of the relative efficiencies of expending energy from various primary sources to power the subject vehicle. Another important objective, unique to hydrogen powered vehicles, was the assessment of the technology, logistics, and cost implications of a hydrogen production and delivery capability. This volume, Volume III, contains three major sections: the assessment of battery electric vehicle technology for energy storage and the drivetrain system; the technical and economic comparison of hydrogen- and battery-powered vehicles derived primarily from data in the previous vehicle technology assessments, with consideration of alternative energy sources; and a series of appendices that support the vehicle definitions and comparisons.

  3. Solar powered automobile automation for heatstroke prevention

    Science.gov (United States)

    Singh, Navtej Swaroop; Sharma, Ishan; Jangid, Santosh

    2016-03-01

    Heatstroke inside a car has been critical problem in every part of the world. Non-exertional heat stroke results from exposure to a high environmental temperature. Exertional heat stroke happens from strenuous exercise. This paper presents a solution for this fatal problem and proposes an embedded solution, which is cost effective and shows the feasibility in implementation. The proposed system consists of information sharing platform, interfacing of sensors, Global System Mobile (GSM), real time monitoring system and the system is powered by the solar panel. The system has been simulated and tested with experimental setup.

  4. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  5. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    A K Shukla; C L Jackson; K Scott

    2003-02-01

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of $ca$. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer–electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer–electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

  6. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  7. Brand rivalry, market segmentation and the pricing of optional engine power on automobiles

    OpenAIRE

    Verboven, Frank

    1996-01-01

    This paper analyzes how the prices strategies for base automobile models may differ from those for premium models, sold with extra engine power. The popular monopoly model of market segmentation according to willingness to pay for quality is compared with two models of brand rivalry. In a first scenario, consumer are fully informed of all prices; in a second scenario, consumers are initially only informed about the prices of base models , due to selective price advertising strategies. Impli...

  8. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  9. Report on commissioned business for fiscal 1997. Development of new power storage system for cells and development of technology for distributed power storage (research for a zinc/air cell system for automobiles); 1997 nendo itaku gyomu hokokusho. Shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu (denki jidoshayo aen kuki denchi system chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the above, it is discussed whether such a system is feasible in Japan. A zinc/air cell system requires some special plants for zinc regeneration, etc. It is necessary to build a zinc refining plant and to install dozens of electrode replacing facilities in an area dozens of kilometers in diameter with the plant at the center. For such a system to be functional, there have to be several tens of thousands of automobile users in a limited area. In Japan, so large a number will not be found anywhere even if the appeal is directed to those in the postal service and electric utilities. There will be no economic success in Japan, different from in Germany. As for the economic comparison between a zinc/air cell system and natural gas system, the two will be equivalent to each other as far as the use of the quick filling stations for the natural gas automobiles remains as it is. When the number in consideration is so large as several tens of thousands, however, the natural gas system will turn out to be economically superior to the zinc/air cell system. 19 figs., 29 tabs.

  10. Nonpolluting automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Hoolboom, G.J.; Szabados, B. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1994-11-01

    The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller for the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.

  11. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    Science.gov (United States)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  12. Stirling engines for automobiles

    Science.gov (United States)

    Beremand, D. G.

    1979-01-01

    The results of recent and ongoing automobile Stirling engine development efforts are reviewed and technology status and requirements are identified. Key technology needs include those for low cost, high temperature (1300 - 1500 F) metal alloys for heater heads, and reliable long-life, low-leakage shaft seals. Various fuel economy projections for Stirling powered automobiles are reviewed and assessed.

  13. Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.

    Science.gov (United States)

    Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion

    2007-06-01

    This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (paverage peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (ppower hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered. PMID:17474028

  14. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    OpenAIRE

    Ozomata David AHMED

    2011-01-01

    Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, openi...

  15. Solar Energy Automobile

    OpenAIRE

    HE Jianhua

    2014-01-01

    The thesis was to design a solar energy automobile, which is using solar power as energy re-source. At the moment, Finland was chosen as an example place. It was necessary to calculate the related data, which are the solar angle and the day length when designing the solar energy automobile. Also the seats and dashboard to improve the performance. Actually, in Finland it is possible to use solar energy automobile in summer. But in winter, the day length is so short and the solar constant i...

  16. Use of powered electric vehicles in automobile fleets. Help elements for decision; Utilisation de vehicules electriques dans les flottes automobiles. Elements d`aide a la decision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    One of the primary causes of degradation in the quality of urban life is automobile transportation. The introduction of electric vehicles within automobile fleets can help mitigate some of the associated impacts. This guide has assembled a set of technical tools vital to all fleet managers, whether they be with public-sector agencies or companies, who are involved in vehicle-purchasing decisions. It deals with the specific issues related to the use, maintenance and acquisition of electric vehicles. Besides those elements intended to convince both decision-makers and users alike, the automobile fleet manager will find herein, as a conclusion, some examples of comparative economic assessments. These serve to highlight the opportunities available for using electric vehicles in a wide variety of situations. (authors) 18 refs.

  17. 电动汽车:一个用电增长点的考察%Electric Automobile: Review of the Point of Growth in Electric Power Consumption

    Institute of Scientific and Technical Information of China (English)

    张媛; 杨定顺; 陈虹; 刘洁; 闫晓生

    2002-01-01

      "Spread of marketing needs to be considered from thefact of Tianjin City. At least electric automobile is a goodsuggestion on it." said Kou Shiqing, general manager ofTianjin Electric Power Company. In order to widen themarket of electric power and improve the atmosphere qual-ity of city, Tianjin Electric Power Company invited leaderfrom city economy.……

  18. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  19. Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices.

    Science.gov (United States)

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr4+:YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr4+:YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COVPmax) and of indicated mean effective pressure (COVIMEP) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COVPmax and COVPmax and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs. PMID:26831972

  20. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    Directory of Open Access Journals (Sweden)

    Ozomata David AHMED

    2011-06-01

    Full Text Available Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, opening of any door will disengage the device and the engine will stop. To restart the engine, the doors must be closed and the codes rendered sequentially-in this case the codes are 1974.

  1. Regulation on power efficiency in the automobile; Regulacion sobre eficiencia energetica en el automovil

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Susano, Armando; Romero de Vivar Uvaldo, Pascual [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    In this article it is presented a brief analysis of one of the regulations on the yield of fuel consumption of the light vehicles that promoted substantial changes in the Mexican automotive industry, the decree denominated PREMCE (Average of minimum fuel yield by company), as well as some international experiences relative to the subject. It is also indicated the evolution, in the last years, of the average yields of fuel consumption (Km/L) in Mexico in the new automobiles and the more important technological factors that affect their energy efficiency. [Spanish] En este articulo se presenta un breve analisis de una de las regulaciones sobre el rendimiento de consumo de combustible de los vehiculos ligeros que promovio cambios sustanciales en la industria automotriz mexicana, el decreto denominado Premce (Promedio de rendimiento minimo de combustible por empresa), asi como algunas experiencias internacionales relativas al tema. Se senala tambien la evolucion, en los ultimos anos, de los rendimientos promedio de consumo de combustible (Km/L) en Mexico en los automoviles nuevos y los factores tecnologicos mas importantes que influyen en su eficiencia energetica.

  2. 汽车电动滑门设计研讨%Design Research of automobile Power Sliding Door

    Institute of Scientific and Technical Information of China (English)

    崔炳林; 赵云聪

    2014-01-01

    Automobile Power sliding doors (PSD) system is advanced sliding door system which integrated electronic intelligent control technology and sensor technology based on the sliding door system,and which is widely used in luxury commercial car, and which is more and more popular for consumers because of both the opening convenience of sliding side door and human-machine intelligent controlling.Refer to JAC M6 item,this article describes the technical components and theory of the automotive power sliding door subsystem, and achieves the innovative development of the power sliding door system.%汽车电动滑门(PSD)系统是在滑门系统的基础上,集成电子智能控制技术和传感器防夹技术的高级滑门系统,广泛应用于高档豪华商务车,兼具了滑门侧开启方便性和人机智能控制性,越来越受到消费者的青睐。本文结合江淮M6项目,介绍了汽车电动滑门的各子系统构成和原理,实现了电动滑门系统的自主开发。

  3. Automobile with fuel cell and supercapacitor drive; Personenwagen mit Brennstoffzellen und Supercap-Antrieb - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Ph.

    2002-12-15

    In a Volkswagen BORA a power train has been realized, which includes a fuel cell system consisting of 6 stacks of 8 kW electrical power output each, an electrical storage device made of 282 supercap cells storing 360 Wh of electrical energy, a DC/DC converter and an electric motor which delivers up to 75 kW. The power distribution between supercaps and fuel cell is managed by an energy management device, which optimizes the distribution taking the actual operation points into account. The fuel cell system operates in a wide range with an efficiency higher than 40%. The power train has been integrated in a five seat car. This car named HY.POWER{sup R}, realized as technology platform, drove over the Simplon pass (elevation 2000 m over sea level) on 16 January 2002. This test drive proved the maturity of this concept to drive using this technology on public roads and that also severe operating conditions can be handled successfully. The key aspects of that concepts are the new manufacturing process of the bipolar plates for the fuel cells, the system configuration of the fuel cell system and the enhanced energy density of the supercap cells. The combination of a fuel cell system and of a supercap storage device, together with the integration of the DC/DC converter lead to a new power train concept. The consumption in the NEDC is equal to the energy of 5-6 l gasoline, which is quite impressive if it is remembered that the car has an empty mass of nearly 2000 kg. The HY.POWER{sup R} has been used heavily for the communication of the new technology to the public. The first event was the test drive across the Simplon pass. The main other events was the international auto motor show in Geneva in March 2002 and the presentation of the vehicle at the Earth Summit in Johannesburg in September 2002. (author)

  4. 基于温差发电的汽车电源系统设计%Design of Automobile Power System Based on Thermoelectric Generation

    Institute of Scientific and Technical Information of China (English)

    刘贻华

    2014-01-01

    为了减少传统汽车的燃油消耗以及提高汽车电池的使用寿命,通过对温差发电技术的研究,利用汽车燃烧产生的废气热量进行发电,将温差发电系统与传统汽车电源系统进行优化,为汽车的用电设备进行充电,可以有效的减少汽车燃油消耗以及提高车用电池的寿命,同时也达到相应的环保功用。%In order to reduce the fuel consumption of traditional automobiles and improve the battery life of cars, on the basis of the re-search of the thermoelectric generation technology, waste heat from cars is used for power generation. The optimization with the combi-nation of thermoelectric power generation system and the traditional automobile power system, which is used for automobile electric e-quipment charging can effectively reduce vehicle fuel consumption and improve vehicle battery life, at the same time, have correspond-ing environmental protection function.

  5. Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle's fuel consumption

    International Nuclear Information System (INIS)

    The current work discusses means to utilize low-grade small-scale energy in vehicle exhaust gases, to reduce the vehicle's fuel consumption and to make it run more environmental friendly. To utilize the energy in the exhaust gas, a CO2 bottoming system in the vehicle's engine system is proposed. Several basic cycles-according to the different design concepts-are presented, and the efficiencies are calculated using Engineering Equation Solver (EES). Several thermodynamic models in EES show that after system optimization, in CO2 Transcritical power cycle with a gas heater pressure of 130bars and 200 deg.. C expansion inlet temperature, about 20% of energy in the exhaust gas can be converted into useful work. Increasing the pressure in the gas heater to 300 bars and with same expansion inlet temperature, about 12% of exhaust gas energy can be converted. When raising the pressure both in the gas cooler and in the gas heater, the cycle runs completely above the critical point, and the efficiency is about 19%. Besides, in the CO2 combined cycle, the system COP is 2.322 and about 5% of exhaust gas energy can be converted

  6. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 2. enl. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [Berkeley Univ., CA (United States)]|[Paris Univ. (France)]|[Pisa Univ. (Italy)]|[Perugia Univ. (Italy)]|[Westsaechsischen Hochschule Zwickau (Germany)

    2008-07-01

    The implementation possibilities of future drive concepts - from hybrid systems comprising an electric motor and an internal combustion engine to fuel cells to alternative fuels like hydrogen or alcohol - will depend largely on quality criteria, e.g. power density, rotary momentum, acceleration characteristics, specific energy consumption, emissions of chemical substances, and noise. The boundary criteria for the introduction of realizeable concepts of alternative drives for motor cars will be defined by the availability and storability of the envisaged fuels, technical complexity, cost, safety, infrastructure and service. The book presents and analyzes the processes, drives and energy sources that can be combined in complex energy management systems for motor cars in accordance with the aforementioned criteria. Knowledge about these facts is indispensable for the development of new concepts. The 2nd edition describes many new developments in car propulsion systems as well as their combinations, new energy sources, energy converters and energy stores. All contents and literature reflect the latest state of science and technology. (orig.) [German] Ueber die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von Hybridsystemen Elektro-/Verbrennungsmotor ueber Brennstoffzellen bis zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden fundierte Kriterien der Qualitaet eines Antriebs entscheiden. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind dafuer wichtige Merkmale zur Qualitaetsbeurteilung. Die Verfuegbarkeit und die Speicherfaehigkeit vorgesehener Energietraeger, die technische Komplexitaet, Kosten, Sicherheit, Infrastruktur und Service werden die Randbedingungen fuer die Einfuehrung realisierbarer Konzepte alternativer Antriebe fuer Automobile stellen. Die Uebersicht und die Analyse der Prozesse, Antriebsmaschinen und Energietraeger, die

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  8. Fuel cell power trains for road traffic

    Science.gov (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  9. Infrared power cells for satellite power conversion

    Science.gov (United States)

    Summers, Christopher J.

    1991-01-01

    An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.

  10. Hybrid Voltage Regulator for Automobiles

    OpenAIRE

    Sei-Ichi Denda; Tadashi Takahashi; Akihiro Sawamura

    1981-01-01

    In the course of the development of hybrid voltage regulators for automobile use, increasing the reverse blocking voltage with decreasing of saturation voltage for output power darlington transistors, the capability of monolithic IC chip against surge pulses generated in cars, and an improvement of the pattern design of thick film in order to withstand temperature cycling, have been important subjects. Power darlingtons have more than 150 V of reverse voltage as well as large secondary breakd...

  11. Voice control in automobiles; Sprachbedienung im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, D.; Sitter, W. [Siemens VDO Automotive AG (Germany). Div. Infotainment Solutions; Kaemmerer, B. [Siemens Corporate Technology (Germany). Fachzentrum Professional Speech Processing

    2006-06-15

    Voice control simplifies handling the growing number of assistance, communication and convenience systems in automobiles. Siemens VDO Automotive have used the company's comprehensive know-how in the field of voice and communications machines from other sectors - particularly the telecommunications sector - to develop a voice control system for automobiles. It is distinguished by its intelligent architecture with high performance and extremely user-friendly features. (orig.)

  12. Automobile accessories: Assessment and improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M. [Univ. of Nevada, Las Vegas, NV (United States)

    1995-11-01

    With mandates and regulatory policies to meet both the California Air Resources Board (CARB) and the Partnership for a New Generation of Vehicles (PNGV), designing vehicles of the future will become a difficult task. As we look into the use of electric and hybrid vehicles, reduction of the required power demand by influential automobile components is necessary in order to obtain performance and range goals. Among those automobile components are accessories. Accessories have a profound impact on the range and mileage of future vehicles with limited amounts of energy or without power generating capabilities such as conventional vehicles. Careful assessment of major power consuming accessories helps us focus on those that need improvement and contributes to attainment of mileage and range goals for electric and hybrid vehicles.

  13. The automobile share

    International Nuclear Information System (INIS)

    Out of a conversion of 120 billions metric tons of fossil carbon per year 1 billion are traffic related. But this amount is growing steadily. The global automobile density is about 10 automobiles per capita. It grows with 1.7% per year, as fast as the population. The number of automobiles doubles in 25 years. In all groups of developed countries the automobile density increased from 5 to 50 automobiles per capita in less than 50 years so far. Where is the fuel for the 1 billion automobiles of the year 2030 or 2050? Can one reduce this number or what chances does one have to reduce the adverse consequences? Whatever the number of motor vehicles will be, man will have the chance to reduce fuel consumption and therefore CO2-emission together with other emissions considerably

  14. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies.

    Science.gov (United States)

    Gill, Saar

    2016-08-01

    Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer. PMID:27136938

  15. Electric automobil - wishes and reality

    OpenAIRE

    Duchoň, Bedřich; Opava, Jaroslav

    2010-01-01

    The demands on cars energy resources are given by the following items: power, speed, acceleration, operation range. All these factors are under balance: future wishes and contemporary reality. The proposal is dedicated to the analysis of demands related to the electric automobiles. As a hopefulness solution of these transport means can be seen for city transport (forwarding, shopping, postal services etc). The technical and economic approaches are discussed, too.

  16. Energy scenario after oil peak for automobiles, food system.. Is hydrogen by nuclear power plant good candidate from view of Energy Profit Ratio

    International Nuclear Information System (INIS)

    Oil is usefully for us for automobiles. A hydrogen vehicle is thought as a better candidate for an ordinal vehicle after oil peak. Nuclear hydrogen is the best choice to make hydrogen from water compared to the other way. From view of EPR we must consider whole process, such as making hydrogen by a nuclear power plant, storage it in a tank as liquid, carry it by a tanker to a gas stand ( a hydrogen stand),keep it as high pressure in a stand and supply it to a car as high pressure like from 35 to 70 Pa. I would like to introduce the EPR value of hydrogen vehicle and the points to improve. I would like to introduce other candidates like bio-ethanol from corn and sugar or an electric vehicle or some real candidates by EPR. I would like to show EPR value on food system. Then we will have to seek Energy generation ways which are high EPR value up to 10 compensating low food system EPR value. Nuclear power is the best way to achieve high EPR value. (authors)

  17. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 3. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [California Univ., Berkeley, CA (United States); Paris-1 Univ., 75 (France); Pisa Univ. (Italy); Perugia Univ. (Italy); Kronstadt Univ. (Russian Federation)

    2012-07-01

    This book describes and assesses on the basis of the latest research and development projects worldwide what the possibilities are for the realisation of future drive concepts, ranging from battery-driven electromotors to hybrid systems combining electromotor and combustion engine to alternative energy resources such as hydrogen or alcohol. Power density, torque band, acceleration characteristics, specific energy consumption and chemical and noise emissions are the most important criteria for assessing the quality of a drive configuration. The boundary conditions for the introduction of alternative automotive drives are determined by the availability or production characteristics and the storability of the energy resources in question as well as by the degree of technical complexity, costs, safety, infrastructure and service. This book provides an updated overview and analysis of the processes, prime movers and energy resources that can be combined in complex energy management systems for automobiles. Up-to-date information of this kind is indispensable for the development of new concepts. The contents in overview: current data and facts on the development of new concepts; compact overview and analysis of processes, prime movers and energy resources; methods and solutions in designing alternative drives. [German] Die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von batteriebetriebenen Elektromotoren und Hybridsystemen bestehend aus Elektro- und Verbrennungsmotor ueber Brennstoffzellen bis hin zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden auf Basis neuesten Forschungs- und Entwicklungsarbeiten weltweit praesentiert und bewertet. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind wichtige Merkmale zur Beurteilung der Qualitaet einer Antriebskonfiguration. Die Verfuegbarkeit oder die Herstellungsmerkmale sowie die Speicherfaehigkeit

  18. Illustrating Newton's Second Law with the Automobile Coast-Down Test.

    Science.gov (United States)

    Bryan, Ronald A.; And Others

    1988-01-01

    Describes a run test of automobiles for applying Newton's second law of motion and the concept of power. Explains some automobile thought-experiments and provides the method and data of an actual coast-down test. (YP)

  19. The automobile in Japan

    OpenAIRE

    Lone, Stewart; Madeley, Christopher

    2005-01-01

    Lone: The 1920s saw the emergence in Kansai of modern industrial urban living with the development of the underground, air services; wireless telephones, super express trains etc. Automobiles dominated major streets from the early 1920s in the new Age of Speed. Using Kyoto city as an example, the article covers automobile advertising, procedures for taxis, buses and cars and traffic safety and regulation. Madeley: Nissan Motor Company had a longer connection with the British industry than any...

  20. Trends in chassis and automobile electronics components

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Ulrich [Volkswagen AG, Wolfsburg (Germany)

    2008-07-01

    The rapidly-growing importance of electronics in automobile construction is in part determined by the debate on sustainability and the clear trend towards electric power trains. Another factor, however, is the decisive impact of electronics on the further development of components, e.g. for chassis. Apart from environmental protection, key motivators for component development include comfort, safety, infotainment and driver assistance. (orig.)

  1. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  2. Price Variability in Automobile Insurance

    OpenAIRE

    Joseph A. Fields; Emilio C. Venezian; David Jou

    1992-01-01

    In this paper the causes of variation in automobile insurance prices are examined within a small and homogenous state. The central hypothesis of interest is the relation between the price of automobile insurance and the quality of the product. The findings here indicate that the market is one which contains substantial frictions, making the search for automobile insurance products a worthwhile activity for consumers.

  3. Northeast:Automobile Feast

    Institute of Scientific and Technical Information of China (English)

    Janet

    2008-01-01

    @@ The northeast has a lot of firsts in the history of China's industrial development,including the first automobile factory-FAW.Due to the system problem and many other complicated factors,quite a number of the northeastern industry enterprises are out of date during the China's economic transition period.

  4. On the automobile lightweight

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Yi Hongliang; Lu Hongzhou; Wan Xinming

    2012-01-01

    The significance, description parameters, evaluation method, implement way and design for lightweight of au- tomobile are comprehensively reviewed. The relationship among the performances of auto parts & components, the prop- erties of materials and application of advanced technologies is also elaborated. According to recently related progress of lightweight and authors' research and developing work, lightweight of automobile is comprehensively and systematically overviewed.

  5. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  6. 49 CFR 523.4 - Passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Passenger automobile. 523.4 Section 523.4... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.4 Passenger automobile. A passenger automobile is any automobile (other than an automobile capable of off-highway operation)...

  7. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  8. The challenges of automobile-dependent urban transport strategy

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir

    2015-01-01

    Full Text Available The fundamental aims of sustainable urban development and the pro-automobile oriented economic development are on a collision course. It is obvious that automobile-dependent urban development is under heavy/powerful influence of the automobile lobby (automobile and oil industries, along with construction. In this domain famous land-use-transportation studies (or ‘grand transportation studies’ are, unfortunately, still prevailing - a vicious circle of self-fulfilling prophecy of congestion, road building, sprawl, congestion and more road building. Until recently, it was commonly thought that investment in public transport was not economically sustainable and that focusing on the development of the automobile industry and financing the construction of roadways stimulated economic growth. In this paper we clearly show that automobile industry is now overcapitalized, less profitable than many other industries (and may become even less profitable in the future, that transport market is characterized with huge distortions (more than a third of motor-vehicle use can be explained by underpriced driving, while new road investment does not have a major impact on economic growth (especially in a region with an already well-developed infrastructure, and that pro-automobile transport strategy inexorably incurs harmful global, regional and local ecological consequences. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  9. The automobile after tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L. [Swiss Federal Inst. of Technology (ETH), Zurich (Switzerland)

    1996-11-01

    This talk discusses the technical options available for automobiles within the next 5 to 10 years. With the objective to reduce consumption and pollution, several alternative approaches are presented and analyzed using simplified but realistic calculations. Main emphasis is laid on CO{sub 2} emission of the complete energy transformation path from the primary energy carrier to the energy dissipated in test cycles. It is shown that no single optimal solution exist but that a trade-off between consumption, pollution and cost must be made for each specific situation. (author) 17 figs., 2 tabs.

  10. Automobile Club CERN

    CERN Multimedia

    Automobile Club CERN

    2010-01-01

     L’Assemblée Générale Ordinaire de «L’Automobile Club du CERN» s’est tenue le mercredi 12 janvier 2010. Le Président, J. Pierlot, souhaite la bienvenue aux membres présents, annonce l’agenda et résume les activités et événements du club pour l’année 2009. Le Club compte environ 600 membres, une petite diminution par rapport aux précédentes années dû surtout aux départs anticipés à la retraite. La cotisation reste inchangée : 50 CHF. Notre trésorier, E. Squadrani, présente de façon détaillée la situation du compte d’exploitation pour 2009 ainsi que le bilan de l’Automobile Club. Les comptes sont équilibrés, la situation de la trés...

  11. Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.

    1999-01-01

    Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

  12. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700oC. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  13. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. 19 CFR 148.39 - Rented automobiles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rented automobiles. 148.39 Section 148.39 Customs... automobiles. (a) Importation for temporary period. An automobile rented by a resident of the United States... (HTSUS) (19 U.S.C. 1202), without payment of duty. The automobile shall be used for the transportation...

  15. 49 CFR 523.3 - Automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Automobile. 523.3 Section 523.3 Transportation..., DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.3 Automobile. (a) An automobile is any 4-wheeled... pounds and less than 10,000 pounds gross vehicle weight are determined to be automobiles: (1)...

  16. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  17. Chery Automobile: Chinese Firms catching up

    OpenAIRE

    Zhang, Ying; Yang, Sheng Yun

    2015-01-01

    textabstractChery Automobile Co., Ltd. is one of the few private automobile companies in China. Compared to state automobile companies, it lacks adequate resources and state support; compared to joint-venture brands, it cannot leverage popular and profitable international models. Despite these obstacles, Chery has developed dramatically over the last decade, becoming the top automobile exporter among all automobile companies in China. Strategic alliances served as the foundation of its amazin...

  18. The Linguistic Features of English Automobile Advertisements

    Institute of Scientific and Technical Information of China (English)

    李琼璐

    2014-01-01

    Household cars are largely demanded today, stimulating the economic development throughout the automobile industry. To enlarge market, all automobile producers pay great efforts to advertisements which result in a large quantity of automobile advertisements. Due to the rare analysis on the linguistic features of automobile advertisements, this essay makes a specific study on this. Analysis will be done through the perspectives of the lexical level, the syntactic level and the rhetoric level. Hence, valid references could be offered to future automobile advertisers.

  19. Automobile Driving and Aggressive Behavior

    OpenAIRE

    Novaco, Raymond W.

    1991-01-01

    Automobile driving and aggressive behavior have had an extensive association. Themes of dominance and territoriality have long been part of automobile driving, which has also involved flagrant assaultive actions. Recent episodes of roadway violence in metropolitan areas have raised community concern about aggressive behavior in driving, although common beliefs about why such violence occurs can be seen as pseudoexplanations. Various themes in the psychology of aggression are presented as they...

  20. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  1. Regulation of Power Conversion in Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SHEN Mu-zhong; ZHANG J.; K. Scott

    2004-01-01

    Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the equilibrium potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs. the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.

  2. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang;

    2013-01-01

    propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power......A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric......, whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental...

  3. An impending platinum crisis and its implications for the future of the automobile

    International Nuclear Information System (INIS)

    The global demand for platinum has consistently outgrown supply in the past decade. This trend likely will continue and the imbalance may possibly escalate into a crisis. Platinum plays pivotal roles in both conventional automobile emissions control and the envisioned hydrogen economy. A platinum crisis would have profound implications on energy and environment. On the one hand, inadequate platinum supply will prevent widespread commercialization of hydrogen fuel-cell vehicles. On the other hand, expensive platinum may enhance the competitiveness of hybrid, plug-in hybrid, and battery-powered electric cars. Policymakers should weigh the potential impacts of a platinum crisis in energy policy.

  4. System Studies of Fuel Cell Power Plants

    OpenAIRE

    Kivisaari, Timo

    2001-01-01

    This thesis concerns system studies of power plants wheredifferent types of fuel cells accomplish most of the energyconversion. Ever since William Grove observed the fuel cell effect inthe late 1830s fuel cells have been the subject or more or lessintense research and development. Especially in the USA theseactivities intensified during the second part of the 1950s,resulting in the development of the fuel cells used in theApollo-program. Swedish fuel cell activities started in themid-1960s, w...

  5. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  6. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  7. 49 CFR 176.90 - Private automobiles.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive)...

  8. Determinants of automobile loan default and prepayment

    OpenAIRE

    Sumit Agarwal; Ambrose, Brent W.; Souphala Chomsisengphet

    2008-01-01

    The authors examine whether a borrower’s choice of automobile reveals information about future loan performance. They find that loans on most luxury automobiles have a higher probability of prepayment, while loans on most economy automobiles have a lower probability of default, even when holding traditional risk factors, such as income and credit score, constant.

  9. ORGANIC EMISSIONS FROM AUTOMOBILE INTERIORS

    Science.gov (United States)

    The report gives results of an evaluation of six subcompact automobiles for the emission of vinyl chloride monomer (VCM) and other organics into the passenger compartment. Evaluated were a Ford Pinto, AMC Gremlin, GMC Vega, GMC Chevette, NMC Datsun 710, and VW Rabbit. VCM was qua...

  10. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  11. Air breathing lithium power cells

    Science.gov (United States)

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  12. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-03-30

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  13. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  14. The automobile and environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Pocci, G.

    1979-10-01

    Actions taken by Expert's Group WP 29 of the United Nations Economic Commission for Europe concerning the protection of the environment from automobile pollution are reported. Regulation 15, adopted by the group, establishes tests and sets limits for the amounts of carbon monoxide, hydrocarbons and nitrogen oxides emitted from internal combustion engine automobile exhaust and crankcases under urban and idling conditions. Regulation 29 specifies limits to the same pollutants emitted from diesel engines, to be determined by measurements of the opacity of exhaust fumes during constant engine operation and acceleration. Regulations limiting pollutant emissions from motorcycles and mopeds have also been established, and, while adherence to these regulations has already reduced vehicle emissions, research is continuing on stricter controls, fuel conservation, test standardization for the United States and Japan, and analysis sampling methods.

  15. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  16. PROSPECTS OF AUTOMOBILE TIRE RECYCLING

    OpenAIRE

    A. D. Gusev; V. S. Demyanova

    2012-01-01

    Statement of the problem. The legislative system of legal handling of waste in the Russian Fed-eration is focused on governing the handling waste as an environment pollutant. There is almost no legal regulations for handling waste as secondary material resources. Therefore, there is a pressing need to describe directions to be taken in the recycling of automobile tires.Results and conclusions. The system of legal regulations for handling wastes has been analyzed. A growing need to utilize aut...

  17. Prelaunch Forecasting of New Automobiles

    OpenAIRE

    Urban, Glen L.; John R. Hauser; John H. Roberts

    1990-01-01

    This paper develops and applies a prelaunch model and measurement system to the marketing planning of a new automobile. The analysis addresses active search by consumers, dealer visits, word-of-mouth communication, magazine reviews, and production constraints---issues that are important in understanding consumer response to durable goods. We address these issues with a detailed consumer flow model which monitors and projects key consumer transitions in response to marketing actions. A test-vs...

  18. Automobile technology of the future

    International Nuclear Information System (INIS)

    Looking ahead to the year 2000, this fascinating publication takes an in-depth look at new technology which will impact the passenger car of tomorrow. New developments in the areas of performance, reliability, comfort, fuel economy, safety, and environmental compatibility are examined. In this book the authors offer analysis on subjects such as the impact of legislation, the acceptance of ABS, and features of the future dashboard. Offering insight to readers with both technical and general interest in automobiles

  19. The dynamics of automobile expenditures

    OpenAIRE

    Copeland, Adam

    2009-01-01

    This paper presents a dynamic model for light motor vehicles. Consumers solve an optimal stopping problem in deciding if they want a new automobile and when in the model year to purchase it. This dynamic approach allows for determining how the mix of consumers evolves over the model year and for measuring consumers' substitution patterns across products and time. I find that temporal substitution is significant, driving consumers' entry into and exit from the market. Through counterfactuals, ...

  20. Quality Change in Brazilian Automobiles

    OpenAIRE

    Renato Fonseca

    2015-01-01

    In this paper I investigate the quality evolution of Brazilian autos. To measure the quality evolution of Brazilian autos, I have assembled a data set for Brazilian passenger cars for the period 1960/94, to which I have applied the hedonic pricing methodology. To the best of my knowledge, this is the first time an index of quality change has been constructed for the Brazilian automobile industry. The results presented here have two major implications. They allow a better understanding of prod...

  1. Environmental implications of the automobile

    International Nuclear Information System (INIS)

    There are over 12 million automobiles in Canada, each travelling over 16,000 km annually. The value of motor vehicles and parts produced in Canada accounts for over 6% of the gross domestic product, and vehicle-related sales account for the largest proportion of Canadian retail activity. The environmental issues related to the high impact of the automobile on Canadian life are discussed. In the manufacture of motor vehicles, over 2 billion kg of metal are used a year; although much of this comes from recycled materials, some depletion of nonrenewable resources is required. It is also estimated that 66-105 GJ of energy are needed to produce a motor vehicle, equivalent to as much as 20% of all the energy consumed during the vehicle's lifetime. Environmental impacts result from this use of resources and energy, including land disturbances and air pollution. Land use impacts are also those related to appropriation of urban and rural land for roadway and service uses, plus pollution of adjoining lands by road runoff. In 1990, the transportation sector used 29% of end-use energy, of which retail gasoline sales for motor vehicles accounted for 54%. Environmental impacts from oil refining, fuel combustion, and waste disposal are described, and programs to mitigate these impacts are outlined. Significant reductions in automobile emissions have already occurred from the increased use of emission control devices, improved fuel efficiency, and stricter standards. Further improvements are possible via such means as better manufacturing procedures, increased recycling of automobile components, better inspection and maintenance, and use of alternative fuels and alternate transportation modes. 35 refs., 3 figs., 4 tabs

  2. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  3. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  4. Analytical description of the modern steam automobile

    Science.gov (United States)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  5. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    OpenAIRE

    Tirshu M.; Uzun M; Speian A.; Spivac V.; Bogdan A.

    2011-01-01

    The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by me...

  6. 49 CFR 523.5 - Non-passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Non-passenger automobile. 523.5 Section 523.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.5 Non-passenger automobile. A non-passenger automobile means an automobile that is not a passenger automobile or a work truck and...

  7. The Automobile Buyer Behaviour: Emotional or Rational?

    OpenAIRE

    Economist Phd. Candidate CRUCERU Gheorghe; Assistant Professor Phd. Candidate MICUDA Dan

    2010-01-01

    The automobile buyer’s behaviour is a specific one and the knowledge and understanding of the motivations is important for the automobile manufacturers and distributors. Automobile buyers are the beneficiaries of complex high technology products, which have a long-term use. The paper is focused on understanding the mechanisms that underlie the buying process, the buyers’ expectations and needs, as essential elements for producers and distributors. When these mechanisms are controlled, the com...

  8. Automobile Fuel Economy: What is it Worth?

    OpenAIRE

    Nair, Santosh; Espey, Molly

    2004-01-01

    The marginal value of increased automobile fuel economy is estimated using a hedonic model of 2001 model year automobiles sold in the United States. This value is then compared to the average expected lifetime fuel savings attributable to increased fuel economy. Results indicate that automobile buyers fully internalize fuel cost savings attributable to improved fuel economy at low discount rates, and may partially internalize other perceived benefits of improved fuel economy such as reduction...

  9. Pulmonary function in automobile repair workers

    OpenAIRE

    Chattopadhyay O

    2007-01-01

    Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 ), Forced Vital Capacity (FVC), Peak Expiratory Flow Rate (...

  10. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project......The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared to...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies as...

  11. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  12. The construction of a Danish automobile culture

    DEFF Research Database (Denmark)

    Wagner, Michael

    The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation.......The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation....

  13. The Emergence of the Chinese Automobile Sector

    OpenAIRE

    Mark Baker; Markus Hyvonen

    2011-01-01

    The Chinese automobile sector has experienced rapid growth over the past decade, with China recently becoming the world’s largest producer of automobiles. Given the steel-intensive nature of automobile production, the expansion of China’s automobile sector has seen it become an important end-user of steel. With the number of cars in China still very low relative to its large population, car sales are likely to remain at a high level for the foreseeable future; accordingly, Chinese car mak...

  14. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  15. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  16. STRATEGIC ENTREPRENEURSHIP: A CASE IN THE BRAZILIAN AUTOMOBILE INDUSTRY

    OpenAIRE

    Afonso Carneiro Lima; Edison Fernandes Polo; Fátima Regina Ney Matos

    2010-01-01

    This work addresses an entrepreneurial phenomenon of strategic administration within the automobile industry: the creation of the automaker Troller Veículos Especiais (TVE). The case study at hand is justified by the positioning of this company around two market niches and its relative success in an industry characterized by few and powerful players. Our aim was to analyze the entrepreneurial and strategic process of discovering opportunity, the analysis used for internal and external factors...

  17. DAARIA: Driver Assistance by Augmented Reality for Intelligent Automobile

    OpenAIRE

    George, Paul; Thouvenin, Indira; Fremont, Vincent; Cherfaoui, Véronique

    2012-01-01

    International audience Taking into account the drivers' state is a major challenge for designing new advanced driver assistance systems. In this paper we present a driver assistance system strongly coupled to the user. DAARIA 1 stands for Driver Assistance by Augmented Reality for Intelligent Automobile. It is an augmented reality interface powered by several sensors. The detection has two goals: one is the position of obstacles and the quantification of the danger represented by them. The...

  18. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; Hassanzadeh, F.

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  19. Fuel cells for electric power generation

    International Nuclear Information System (INIS)

    After having first briefly illustrated the basic design, construction and operating principles of fuel cells, this paper assesses the progress that has been achieved to date in the development of the phosphoric acid (PAFC), molten carbonate (MCFC) and solid oxide (SOFC) fuel cells. Special attention is given to the design, performance and cost characteristics of the phosphoric acid fuel cells. For example, the paper cites the IFC/Toshiba 4.8 and 11.0 MW models, which have attained efficiencies of 37.5 and 41.0% respectively, and points out that these fuel cells, with efficiencies comparable to those of conventional poly-fuelled and combined cycle power plants, offer the advantages of compact size and better environmental compatibility with respect to the latter. However, fuel cells cannot yet compete with the lower per kWh costs of fossil fuel power plants. The paper concludes with an assessment of Italian fuel cell commercialization efforts, especially those centered around the use of methane fuelled PAFC's, and reviews the status of coordinated international research programs involving Japan, the USA and Italy

  20. Solar Powered Automobile Interior Climate Control System

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  1. Solid Oxide Fuel Cell Auxiliary Power Unit

    International Nuclear Information System (INIS)

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market

  2. Automobile

    OpenAIRE

    2008-01-01

    Le groupe Volkswagen, 1er constructeur européen, a récemment annoncé vouloir défier le leader mondial Toyota. Dans ce contexte, les conclusions du suivi scientifique des profondes réformes de l’organisation du travail chez VW tombent à point nommé. Le programme Auto 5000 adopté par les partenaires sociaux en juin 2006 pourrait être la réplique allemande à ce « toyotisme » sur lequel Toyota a construit sa nouvelle compétitivité. (ib)

  3. PROSPECTS OF AUTOMOBILE TIRE RECYCLING

    Directory of Open Access Journals (Sweden)

    A. D. Gusev

    2012-11-01

    Full Text Available Statement of the problem. The legislative system of legal handling of waste in the Russian Fed-eration is focused on governing the handling waste as an environment pollutant. There is almost no legal regulations for handling waste as secondary material resources. Therefore, there is a pressing need to describe directions to be taken in the recycling of automobile tires.Results and conclusions. The system of legal regulations for handling wastes has been analyzed. A growing need to utilize automobile tires has been indicated. Physical and mechanical indicators have been established and the residual durability of metal cord as a product of tire processing has been evaluated. The comparative analysis with an industrial fiber has been carried out. The most technological and economic directions to be taken in the recycling of rubber scraps in order to do-mestically manufacture tile and of metal cord to manufacture fiber-concrete of various types are suggested for a “floating floor” structure.

  4. Your Automobile Dollar, [Revised.] Money Management

    Science.gov (United States)

    Baran, Nancy H., Ed.; Law, Jean L., Ed.

    This booklet on automobile purchasing and maintenance, 1 in a series of 12, covers all the basic aspects of personal- and family-money management. Suitable for use by high school and college students as well as adults, this handbook discusses buying, maintaining, and operating cars. Section 1 discusses managing automobile dollars. Topics include…

  5. Study of automobile exhaust particles by spectromicroscopy

    International Nuclear Information System (INIS)

    In this paper,automobile exhaust particles of Gol and Santana 3000 were studied by spectro microscopy. The STXM results show that the single particulate is sized at 500 nm, with the mass distribution reducing towards the center. The N 1s NEXAFS spectra of automobile exhaust particles have similar structure with those of nitrates, which can be deduced as the main chemical species of nitrogen in automobile exhaust particles. There are minor amounts of ammonium and organic nitrogen compounds in automobile exhaust particles. A single Gol automobile exhaust particle was stack scanned in the energy range of 396-416 eV. By principal component analysis and cluster analysis, it can be deduced that there are main three chemical species of nitrogen. The particle surface consists of mainly nitrates, the inside consists of mainly ammonium and organic nitrogen compounds, and the middle layer is an inter gradation consisting of mainly nitrates and organic nitrogen compounds. (authors)

  6. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  7. Fuel-cell based power generating system having power conditioning apparatus

    Science.gov (United States)

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  8. EVOLUTIONS IN GLOBAL AUTOMOBILES INDUSTRY

    Directory of Open Access Journals (Sweden)

    Viorel Pop

    2013-09-01

    Full Text Available This paper is a brief overview of the evolution of the global automotive industry during the 20th century, with reference to the main manufacturers, oil crises of 1970-1980, and also the global financial and economic crisis that began in 2008. The analyzed period covers the rise of the Asian Continent, beginning with Japan, then South Korea and more recently the emerging countries: China and India. What was predicted 20-25 years ago, became reality: Asia becomes the economic centre of the world, surpassing unexpectedly fast even the Euro-Atlantic area. Regarding Romania, the revival delay of the automobiles industry, led to the loss of the trucks and bus industry, and after a much awaited rehabilitation of car production, this has stuck now at an unsatisfactory level.

  9. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  10. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  11. 20 CFR 416.1218 - Exclusion of the automobile.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Exclusion of the automobile. 416.1218 Section..., BLIND, AND DISABLED Resources and Exclusions § 416.1218 Exclusion of the automobile. (a) Automobile; defined. As used in this section, the term automobile includes, in addition to passenger cars,...

  12. 10 CFR 611.207 - Small automobile and component manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207... VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and component... individuals; and (2) Manufactures automobiles or components of automobiles. (b) Set Aside—Of the amount...

  13. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  14. OFF-ROAD CAPABILITY IMPROVEMENT OF MAZ-AUTOMOBILE HAVING AGRICULTURAL MODIFICATION

    Directory of Open Access Journals (Sweden)

    A. I. Bobrovnik

    2015-01-01

    Full Text Available The paper contains requirements to parameters of an automobile being designed with axle arrangement 6x4 and technically permissible mass of 25 tons with its all year round operation in agricultural industry with the purpose to ensure in-time load transportation and technological cycle in crop production of the agricultural complex in accordance with time schedule of the executed mechanized works. The future automobile should also have a power takeoff device.The paper presents operation chart flowsheets for cultivation of main crops on mineral and peat soils with indication of automobile motion modes and type of transported loads. Specific properties of peat-bog soils are given in the paper. The paper considers off-road capability of mobile machines when they are moving on soils with low bearing capacity. The paper indicates field applications of automobiles with limited and high off-road capability. Description of wheel interaction with bearing surface area, values of soil resistivity after multiple automobile passages have been given in the paper.The paper specifies values of rolling resistance coefficient and adhesion coefficient of the automobile undercarriage systems in spring and autumn for wheeled and crawler units. Schemes of the automobile front axle drives (electric, hydraulic, mechanical and their characteristics have been analyzed in the paper. An elastic flexible drive with separation of flow power has been proposed for reduction of dynamic loads in a power transmission drive. The paper describes a drive system of auto-analogue steering wheels with hydraulic hydrostatic drive which is located within a front wheel hub that ensure additional thrust. Recommendations for MAZ-automobile modernization with axle arrangement 6x4 have been given with the purpose to improve its off- road capability.Metallic anti-skid chain, segment and small link, track and crawler chains, wideners have obtained a wide application for improvement of automobile

  15. STRATEGIC ENTREPRENEURSHIP: A CASE IN THE BRAZILIAN AUTOMOBILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Afonso Carneiro Lima

    2010-07-01

    Full Text Available This work addresses an entrepreneurial phenomenon of strategic administration within the automobile industry: the creation of the automaker Troller Veículos Especiais (TVE. The case study at hand is justified by the positioning of this company around two market niches and its relative success in an industry characterized by few and powerful players. Our aim was to analyze the entrepreneurial and strategic process of discovering opportunity, the analysis used for internal and external factors, and the adoption of its strategic positioning in exploring two automobile market niches: in the B2B market, vehicles adapted to specific operational functions; and in the B2C, off-road vehicles with a strong appeal to consumers’ life styles. This case study allowed us to visualize the challenging path of a genuinely Brazilian small company in a sector dominated by large multinational groups, besides demonstrating decision-related dilemmas and aspects related to managerial creativity.Key-words: Automobile industry. Case study. Strategic entrepreneurship. Discovery theory. Strategic positioning.

  16. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  17. The rolling and skidding of automobile tyres

    Science.gov (United States)

    Tabor, D.

    1994-09-01

    This article deals in simple terms with the rolling and skidding of automobile tyres. It shows that skid resistance on slippery road surfaces may be significantly increased by using tyre treads of high hysteresis loss.

  18. Information searches by consumers of miniature automobiles

    Institute of Scientific and Technical Information of China (English)

    CHEN Dao-ping; LIU Wei

    2008-01-01

    We studied the information search behaviors of Chinese consumers of miniature automobiles. First, we identified the main sources where consumers acquire or seek information about miniature automobiles and discussed their extent of information search. Then, based on logistic regression and optimal scaling regression of statistics, we studied the influences of characteristics of consumers of miniature automobiles on the extent of information search and on Internet usage. The results indicate that consumers often utilize four sources to obtain information about miniature automobiles. The dominant information source for consumers is their friends/family, followed by dealers, newspapers, and TV. Age, occupation, education and income significantly affect the extent of information search, but gender and city of residence do not have significant impacts. Age, city of residence, occupation, education and income produce significant influences on Internet usage. Gender has an insignificant influence on whether a consumer uses the Internet to search for information.

  19. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  20. CHOICE OF STRATEGY DIVERSIFICATION ON AUTOMOBILE TRANSPORT

    OpenAIRE

    Bilichenko, V.; Tsymbal, S.

    2005-01-01

    The block diagram which with use of imitating modelling will allow to choose optimum strategy diversification the enterprises of automobile transport is developed, having received the maximal profit at the minimal expenses.

  1. The Honey Trap:The democratization of leisure through automobilism

    OpenAIRE

    Wagner, Michael

    2013-01-01

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilismThe automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis in the article is that the culture of Danish automobilism was constructed around and appropriated through leisure activities conducted primarily by the automobile consumer’s organisation Touring Club d...

  2. China's Automobile:Walk into Africa

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The press conference and flag presentation ceremony of the 6th China Auto International fAlgeria & Egypt)Exhibition Tour was held on November 3,2008 at China Council for the Promotion of International Trade (CCPIT),Beijing.An international exhibition automobile team,which is composed of China's independent brands and represents the independent research,development and manufacturing level of Chinese automobile industry,is ready to set out for Africa.

  3. Competition in the IndianAutomobile Industry

    OpenAIRE

    Singh, Gagandeep

    2009-01-01

    ABSTRACT “Following India's growing openness, the arrival of new and existing models, easy availability of finance at relatively low rate of interest and price discounts offered by the dealers and manufacturers all have stirred the demand for vehicles and a strong growth of the Indian automobile industry”. The main focus of my dissertation will be the Indian automobile industry due to its rich diversity and ever-changing patterns. The Research Question which I would follow would be t...

  4. Novel power electronic interface for grid-connected fuel cell power generation system

    International Nuclear Information System (INIS)

    Highlights: • A fuel cell power generation system was composed of a DC–DC power converter and a DC–AC inverter. • A voltage doubler based topology was adopted to configure the DC–DC power converter. • A dual buck power converter and a full-bridge power converter were applied to the DC–AC inverter. • The DC–AC inverter outputs a five-level voltage. • The DC–AC inverter performs the functions of DC–AC power conversion and active power filter. - Abstract: A novel power electronic interface for the grid-connected fuel cell power generation system is proposed in this paper. This power electronic interface is composed of a DC–DC power converter and a DC–AC inverter. A voltage doubler based topology is adopted to configure the DC–DC power converter to perform high step-up gain for boosting the output voltage of the fuel cell to a higher voltage. Moreover, the input current ripple of the fuel cell is suppressed by controlling the DC–DC power converter. The DC–AC inverter is configured by a dual buck power converter and a full-bridge power converter to generate a five-level AC output voltage. The DC–AC inverter can perform the functions of DC–AC power conversion and active power filtration. A 1.2 kW hardware prototype is developed to verify the performance of the proposed power electronic interface for the grid-connected fuel cell power generation system. The experimental results show that the proposed power electronic interface for the grid-connected fuel cell power generation system has the expected performance

  5. AC power generation from microbial fuel cells

    Science.gov (United States)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  6. Airport electric vehicle powered by fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fontela, Pablo [Hybrid Systems Area of R and D Unit, BESEL S.A., Av del mediterraneo 22, Parque Tecnologico de Leganes, Leganes (Spain); Soria, Antonio [Area of Hybrid Systems Area of R and D Unit, BESEL S.A. (Spain); Mielgo, Javier; Sierra, Jose Francisco; de Blas, Juan [R and D Unit, BESEL S.A. (Spain); Gauchia, Lucia [Electric engineering Department, Carlos III University, Universidad Carlos III, Av. Universidad 30, Leganes (Spain); Martinez, Juan M. [Electric engineering Department, Carlos III University (Spain)

    2007-06-10

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness,..), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions. (author)

  7. Community Essay: Sustainable approach to automobile society in Japan

    Directory of Open Access Journals (Sweden)

    Jun Fujimoto

    2013-02-01

    Full Text Available What is the difference between electric vehicles (EVs in society and an EV society? “EVs in society” means simply the replacement of gasoline-powered cars with EVs without taking into consideration pervasive social issues. By contrast, an “EV society” is a concept whereby EVs are more fundamentally woven into the fabric of society with the aim of solving a range of social problems, while at the same time questioning the meaning of what an automobile “is” and “can be.” It is this “game-changing” principle of integration that drives our research.

  8. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  9. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  10. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  11. Renewing Marketing Strategy in Kenyan Automobile Industry

    OpenAIRE

    Kalliokuusi, Miriam

    2013-01-01

    This thesis studies how to renew existing marketing strategies for case company; in so doing, the thesis fulfills its main objective. Company X, a market leader in the Kenyan automobile sector and has various well-known brands under their corporate umbrella. The automobile industry in Kenya has faced some hardship with steady decline in sales in the last couple of years and Mercedes-Benz as a brand suffered under the circumstances. One major cause of the drop in sales is due to the influx of ...

  12. Modeling of Electromagnetic Damper for Automobile Suspension

    Science.gov (United States)

    Kawamoto, Yasuhiro; Suda, Yoshihiro; Inoue, Hirofumi; Kondo, Takuhiro

    In this paper, the modeling of the electromagnetic damper (EMD) for automobile suspension is presented and the validation of the model is demonstrated by comparing the numerical results with the experimental results obtained using shaker tests. EMD is used as an active suspension and controlled to have output force calculated from velocities of sprung and unsprung masses. The formulation of EMD system for active suspensions is first developed, and the validation of the EMD model is demonstrated by experiments of the EMD for automobile suspensions. The validity of the formulation of the EMD developed in this investigation is shown for the frequency responses as well as energy balance for its active use.

  13. Mechanisms of injury in automobile crashes.

    Science.gov (United States)

    Huelke, D F

    1972-02-01

    The only way to determine the causes of injury in automobile collisions is through examination of data collected in detailed investigation of crashes. Such data were gathered from a ten-year study of collisions that caused injury to the occupants of the cars. In a comparison of injuries in the newer model automobiles-vehicles equipped with the safety features-with those in older model cars not equipped with the present-day occupant protection devices, significant reduction in injury severity was noted. PMID:5059662

  14. Automobile Exhaust Pollution and Purification Methods

    OpenAIRE

    Tang, Dawei

    2014-01-01

    As we all know, the automobile gas exhaust pollution has become more and more severe at recent years. It influences both to the human beings health and to quality of environment. The purpose of this thesis is to find out what are the main components of the exhaust gases, and give a basic and effective way to solve the problem. In this thesis, first the danger of exhaust pollution and its components will be presented. Then the writer will give the general mechanism of automobile exhaust ...

  15. The 'Overly-Broad' Selden Patent, Henry Ford and Development in the Early US Automobile Industry

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D

    2016-01-01

    A current policy concern is that the alleged uncertainty over the enforceability of “overly-broad” patents of “dubious validity” may retard innovation. We take the Selden patent on the automobile as a classic of this type of patent. We review the evidence of commercial development during its term...... would not support the broad construction of those claims. Ford’s and the Ford Motor Co.’s confidence in their understanding was powerfully illustrated by their Company’s public offer to indemnify purchasers of Ford automobiles against the threatened suits for infringement under the Selden patent. This...

  16. WAYS AND PERSPECTIVES OF TECHNICAL DEVELOPMENT ON AUTOMOBILE TRANSPORT

    OpenAIRE

    Bilichenko, V.; Smyrnov, E.

    2005-01-01

    Modern conditions of enterprise on automobile transport are analyzed. Technical development of enterprise on automobile transport as one of the ways of increasing competitive abilities and there profits is considered.

  17. Summary of semi-initiative and initiative control automobile engine vibration

    Science.gov (United States)

    Qu, Wei; Qu, Zhou

    2009-07-01

    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  18. A STUDY ON ASYNCHRONOUS SERIAL COMMUNICATON BETWEEN COMPONENTS IN AUTOMOBILES

    OpenAIRE

    ŞAHİN, Yaşar Güneri

    2010-01-01

    ABSTRACTIn connection with the developments in the automobile sector, the number of in-automobile components, the amount of cable used for providing in-automobile communication between these components and costs are increased gradually. In this study, a method is presented in which asynchronous serial connection is used for decreasing the initial and maintenance costs by means of decreasing the amount of cables used in middle and lower class automobiles. The electronic circuits required to es...

  19. The Strategic Transformation of Automobile Industry in China

    OpenAIRE

    Som Techakanjanakit; Meifang Huang

    2012-01-01

    In the past few years, the global automobile industry is developing difficultly because of the influence from the financial crisis. In contrast, China's automobile production and sales are still having a blowout type growth, and jumped into the world's largest automobile production and sales market. At the same time, Chinese automobile companies continue to deepen and join with international brand cooperation; independent research and development of the independent brand production, and their...

  20. Research on automobile culture and entertainment industry in China

    OpenAIRE

    Li Qing-song; Tang Lan; Cai Yun

    2012-01-01

    Rapid development of the automotive Industry and culture Industry is promoted the rapid rise of automobile industry of the culture and entertainment. With the further development of the automobile industry and people's living standards, automobile industry of the culture and entertainment in the proportion of China's economy is more and more important, but theoretical research in this area is nearly blank. With previous researches, automobile industry of the culture and entertainment in China...

  1. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Science.gov (United States)

    2010-10-01

    ... determined by the incomplete automobile manufacturer for the automobile in accordance with 40 CFR part 600... economy label specified in paragaph (b)(2) of this section to that automobile in accordance with 40 CFR... take into account the presence of air conditioning. (2) A fuel economy label conforming with 40...

  2. 38 CFR 17.156 - Eligibility for automobile adaptive equipment.

    Science.gov (United States)

    2010-07-01

    ... automobile adaptive equipment. 17.156 Section 17.156 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Automotive Equipment and Driver Training § 17.156 Eligibility for automobile adaptive equipment. Automobile adaptive equipment may be authorized if the Under Secretary for Health...

  3. 38 CFR 3.808 - Automobiles or other conveyances; certification.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Automobiles or other....808 Automobiles or other conveyances; certification. (a) Entitlement. A certificate of eligibility for financial assistance in the purchase of one automobile or other conveyance in an amount not exceeding...

  4. American Automobile and Light Truck Statistics Update

    Science.gov (United States)

    Feldman, Bernard J.

    2014-01-01

    Given that transportation is an essential topic in any Physics and Society or Energy course, it is necessary to have useful statistics on transportation in order to have a reasoned discussion on this topic. And a major component of the transportation picture is the automobile. This paper presents updated transportation statistics for American…

  5. Applying fuel cell experience to sustainable power products

    Science.gov (United States)

    King, Joseph M.; O'Day, Michael J.

    Fuel cell power plants have demonstrated high efficiency, environmental friendliness, excellent transient response, and superior reliability and durability in spacecraft and stationary applications. Broader application of fuel cell technology promises significant contribution to sustainable global economic growth, but requires improvement to size, cost, fuel flexibility and operating flexibility. International Fuel Cells (IFC) is applying lessons learned from delivery of more than 425 fuel cell power plants and 3 million h of operation to the development of product technology which captures that promise. Key findings at the fuel cell power plant level include: (1) ancillary components account for more than 40% of the weight and nearly all unscheduled outages of hydrocarbon-fuelled power plants; a higher level of integration and simplification is required to achieve reasonable characteristics, (2) hydrocarbon fuel cell power plant components are highly interactive; the fuel processing approach and power plant operating pressure are major determinants of overall efficiency, and (3) achieving the durability required for heavy duty vehicles and stationary applications requires simultaneous satisfaction of electrochemical, materials and mechanical considerations in the design of the cell stack and other power plant components. Practical designs must minimize application specific equipment. Related lessons for stationary fuel cell power plants include: (1) within fuel specification limits, natural gas varies widely in heating value, minor constituents such as oxygen and nitrogen content and trace compounds such as the odorant; (2) city water quality varies widely; recovery of product water for process use avoids costly, complicated and site-specific water treatment systems, but water treatment is required to eliminate impurities and (3) the embedded protection functions for reliable operation of fuel cell power conditioners meet or exceed those required for connection to

  6. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  7. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao;

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  8. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  9. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  10. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  11. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    OpenAIRE

    Ana Belen Alvarez Palomo; Michaela Lucas; Dilley, Rodney J.; Samuel McLenachan; Fred Kuanfu Chen; Jordi Requena; Marti Farrera Sal; Andrew Lucas; Inaki Alvarez; Dolores Jaraquemada; Michael J. Edel

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and rege...

  12. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  13. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  14. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  15. A Lemon Cell Battery for High-Power Applications

    Science.gov (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  16. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  17. Hybridní pohon automobilů

    OpenAIRE

    Tvrdý, Josef

    2014-01-01

    Obsahem této bakalářské práce je přehled možných hybridních pohonů automobilů a jejich praktické využití. Je zaměřena na hlavní výhody a nevýhody hybridního pohonu a zabývá se dopadem takto vybavených automobilů na životní prostředí, především na produkci skleníkových plynů. Také uvádí pohled na hybridy z finančního hlediska. This bachelor thesis deals with an overview of all possible hybrid vehicle propulsion systems and their practical usage. It is focused on the main advantages and disa...

  18. Fuel Cell Assisted PhotoVoltaic Power Systems

    OpenAIRE

    Tesfahunegn, Samson Gebre

    2012-01-01

    Distributed generation (DG) systems as local power sources have great potential to contribute toward energy sustainability, energy efficiency and supply reliability. This thesis deals with DGs that use solar as primary energy input, hydrogen energy storage and conversion technologies (fuel cells and water electrolyzers) as long term backup and energy storage batteries and supercapacitors as short term backup. Standalone power systems isolated from the grid such as those used to power remote a...

  19. Amarok Pikap: interactive percussion playing automobile

    OpenAIRE

    Artut, Selçuk Hüseyin; Artut, Selcuk Huseyin

    2013-01-01

    Alternative interfaces that imitate the audio-structure of authentic musical instruments are often equipped with sound generation techniques that feature physical attributes similar to those of the instruments they imitate. Amarok Pikap project utilizes an interactive system on the surface of an automobile that is specially modified with the implementation of various electronic sensors attached to its bodywork. Sur-faces that will be struck to produce sounds in percussive instrument modeling ...

  20. Estimation of Claim Numbers in Automobile Insurance

    OpenAIRE

    Arató, Miklós; Martinek, László

    2012-01-01

    The use of bonus-malus systems in compulsory liability automobile insurance is a worldwide applied method for premium pricing. If certain assumptions hold, like the conditional Poisson distribution of the policyholders claim number, then an interesting task is to evaluate the so called claims frequency of the individuals. Here we introduce 3 techniques, two is based on the bonus-malus class, and the third based on claims history. The article is devoted to choose the method, which fits to the ...

  1. Telematics Strategy for Automobile Insurers : Whitepaper

    OpenAIRE

    Paefgen, Johannes; Fleisch, Elgar; Staake, Thorsten; Ackermann, Lukas; Best, Jonas; Egli, Lukas

    2013-01-01

    This whitepaper investigates the business implications telematics services and Pay-as-you-drive (PAYD) insurance in particular, from the perspective of automobile insurance providers. Specifically, it discusses - the PROFITABILITY and competitive dynamics of PAYD insurance, - a simplified BUSINESS CASE for a new market entrant with a PAYD product, - the present STRUCTURE OF INTERNATIONAL MARKETS for insurance telematics services, - DRIVERS AND BARRIERS for the focus markets Swit...

  2. THE COST OF INACCURATE AUTOMOBILE MILEAGE INFORMATION

    OpenAIRE

    Sexauer, Benjamin; Roe, Terry L.; Kinsey, Jean D.

    1981-01-01

    The model in this paper integrates the possibility of misinformation into consumer utility theory. If the utility realized from a good differs from the utility anticipated at time of purchase, shifts in demand would occur, and thus changes in consumer surplus. These changes provide a measure of the cost of misinformation or value of improved information. The empirical analysis yields estimates of the private and social cost of inaccuracies in automobile buyers; pre-purchase mileage estimates....

  3. Statistical machine translation for automobile marketing texts

    OpenAIRE

    Läubli, Samuel; Fishel, Mark; Weibel, Manuela; Volk, Martin

    2013-01-01

    We describe a project on introducing an in-house statistical machine translation system for marketing texts from the automobile industry with the final aim of replacing manual translation with post-editing, based on the translation system. The focus of the paper is the suitability of such texts for SMT; we present experiments in domain adaptation and decompounding that improve the baseline translation systems, the results of which are evaluated using automatic metrics as well as manual evalua...

  4. New type air (automobile) gamma spectroscopic system

    International Nuclear Information System (INIS)

    A new type air (automobile) gamma spectroscopic system for identification and measuring of contamination with natural and artificial gamma isotopes is described. developed. Its main principle is a maximal use of the energy resolution of NaJ(Tl) detectors. The system consists of a spectrometer working simultaneously with a set of 1-16 scintillator blocks and a registration/ data processing unit. The operational mode, optimal performance and control subsystem are described

  5. Pulmonary function in automobile repair workers

    Directory of Open Access Journals (Sweden)

    Chattopadhyay O

    2007-01-01

    Full Text Available Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 , Forced Vital Capacity (FVC, Peak Expiratory Flow Rate (PE FR, age, smoking habit, duration of work, type of work, and respiratory symptoms. The study was analysed using Regression equations, and Chi-square test. Results : All the workers were male. Obstructive impairment was seen in 25.83% of the workers whereas restrictive impairment was seen in 21.19% of the workers. Mixed obstructive and restrictive impairment was seen in 10.6% of the workers. The frequency of obstructive impairment was higher in older workers. In the age group of less than 20 years, 13.6% of the workers had obstructive impairment while 42.86% of workers above 40 years of age had obstructive impairment. Obstructive impairment was more frequently observed in battery repair workers (58.33% and spray painters (37.5% while 16.67% of the body repair workers and 30.19% of the engine mechanics had obstructive impairment. Obstructive impairment was more frequently observed in smokers (53.1 % as compared to ex-smokers (33.3% and non-smokers (6.4%. Obstructive impairment was more frequently observed in workers who had been working for a longer duration. Conclusion: Nearly 36.4% of the automobile garage workers had some form of pulmonary function impairment; obstructive and/or restrictive. The use of personal protective equipment, worker education, and discontinuation of the use of paints containing toxic pigments are recommended.

  6. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  7. Power overshoot in two-chambered microbial fuel cell (MFC).

    Science.gov (United States)

    Nien, Po-Chin; Lee, Chin-Yu; Ho, Kuo-Chuan; Adav, Sunil S; Liu, Lihong; Wang, Aijie; Ren, Nanqi; Lee, Duu-Jong

    2011-04-01

    A two-chamber microbial fuel cell was started using iron-reducing strains as inoculum and acetate as carbon sources. The tested microbial fuel cell had an open-circuit voltage of 0.67 V, and reached 1045 mA m(-2) and a power density of 486 mW m(-2) at 0.46 V before power overshoot occurred. Anodic reactions were identified as the rate-determining steps. Stirring the anolyte insignificantly increased cell performance, suggesting a minimal external mass transfer resistance from the anolyte to the anodic biofilm. Data regression analysis indicates that charge transfer resistance at the biofilm-anode junction was negligible. The order of magnitude estimation of electrical conductance indicates that electron transfer resistance had an insignificant effect on microbial fuel cell performance. Resistance in electrogens for substrate utilization is proposed to induce microbial fuel cell power overshoot. PMID:21295969

  8. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  9. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  10. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  12. Power-cancellation of CW-complexes with few cells

    OpenAIRE

    Llerena, Irene

    1992-01-01

    In this paper, we use the fact that the rings of integer matrices have the power-substitution property in order to obtain a powercancellation property for homotopy types of CW-complexes with one cell in dimensions 0 and 4n and a finite number of cells in dimension 2n.

  13. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  14. Corrosion protection and finishing of automobiles

    International Nuclear Information System (INIS)

    finishing of automobiles is an important aspect. There have been considerable reductions of weight in automobiles by the use of composites components replacing heavy metallic components. Fenders previously based on metal have been replaced with plastic and painted with the same colour shade as of the metallic body, this has eps for proper adhesion of the paints on the plastic fender to avoid chipping off the paint form it. This paper discusses the necessary processes required for finishing of an automobile along with the corrosion protection measures. Automobiles contains a variety of engineering materials, engine main body fuel tanks connecting rods heat radiators and other mechanical parts are made from different types of engineering alloys having varying chemical compositions. Other parts like dashboard, front panel and other are made from composites. The main body made from cold roll ed steel having various contours 'c' it due to the different designs is the potential site for corrosion attack, The main body is exposed to the hostile environment through out its life period. An automobile is given a particular finish with a view to counter the hostile environments as they are not limited for plying in a limiting conditions and are taken to different weather conditions in one day thus facing severe stresses and strain. Thus it is essential that an automobile before rolling 'out of the assembly line should properly corrosion resistant and aesthetically pleasant also. Finishing for automobiles being very specialized, the main requirement being maximum durability with minimum numbers of coats baked, at the fastest possible schedule. High gloss and range of good eye catching colours being important to increase sales appeal. In the near past the car finishes were based on alkyd-amino resins baking materials and force drying lacquers, which have excellent appearance originally and maintain it on aging. The finishing system for the synthetic baking type may consist of

  15. Power generation properties of Direct Flame Fuel Cell (DFFC)

    International Nuclear Information System (INIS)

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (φ) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (φ ≤ 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC

  16. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  17. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  18. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Barreto Gomez, L.; Dietrich, Ph. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A.; Jacoby, H.D. [MIT, Cambridge (United States)

    1999-08-01

    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  19. Globalization of the Automobile Industry ; Traditional Locations under Pressure?

    OpenAIRE

    Spatz, Julius; Nunnenkamp, Peter

    2002-01-01

    Even though the automobile industry is technologically advanced, the increasing integration of low-income countries into the global division of labor has put competitive pressure on traditional automobile producing countries. New end-producers emerged in Asia, Latin America as well as Southern and Central Europe. In addition, the automobile industries of Germany, Japan and the United States engaged in outsourcing of relatively labor intensive segments of the value chain, especially on a regio...

  20. Fuzzy Control of Polymer Fuel Cell for Attract Maximum Power

    Directory of Open Access Journals (Sweden)

    Zahra Nejati

    2014-01-01

    Full Text Available Polymer fuel cell is one of the most attractive of fuel cell from point of the design and operation and also in comparison with other types of fuel cell, for a weight and size, polymer fuel cell produces more power. But however, one of the problems to use of this system is its low efficiency .To overcome the low efficiency of the fuel cell polymer in this paper is tried to used from maximum power point tracking. According to the characteristic of the flow –power the fuel cell, which is a non-linear curve and has a maximum point and use of the fuzzy controller and the proper selection of input and output membership functions trying to the System always works at maximum power. For this purpose, a chopper is used between the fuel cell and the load and to adjust the duty cycle of the applied signal to it is applied the fuzzy-TSK type controller that Its inputs are stream slope and slope changes. The results show that this controller has a good performance and that is faster compared with the perturbation and observation method.

  1. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    Science.gov (United States)

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  2. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  3. Influence of brand on Chinese consumers’ behaviours in Automobile choice: An investigation on Chinese customers’ buying attitudes towards domestic and foreign car brands

    OpenAIRE

    Wang, Luqi

    2015-01-01

    In recent years, branding as a powerful tool to influence consumer behaviors has becoming a hot topic in the marketing literature. But few studies focus on the influence of brands on Chinese consumers’ behaviors, especially their buying attitudes in the automobile market. This dissertation attempts to investigate the influence of brand on Chinese consumers’ behaviors in automobile choice and their buying attitudes towards domestic and foreign brands. The author chose the qualitative research ...

  4. Opportunities and issues for hydrogen-powered PEM fuel cell stationary power systems

    Energy Technology Data Exchange (ETDEWEB)

    Richards, M. [Institute of Gas Technology, Des Plaines, IL (United States); Gyger, R. [Mosaic Energy, Marilleville, IN (United States)

    2000-05-01

    The future potential of the polymer electrolyte membrane (PEM) fuel cell for stationary power applications was reviewed in this power point presentation along with the potential market opportunities and issues. A company profile of the Institute of Gas Technology (IGT) and Mosaic Energy was also provided. IGT is a technology development organization involved in electrochemical technology, energy systems, combustion technology, bio-remediation technology and gas operations. Mosaic Energy is a joint venture company owned by IGT. Their goal is to commercial PEM fuel cell systems for both residential and commercial markets. Fuel cells could be used to provide electricity to buildings, communications power, industrial cogeneration, utility ancillary services, and portable and remote power applications. PEM fuel cells, however, will be limited to smaller applications such as building baseload power and uninterruptible power supply (UPS). A large number of hydrogen storage units would be needed for such purposes, creating an initial market for new storage technologies. It was also noted that the specific hydrogen opportunity is limited by supply and infrastructure cost. Hydrogen is more suitable for UPS markets but more refinement is still needed in hydrogen storage even in this domain. 2 tabs., 8 figs.

  5. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  6. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  7. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    OpenAIRE

    SUDHIR KUMAR SINHA; SUMIT KUMAR JHA,; DR S.N. SINGH,

    2011-01-01

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant curren...

  8. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR SINHA

    2011-01-01

    Full Text Available This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant current to the battery.

  9. How Does Outsourcing Affect Performance Dynamics? Evidence from the Automobile Industry

    OpenAIRE

    Sharon Novak; Scott Stern

    2007-01-01

    This paper examines the impact of vertical integration on the dynamics of performance over the automobile product development lifecycle. Building on recent work in organizational economics and strategy, we evaluate the relationship between vertical integration and different performance margins. Outsourcing facilitates access to cutting-edge technology and the use of high-powered performance contracts. Vertical integration allows firms to adapt to unforeseen contingencies and customer feedback...

  10. 76 FR 44402 - Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Science.gov (United States)

    2011-07-25

    ... AFFAIRS Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...' eligibility for automobile adaptation equipment or other conveyance allowance. DATES: Written comments and... techniques or the use of other forms of information technology. Title: Application for Automobile or...

  11. Design Considerations for a PEM Fuel Cell Powered Truck APU

    OpenAIRE

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    In recent years interest has been growing in using fuel cell powered auxiliary power units (APUs) to reduce idling in line-haul trucks. Demonstrations of this technology have been constructed at universities and within industry, each with its own advantages and disadvantages. Invariably, in every design, tradeoffs need to be made and this has resulted in a multitude of different APU solutions that address different aspects of the problem. This paper reviews some of the recent work re...

  12. Design Considerations for a PEM Fuel Cell Powered Truck APU

    OpenAIRE

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    In recent years interest has been growing in using fuel cell powered auxiliary power units (APUs) to reduce idling in line-haul trucks. Demonstrations of this technology have been constructed at universities and within industry, each with its own advantages and disadvantages. Invariably, in every design, tradeoffs need to be made and this has resulted in a multitude of different APU solutions that address different aspects of the problem. This paper reviews some of the recent work related to ...

  13. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  14. Thermoelectric cells cogeneration from biomass power plant: literature review

    OpenAIRE

    Bianchini, Augusto; Donini, Filippo; Pellegrini, Marco

    2015-01-01

    Thermoelectric cells convert directly heat into electricity but, due to the low conversion efficiency (up to 5%), most applications are in waste heat recovery. Another promising application is in biomass boiler. In this case, the installation of thermoelectric modules converts a biomass boiler into a cogeneration system, where the aim of the integration is not the electricity production for external power supply, but the realization of a stand-alone biomass power plant which could match the c...

  15. Maximum power point tracking control of direct methanol fuel cells

    Science.gov (United States)

    Zhang, Mingbo; Yan, Ting; Gu, Jinguang

    2014-02-01

    The performance of a direct methanol fuel cell (DMFC) is closely related to its operating conditions, and there is a specific combination of operating conditions at which the DMFC produces maximum power. Working at the maximum power point (MPP) can lower the methanol crossover rate and ancillary power consumption, improving the global efficiency of the system. The fuzzy controller proposed in this paper provides a simple and robust way to keep the DMFC working at the MPP by adjusting the operating conditions followed by the variation of the driven load in real time. Simulation shows that the fuzzy control approach can yield satisfactory results.

  16. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    OpenAIRE

    Zebda, A.; Cosnier, S.; J.-P. Alcaraz; Holzinger, M.; A. Le Goff; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW...

  17. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  18. Alternativní pohony automobilů

    OpenAIRE

    Filip, Vojtěch

    2016-01-01

    Náplní této bakalářské práce je analýza aktuálně používaných alternativních pohonů automobilů, jejich srovnání se současnými zážehovými a vznětovými spalovacími motory. Seznámení s technickým řešením jednotlivých pohonů a jejich kategorizace do několika základních skupin, podle charakteristických klíčových rysů. Dále obsahuje bližší seznámení s nejdůležitějšími komponenty automobilů, vyžívajících tyto alternativní pohony a současně jejich přednostmi ale také nedostatky, které nyní brzdí rozší...

  19. STRATEGY AND PROSPECTS OF UKRAINIAN AUTOMOBILE MOTOR INDUSTRY DEVELOPMENT

    OpenAIRE

    Kryvokon, A.; Bondarenko, A.

    2012-01-01

    Research of strategy and prospects of Ukrainian automobile motor industry development has been done: the measures of public policy, which must be realized for the development of national automobile industry, a car production volume and expected working place in motor industry under state support have been described.

  20. STRATEGY AND PROSPECTS OF UKRAINIAN AUTOMOBILE MOTOR INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Kryvokon

    2012-01-01

    Full Text Available Research of strategy and prospects of Ukrainian automobile motor industry development has been done: the measures of public policy, which must be realized for the development of national automobile industry, a car production volume and expected working place in motor industry under state support have been described.

  1. 40 CFR 600.315-08 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... accordance with 49 CFR part 523. (1) The Administrator will classify passenger automobiles by car line into... National Highway Traffic Safety Administration, Department of Transportation (DOT), 49 CFR 571.3. (ii... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles....

  2. The Impact of Price Controls on Mandatory Automobile Insurance Markets

    OpenAIRE

    Strauss, Jason

    2006-01-01

    This is a theoretical paper that models a mandatory automobile insurance market using a partial equilibrium concept where automobile insurance is one good and a composite good represents all others. Price controls, heterogeneous service, administrative, and adjusting costs, as well as capital reserves and capital costs are all included in this simple model.

  3. 40 CFR 600.315-82 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... accordance with 49 CFR part 523. (1) The Administrator will classify passenger automobiles by car line into..., Department of Transportation (DOT), 49 CFR 571.3. (ii) Minicompact cars. Interior volume index less than 85... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles....

  4. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  5. Low power ultrasound inhibits cell proliferation and invasion of human cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Etienne Mfoumou

    2012-01-01

    Full Text Available Background: Applications of ultrasound in medicine for therapeutic purposes have been accepted, and they have several beneficial uses for many years. However, the outcome of low power ultrasound waves on cell proliferation, especially cell cycle progression and invasion as well as their associated genes on human breast and cervical cancer cells has not been investigated yet. Therefore, we examined the effect of low power ultrasound on BT20, BT20-E6/E7 and HeLa cell lines. Materials and Methods: BT20, BT20-E6/E7 and HeLa cell lines were used in this study. On the other hand, cell proliferation, cell cycle, and invasion assays were applied to study the effect of low ultrasound irradiation on these cell lines. Meanwhile, western blot was performed to study the expression patterns of some selected genes associated with this effect. Results: We found that low power ultrasound inhibits cell proliferation and provokes G0-G1 cell cycle arrest and reduction of S as well as an increase in the G2-M phase of HeLa cells in comparison with the untreated cells. This is accompanied by a down-regulation of Cdk-6 (cyclin dependent kinase which is a major control switch for the cell cycle. Moreover, low power ultrasound inhibits cell invasion and consequently down-regulates the expression of Id-1, caveolin, and EGF-R which are widely considered as main regulators of cell invasion and metastasis of human cancer. Conclusion: These results suggest that application of low power ultrasound on human breast and cervical cancer could be an effective method to reduce cell proliferation and invasion of these cancers.

  6. CMOS Low Power Cell Library for Digital Design

    Directory of Open Access Journals (Sweden)

    Kanika Kaur

    2013-06-01

    Full Text Available Historically, VLSI designers have focused on increasing the speed and reducing the area of digital systems. However, the evolution of portable systems and advanced Deep Sub-Micron fabrication technologies have brought power dissipation as another critical design factor. Low power design reduces cooling cost and increases reliability especially for high density systems. Moreover, it reduces the weight and size of portable devices. The power dissipation in CMOS circuits consists of static and dynamic components. Since dynamic power is proportional to V2 dd and static power is proportional to Vdd, lowering the supply voltage and device dimensions, the transistor threshold voltage also has to be scaled down to achieve the required performance. In case of static power, the power is consumed during the steady state condition i.e when there are no input/output transitions. Static power has two sources: DC power and Leakage power. Consecutively to facilitate voltage scaling without disturbing the performance, threshold voltage has to be minimized. Furthermore it leads to better noise margins and helps to avoid the hot carrier effects in short channel devices. In this paper we have been proposed the new CMOS library for the complex digital design using scaling the supply voltage and device dimensions and also suggest the methods to control the leakage current to obtain the minimum power dissipation at optimum value of supply voltage and transistor threshold. In this paper CMOS Cell library has been implemented using TSMC (0.18um and TSMC (90nm technology using HEP2 tool of IC designing from Mentor Graphics for various analysis and simulations.

  7. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    Science.gov (United States)

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  8. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  9. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.

    Science.gov (United States)

    Lisney, Thomas J; Collin, Shaun P

    2008-01-01

    The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison

  10. 32 CFR 220.11 - Special rules for automobile liability insurance and no-fault automobile insurance.

    Science.gov (United States)

    2010-07-01

    ... regarding tort liability. In addition, the provisions of 28 CFR part 43 (Department of Justice regulations... 32 National Defense 2 2010-07-01 2010-07-01 false Special rules for automobile liability insurance and no-fault automobile insurance. 220.11 Section 220.11 National Defense Department of...

  11. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  12. Metal hydride work pair development and its application on automobile air conditioning systems

    Institute of Scientific and Technical Information of China (English)

    QIN Feng; CHEN Jiang-ping; ZHANG Wen-feng; CHEN Zhi-jiu

    2007-01-01

    Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/La0.6Y0.4Ni4.8Mn0.2 was developed working at 393~473 K/293~323 K/263~273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1~1.6 W/(m·K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.

  13. 买方势力、资产专用性与技术创新——基于中国汽车工业的实证检验%Buyer Power,Asset Specificity and Technological Innovation——An Empirical Research on Chinese Automobile Industry

    Institute of Scientific and Technical Information of China (English)

    孙晓华; 郑辉

    2011-01-01

    Buyer power and asset specificity are important factors of affecting technological innovation in vertical market.Taking Chinese automobile industry statistics from 2000 to 2008 as samples,this paper empirically tests the relationship between buyer power,asset specificity and technological innovation through the panel data model.The results show that technological innovation depends not only on supplier market conditions,but also on the competitive conditions of downstream industry.Buyer market power helps promote upstream technological innovation activities;buyer asset specificity has a significant negative effect on their own technological innovation,the higher the proportion of fixed assets is,the less RD inputs will be.In addition,buyer technological capabilities and the rapid growth of market demand have a positive impact on technological innovation,while equal market power between upstream and downstream industries is an obstacle to technological innovation.%在纵向关联市场中,买方势力和资产专用性是影响企业技术创新的重要因素。本文以我国汽车工业2000-2008年统计数据为样本,利用面板数据模型对买方市场势力、资产专用性与技术创新的关系进行了实证检验,研究结果表明:技术创新行为不仅取决于企业自身所处的市场条件,还与作为买方的下游行业市场竞争状况有关,买方市场势力的增强有利于上游企业技术创新活动的开展;下游企业的资产专用性对上游企业技术创新具有显著的负效应,固定资产比例越高,研发投入越少。此外,较快的市场需求增长率和买方技术能力对技术创新具有积极影响,上下游行业之间较为对等的市场势力会阻碍技术创新。

  14. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine

    International Nuclear Information System (INIS)

    Over two-thirds energy of fuel consumed by an automobile is discharged to the surroundings as waste heat. The fuel usage can be more efficient if thermoelectric generators (TEG) are used to convert heat energy into electricity. In this study, a thermoelectric module composed of thermoelectric generators and a cooling system is developed to improve the efficiency of an IC engine. Two potential positions on an automobile are chosen to apply this module, e.g. exhaust pipe and radiator to examine the feasibility. To predict the behaviors of this module, a one dimensional thermal resistance model is also build, and the results are verified with experiments. The maximum power produced from the module is 51.13 mWcm-2 at 290 oC temperature difference. The model results show that, TE module presents better performance on the exhaust pipe than on the radiator.

  15. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  16. 基于 PIC18 F458的汽车电动助力转向控制系统设计%Design of automobile electric power steering system based on PIC18F458

    Institute of Scientific and Technical Information of China (English)

    苏庆列; 王麟珠

    2015-01-01

    According to the domestic development status and performance requirements of electric power steering system ( EPS) , the software and hardware of electronic control unit of EPS is designed based on PIC18F458 Series MCU.Focuses on the principle and realization method of the information acquisition module that contains steering wheel torque sensor signals and the information of CAN Bus, and the control module of permanent magnet brushless DC motor which drives by fully controlled bridge circuit.The experimental results show that the electronic control unit works normally and reliably, comfort and safety meets the requirements of automotive power steering.%针对国内汽车电动助力转向系统( EPS)的发展现状和性能要求,基于PIC18F458系列单片机对EPS系统电控单元软硬件进行设计,着重阐述了方向盘扭矩传感器信号采集和带有CAN总线的信息采集模块,以及通过全控桥电机驱动电路实现的PWM脉宽调制永磁无刷直流电机控制模块的工作原理及其实现方法。试验结果表明该电控单元工作正常、性能可靠,满足汽车助力转向的舒适性和安全性要求。

  17. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    OpenAIRE

    Li, Yujing

    2012-01-01

    Today, proton electrolyte membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are attractive power conversion devices that generate fairly low or even no pollution, and considered to be potential to replace conventional fossil fuel based power sources on automobiles. The operation and performance of PEMFC and DMFC depend largely on electro-catalysts positioned between the electrode and the membranes. The most commonly used electro-catalysts for PEMFC and DMFC are Pt-based noble me...

  18. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  19. Perception of risk from automobile safety defects.

    Science.gov (United States)

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates. PMID:3675807

  20. PRODUCT EFFICIENCY IN THE SPANISH AUTOMOBILE MARKET

    Directory of Open Access Journals (Sweden)

    González, Eduardo

    2013-01-01

    Full Text Available This paper evaluates product efficiency in the Spanish automobile market. We use non parametric frontier techniques in order to estimate product efficiency scores for each model. These scores reflect the minimum price for which each car could be sold, given the bundle of tangible features it offers in comparison to the best-buy models. Unlike previous research, we use discounted prices which have been adjusted by car dealerships to meet sale targets. Therefore, we interpret the efficiency scores as indicators of the value of the intangible features of the brand. The results show that Audi, Volvo, Volkswagen and Mercedes offer the greatest intangible value, since they are heavily overpriced in terms of price/product ratios. Conversely, Seat, Kia, Renault and Dacia are the brands that can be taken as referent in terms of price/product ratios.

  1. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  2. Consumer preferences for automobile energy-efficiency grades

    International Nuclear Information System (INIS)

    Recently, increases in energy prices have made energy conservation and efficiency improvements even more essential than in the past. However, consumers experience difficulty in obtaining reliable information regarding energy efficiency, so that many countries have implemented regulations to enforce energy-efficiency grade labeling. In this study, consumer preferences regarding energy efficiency grades are analyzed by the mixed logit and MDCEV model based on the revealed preference data of past automobile purchases. Findings show that consumers rationally apply information on energy efficiency grades when purchasing automobiles. However, they tend to show inefficiency in automobile usage patterns. This study discusses political implications of energy efficiency policies as they might impact consumer behaviors of automobile purchase and usage. - Highlights: ► We model discrete choice model to evaluate energy-efficiency grade regulation. ► Consumers apply information on energy efficiency grades when purchasing automobiles. ► However, they tend to show inefficiency in automobile usage patterns. ► The policies for efficient automobile usage are discussed.

  3. Inverters for interfacing of solar cells with the power grid

    Science.gov (United States)

    Karamanzanis, G. N.; Jackson, R. D.

    In this work, based on a research course in the Engineering Dep. Cambridge University, some non-classical inverter circuits are studied. They can be used for interfacing solar cells with the power grid at low voltage (230V) and at low power level. They are based on d.c. choppers which have a fast switching transistor. Their theoretical efficiency is 100 percent and they provide a satisfactory output current waveform in phase to the a.c. line voltage. The problems of control are also studied using a suitable mathematical model.

  4. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions

    Science.gov (United States)

    Medhurst, Laura L.

    2005-01-01

    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  5. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2009-03-05

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  6. Development of a methanol reformer for fuel cell vehicles

    OpenAIRE

    Lindström, Bård

    2003-01-01

    Vehicles powered by fuel cells are from an environmentalaspect superior to the traditional automobile using internalcombustion of gasoline. Power systems which are based upon fuelcell technology require hydrogen for operation. The ideal fuelcell vehicle would operate on pure hydrogen stored on-board.However, storing hydrogen on-board the vehicle is currently notfeasible for technical reasons. The hydrogen can be generatedon-board using a liquid hydrogen carrier such as methanol andgasoline. T...

  7. The Numerical Study on the Transfer Performance of Lithium-ion Power Battery for Automobile%车用锂离子动力电池组散热特性数值研究

    Institute of Scientific and Technical Information of China (English)

    李友才; 贾振华; 杨宗田

    2014-01-01

    针对车用锂离子动力电池的散热问题,对电池组的结构进行优化设计。建立锂离子动力电池三维模型,利用 Fluent 进行数值仿真。通过对仿真结果的对比分析得出:电池间距的增大和减小分别使电池组的散热性能提高和降低,且其间距减小时,电池间温度差异明显;发现动力电池组入口风速升高,电池表面空气流速相对提高,电池组换热能力增强,但电池间流场的一致性变差、温差变大。%As to the heat dissipation issues lithium-ion power battery for vehicles,the structure of the battery pack is optimized. Building lithium-ion battery three dimensional model and simulating by fluent software. The comparison and analysis on simulation results show that the battery space of the battery pack is increased and decreased, respectively, the thermal performance of battery pack is raised and fallen. Moreover,the space is reduced,the temperature difference among batteries is obvious.Air velocity is increased on the surface of battery and the heat exchange capacity of the battery pack is raised when the inlet velocity of battery pack rises.However,the consistency of the flow field between the batteries become bad, the temperature difference becomes larger.

  8. A Study of the Translation of Automobile Trademark

    Institute of Scientific and Technical Information of China (English)

    刘硕

    2014-01-01

    Name is an interesting thing, almost everything has its name. Nowadays along with the rising of consumption levels in China, the brand name of the car becomes an important topic. And the translation of the name of the automobile is the primary task for establishing the global image of the brand. In this paper, I summarize the translation methods for automobile trademarks and point out the importance of the translation of automobile’s trademarks. In addition, this paper explores the trend in the trans-lation of automobile names in China.

  9. Standardization Boosts the Development ofCHANGAN AUTOMOBILE

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In the past two decades,CHANGAN AUTOMOBILE has been sticking to its core value of "technology innovation and consistent care" and dedicating to lead the automobile culture by technology innovation.Till now,it has a complete product range of micro vehicles,passenger cars,buses,trucks,SUV,MPV,etc.,and engineplatforms ranging from 0.8L to 2.5L.CHANGAN AUTOMOBILE brand output ranked 13th in the world and first in China in 2009.Its brand value reached 30.515 billion RMB in 2011,among most valuable brands in China.

  10. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  11. Fuel cells - a new contributor to stationary power

    Science.gov (United States)

    Dufour, Angelo U.

    Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility

  12. Investigation of Solar Cells Power Degradation Due to Electrostatic Discharge

    Directory of Open Access Journals (Sweden)

    Hossein Fayazi

    2014-07-01

    Full Text Available Satellites are surrounded with protons, electrons and heavy charged particles. Space radiation impact on satellite sub-systems cause several anomalies which are important problem for satellite designers. Until recently, the majority of spacecraft primary power systems used solar arrays and rechargeable batteries to supply 28 V. For low-inclination spacecraft, 28 V systems have not been observed to arc. As the power requirements for spacecraft increased, however, high-voltage solar arrays were baselined to minimize total mass and increase power production efficiency. With the advent of 100 V systems in the late 1980s, arcing began to be observed on a number of spacecraft. The mechanism proposed in this paper, described electrical and physical degradation of solar cells due to electrostatic discharge anomalies on satellites. The cell was characterized again after arcing to determine the change in efficiency. This paper details the process for designing the circuit to create the arcing, and the different setups used to degrade the cells electrically and physically. It also describes the final setups to be used in space laboratory. This model is designed using Matlab and SPENVIS. Identification and simulation this mechanism is an important step in solar array design for space application

  13. ERC product improvement activities for direct fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C.; Carlson, G.; Doyon, J. [and others

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  14. Increased power density from a spiral wound microbial fuel cell.

    Science.gov (United States)

    Jia, Boyang; Hu, Dawei; Xie, Beizhen; Dong, Kun; Liu, Hong

    2013-03-15

    Using Microbial fuel cell (MFC) to convert organic and inorganic matter into electricity is of great interest for powering portable devices, which is now still limited by the output of MFC. In this study, a spiral wound MFC (SWMFC) with relatively large volume normalized surface area of separator (4.2 cm(2)/ml) was fabricated to enhance power generation. Compared with double-membrane MFC (DMMFC) and conventional double chamber MFC (DCMFC), the power density of SWMFC increased by 42% and 99% resulted from its lower internal resistance. Besides larger separator area, the better performance of SWMFC benefited from its structure sandwiching the cathodes between two separators. This point was proved again by a comparison of another DCMFC and a triple chamber MFC (TCMFC) as well as a simulation using finite element method. Moreover, the feature of SWMFC was more convenient and compact to scale up. Therefore, SWMFC provides a promising configuration for high power output as a portable power source. PMID:23116542

  15. Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power.

    Science.gov (United States)

    Santoro, Carlo; Soavi, Francesca; Serov, Alexey; Arbizzani, Catia; Atanassov, Plamen

    2016-04-15

    In this work, for the first time, we demonstrate a supercapacitive microbial fuel cell which integrates the energy harvesting function of a microbial fuel cell (MFC) with the high-power operation of an internal supercapacitor. The pursued strategies are: (i) the increase of the cell voltage by the use of high potential cathodes like bilirubin oxidase (BOx) or iron-aminoantipyrine (Fe-AAPyr); (ii) the use of an additional capacitive electrode (additional electrode, AdE) which is short-circuited with the MFC cathode and coupled with the MFC anode (MFC-AdE). The high working potential of BOx cathode and the low impedances of the additional capacitive electrode and the MFC anode permitted to achieve up to 19 mW (84.4 Wm(-2), 152 Wm(-3)), the highest power value ever reported for MFCs. Exploiting the supercapacitive properties of the MFC electrodes allows the system to be simpler, cheaper and more efficient without additional electronics management added with respect to an MFC/external supercapacitor coupling. The use of the AdE makes it possible to decouple energy and power and to achieve recharge times in the order of few seconds making the system appealing for practical applications. PMID:26615513

  16. Fuzzy analytic network process based multi criteria decision making methodology for a family automobile purchasing decision

    OpenAIRE

    Yesim Yayla, A.; Yildiz, A

    2013-01-01

    Nowadays, in parallel with the advancing technology, automobiles that have substantially advanced technological properties are being manufactured. Intended uses of the automobiles have been changing in our days in contrast to 1960s when automobiles were only used for transportation. Consumers, in our day and age, expect profoundly different properties from an automobile. In this context, more than one criterion become effective on making decision on purchasing an automobile that has the requi...

  17. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  18. Supply Chain Management Practices of Indian Automobile Industry

    OpenAIRE

    B. S. Sahay; Vikram Sharma; G. D. Sardana

    2011-01-01

    The automobile industry is a major contributor to India’s economy. The Indian automobile manufacturers face stiff international competition in the wake of all major US and European car manufacturers entering the Indian market. In the contemporary scenario, supply chain management practices can be adopted to improve operational efficiency and profits. This paper presents the current status of Indian automotive supply chains. For this, data was collected by conducting a nationwide survey. The...

  19. Measures of Technical Efficiency in Two Sectors: Banks and Automobiles

    OpenAIRE

    Rapacciuolo Ciro

    2007-01-01

    The aim of this paper is to evaluate technical efficiency in the automobile and the banking industry, using balance sheet data on businesses in the two sectors: the world leading automobile producers and the top-20 Italian banking groups. The measurement of inefficiency, a strand of literature started by Farrell (1957), is conducted by means of the Data Envelopment Analysis (DEA), which is one of the existing approaches in this field; Fare, Grosskopf e Lovell (1994) prepared the ground for th...

  20. Evolution of organizational structure and strategy of the automobile industry

    OpenAIRE

    Heng, S.H.; Wibbelink, R.

    2000-01-01

    This paper is a historically oriented study of the automobile industry. It sets out to understand why have the structure and strategy of the dominant companies in the automobile industry changed in the way they have done. Our findings suggest three factors at work, namely the knowledge of car production and of customers, the capability of the technological system, and the business environment. The knowledge system represents the level of know-how and the availability of information. In a sens...

  1. Computer Model for Automobile Climate Control System Simulation and Application

    Directory of Open Access Journals (Sweden)

    Emin Oker

    1999-06-01

    Full Text Available A software to simulate the dynamic operation of climate control system for a generic automobile has been developed. The transient nature of passenger cabin temperature and relative humidity are predicted using the principles of thermodynamics. Analysis include detailed simulations of every component of the automobile air conditioning network. The methodology is validated by comparing the simulation results with the experimental results.

  2. Characteristics of motorcyclists involved in accidents between motorcycles and automobiles

    OpenAIRE

    Amanda Lima de Oliveira; Andy Petroianu; Dafne Maria Villar Gonçalves; Gisele Araújo Pereira; Luiz Ronaldo Alberti

    2015-01-01

    Introduction: traffic accidents are one of the main causes of death and disability, with motorcyclists representing the great majority of both the victims and the perpetrators. Objective: this work studied the characteristics of motorcyclists injured in accidents involving motorcycles and automobiles. Method: this study sought to interview 100 motorcyclists who had been injured in collisions between motorcycles and automobiles, and who were undergoing emergency hospital treatment in the regio...

  3. Evaluating the performance of microbial fuel cells powering electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Dewan, Alim; Beyenal, Haluk [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Center for Environmental, Sediment and Aquatic Research, Pullman, WA (United States); Donovan, Conrad; Heo, Deukhyoun [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163-2710 (United States)

    2010-01-01

    A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the ''optimum charging capacitor value,'' and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the ''optimum charging potential.'' Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1

  4. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  5. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  6. Vibro-acoustics of automobile engines; Vibro-acoustique des moteurs d'automobile

    Energy Technology Data Exchange (ETDEWEB)

    Leclere, Q.; Laulagnet, B.; Guyader, J.L. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Polac, L. [Renault DM, 92 - Rueil Malmaison (France)

    2006-04-15

    This article treats of the vibro-acoustics of automobile engines. A presentation of the phenomena leading to noise emission is performed: internal sources, dynamical behaviour of the structure, acoustic radiation of the external engine envelope. The complexness of engines leads to multiple noise sources which are described, analyzed and quantified. The technical solutions for their abatement are presented. The following points are successively described: dynamical behaviour of the engine-propulsion system, acoustic radiation, inertia stresses, combustion noise, common rail diesel injection system noise, piston slap, distribution drive noise, turbo-charger whistle, gearbox noise. (J.S.)

  7. Cloud Instrument Powered by Solar Cell Sends Data to Pachube

    Directory of Open Access Journals (Sweden)

    Doru Ursutiu

    2010-11-01

    Full Text Available Despite the economic downturn, there have been quite a few new developments in the world of remote measurements lately. Tag4M (www.tag4m.com introduced the concept of cloud instrument where sensors connected to WiFi tags send data to off-the-shelf Access Points which are part of the WiFi infrastructure that exists in enterprises, retail outlets, factories, and warehouses. Access Points route the data to the Internet where specialized web applications receive the information for processing and display. One of these specialized web applications is Pachube, (http://www.pachube.com which bills itself as a “real-time data brokerage platform”. Pachube enables people to tag and share real time sensor data from objects, devices and spaces around the world. This article presents the pachube cloud instrument where sensors connected to Tag4M WiFi tags send digitized data to www.pachube.com for public display. The article contains very detailed analysis of the solar cell power source that is used to continuously power the Tag4M tag during this application. Cloud Instruments powered by solar cells enable people around the world to share real time sensor data using web pages on the Internet. This is a very interesting and exciting technology development that we want to bring to your attention.

  8. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  9. Advanced coal gasifier-fuel cell power plant systems design

    Science.gov (United States)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  10. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  11. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  12. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    Science.gov (United States)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of

  13. The power of glove: Soft microbial fuel cell for low-power electronics

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D.; Stinchcombe, Andrew; Rossiter, Jonathan; Ieropoulos, Ioannis

    2014-03-01

    A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the anode. A soft, conductive, synthetic latex cathode is developed that coats the outside of the glove. This inexpensive, lightweight reactor can without any external power supply, start up and energise a power management system (PMS), which steps-up the MFC output (0.06-0.17 V) to practical levels for operating electronic devices (>3 V). The MFC is able to operate for up to 4 days on just 2 mL of feedstock (synthetic tryptone yeast extract) without any cathode hydration. The MFC responds immediately to changes in fuel-type when the introduction of urine accelerates the cycling times (35 vs. 50 min for charge/discharge) of the MFC and PMS. Following starvation periods of up to 60 h at 0 mV the MFC is able to cold start the PMS simply with the addition of 2 mL fresh feedstock. These findings demonstrate that cheap MFCs can be developed as sole power sources and in conjunction with advancements in ultra-low power electronics, can practically operate small electrical devices.

  14. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  15. Government Policy and Environmental Innovation in the Automobile Sector in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aahman, Max

    2004-01-01

    The aim of this paper is to analyse the role that the Japanese Government has played, and still plays, in the development of alternatives to conventional vehicles and the effect of government policy. The focus in this paper is on battery-powered electric vehicles (BPEVs), hybrid electric vehicles (HEVs), and fuel cell electric vehicles (FCEVs) These alternatives present an interesting case of technical choices in government policy. The effects of government policy and the process of innovation are analysed from a comprehensive view drawing on the literature regarding technical change and innovation. The whole chain of government support, including the context in which these different policies have been implemented since the early 1970s, is studied. Based on this analysis, current and suggested future government policy is discussed, as the development of alternative vehicles is still an ongoing process. The Japanese Government has adopted a comprehensive strategy and drafted long-term strategic plans including R and D, demonstration and market support. This strategy has enabled the Japanese Government to influence the direction of technical development within the domestic automobile industry with relatively limited government funding. In the development process analysed here, market support have been equally important for the development process as the R and D efforts. The history of BPEVs in Japan illustrates the conventional wisdom that 'picking winners' in government policy is not easy. Our conclusion is that governments should, if possible, focus on technologies that fulfil several policy aims and which can be used in several different applications. This increases the chance of a technology surviving the long journey from idea to competitive product. This study also shows that established dominating companies do not necessarily resist radical changes in their core designs.

  16. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  17. The Business Case for Fuel Cells 2012. America's Partner in Power

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  18. DESIGN AND ANALYSIS OF A COMPOSITE BEVEL GEAR IN AN AUTOMOBILE DIFFERENTIAL GEAR BOX

    OpenAIRE

    Mr. Rohit Sreekumar *, Prof. T. Jeyapoovan

    2016-01-01

    In automotive Industry,the differential gear plays an important role in power transmission as well as in the handling of the automobile.It transmits torque through three different shafts. This project deals with the design and optimization of the differential gear box through use of composite material. The solid modelling is done by using SOLIDWORKS. Static analysis is performed on the gear using Ni-CR steel, malleable cast iron, aluminium alloy and glass filled polyamide using ANSYS 14.5 The...

  19. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  20. Nonlinear observer designs for fuel cell power systems

    Science.gov (United States)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  1. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  2. Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use

    DEFF Research Database (Denmark)

    Figueroa, Maria; author), L. Schipper (main; Price, L.;

    1993-01-01

    We review the circularity between estimates of automobile use, fuel consumption and fuel intensity. We find that major gaps exist between estimates of road gasoline, the quantity most often used to represent automobile fuel use in economic studies of transport fuel use, and the actual sales data of...... gasoline, diesel and other fuels used for automobiles. We note that significant uncertainties exist in values of both the number of automobiles in use and the distance each is driven, which together yield total automobile use. We present our own calculations for total automobile fuel use for a variety of...

  3. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    OpenAIRE

    Ren Yuan; Zhong Zhi Dan; Zhang Zhi Wen; Luo Tian Yu

    2016-01-01

    Current research status in energy management of Proton Exchange Membrane (PEM) fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power s...

  4. Exposure to emissions from gasoline within automobile cabins

    International Nuclear Information System (INIS)

    Gasoline is emitted from automobiles as uncombusted fuel and via evaporation. Volatile organic compounds (VOC) from gasoline are at higher levels in roadway air than in the surrounding ambient atmosphere and penetrate into automobile cabins, thereby exposing commuters to higher levels than they would experience in other microenvironments. Measurements of VOC concentrations and carbon monoxide were made within automobiles during idling, while driving on a suburban route in New Jersey, and on a commute to New York City. Concentrations of VOC from gasoline were determined to be elevated above the ambient background levels in all microenvironments while VOC without a gasoline source were not. The variability of VOC concentrations with location within the automobile was determined to be smaller than inter-day variability during idling studies. VOC and carbon monoxide levels within the automobile cabin differed among the different routes examined. The levels were related to traffic density and were inversely related to driving speed and wind speed. Overall, daily VOC exposure for gasoline-derived compounds during winter commuting in New Jersey was estimated to range between 5 and 20% and constituted between 15 and 40% of an individual's daily exposure based on comparison to urban and suburban settings, respectively. VOC exposure during commuting in Southern California was estimated to range between 15 and 60%

  5. Development of automobile tyre lateral runout measurement sensor

    Science.gov (United States)

    Ma, Xie; Ye, Lingjian; Yao, Guanghui; Wang, Di; Zhi, Xiongfei

    2013-10-01

    Automobile tyre lateral runout is one of the important indexes to measure the quality of the tyre, it will affect the safety of the automobile in moving. This paper introduces a sensor for automobile tyre lateral runout measurement. The variation of the automobile tyre lateral runout causes the change of guide rod probe displacement and deforms of the cantilever beam which connects with the guide bar. The deformation of the cantilever beam leads to the change of the resistance value of strain gauge which is pasted on the cantilever beam. Through measuring circuit, the resistance value of the strain gauge is converted into output voltage that has a certain relationship with automobile tyre lateral runout. Then, the voltage signal is transformed by A/D convertor and send to SCM to process and display the value of runout. Meanwhile, SCM output control signal to control the actuator and adjust the equipment running status in real time so as to ensure the tyre lateral runout is within the allowed range.

  6. 闭孔泡沫铝力学特性及其在汽车碰撞吸能中的应用研究进展%Progress on Research of Mechanical Properties of Closed-cell Aluminum Foams and Its Applications in Automobile Crashworthiness

    Institute of Scientific and Technical Information of China (English)

    兰凤崇; 曾繁波; 周云郊; 陈吉清

    2014-01-01

    Low energy consumption, safety and lightweight are the topic issues of the automobile industry. As a sort of lightweight and energy absorbing metallic material, the closed-cell aluminum foam has some advantage features of strong specific stiffness and specific strength with a low density, good impact resistance and energy absorbability, so it is brought to the new forefront of the automotive industry. The test criteria of uniaxial compression is described and the definition of several important parameters are clarified, such as Young modulus, compressive strength, yield strength, plateau stress and densification strain. The constitutive models of closed-cell aluminum foams are reviewed, among which the yield surface models are further emphasized. The modeling approaches of microstructure are summarized, and the macro material models integrated into commercial softwares are compared. Under summarizing the features of energy absorbing materials, the impact resistance and energy absorbability of closed-cell aluminum foams are especially analyzed. The influences of impact speed and strain rate are reviewed, and also some possible reasons are offered. The application of closed-cell aluminum foams in vehicle lightweight and crashworthiness is summarized, and several typical cases are analyzed. The problems and difficulties on understanding closed-cell aluminum foams’ mechanical properties and its applications in automobile structures are raised, and several feasible research directions are suggested.%汽车低能耗、安全和轻量化已经成为汽车领域研究的热点问题,闭孔泡沫铝作为一种轻质吸能金属材料,在低密度下具有良好的比刚度和比强度,同时具有良好的抗冲击性和能量吸收性,已逐渐引起汽车产业界地重视。简述泡沫铝单轴压缩试验中弹性模量、抗压强度、屈服强度、平台应力、致密化应变等参数的定义和试验标准;综述闭孔泡沫铝的本构方程

  7. Efficient Cells Cut the Cost of Solar Power

    Science.gov (United States)

    2013-01-01

    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  8. Study of the Fatigue Life and Weight Optimization of an Automobile Aluminium Alloy Part under Random Road Excitation

    OpenAIRE

    Saoudi, A.; Bouazara, M.; Marceau, D.

    2010-01-01

    Weight optimization of aluminium alloy automobile parts reduces their weight while maintaining their natural frequency away from the frequency range of the power spectral density (PSD) that describes the roadway profile. We present our algorithm developed to optimize the weight of an aluminium alloy sample relative to its fatigue life. This new method reduces calculation time; It takes into account the multipoint excitation signal shifted in time, giving a tangle of the constraint signals of ...

  9. 49 CFR 536.9 - Use of credits with regard to the domestically manufactured passenger automobile minimum standard.

    Science.gov (United States)

    2010-10-01

    ... manufactured passenger automobile minimum standard. 536.9 Section 536.9 Transportation Other Regulations... domestically manufactured passenger automobile minimum standard. (a) Each manufacturer is responsible for..., the domestically manufactured passenger automobile compliance category credit excess or shortfall...

  10. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  11. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    International Nuclear Information System (INIS)

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  12. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    Science.gov (United States)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  13. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  14. Adhesion coefficient of automobile tire and road surface

    Institute of Scientific and Technical Information of China (English)

    刘长生

    2008-01-01

    The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic accidents were presented.The results show that the adhesion coefficient is a function with the extreme value.If there is atmospheric pressure in the tire,the load of the vehicle and the degree of the coarse on the road surface is not selected properly,it will reach the least and affect the safety of the running automobile.

  15. Design of a TFT-LCD Based Digital Automobile Instrument

    Directory of Open Access Journals (Sweden)

    Yunsong Xu

    2014-01-01

    instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading.

  16. Atmospheric pollution coming from automobiles and public health

    International Nuclear Information System (INIS)

    The air pollution coming from automobile is responsible of different diseases in respiratory or cardiovascular system. epidemiological studies in professional or general media give information in term of public health. If the role of air pollution from automobile at short terms is well established, for effects at long term (such cancers or chronic diseases of respiratory system) the measurement or estimation of the exposure is not sufficient for the moment and makes the epidemiology unable to quantify effects. In spite of these lacks, it is important to reduce the risk for the most fragile people. (N.C.)

  17. Power generation from furfural using the microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

    2010-01-01

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m{sup -3}, respectively, when 1000 mg L{sup -1} glucose, a mixture of 200 mg L{sup -1} glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m{sup -2} (18 W m{sup -3}) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m{sup -2}, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology. (author)

  18. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  19. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  20. High efficiency parallel-parallel LLC resonant converter for HV/LV power conversion in electric/hybrid vehicles

    OpenAIRE

    YANG, GANG; Sardat, Pierre; Dubus, Patrick; Sadarnac, Daniel

    2014-01-01

    Print ISBN: 978-3-8007-3603-4 International audience The design of a hybrid/electric automobile oriented 2.5kW, 250kHz, HV/LV double phase parallel-parallel connected LLC resonant converter is presented. This paper proposed the concept of double phase LLC with its double loop control strategy to share the power equally between the two power cells and to maintain a high efficiency among a wide output power range. Design considerations, including the MOSFETs power module, magnetic compone...

  1. Evaluating the Economic Impacts of Technological Innovation in the Automobile Industry: The Input-Output Approach

    OpenAIRE

    Shibusawa, Hiroyuki; Sugawara, Takafumi

    2011-01-01

    In this paper, the economic impacts of technological innovation, such as electric and hybrid vehicles, in the automobile industry in Japan are examined. The automobile industry has to develop environmentally friendly vehicles in the face of the global warming issue and the exhaustion problem of petroleum. The conventional automobiles with gasoline and diesel oil don’t meet the demands of present age. The new generation automobiles will become popular for coming several decades. The indust...

  2. Lithium Dinitramide as an Additive in Lithium Power Cells

    Science.gov (United States)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  3. Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network

    Directory of Open Access Journals (Sweden)

    Bahman Bahmanifirouzi

    2012-03-01

    Full Text Available This paper presents a new Fuzzy Adaptive Modified Particle Swarm Optimization algorithm (FAMPSO for the placement of Fuel Cell Power Plants (FCPPs in distribution systems. FCPPs, as Distributed Generation (DG units, can be considered as Combined sources of Heat, Power, and Hydrogen (CHPH. CHPH operation of FCPPs can improve overall system efficiency, as well as produce hydrogen which can be stored for the future use of FCPPs or can be sold for profit. The objective functions investigated are minimizing the operating costs of electrical energy generation of distribution substations and FCPPs, minimizing the voltage deviation and minimizing the total emission. In this regard, this paper just considers the placement of CHPH FCPPs while investment cost of devices is not considered. Considering the fact that the objectives are different, non-commensurable and nonlinear, it is difficult to solve the problem using conventional approaches that may optimize a single objective. Moreover, the placement of FCPPs in distribution systems is a mixed integer problem. Therefore, this paper uses the FAMPSO algorithm to overcome these problems. For solving the proposed multi-objective problem, this paper utilizes the Pareto Optimality idea to obtain a set of solution in the multi-objective problem instead of only one. Also, a fuzzy system is used to tune parameters of FAMPSO algorithm such as inertia weight. The efficacy of the proposed approach is validated on a 69-bus distribution system.

  4. 40 CFR 600.311-86 - Range of fuel economy for comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... automobiles. 600.311-86 Section 600.311-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-86 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of city and the range of highway...

  5. 76 FR 61779 - Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Science.gov (United States)

    2011-10-05

    ... AFFAIRS Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive... refer to ``OMB Control No. 2900-0067.'' SUPPLEMENTARY INFORMATION: Title: Application for Automobile or..., servicepersons and their survivors complete VA Form 21-4502 to apply for automobile or other conveyance...

  6. 26 CFR 48.4061(a)-5 - Sale of automobile truck bodies and chassis.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sale of automobile truck bodies and chassis. 48..., Tread Rubber, and Taxable Fuel Automotive and Related Items § 48.4061(a)-5 Sale of automobile truck bodies and chassis. (a) Sale of completed vehicle. An automobile truck (as defined by §...

  7. 17 CFR 256.309 - Automobiles, other vehicles, and related garage equipment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Automobiles, other vehicles... § 256.309 Automobiles, other vehicles, and related garage equipment. This account shall include the delivered cost of all service company owned automobiles, vans, trucks, and other vehicles used by...

  8. 41 CFR 102-34.45 - How are passenger automobiles classified?

    Science.gov (United States)

    2010-07-01

    ... automobiles classified? 102-34.45 Section 102-34.45 Public Contracts and Property Management Federal Property... MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.45 How are passenger automobiles classified? Passenger automobiles are classified in the following table: Sedan class Station wagon class...

  9. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Science.gov (United States)

    2010-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact) shall...

  10. External magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiencyExternal magnetic field effect on bifacial silicon solar cell''s electric power and conversion efficiency

    OpenAIRE

    ZERBO, ISSA; ZOUNGRANA, MARTIAL; SOURABIE, IDRISSA; Ouedraogo, Adama; ZOUMA, BERNARD; BATHIEBO, DIEUDONNE JOSEPH

    2015-01-01

    This article presents a modelling study of external magnetic field effect on a bifacial silicon solar cell's electric power and conversion efficiency. After the resolution of the magnetotransport equation and continuity equation of excess minority carriers, we calculate the photocurrent density and the photovoltage and then we deduce the solar cell's electric power before discussing the influence of the magnetic field on those electrical parameters. Using the electric power curves...

  11. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  12. The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry

    Directory of Open Access Journals (Sweden)

    Chao-Wu Chou

    2015-06-01

    Full Text Available The impact of global warming and climate change is one of the most critical challenges of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. The continuous improvement in automobile energy consumption is one of the most effective ways to reduce global warming. A comparative analysis is proposed to examine the various automobiles that utilize technological innovation to improve their energy consumption. Their contribution to CO2 emissions is then investigated. This study focuses on technical innovation and output power of a conventional engine. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi have improved energy consumption and reduce CO2 emissions. In addition, the Toyota hybrid vehicles have also improved energy consumption and reduced greenhouse gases emissions.

  13. A microprocessor-based fuzzy logic control strategy for fuel cell powered bicycle

    International Nuclear Information System (INIS)

    This research is aimed to develop a fuzzy logic control strategy for fuel cell powered bicycle. Advanced control strategy with low cost microprocessor is a crucial development step for future commercialization phase of fuel cell system applications. In this paper, a micro controller based fuzzy logic control strategy and system is developed to improve the running performance of the bicycle, as the fuel cell powered system has great uncertainty of power output. Through advanced control methods, significant improvement in the performance of fuel cell powered bicycle, the energy consumption, and the running speed can be achieved. (author)

  14. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversion efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.

  15. Development of amorphous wire type MI sensors for automobile use

    Science.gov (United States)

    Honkura, Yoshinobu

    2002-08-01

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40°C and 85°C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on.

  16. A Review of the Fatigue Analysis of an Automobile Frames

    Directory of Open Access Journals (Sweden)

    Jadav Chetan S., Panchal Khushbu C., Patel Fajalhusen*

    2012-12-01

    Full Text Available In this paper an effort is made to review theinvestigations that have been made on the differentfatigue analysis techniques of automobile frames. Anumber of analytical and experimental techniquesare available for the fatigue analysis of theautomobile frames. Determination of the differentanalysis around different condition in anautomobile frames has been reported in literature.

  17. The Japanese Automobile Worker: A Microcosm of Japan's Success.

    Science.gov (United States)

    Kaderabeck, Elizabeth A.

    A teaching unit on the Japanese automobile worker was developed from a compilation of on-site interviews with Japanese company managers and production line employees, and official publications of the Japanese car industry. The unit is designed to present a balanced picture of Japan's economic success and labor relations and to develop global…

  18. ASE Program Certification Standards for Automobile Technician Training Programs.

    Science.gov (United States)

    National Automotive Technicians Education Foundation, Herndon, VA.

    This document presents and explains the development and application of the National Institute for Automotive Service Excellence (ASE) program certification standards that were developed to improve the quality of secondary- and postsecondary-level automobile technician training by implementing a certification program that certifies programs in…

  19. Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile

    DEFF Research Database (Denmark)

    Cernat, M.; Scortarul, P.; Tanase, A.;

    2007-01-01

    A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak...

  20. Technology Demonstration of General Black box Standard for Automobiles (GBSA

    Directory of Open Access Journals (Sweden)

    Kishor R

    2014-05-01

    Full Text Available GBSA is an upcoming proposal towards Automobile industry and to the federal governing bodies around the world. Here we are intent to create a disciplinary system to save city sons from accident death and to abolish insurance piracy. The proposal is actually developed from the loss of mankind in society but pulled by technology and humanity facts..

  1. New Technology and Human Resource Development in the Automobile Industry.

    Science.gov (United States)

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    This document contains five case studies of plants within large enterprises in the automobile industry (Ford, Toyota, Volkswagen, Renault, and Volvo), plus reports of each company's views on human resource development, new technology, and changes in work organization and skill formation. The document is composed of five narrative sections,…

  2. Development of amorphous wire type MI sensors for automobile use

    International Nuclear Information System (INIS)

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40 deg. C and 85 deg. C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on

  3. Making cars smarter: The growing role of electronics in automobiles

    OpenAIRE

    Thomas H. Klier; James M. Rubenstein

    2011-01-01

    Electronics make up nearly 40% of the content of today’s average new automobile, and their share will continue to grow. On June 2, 2011, as part of the eighteenth annual Automotive Outlook Symposium (AOS), the Chicago Fed hosted a panel of experts at its Detroit Branch to examine the current and future roles of electronics in motor vehicles.

  4. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.;

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  5. Classification of Surface Quality of Automobile Lamp—Reflector

    Institute of Scientific and Technical Information of China (English)

    袁旭军; 贺莉清; 等

    2002-01-01

    This paper introduces an installation for quickly classifying automobile's metal reflectors based on their roughness.The measuring principle and the mechanical structure are presented.Schematics of circuits and experimental results are given.Elimination and reduction of the effect of background lights or different bulbs on the measuring results are also described in detail.

  6. The electrification of the automobile. Technical and economical challenges

    Energy Technology Data Exchange (ETDEWEB)

    Niestroj, Arwed; Mohrdieck, Christian [Daimler AG (Germany)

    2010-07-01

    Sustainable drive systems and innovative safety technologies are the mainstays of Daimler's vision of mobility for the future. Vehicles with hydrogen-powered fuel cells and battery powered drivetrains provide ideal conditions for environmentally friendly mobility that saves natural resources. Already several years ago Daimler launched a vehicle fleet of 100 smart electric drive that are operated by customers in London Metropolitan area. Key enabler for this powertrain technology is the high voltage battery. The customer feedbacks of the smart electric drive vehicles well prove that battery electric vehicles are a successful answer to zero emission mobility in urban areas. As the pioneer of the fuel cell technology, Daimler already presented the first vehicle with this highly efficient and environment-friendly drive concept in 1994. With more than 100 test vehicles that have altogether covered more than four million kilometres, Daimler has the most experience in fuel cell vehicles worldwide - from compact A-Class passenger cars to Sprinter vans and large Citaro fuel cell buses. The Mercedes-Benz B-Class F-CELL is the first series-produced vehicles with a zeroemission fuel-cell drive. Small-series production of the passenger car has started in late 2009. A new generation of fuel-cell drive is used to power this innovative vehicle. The fuel cell system is much more compact while at the same time offers higher performance. It is also completely suitable for everyday use. The fuel cell system used in the Mercedes-Benz B-Class F-CELL is also demonstrating its suitability for heavy-duty operation in commercial vehicles. By means of combining two B-Class systems with an energy storage unit, a highly powerful aggregate is created for application in the new FuelCELL-Hybrid bus. (orig.)

  7. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  8. Competence: sciences, clean engines: the automobile safety; Competences: sciences, moteurs propres: le salut de l'automobile

    Energy Technology Data Exchange (ETDEWEB)

    Quiret, M.

    2004-05-01

    In the framework of the greenhouse gases emission reduction in the automobile sector, this paper presents the possible technological innovations for the engines: an optimization prior to the combustion hopeful the electronic of the injections, the consumption decrease and the electromagnetic valves. (A.L.B.)

  9. Modeling of High Efficiency Solar Cells Under Laser Pulse for Power Beaming Applications

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells may be used as receivers for laser power beaming. To understand the behavior of solar cells when illuminated by a pulsed laser, the time response of gallium arsenide and silicon solar cells to pulsed monochromatic input has been modeled using a finite element solar cell model.

  10. Hopes in the Crisis——Chinese Automobile Market in the World Auto manufacturing Industry Shuffle

    Institute of Scientific and Technical Information of China (English)

    Gao Shurong

    2009-01-01

    @@ Global automobile markets shuffle against the economic crisis The economic crisis spread rapidly around the world,making automobile industry one of the victims who are shocked hardest,leading to an industrial shuffle in global automobile industry.USA,EU and Japan,the traditional top three leading countries in global automobile industry,could not have their lucks to escape from the crisis.The weak global automobile market forces these transnational auto companies to be more cautious about the future than ever.As reflected in the latest performance reports,though governments took measures to maintain the market,the sharp decline in global automobile sales volume continued in the first quarter.Automobile market bottomed out in the second quarter.US auto industrywas affected the most,with two out of the top three manufacturers getting bankrupt and regrouped.

  11. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stiebitz, Paul [Rochester Institute of Technology, NY(United States)

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  12. Enhanced Power Stability for Proton Conducting Solid Oxides Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Boris Merinov; William A. Goddard III; Sossina Haile; Adri van Duin; Peter Babilo; Sang Soo Han

    2005-12-29

    , which both theory and experiment agree is the cause of the low conductivity of multi-granular systems. Our plan for a future project is to use the theory to optimize the additives and processing conditions and following this with experiment on the most promising systems. The experimental part of this project focused on improving the synthetic techniques for controlling the grain size and making measurements on the properties of these systems as a function of doping of impurities and of process conditions. A significant attention was paid to screening potential cathode materials (transition metal perovskites) and anode electrocatalysts (metals) for reactivity with Y-doped BaZrO{sub 3}, fabrication compatibility, and chemical stability in fuel cell environment. A robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have been successfully developed. Our Pt|BYZ|Pt fuel cell, with a 100 {micro}m thick Y-doped BaZrO{sub 3} electrolyte layer, demonstrates the peak power density and short circuit current density of 28 mW/cm{sup 2} and 130mA/cm{sup 2}, respectively. These are the highest values of this type of fuel cell. All of these provide the basis for a future project in which theory and computation are combined to develop modified ceramic electrolytes capable of both high proton conductivity and excellent mechanical and chemical stability.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    Science.gov (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  15. Low emission fuel cell ship. Environmental account of fuel cell powered ships

    International Nuclear Information System (INIS)

    Shipping is the dominant mode of global transport, accounting for total global anthropogenic NOx and SOx emissions of 10-14% and 4-6% respectively. Future environmental requirements signalled for shipping may exceed the possibilities within current conventional technology. The work presented document the environmental benefits of using fuel cells compared to diesel engines. The work describes the general principles for modelling emissions to air for ships. The model was calibrated by measurements onboard an offshore supply vessel and a car carrier. For the offshore vessel, the FC model includes 100% of onboard power delivered by FC's. For the car carrier, the FC replaces the auxiliary engines. FC type modelled was a high temperature FC running on natural gas. The work quantifies yearly reduction in atmospheric emissions of CO2, NOx, SOx and PM. Our results show that the installation of fuel cells in ships will improve the environmental performance significantly (e.g. global warming and acidification). (author)

  16. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  17. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns

    Science.gov (United States)

    Kwon, Cheong Hoon; Lee, Sung-Ho; Choi, Young-Bong; Lee, Jae Ah; Kim, Shi Hyeong; Kim, Hyug-Han; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2014-06-01

    Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm-2 that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.

  18. Performance evaluation of aluminum/phosphate cell for powering small electronic devices

    Directory of Open Access Journals (Sweden)

    Gymama Slaughter

    2015-12-01

    Full Text Available We report on an innovative membrane-free aluminum/phosphate cell based on the activation of aluminum (Al as anodic material using ZnO nanocrystal in phosphate rich electrolyte that is capable of generating sufficient power to power a light-emitting diode (LED, selected as a model of a small electronic device. The energy from the cell is periodically supplied in high power bursts due to the charge and discharge cycle of the capacitor. The entire process is controlled by a switched capacitor regulator. The Al/phosphate cell was studied in neutral 100 mM phosphate buffer solution (7.4 at a temperature of 25 °C. We demonstrate that two Al/phosphate cells connected in series can generate an open circuit voltage (Voc up to 1.66 V to continuously power a LED via a switched capacitor regulator circuit. The switched capacitor regulator circuit enabled the 1 μF capacitor to store the incoming power from the cell and discharge it in a large power burst to supply the necessary drive strength required by the LED. This new Al/phosphate cell configuration is a ‘green’ alternative to the use of glucose abiotic and biofuel cells for powering ultra-low power implantable electronic devices.

  19. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  20. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  1. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Science.gov (United States)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  2. The Inherited Traditional Culture of Automobile Molding DNA Design Research

    Directory of Open Access Journals (Sweden)

    Song Qiang

    2013-01-01

    Full Text Available Design of automobile modeling DNA is the core that makes enterprises establish a good and unique brand image to win on market. This paper described the definition and meaning of production DNA, also discussed the composition of production DNA and researched the design ideas of production DNA from both macro and micro aspects. Finally, it recommended would research the traditional culture into the past, present and future of three periods, explored the idea of traditional culture that the automobile modeling DNA inherited under these three periods and analyzed with the red flag car as an example. This research provided a guideline to help automotive corporations to implement brand strategies, and helped to design autos with Chinese elements, sense of the times and fashion trends and can perform the modern mental outlook of Chinese people.

  3. AN FE ANALYSIS OF REINFORCED SUBGRADE UNDER AUTOMOBILE LOADING

    Institute of Scientific and Technical Information of China (English)

    YAN Shuwang; ZHANG Xinqiang; LIU Run

    2004-01-01

    An FE analysis procedure was presented to predict the behavior of soil-geogrid interaction under automobile loading. The dynamic interactions between the transverse bars, the longitudinal ribs and the soil were simulated by a system consisting of nonlinear springs, dashpots and masses, to study the deformation properties of the reinforced soil. The equivalent stiffness and damping ratios could be determined with the shaking table. The dynamic responses of a reinforced subgrade were analyzed with the 3D finite element approach. This approach is programmed and applied to analyze the soil-geogrid interaction under dynamic loading. The comparative analysis of the response of the reinforced subgrade and that of the subgrade without reinforcement shows that the geogrid placed at the bottom of the base layer may effectively reduce the accumulative plastic deformation due to the cyclic automobile loading.

  4. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  5. Study on the Fuzzy COntrol Strategy of Automobile with CVT

    Institute of Scientific and Technical Information of China (English)

    HuJianjun; QINDatong; 等

    2002-01-01

    In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established.On the base of the simulation state space equations that are established with bond graph theory,a fuzzy control strategy with an expert system of starting process has been introduced.Considering uncertain system parameters and exterior resistance disturbing,the effect of the profile of membership function and the defuzzification algorthm on the capacity of the fuzzy controller has been studied.The result of simulation proves that the proposed fuzzy controller is effective and feasible,Such controller has been employed in the actual control and has proved practicable.The study lays a foundation for design of the fuzzy controller for automobile with a CVT system.

  6. Automobile ride quality experiments correlated to iso-weighted criteria

    Science.gov (United States)

    Healey, A. J.; Young, R. K.; Smith, C. C.

    1975-01-01

    As part of an overall study to evaluate the usefulness of ride quality criteria for the design of improved ground transportation systems an experiment was conducted involving subjective and objective measurement of ride vibrations found in an automobile riding over roadways of various roughness. Correlation of the results led to some very significant relationships between passenger rating and ride accelerations. The latter were collapsed using a frequency-weighted root mean square measure of the random vibration. The results suggest the form of a design criterion giving the relationship between ride vibration and acceptable automobile ride quality. Further the ride criterion is expressed in terms that relate to rides with which most people are familiar. The design of the experiment, the ride vibration data acquisition, the concept of frequency weighting and the correlations found between subjective and objective measurements are presented.

  7. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2010-01-01

    The fuel cell powered vehicle is one of the most attractive candidates for the future due to its high efficiency and capability to use hydrogen as the fuel. However, its relatively poor dynamic response, high cost, and limited life time have impeded its widespread adoption. With the emergence of large supercapacitors (also know as ultracapacitors, UCs) with high power density and the shift to hybridization in the vehicle technology, fuel cell/supercapacitor hybrid fuel cell vehicles are gaini...

  8. Power

    OpenAIRE

    Bowles, Samuel; Gintis, Herbert

    2007-01-01

    We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...

  9. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  10. Design of a TFT-LCD Based Digital Automobile Instrument

    OpenAIRE

    Yunsong Xu; Shen Yin; Jinyong Yu; Hamid Reza Karimi

    2014-01-01

    The traditional mechanical instrument lacks the ability to satisfy the market with characters of favorable compatibility, easy upgrading, and fashion. Thus the design of a TFT-LCD (thin film transistor-liquid crystal display) based automobile instrument is carried out. With a 7-inch TFT-LCD and the 32-bit microcontroller MB91F599, the instrument could process various information generated by other electronic control units (ECUs) of a vehicle and display valuable driving parameters on the 7-in...

  11. A New Method for Estimation of Automobile Fuel Adulteration

    OpenAIRE

    Gupta, Anil; Sharma, R. K.

    2010-01-01

    The problem of increasing urban air pollution due to fast increasing number of auto mobiles and adulteration of automobile fuel has been pointed out in the context of developing countries. For prevention of the adulteration, the monitoring of fuel quality at the distribution point is essential. For the detection/estimation of the commonly used adulterants (i.e. diesel in petrol and kerosene in diesel), a number of possible methods have been reviewed. As such there is no standard method/equipm...

  12. Digital Laser Welding System for Automobile Side Panel

    OpenAIRE

    Park, Hong-Seok; Choi, Hung-Won

    2010-01-01

    The laser as economical and flexible tool has established a solid ground in industrial manufacturing area. Specially at welding BIW (Body In White) in automobile industry, the importance of it has been increased due to the technological characteristics such as high process speed, slim seam and good capability of automation and so on. For application of laser welding technique, welding principle and influential factors were investigated based on the analysis of laser welding processes. With th...

  13. A Flowchart Approach to Malaysia's Automobile Industry Cluster Policy

    OpenAIRE

    Kuchiki, Akifumi

    2007-01-01

    In this paper, we apply a flowchart approach to investigate Malaysia's automobile cluster policy. We investigate whether the industrial cluster policy has been successful or not, suggest policy prescriptions, and propose a way to prioritize policy measures. Our flowchart approach leads to the following three policy prescriptions: (1) Malaysian firms should establish sites for exporting compact cars with automatic transmissions; (2) actors in the public, semi-public and private sector should w...

  14. Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers

    OpenAIRE

    Chanaron, Jean-Jacques

    2007-01-01

    With the rise of environmental concerns in the general public, re-appropriated by influential politicians, Life Cycle Assessment (LCA) has become a widely used set of tools for the management of all impacts on environment by industrial products. LCA is carried out at the very early stages of product research, development and design. This is particularly true in the automobile industry where vehicle manufacturers Original Equipment Manufacturers (OEMs) are launching several new or re-vamped mo...

  15. Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives

    OpenAIRE

    Anderson, Soren; Parry, Ian; James M. Sallee; FISCHER, Carolyn

    2010-01-01

    This paper discusses fuel economy regulations in the United States and other countries. We first describe how these programs affect the automobile market, including their impacts on fuel use and other dimensions of the vehicle fleet. We then review different methodologies for assessing the costs of fuel economy regulations and discuss what the results of these methodologies imply for policy. Following that, we compare the welfare effects of fuel economy regulations to those of fuel taxes and ...

  16. "Uniqueness seeking and demand estimation in the German automobile industry"

    OpenAIRE

    Guerzoni, Marco; Soellner, René

    2009-01-01

    This paper empirically analyzes the determinants of demand in the German automobile industry. Our primary goal is to refine the existing literature on that topic by exploring the impact of uniqueness seeking behaviour of individuals on the demand schedule. Using a dataset on the segment of compact cars in the German market, we show that consumers have an intrinsic need for uniqueness seeking, and the degree a product satisfies this need is to be considered as an additional product characteris...

  17. Translation of Automobile Brands from the Perspective of Skopos Theory

    Institute of Scientific and Technical Information of China (English)

    刘竹林; 王俊

    2013-01-01

    With the steady growth of the Chinese economy, more and more countries are focusing on China. A great number of brands are entering the Chinese market and auto brand is one of them. Brand translation plays an important role for success of opening international market. This paper applies the Skopos theory to automobile brand translation, so as to provide a new angle to translation practice.

  18. Teamwork in the Automobile Industry - an Anglo-German Comparison

    OpenAIRE

    Niels-Erik Wergin

    2004-01-01

    Teamwork in the automotive industry varies significantly from plant to plant. This article compares teamwork in four automobile plants in Germany and Britain, and addresses two questions: (1) Do different models of teamwork fit into a bi-polar model of teamwork, being either innovative or structural conservative? (2) Do current models of teamwork signify a development towards post-fordism, or are they merely part of a neo-fordist rationalisation of production? The following answers are sugges...

  19. Promoting automobile safety belt use by young children.

    OpenAIRE

    Sowers-Hoag, K M; Thyer, B A; Bailey, J S

    1987-01-01

    A program using behavioral practice, assertiveness training, and social and contrived reinforcers was developed to establish and maintain automobile safety belt use by young children. Sixteen children (ages 4.8 to 7 years) who never used their safety belts during a 5-day preexperimental observation period were randomly assigned to two groups of eight each. A multiple baseline design across groups was used to evaluate the effectiveness of the training program. During the 8-day baseline period ...

  20. Loyalty marketing in automobile dealerships : case: car dealer X

    OpenAIRE

    Hyyryläinen, Heidi

    2012-01-01

    The purpose of this thesis is to study how customer loyalty is taken into account in automobile dealerships, what loyalty marketing means are used to improve customer loyalty, and what potential new loyalty marketing means can be implemented. The thesis is commissioned by Car dealer X. In the theoretical part, areas covered are customership and loyalty marketing. Customership includes customer satisfaction, customer loyalty, customer value and customer retention. Loyalty marketing contain...

  1. Market Analysis of RFID Systems in Indian Automobile Industry

    OpenAIRE

    Mariappan, Ramachandran

    2010-01-01

    RFID is an emerging hot technology in tracking and tracing physical objects. The market for RFID ranges from technological artefacts like tags and reader infrastructure to software solutions and supply chain services. One of the key business sectors that have seen the initial benefits of RFID applications is the Automobile sector through improvements in local processes related to better production control and increased handling efficiency. In recent years, there has been a palpable shift in t...

  2. Hybrid GPS-GSM Localization of Automobile Tracking System

    OpenAIRE

    Mohammad A. Al-Khedher

    2012-01-01

    An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. The remote module has a GPS mounted on the moving vehicle to identify its current position, and to be transferred by GSM with other parameters acquired by the automobile's data port as an SMS to a recipient station. The received GPS coordinates are filtered using a Kalman filter to enhance the accuracy of measured position. After data processing, Google Earth application is used to view the current loca...

  3. Comparative Frictional Analysis of Automobile Drum and Disc Brakes

    OpenAIRE

    H.P. Khairnar; V.M. Phalle; S. S. Mantha

    2016-01-01

    In the present work, a comparative frictional behaviour of drum brakes and disc brakes in automobiles has been investigated. The influential factors; contact force and friction radius were modeled for the estimation of the friction coefficient for drum as well as disc brakes. The effect of contact force and friction radius is studied with varying conditions of parameters; longitudinal force, caliper force and torque on piston side as well as non-piston side. The numerical results obtained hav...

  4. KEY FACTORS INFLUENCING PURCHASE INTENTIONS TOWARDS AUTOMOBILES IN PAKISTAN

    OpenAIRE

    SYED NAVEED ALTAF; NOOR AZMI HASHIM

    2016-01-01

    In this paper the authors identify and investigate the key factors which influence intentions to purchase passenger cars among consumers in Pakistan. A questionnaire was developed to check the significance of these key variables identified from previous studies, especially those conducted in the context of automobile purchasing in Asian countries. Faculty members from universities of two major cities in Pakistan were selected at random as respondents for this study. The findings of the study ...

  5. Determinants of Expenditure in Automobile Maintenance: Some Evidence from Greece

    OpenAIRE

    Bitros, George C.

    2004-01-01

    This paper derives a model of maintenance expenditures from an analytical framework in which maintenance, utilization and service life are appropriately integrated and estimates it with the help of automobile data from Greece. On the theoretical plain it is shown that the model allows endogenously for most of the variables that have been identified in the relevant literature as important determinants of maintenance expenditures. Also the model yields sharp sign predictions for the included va...

  6. Profit and Concentration in Commercial Automobile Insurance Losses

    OpenAIRE

    Vickie L. Bajtelsmit; Raja Bouzouita

    1998-01-01

    Pricing of commercial insurance has generally been thought to be more competitive than that of personal insurance. For this reason, there has been little academic interest in the impact of market structure on insurer profitability for these lines, despite findings of such a relationship in other lines. This study examines whether such a relationship exists for commercial automobile insurance and finds that states with higher levels of concentration have higher average profit margins. This is ...

  7. Prediction of the Power Output of Solar Cells Using Neural Networks: Solar Cells Energy Sector in Palestine

    Directory of Open Access Journals (Sweden)

    Ibrahim Qasrawi

    2015-11-01

    Full Text Available The prediction of the output power of solar cells in a given place has always been an important factor in planning the installation of solar cell panels, and guiding electrical companies to control, manage and distribute the energy into their electricity networks properly. The production of the electricity sector in Palestine using solar cells is a promising sector; this paper proposes a model which is used to predict future output power values of solar cells, which provides individuals and companies with future information, so they can organize their activities. We aim to create a model that able to connect time, place, and the relations between randomly distributed solar energy units. The system analyzes collected data from units through solar cells distributed in different places in Palestine. Multilayer Feed-Forward with Backpropagation Neural Networks (MFFNNBP is used to predict the power output of the solar cells in different places in Palestine. The model depends on predicting the future produce of the power output of solar cell depending on the real power output of the previous values. The data used in this paper depends on data collection of one day, month, and year. Finally, this proposed model conduct a systematic process with the aim of determining the most suitable places for an installation solar cell panel in different places in Palestine.

  8. Solid Oxide Fuel Cell – Gas Turbine Hybrid Power Plant

    OpenAIRE

    Henke, Moritz; Willich, Caroline; Steilen, Mike; Kallo, Josef; Friedrich, K. Andreas

    2013-01-01

    A model of a hybrid power plant consisting of SOFC and a gas turbine is presented. Simulations are carried out for a different number of SOFC stacks while keeping the output power of the SOFC constant. Results show that the effect of stack number on system performance is only marginal within the investigated range. Operating conditions of the SOFC, however, are strongly influenced.

  9. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro

    2011-01-01

    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  10. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  11. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  12. Energy and economic evaluation of policies for accelerated investment in efficient automobiles. [Jack Faucett Automobile Sector Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Walter; Carhart, Steven C.; McGranahan, Gordon; Mulherkar, Shirish S.

    1978-08-01

    This report examines the effect of an energy-conservation policy that imposes excise taxes on cars having low fuel efficiency, coupled with a rebate on cars having high fuel efficiency. Two oil price cases are considered. The Jack Faucett Automobile Sector Forecasting Model is used to measure direct effects. The Brookhaven National Laboratory-University of Illinois Input-Output/Linear Programming model is used for economy-wide effects and impact on employment.

  13. Coupled analysis of engine noise and interior noise of an automobile

    Institute of Scientific and Technical Information of China (English)

    郑旭; 毛杰; 郝志勇

    2015-01-01

    The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise, respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.

  14. ENFICA-FC: Design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen

    OpenAIRE

    Cestino, Enrico; Borello, Fabio; Romeo, Giulio

    2013-01-01

    Fuel cells could become the main power source for small general aviation aircraft or could replace APU and internal sub-systems on larger aircraft, to obtain all-electric or more-electric air vehicles. There are several potential advantages of using such a power source, that range from environmental and economic issues to performance and operability aspects. A preliminary design is reported. Also, the paper contains a description of testing activities related to experimental flights of an all...

  15. Design of Low Write-Power Consumption SRAM Cell Based on CNTFET at 32nm Technology

    OpenAIRE

    Rajendra Prasad S; B K Madhavi; K.Lal Kishore

    2011-01-01

    The SRAM which functions as the cache for system-on-chip is vital in the electronic industry. Carbon Nanotube Field Effect Transistor (CNFET) is used for high performance, high stability and low-power circuit designs as an alternative material to silicon in recent years. Therefore Design of SRAM Cell based on CNTFET is important for Low-power cache memory. In cells, the bit-lines are the most power consuming components because of larger power dissipation in driving long bit-line with large c...

  16. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  17. Self-regulating control of parasitic loads in a fuel cell power system

    Science.gov (United States)

    Vasquez, Arturo (Inventor)

    2011-01-01

    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  18. Automobiles on Steroids: Product Attribute Trade-O�s and Technological Progress in the Automobile Sector

    OpenAIRE

    Christopher R. Knittel

    2009-01-01

    New car fleet fuel economy, weight and engine power have changed drastically since 1980. These changes represent both movements along and shifts in the "fuel economy/weight/engine power production possibilities frontier." This paper estimates the technological progress that has occurred since 1980 and the trade-offs that manufacturers and consumers face when choosing between fuel economy, weight and engine power characteristics. The results suggest that if weight, horsepower and torque were h...

  19. Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector

    OpenAIRE

    Christopher R. Knittel

    2009-01-01

    New car fleet fuel economy, weight and engine power have changed drastically since 1980. These changes represent both movements along and shifts in the "fuel economy/weight/engine power production possibilities frontier". This paper estimates the technological progress that has occurred since 1980 and the trade-offs that manufacturers and consumers face when choosing between fuel economy, weight and engine power characteristics. The results suggest that if weight, horsepower and torque were h...

  20. Binary co-generation power plant with night-temperature (SOFC) fuel cells of natural gas, v. 15(57)

    International Nuclear Information System (INIS)

    Binary co-generation power plant with height-temperature SOFC fuel cells of natural gas are presented in this paper. Based on before optimization calculations for this type of power plants is made: basic measures, number of modules, electric power and fuel cell efficiency; gas turbine electric power and efficiency; co-generation steam turbine electric and heat power efficiency. Compare analysis of binary co-generation power plant with SOFC fuel cells and co-generative power plant without fuel cells in relation of efficiency, ecological benefits and profitability (economy analysis) is given. (Author)

  1. Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Feng; Chen, Jiangping; Chen, Zhijiu [Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Lu, Manqi; Yang, Ke [Engineering Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016 (China); Zhou, Yimin [Research Center, Zhejiang Yinlun Machinery Co. Ltd., Tiantai County, Zhejiang Province 317200 (China)

    2007-10-15

    Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} was developed working at 120-200 C/20-50 C/-10-0 C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van't-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is -27.1 kJ/mol H{sub 2} and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3 W/(m K), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6 W at 150 C/30 C/0 C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance. (author)

  2. Globalization of the automobile industry in China: dynamics and barriers in greening of the road transportation

    International Nuclear Information System (INIS)

    This article describes the state of the automobile industry and urban road transportation management in China. It reviews how the automobile industry is evolving to respond to challenges in economic development, environmental regulations, and technological change. The dynamics and barriers resulting from technological change of automobiles in response to reduction of exhaust emissions and energy-efficiency improvement are analyzed. It is argued that consideration of externality costs should be integrated in automobile industrial policymaking and transportation management. Efforts need to be made to use more economic incentives for emissions reduction, and to promote technological change for cleaner vehicle development. This paper questions the current government policy of encouraging private car ownership, and suggests that improvement in public transportation systems, stronger emissions control, and technology innovation on environmental friendly automobile technologies would be relevant to China's drive toward sustainable transportation development. Social inequities resulted from automobile use is also stressed in the analysis

  3. Analysis on the R-R interval time series of automobile long distance drivers; Kosoku doro no chojikan soko ni yoru R-R kankakuji keiretsu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Moyoshi, M.; Takata, K. [Daido Institute of Technology, Nagoya (Japan); Yokoyama, K. [Nagoya Municipal Women`s College, Nagoya (Japan); Yoshioka, T.; Watanabe, Y. [Toyota National College of Technology, Aichi (Japan)

    1995-04-20

    Analyses were performed on change in living body information as time elapses while driving a car, the differences between automobile drivers and fellow passengers, and between automobile drivers and motorcycle drivers. A comparison on body temperatures in automobile drivers and motorcycle drivers shows sharper changes in the motorcycle drivers. Motorcycles, being different from automobiles, put the drivers exposed to atmosphere during driving, applying larger living body load. Adrenalin increases its concentration when a human is under mental load, so does noradrenalin when under physical load. Both of adrenalin and noradrenalin showed an increasing trend in the afternoon as compared with in the morning. From the comparison with the normal daily life, fellow passengers have also large mental living body load, who were found to have concentration change of nearly two times or more than that in normal conditions. A subject who rode in a car in the first experiment and drove a motorcycle in the second experiment was discovered to have his right hand grasping power decreased remarkably after the second experiment. Fatigue factors unique to motorcycle driving are thought the engine vibration, the hot air, the need of taking balance of the motorcycle attitudes, and stress from noise. 14 refs., 8 figs.

  4. Development of a thin film solar cell interconnect for the PowerSphere concept

    International Nuclear Information System (INIS)

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  5. 41 CFR 301-10.310 - What will I be reimbursed if I am authorized to use a Government automobile and I use a privately...

    Science.gov (United States)

    2010-07-01

    ... reimbursed if I am authorized to use a Government automobile and I use a privately owned automobile instead... automobile and I use a privately owned automobile instead? (a) Reimbursement based on Government costs—Unless you are committed to using a Government automobile as provided in paragraph (b) of this section,...

  6. Impute DC link (IDCL) cell based power converters and control thereof

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  7. Optimal design of PEM fuel cells to generate maximum power: A CFD study

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2011-11-01

    Full Text Available A full three-dimensional, multi-phase computational fluid dynamics model of a PEM fuel cell has been developed. The parametric study using this model has been performed and discussed in detail. Optimization study of a PEM fuel cell performance has been performed. The study quantifies and analyses the impact of operating, design, and material parameters on fuel cell performance and get an optimal design for PEM fuel cells to generate maximum power. To generate maximum power, the results show that the cell must be operate at higher cell operating temperature, higher cell operating pressure, higher stoichiometric flow ratio, and must have higher GDL porosity, higher GDL thermal conductivity, narrower gases channels, and thinner membrane. At these optimum conditions, the result shows that the total displacement and the degree of the deformation inside the MEA were decreased. However, the Miss stress in the membrane was increased due to higher cell operating temperature.

  8. "Electronic Procurement networks and Parts Transaction Systems: A Case of the Automobile Industry"(in Japanese)

    OpenAIRE

    Je-Wheon Oh; Takahiro Fujimoto

    2001-01-01

    Inter-firm information systems in the automobile industry have evolved from firm-specific networks to industrial standard networks and further to internet. This paper examines how electronic parts procurement systems in the automobile industry affected its patterns of inter-firm transactions through empirical studies on information networks, transaction systems, and architectural characteristics of automobile parts. We argue that choice of a certain parts transaction system tends to affect ch...

  9. Globalization of the automobile industry in China: Dynamics and barriers in the greening of road transportation

    OpenAIRE

    2001-01-01

    This article describes the state of the automobile industry and urban road transportation management in China. It reviews how the automobile industry is evolving to respond to challenges in economic development, environmental regulations, and technological change. The dynamics and barriers resulting from technological change of the automobile in response to reduction of exhaust emissions and energy-efficiency improvement are analyzed. It is argued that consideration of externality costs shoul...

  10. The influence of globalisation on automobile manufacturers in South Africa / Kalanther Ishaq

    OpenAIRE

    Ishaq, Kanther

    2003-01-01

    The South African automobile manufacturing industry has grown since 1920 from an import and assembly industry to an import-substitute industry. From the inception, the automobile manufacturing industry developed under the careful monitoring of the Government to obtain the objectives of the economy of the country. Until 1960, all automobile manufacturers imported completely knocked down sets from abroad to assemble vehicles. These excessive imports drained the South African fore...

  11. The Relationship Between Cash Flow And Capital Expenditure: Evidence From German Automobile Sector

    OpenAIRE

    Saffarizadeh, Navid

    2014-01-01

    ABSTRACT: The present study investigates the long run equilibrium relationship between cash flow and capital expenditure in German automobile sector as one of the leaders of the automobile industry in the world. Johansen co-integration test confirmed the relationship between cash flow and capital expenditure in the long run. Cash flow has significant and inelastic impact on capital expenditure (-0.963). Error correction model reveals that capital expenditure in German automobile sector conver...

  12. “Separation -A Better Tomorrow-Economy” A Study of Marketing Strategies On Automobile

    OpenAIRE

    Ekta Chakravarty

    2013-01-01

    Automobile is one of the largest industries in global market. Being the leader in product and process technologies in the manufacturing sector, it has been recognized as one of the drivers of economic growth. During the last decade, well directed efforts have been made to provide a new look to the automobile policy for realizing the sector's full potential for the economy. Aggressive marketing by the auto finance companies have also played a significant role in boosting automobile demand, esp...

  13. The effects of automobile production and local government expenditure on poverty in alabama

    OpenAIRE

    Sooriyakumar Krishnapillai; Henry Kinnucan

    2012-01-01

    This paper studies the impact of automobile production on the poverty rate of Alabama's counties. The findings suggest that automobile production in Alabama significantly reduces the poverty rate in all counties. The impact of automobile production on poverty reduction in distressed black belt counties is greater than in other counties. The local government expenditure is not very effective in reducing the poverty. This implies that industrial development may be more effective in reducing pov...

  14. Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use

    OpenAIRE

    Silvis, Julia; Leighty, Wayne; Karner, Alex

    2007-01-01

    In this paper we seek to document what, if any, divergences exist between how experts and ‘lay’ people conceptualize the energy used in automobiles, motivated by previously-documented divergences in the home energy sector. From a total of 15 interviews with 19 individuals, we identify several common ways ‘lay’ people think about automobile energy use, and draw a number of conclusions relevant to the development of transportation energy policy. In our informants’ minds, automobiles us...

  15. Multi-cell thermionic fuel element for nuclear electric power and propulsion system

    Science.gov (United States)

    Nikolaev, Yuri V.; Gontar, Alexander S.; Eremin, Stanislav A.; Lapochkin, Nikolai V.; Andreev, Pavel V.; Zhabotinsky, Evgeny E.

    1999-01-01

    Conceptual problems of development of two-mode multi-cell thermionic fuel element (TFE) for nuclear electric power and propulsion system are considered. The results of analysis of the design and TFE output parameters are presented. It is shown that application of advanced high effective materials and technologies provides operating of the TFE in two modes: a) in nominal mode of power generation for power supply of spacecraft payload at operational orbit and b) in forced mode of power generation for power supply of electric thrusters under spacecraft orbit transfer from intermediate to operational one.

  16. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Vora

    2008-02-01

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  17. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  18. A Lemon Cell Battery for High-Power Applications

    Science.gov (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-01-01

    The use of lemon cell battery to run an electric DC motor is demonstrated for chemistry students. This demonstration aids the students in understanding principles behind the design and construction of the lemon cell battery and principles governing the electric DC motor and other basic principles.

  19. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  20. Hydrogen-chlorine fuel cell for production of hydrochloric acid and electric power : chlorine kinetics and cell design

    OpenAIRE

    Thomassen, Magnus Skinlo

    2005-01-01

    This thesis work is the continuation and final part of a joint project between the Department of Materials Technology, NTNU and Norsk Hydro Research Center in Porsgrunn, looking at the possibility of using fuel cells for production of hydrogen chloride and electric power. The experimental work encompass an evaluation of three hydrogen - chlorine fuel cell design concepts, development and implementation of a mathematical fuel cell model and a kinetic study of the chlorine reduction reaction. T...

  1. Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Operating a proton exchange membrane fuel cell (PEMFC) system to produce power at the maximum power efficiency is one of the key issues in PEMFC's wide-spread applications. However, power density exhibits complex behavior and nonlinear dynamics with respect to the output cell voltage, fuel cell temperature, anode and cathode pressure, inlet gas humidity, and so on. In this paper, the distribution of power density in the domain of the output cell voltage and fuel cell temperature is delineated. By this delineation, the quadratic polynomial fitting was used to approximate the power density curve in local interval and estimate the maximum power efficiency point. Generalized predictive control (GPC) is presented to overcome the problem of time-varying dynamics of PEMFC in real time via applying a forgetting factor recursive least square (FFRLS) method. Based on the approximation and generalized predictive control strategy, maximum power efficiency operation of PEMFC is applied. The results of this work can contribute to the operation of PEMFC at the maximum power point, which guarantees the plant generating maximum power at the lowest consumption of hydrogen. - Highlights: • Operating the PEMFC at the maximum power efficiency point is achieved with the lowest consumption of hydrogen. • The quadratic polynomial fitting method is used to estimate the maximum power efficiency point in local interval. • A data-driven predictive model is introduced to overcome the time-varying dynamics of PEMFC in real time. • Generalized predictive control (GPC) strategy is designed to optimize flow rates of hydrogen and coolant on-line

  2. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  3. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  4. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    OpenAIRE

    Yanli Wang; Steele, Charles R.; Sunil Puria

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar m...

  5. Power loss analysis of n-PASHA cells validated by 2D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Gutjahr, A.; Burgers, A.R.; Saynova, D.S.; Cesar, I.; Romijn, I.G.

    2013-10-15

    To reach >21% efficiency for the n-Pasha (passivated all sides H-pattern) cell of ECN, reliable power-loss analyses are essential. A power-loss analysis is presented that is based on experimental data but validated and completed by 2D simulations. The analysis is used to identify the key factors that will contribute most to achieving >21% efficiency.

  6. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  7. Water rocket - Electrolysis propulsion and fuel cell power

    International Nuclear Information System (INIS)

    Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy[Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft

  8. Power loss for high-voltage solar-cell arrays

    Science.gov (United States)

    Parker, L. W.

    1979-01-01

    Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.

  9. Fuel cell programs in the United States for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  10. Study of a multiphase interleaved step-up converter for fuel cell high power applications

    International Nuclear Information System (INIS)

    This paper presents a study of a high power dc distributed system supplied by a fuel cell generator. A proposed parallel power converter with interleaving algorithm is chosen to boost a low dc voltage of fuel cell to a dc bus utility level. The present interleaved step-up converters are composed of two and four identical boost converters connected in parallel. Converters are controlled by interleaved switching signals, which have the same switching frequency and the same phase shift. By virtue of paralleling the converters, the input current can be shared among the cells or phases, so that high reliability and efficiency in power electronic systems can be obtained. In addition, it is possible to improve the system characteristics such as maintenance, repair, fault tolerance, and low heat dissipation. During the past decade, power electronics research has focused on the development of interleaved parallel converters. For an interleaving technique with a real fuel cell source, this work is the first presentation; it is not just a fuel cell simulation. So, the design and experimental verification of 1.2-kW prototype converters at a switching frequency of 25 kHz connected with a NexaTM PEM fuel cell system (1.2-kW, 46-A) in a laboratory is presented. Experimental results corroborate the excellent system performances. The fuel cell ripple current can be virtually reduced to zero. As a result, the fuel cell mean current is nearly equal to the fuel cell rms current.

  11. Study of a multiphase interleaved step-up converter for fuel cell high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518 Piboolsongkram Rd., Bangsue, Bangkok 10800 (Thailand); Davat, Bernard [Nancy Research Group in Electrical Engineering, CNRS (UMR 7037), Nancy Universite, INPL-ENSEM 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2010-04-15

    This paper presents a study of a high power dc distributed system supplied by a fuel cell generator. A proposed parallel power converter with interleaving algorithm is chosen to boost a low dc voltage of fuel cell to a dc bus utility level. The present interleaved step-up converters are composed of two and four identical boost converters connected in parallel. Converters are controlled by interleaved switching signals, which have the same switching frequency and the same phase shift. By virtue of paralleling the converters, the input current can be shared among the cells or phases, so that high reliability and efficiency in power electronic systems can be obtained. In addition, it is possible to improve the system characteristics such as maintenance, repair, fault tolerance, and low heat dissipation. During the past decade, power electronics research has focused on the development of interleaved parallel converters. For an interleaving technique with a real fuel cell source, this work is the first presentation; it is not just a fuel cell simulation. So, the design and experimental verification of 1.2-kW prototype converters at a switching frequency of 25 kHz connected with a Nexa trademark PEM fuel cell system (1.2-kW, 46-A) in a laboratory is presented. Experimental results corroborate the excellent system performances. The fuel cell ripple current can be virtually reduced to zero. As a result, the fuel cell mean current is nearly equal to the fuel cell rms current. (author)

  12. Individualized solutions to environmental problems: a case of automobile pollution

    Energy Technology Data Exchange (ETDEWEB)

    Urmetzer, P.; Blake, D. E.; Guppy, N. [British Columbia Univ., Vancouver, BC (Canada)

    1999-09-01

    Air pollution associated with motor vehicle use is one of the prime indicators of the tension between consumerism and the environment. The use of private automobiles seems so convenient, whereas the alternatives are off-putting enough to make significant changes in personal transportation behaviour well-nigh impossible. At the same time, combating the air pollution associated with extensive use of cars has become one of the major policy objectives for cities around the world. Available policy alternatives can be divided into two categories: (1) incentives, such as improved public transportation, and (2) disincentives, such as environmental tax on gasoline. This paper attempt to directly assess links between these two alternatives, associated attitudes towards them, the level of public support for command and control (i.e. regulatory) policy approaches as well as for economic incentive/disincentive policies. Answers are sought and findings discussed relative to the link between opinions about the environment and support for different types of environmental policies, the usefulness of a rational choice perspective in explaining support for environmental policy alternatives, the role that partisan political attachments play in support of environmental policy approaches, and the roles played by environmental activism, knowledge, and action in shaping support for environmental policy alternatives. Overall results indicate that while most people living in urban environments support the ideas of environmental protection and would be willing to incur costs to confront the problem, exposure to air pollution plays an inconsequential (actually nearly non-existent) role in support of automobile-related environmental problems. Automobile users act like 'free-riders' i.e. they tend to support policies that socialize the cost of solutions rather than policies that attempt to pass the cost of pollution directly on to individual car owners. A sample of the responses to

  13. Characteristics of motorcyclists involved in accidents between motorcycles and automobiles

    Directory of Open Access Journals (Sweden)

    Amanda Lima de Oliveira

    2015-02-01

    Full Text Available Introduction: traffic accidents are one of the main causes of death and disability, with motorcyclists representing the great majority of both the victims and the perpetrators. Objective: this work studied the characteristics of motorcyclists injured in accidents involving motorcycles and automobiles. Method: this study sought to interview 100 motorcyclists who had been injured in collisions between motorcycles and automobiles, and who were undergoing emergency hospital treatment in the region of Belo Horizonte, Brazil. The questionnaires included demographic information (age, gender, skin color, education level, profession and questions about years of licensed driving practice, how often they would drive an automobile, how long they had had a motorcycle driver’s license, how often they would ride a motorcycle, the number of prior accidents involving a car, and the number of prior accidents not involving a car. Results: of the 100 consecutive accidents studied, 91 occurred with men and 9 with women, aged between 16 and 79 (m = 29 ± 11 years. Regarding their reason for using a motorcycle, 83% reported using it for transport, 7% for work, and 10% for leisure. Most of these accident victims had secondary or higher education (47%. Of the motorcyclists who held a car driver’s license, 68.3% drove the vehicle daily or weekly and held the license for more than one year. Sixty-seven percent of the accident victims used a motorcycle daily and had a motorcycle driver’s license for at least one year. Conclusion: among the motorcyclists injured, most were men aged 20 years or older, with complete secondary education, and experienced in driving both motorcycles and cars, indicating that recklessness while driving the motorcycle is the main cause of traffic accidents.

  14. Measuring the environmental impacts and sustainability of automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Lave, L.B.; Cobas Flores, E.; McMichael, F.C.; Hendrickson, C.T.; Horvath, A.; Joshi, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-11-01

    In the paper the following topics are discussed: - the need for public education and involvement in the decision process, - the difficulty of defining sustainability, - the occasional difference between the goals of sustainability and environmental quality, - the need for life cycle analysis to analyze the sustainability and environmental quality implications of a product, process, or material. The importance of environmental input-output analysis is stressed. This new tool can provide the life cycle information cheaply, quickly, and with much less uncertainty. Examples are presented for making an automobile, a seat out of plastic or aluminium, and an electric vehicle. (author) 4 tabs., refs.

  15. SCHEDULING OF MECHANICS IN AUTOMOBILE REPAIR SHOPS USING ANN

    Directory of Open Access Journals (Sweden)

    N. SHIVASANKARAN

    2014-05-01

    Full Text Available Scheduling problems are NP – Hard combinatorial optimization problems, since many algorithms have been developed which offers new promising insights for solving resource allocation problems. Considering the problems faced in automobile repair shops, who sets the customer due dates of the car based on processing time, jobs already waiting for processing and mechanic available time. Also the workload of the mechanic should be balanced and minimize the make-span of the work. So this paper is concerned with determination of optimal allocation of repair jobs to the mechanic using Artificial Neural Network and hence to determine the minimum Total cost and make span of repair.

  16. Relations de travail dans l’industrie automobile colombienne

    OpenAIRE

    Valero, Edgar Augusto

    2011-01-01

    Les secteurs d'assemblages d'automobiles et de fabrication de pièces de rechange en Colombie décrivent les pressions exercées par l'environnement compétitif international sur l'efficience et la qualité. Ces pressions ont entraîné l'adoption de nouvelles formes d'organisation du travail et le changement quasi général des politiques du personnel durant les quinze dernières années. Un ensemble de transformations significatives des relations de travail dans cette branche de l'industrie est...

  17. WHO KILLED SAAB AUTOMOBILE?:Obituary of an Automotive Icon

    OpenAIRE

    Oliver, Nick; Holweg, Matthias

    2011-01-01

    Saab Automobile AB was declared bankrupt on December 19, 2011. This marked the end of 62 years of car production for the iconic brand, which during its final years was beset with financial problems and changes of ownership. More than 3,700 workers lost their jobs when the Trollhättan factory finally closed its doors after producing a total of 4.5 million Saab vehicles over the years. But what was the root cause for the company’s demise? Was it preventable? And who was to blame? The failure o...

  18. Automated Sequencing and Subassembly Detection in Automobile Body Assembly Planning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The choice of the sequence in which parts or subass em blies are put together in the mechanical assembly of a product can drastical ly affect the efficiency of the assembly process. Unlike metal cutting operation s where computer aided system have been available for some 15 to 25 years to hel p manufacturing engineers in generating cutting sequences and NC programs, the m ajority of assembly planning tasks in automobile body design is still manually p erformed by assembly designers according to their pa...

  19. CUSTOMER IMPORTANCE RATING OF SERVICE QUALITY DIMENSIONS FOR AUTOMOBILE SERVICE

    Directory of Open Access Journals (Sweden)

    SATYENDRA SHARMA

    2014-12-01

    Full Text Available Customers are the center of an organization’s universe: they define quality. They expect performance, reliability, responsiveness, competitive prices, on-time delivery, service, clear and correct transaction processing and more. Customer satisfaction/Service quality management has become a strategic imperative for most firms. In the present circumstances, it is vital to measure customer perceptions and how well the company delivers on the critical factors/dimensions of the business. The main objective of this paper is to be acquainted with customer importance rating of service quality dimensions or Voice of Customers for an Automobile service centre. A questionnaire has been used for the purpose.

  20. Preparation of composite aluminum automobile radiator by inversion casting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The inversion casting technics of producing three-ply Al-Mn/Al-Si composite strap used in automobile radiator was studied. The physical processes of inversion casting, including the flux-supporting reacting and volatilizing at high temperature, the melting and solidification when the elements of solid and liquid fresh alloys meet with each other, the mutual diffusion of elements in solid and liquid, the crystallization and forming of metallurgical combination and the following rolling process, were analyzed. At the same time, the composite mechanism of this technique was also discussed.

  1. Differences between pickup truck and automobile driver-owners.

    Science.gov (United States)

    Anderson, C L; Winn, D G; Agran, P F

    1999-01-01

    This study compares pickup truck driver-owners and drivers who owned only automobiles with respect to demographic factors, conditions of use, risk-taking driving behavior, prior driving history and attitudes towards motor vehicle laws. A telephone survey conducted in Riverside County, CA determined that 36% of the households had a pickup truck. Pickup truck owners were primarily male, aged 30-39 years, married, reported lower restraint use and more risky driving behaviors, and had more traffic citations. Differences in behaviors and attitudes were largely a function of age and gender. There is a need to design appropriate occupant safety interventions for those most likely to own pickup trucks. PMID:10084620

  2. An updated estimation of the stable carbon and oxygen isotopic compositions of automobile CO emissions

    Science.gov (United States)

    Tsunogai, Urumu; Hachisu, Yosuke; Komatsu, Daisuke D.; Nakagawa, Fumiko; Gamo, Toshitaka; Akiyama, Ken-ichi

    We estimate up-to-date values of the average isotopic compositions of CO emitted from automobiles. In the estimation, we determined the isotopic compositions of CO in tail pipe exhaust for four gasoline automobiles and two diesel automobiles under varying conditions of both idling and running. While the dependence on the automobile manufacturer is little, each automobile equipped with functional catalytic converter exhibits a large temporal δ13C and δ18O variation. They tend to show 13C and 18O enrichment in accordance with the reduction of CO in exhaust, suggesting that the functional catalytic converter in engines enhances the δ13C and δ18O values of CO from tail pipes through a kinetic isotope effect during CO destruction. Assuming that automobiles run a modeled driving cycle, we estimated the average δ13C and δ18O of CO to be -23.8±0.8‰ PDB and +25.3±1.0‰ SMOW, respectively, for recent gasoline automobiles, and -19.5±0.7‰ PDB and +15.1±1.0‰ SMOW, respectively, for recent diesel automobiles. While the δ13C and δ18O values of recent gasoline automobiles coincide well with the isotopic compositions of source CO in present trunk road atmosphere estimated in this study, those are +4-+6‰ ( δ13C) and +1-+3‰ ( δ18O) higher than those reported previously and also those emitted from old, non-catalyst automobiles determined in this study. Recent improvements in functional catalytic converters have enhanced and will enhance the δ13C and δ18O values of CO from automobiles.

  3. A new topology of fuel cell hybrid power source for efficient operation and high reliability

    Science.gov (United States)

    Bizon, Nicu

    2011-03-01

    This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.

  4. Gas Boiler Powered by the Fuel Cell System

    OpenAIRE

    Nicolae Badea; Madalin Costin

    2014-01-01

    The paper presents a new solution for supply of boilers with electrical energy in the order to achieve autonomy from electrical grid. The paper presents the experimental system implemented in the university lab, the components and implementation in Matlab-Simulink for simulation. As a result of numeric simulation performed, the experimental bench has been achieved. The problem of power quality, especially the THD factor, affects the sensitivity of equipment at perturbations. In...

  5. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  6. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  7. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H2. - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm−2) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H2. An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  8. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  9. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains

    Science.gov (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  10. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  11. Reliability considerations of a fuel cell backup power system for telecom applications

    Science.gov (United States)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  12. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    Science.gov (United States)

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations. PMID:26720922

  13. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant

    OpenAIRE

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-01-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The prop...

  14. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.;

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then, a...... multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...

  15. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    OpenAIRE

    Yong-Song Chen; Sheng-Miao Lin; Boe-Shong Hong

    2013-01-01

    A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investig...

  16. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel;

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source of...... energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  17. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  18. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  19. Impact of power converter current ripple on the durability of a fuel cell stack

    OpenAIRE

    WAHDAME, B; GIRARDOT, L; Hissel, D.; Harel, F.; Francois, X.; Candusso, D.; PERA, MC; DUMERCY, L

    2008-01-01

    The durability and performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) have a major impact on the most important challenges facing fuel cell commercialization including final cost, mass production, system integration, functionality and reliability. This work is supported by French Government via an ANR' project (PAN'H) named SPACT80. The global objective is to develop and validate the use of a fuel cell based power system for heavy-duty vehicles (dedicated to railway applications or...

  20. Cell circuit design and test of a high power solid state modulator

    International Nuclear Information System (INIS)

    The cell circuit design and test of a high power solid state modulator for linac application are presented in the paper. The 3.3 kV IGBT and large dimension nanocrystalline core are used in the cell circuit design. The driving, protection, reverse energy absorbing and bias circuit are also presented. Dynamic magnetic performance of the core and the waveforms of the cell circuit are measured. (authors)

  1. Development of automobile brake lining using pulverized cow hooves

    Directory of Open Access Journals (Sweden)

    Katsina C. BALA

    2016-06-01

    Full Text Available Asbestos has been used for so long as automobile brake lining material because of its good physical and chemical properties. However, due to the health hazard associated with its handling, it has lost favour and several alternative materials are being increasingly used. Asbestos-free brake lining was developed in this work using pulverized cow hooves along with epoxy resin, barium sulphate, graphite and aluminium oxide. This was with a view to exploiting the characteristics of cow hooves, which are largely discarded as waste materials to replace asbestos which has been found to be carcinogenic. Samples of brake linings were produced using compressive moulding in which the physical and mechanical properties of the samples were studied. The results obtained showed that proper bonding was achieved as the percentage by weight of epoxy resin increased and percentage by weight of pulverized cow hooves decreased. The hardness, compressive strength, coefficient of friction, water and oil absorption, relative density and wear rate of the brake linings were determined and compared with existing brake lining properties. The result indicates that pulverized cow hooves can be used as brake lining material for automobiles.

  2. SYNTHESIS OF AUTOMOBILE IGNITION SYSTEM USING OZONIZED FUEL

    Directory of Open Access Journals (Sweden)

    O. M. Pilipenko

    2015-01-01

    Full Text Available The paper presents a mathematical model for electronic control system of the angular ignition timing (AIT in the (ICE, which is running on ozonized fuel. An algorithm for  ignition system control of internal combustion engine using ozonized fuel has been developed in the paper. A structure of the dynamic ignition system while using a control unit for supplying  ozone into fuel with a purpose to improve automobile ecological and economical indices adapted to operational conditions. Application of the given system allows to ensure minimum reduction of operational petrol consumption and concentration of incomplete combustion products due to optimum ozone dosage into the fuel.  The paper proposes a controlled automobile ignition system as a sequential scheme which has a great number of discrete inputs and outputs and many discrete internal  states. The scheme establishes a functional dependence between input and output states. The paper provides an assessment of ecological indices according to massive emissions of carbon monoxide СО, hydrocarbon СпНт and nitric oxide NOx .  The analysis of  investigations results has been carried out in the paper.

  3. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  4. Ergonomic and usability analysis on a sample of automobile dashboards.

    Science.gov (United States)

    Carvalho, Raíssa; Soares, Marcelo

    2012-01-01

    This is a research study based on an analysis which sets out to identify and pinpoint ergonomic and usability problems found in a sample of automobile dashboards. The sample consisted of three dashboards, of three different makes and characterized as being a popular model, an average model and a luxury model. The examination was conducted by observation, with the aid of photography, notes and open interview, questionnaires and performing tasks with users, the bases of which are on the principles laid down by methodologies. From this it was possible to point to the existence of problems such as: complaints about the layout, lighting, colors, available area, difficult access to points of interaction, such as buttons, and the difficult nomenclature of dials. Later, the findings and recommendations presented show the need for a further, deeper study, using more accurate tools, a larger sample of users, and an anthropometric study focused on the dashboard, since reading and understanding it have to be done quickly and accurately, and that more attention be given to the study of automobile dashboards, particularly in the most popular vehicles in order to maintain the standards of usability, and drivers' comfort and safety. PMID:22316929

  5. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  6. Design and analysis of single- ended robust low power 8T SRAM cell

    Directory of Open Access Journals (Sweden)

    Gupta Neha

    2016-01-01

    Full Text Available This paper is based on the observation of 8T single ended static random access memory (SRAM and two techniques for reducing the sub threshold leakage current, power consumption are examined. In the first technique, effective supply voltage and ground node voltages are changed using a dynamic variable voltage level technique(VVL. In the second technique power supply is scaled down. This 8T SRAM cell uses one word line, two bitlinesand a transmission gate. Simulations and analytical results show that when the two techniques combine the new SRAM cell has correct read and write operation and also the cell contains 55.6% less leakage and the dynamic power is 98.8% less than the 8T single ended SRAM cell. Simulations are performed using cadence virtuoso tool at 45nm technology.

  7. Designing Logistic Information Platform to Fostering Development Trend in China Automobile Manufacturing Group

    Institute of Scientific and Technical Information of China (English)

    Wang Yue

    2009-01-01

    The logistics resource in China's automobile group can't be optimized and allocated because of the "information island" problem in the group's logistics information platform in the whole group. In addition, it is the development trend of China's automobile group LIN to build a logistics e - market in the range of the group.

  8. La Securite des Enfants vs. la Circulation - Auto. (Children's Safety vs. Automobile Traffic).

    Science.gov (United States)

    Canada Mortgage and Housing Corp., Ottawa (Ontario).

    This report, the sixteenth in a series of twenty reports undertaken by the Children's Environments Advisory Service for the 1979 International Year of the Child, analyzes the difficulties of designing automobile traffic patterns for areas in which children reside. Automobile traffic and play patterns in 21 multiple-housing projects in the…

  9. A Tractor or an Automobile? A 1920s Farm Family Faces a Decision.

    Science.gov (United States)

    Kunze, Joel P.

    1991-01-01

    Outlines a lesson plan in which students role play a 1920s farm family deciding whether to buy an automobile or a tractor. Other students act as automobile and tractor sales groups. Explains how the lesson illuminates relationships between technological advance and social history. Includes handouts identifying benefits of purchasing cars or…

  10. 75 FR 80350 - Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile...

    Science.gov (United States)

    2010-12-22

    ... date for the final rule published on November 29, 2010 at 75 FR 72965 remains November 29, 2010. The...-AJ09 Federal Travel Regulation; Removal of Privately Owned Vehicle Rates; Privately Owned Automobile Mileage Reimbursement When Government Owned Automobiles Are Authorized; Miscellaneous...

  11. Automobile industry and Japan’s strategy for the global environment

    OpenAIRE

    Şerban Georgescu

    2007-01-01

    Japan’s automobile industry evolution for the last five years was a succes story, based on long-term strategy and strong innovative development. This article makes a review of the automobile industry’s main trends and challenges for the Japanese manufacturers.

  12. 29 CFR 785.40 - When private automobile is used in travel away from home community.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false When private automobile is used in travel away from home community. 785.40 Section 785.40 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... WORKED Application of Principles Traveltime § 785.40 When private automobile is used in travel away...

  13. 32 CFR 552.73 - Minimum requirements for automobile insurance policies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Minimum requirements for automobile insurance policies. 552.73 Section 552.73 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Military Reservations § 552.73 Minimum requirements for automobile insurance policies. Policies sold...

  14. 25 CFR 11.419 - Unauthorized use of automobiles and other vehicles.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Unauthorized use of automobiles and other vehicles. 11... OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.419 Unauthorized use of automobiles and other vehicles. A person commits a misdemeanor if he or she operates another person's...

  15. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  16. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  17. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  18. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  19. Low Power Laser Irradiation Stimulates the Proliferation of Adult Human Retinal Pigment Epithelial Cells in Culture

    Science.gov (United States)

    Song, Qing; Uygun, Basak; Banerjee, Ipsita; Nahmias, Yaakov; Zhang, Quan; Berthiaume, François; Latina, Mark; Yarmush, Martin L.

    2015-01-01

    We investigated the effects of low power laser irradiation on the proliferation of retinal pigment epithelial (RPE) cells. Adult human RPE cells were artificially pigmented by preincubation with sepia melanin, and exposed to a single sublethal laser pulse (590 nm, 1 µs, <200 mJ/cm2). DNA synthesis, cell number, and growth factor activity in irradiated RPE cells were subsequently monitored. The effect of sublethal laser irradiation on the “wound” healing response of an RPE monolayer in an in vitro scratch assay was also investigated. Single pulsed laser irradiation increased DNA synthesis in pigmented RPE cells measured 6 h post-treatment. In the scratch assay, laser irradiation increased the rates of cell proliferation and wound closure. Conditioned medium, collected 48 h following laser treatment, increased cell proliferation of unirradiated cells. Irradiation increased RPE cell secretion of platelet-derived growth factor (PDGF)-B chain, and increased mRNA levels of several growth factors and their receptors, including PDGF, transforming growth factor-β1, basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor, as well as heat shock proteins. This demonstrates, for the first time, that low power single pulsed laser irradiation stimulates the proliferation of RPE cells, and upregulates growth factors that are mitogenic for RPE cells. PMID:26740823

  20. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power and...... creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable and...... floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity. It...

  1. Use of fuel cells to meet military requirements for mobile power

    International Nuclear Information System (INIS)

    'Full text:' The use of fuel cell technology in military applications will depend on safe, high energy density systems being developed. An important part of using this technology is also the development of alternative hydrogen producing fuels with high energy densities and are easy to transport. Fuel cells are now a very large R and D effort for several military applications around the world. The major reason is because of the high power demands needed requires electrical energy sources that far exceed the capabilities of batteries currently being fielded for portable applications. Fuel cells are regarded as highly efficient, tactical energy converters that can be adapted for wide range of power requirements. They are potentially the lowest weight power source when coupled with batteries or capacitors to form hybrid systems. Generally electrical power is needed to support a number of applications from ultra-high power for electrical pulses (radios, sensors) to reliable, conditioned power for command and control systems. In the future, sustained power for electric drive systems, will also be required. Some of the promising applications in the military and the R and D challenges that remain to reach performance and reliability targets suitable for military requirements will be discussed. (author)

  2. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  3. Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output

    Directory of Open Access Journals (Sweden)

    C. Ulbrich

    2013-01-01

    Full Text Available We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in the JV characterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.

  4. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  5. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  6. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Science.gov (United States)

    2010-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter...

  7. 41 CFR 301-10.220 - What requirements must I meet to operate a Government automobile for official travel?

    Science.gov (United States)

    2010-07-01

    ... meet to operate a Government automobile for official travel? 301-10.220 Section 301-10.220 Public... ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Government Vehicle Government Automobiles § 301-10.220 What requirements must I meet to operate a Government automobile for official travel? You must...

  8. 29 CFR 779.371 - Some automobile, truck, and farm implement establishments may qualify for exemption under section...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Some automobile, truck, and farm implement establishments... OR SERVICES Exemptions for Certain Retail or Service Establishments Automobile, Truck, Farm Implement, Trailer, and Aircraft Sales and Services § 779.371 Some automobile, truck, and farm...

  9. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  10. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  11. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  12. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  13. The changing nature of the power generation market — does it create opportunities for fuel cells?

    Science.gov (United States)

    Cragg, C. T.

    This paper surveys the global power industry seeking trends that might encourage greater use of full cells. The subject is broken into four basic themes: (i) an increasing demand for electricity, and this may not be solved by the traditional form of the integrated state-owned, centralised power utility, with a large infrastructure grid attached, the load curves of these integrated grids becoming unmanageable; (ii) a general trend towards privatisation and deregulation in the power sector, that is shifting its control from an engineering to a commercial paradigm, with unforseen consequences; (iii) contrary to (ii), the need for supplying security in its most basic sense is increasing rather than declining as power-dependent technology becomes progressively more important in the modern economy, and (iv) the trend in technology, particularly environmental-friendly technology, is towards smaller size of production centres. Within these inter-related themes these are encouraging prospects for the fuel cell community.

  14. Fuel cell-shaft power packs (FC-SPP)

    Energy Technology Data Exchange (ETDEWEB)

    Elefsen, F.; Frandsen, S. [Danish Technological Institute, Renewable Energy and transport (Denmark)

    2007-05-15

    Danish companies will be able to obtain a unique international competitive position by combining our leadership in renewable energy with a focused and dedicated effort in hydrogen technology. The purpose of the present consortium is to establish the foundation for producing small hydrogen-based motor units. The consortium develops the technology in three concrete projects within two areas: small transportation equipment and mobile units. This assures that the research is directed towards specific market segments and that a synergy is obtained between technology development and market demand. Furthermore, the consortium involves developing concepts and tools for commercializing the technology and employing user-driven innovation. The consortium includes a number of innovative SMEs in close interaction with larger established companies. The large companies are primarily component suppliers, thus assuring that the necessary components are developed and produced. The participating SME's are both component and system suppliers, thus assuring that the products developed will also be carried to the market. Ultimately, the projects may contribute to the start of a new industrial success story similar to the Danish wind power industry, which would simultaneously lead to exports and an improved environment. (au)

  15. Photo-Activated Low Temperature, Micro Fuel Cell Power Source

    Energy Technology Data Exchange (ETDEWEB)

    Harry L. Tuller

    2007-03-30

    A Key objective of this program is to identify electrodes that will make it possible to significantly reduce the operating temperature of micro-SOFC and thin film-based SOFCs. Towards this end, efforts are directed towards: (a) identifying the key rate limiting steps which limit presently utilized electrodes from performing at reduced temperatures, as well as, (b) investigating the use of optical, as opposed to thermal energy, as a means for photocatalyzing electrode reactions and enabling reduced operating temperatures. During Phase I, the following objectives were achieved: (a) assembly and testing of our unique Microprobe Thin Film Characterization System; (b) fabrication of the model cathode materials system in thin film form by both PLD and ink jet printing; and (c) the successful configuration and testing of the model materials as cathodes in electrochemical cells. A further key objective (d) to test the potential of illumination in enhancing electrode performance was also achieved.

  16. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  17. Two-photon excitation in living cells induced by low-power cw laser beams

    Science.gov (United States)

    Koenig, Karsten; Krasieva, Tatiana B.; Liu, Yagang; Berns, Michael W.; Tromberg, Bruce J.

    1996-05-01

    We demonstrate multi-photon excitation in optically-trapped living cells. Intracellular non- resonant two-photon excitation of endogenous and exogenous chromophores was induced by CW near infrared (NIR) trapping beams of 105 mW power. In the case of fluorescent chromophores, detection of NIR-excited visible fluorescence was achieved by imaging and spectroscopy methods. Trap-induced, two-photon excited fluorescence was employed as a novel diagnostic method to monitor intracellular redox state and cell vitality of single motile spermatozoa and Chinese hamster ovary cells. We found, that nonlinear absorption of NIR photons NIR, single-frequency traps (`optical tweezers') for micromanipulation of vital cells.

  18. DPAL: A New Class of Lasers for CW Power Beaming at Ideal Photovoltaic Cell Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W F; Beach, R J; Payne, S A; Kanz, V K; Early, J T

    2003-09-15

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies {approx}40% (Si) and {approx}60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected.

  19. Two novel low-power and high-speed dynamic carbon nanotube full-adder cells

    Directory of Open Access Journals (Sweden)

    Eshghi Mohammad

    2011-01-01

    Full Text Available Abstract In this paper, two novel low-power and high-speed carbon nanotube full-adder cells in dynamic logic style are presented. Carbon nanotube field-effect transistors (CNFETs are efficient in designing a high performance circuit. To design our full-adder cells, CNFETs with three different threshold voltages (low threshold, normal threshold, and high threshold are used. First design generates SUM and COUT through separate transistors, and second design is a multi-output dynamic full adder. Proposed full adders are simulated using HSPICE based on CNFET model with 0.9 V supply voltages. Simulation result shows that the proposed designs consume less power and have low power-delay product compared to other CNFET-based full-adder cells.

  20. Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Güray eGüven

    2016-02-01

    Full Text Available The requirement for a miniature, high density, long life, rechargeable power source is common to a vast majority of microsystems, including the implantable devices for medical applications. A model biofuel cell system operating in human serum has been studied for future applications of biomedical and implantable medical devices. Anodic and cathodic electrodes were made of carbon nanotube –buckypaper modified with PQQ-dependent glucose dehydrogenase and laccase, respectively. Modified electrodes were characterized electrochemically and assembled in a biofuel cell set-up. Power density of 16.12 μW/cm2 was achieved in human serum for lower than physiological glucose concentrations. Increasing the glucose concentration and biofuel cell temperature caused an increase on power output leading up to 49.16 μW/cm2.

  1. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Wu, Hui; Ahmad, Mashkoor; Luo, Zhixiang; Xie, Jianbo; Yan, Xinxu; Wu, Lihua; Zhu, Jing [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Fang, Ying; Li, Qiang [The National Center for Nanoscience and Technology (NCNST) of China, Beijing 100080 (China); Wang, Zhong Lin [School Materials Science and Engineering, Georgia Institute of Technology, Atlanta Georgia 30332-0245 (United States)

    2010-12-14

    We report a nanowire-based biofuel cell based on a single proton conductive polymer nanowire for converting chemical energy from biofluids, such as glucose/blood, into electricity, with glucose oxidase and laccase as catalyst. The glucose is supplied from the biofluid, the nanowire serves as the proton conductor, and the whole cell can be realized at the nano/micrometer scale. The biofuel cell composed of a single nanowire generates an output power as high as 0.5-3 {mu}W, and it has been integrated with a set of nanowire-based sensors for performing self-powered sensing. This study shows the feasibility of building self-powered nanodevices for the biological sciences, environmental monitoring, defense technology, and even personal electronics. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  3. The use of power gyrator structures as energy processing cells in photovoltaic solar facilities

    OpenAIRE

    Martínez García, Herminio

    2014-01-01

    This paper will provide a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Thus, the design, simulation and implementation of a G-type power gyrator are carried out throughout the text. In addition, in order to obtain th...

  4. Power gyrator structures and their use as cells for energy-processing in photovoltaic solar facilities

    OpenAIRE

    Martínez García, Herminio; Grau Saldes, Antoni; Bolea Monte, Yolanda

    2012-01-01

    This paper provides a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Thus, the design, simulation and implementation of a G-type power gyrator are carried out throughout the text. In addition, in order to obtain ...

  5. Using CMOS Sub-Micron Technology VLSI Implementation of Low Power, High Speed SRAM Cell and DRAM Cell

    Directory of Open Access Journals (Sweden)

    Viplav A. Soliv

    2012-01-01

    Full Text Available Abstract This paper deals with the design and analysis of high speed Static Random Access Memory (SRAM cell and Dynamic Random Access Memory (DRAM cell to develop low power consumption. SRAM and DRAM cells have been the predominant technologies used to implement memory cells in computer systems, each one having its advantages and shortcomings. SRAM cells are faster and require no refresh since reads are not destructive. In contrast, DRAM cells provide higher density and minimal leakage energy. Here we use 12-transistor SRAM cell built from a simple static latch and tri state inverter. The reading action itself refreshes the content of memory. The SRAM access path is split into two portions: from address input to word line rise (the row decoder and from word line rise to data output (the read data path. The decoder which constitutes the path from address input to the word line rise is implemented as a binary structure by implementing a multi-stage path. The key to low power operation in the SRAM data path is to reduce the signal swings on the high capacitance nodes like the bit lines and the data lines.

  6. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  7. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    International Nuclear Information System (INIS)

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts on the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements

  8. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat

    Science.gov (United States)

    Garcia, S. O.; Ulyanova, Y. V.; Figueroa-Teran, R.; Bhatt, K. H.; Singhal, S.; Atanassov, P.

    2016-01-01

    An NAD+-dependent enzymatic sensor with biofuel cell power source system for non-invasive monitoring of lactate in sweat was designed, developed, and tested. The sensor component, based on lactate dehydrogenase, showed linear current response with increasing lactate concentrations with limits of detection from 5 to 100 mM lactate and sensitivity of 0.2 µA.mM−1 in the presence of target analyte. In addition to the sensor patch a power source was also designed, developed and tested. The power source was a biofuel cell designed to oxidize glucose via glucose oxidase. The biofuel cell showed excellent performance, achieving over 80 mA at 0.4 V (16 mW) in a footprint of 3.5 × 3.5 × 0.7 cm. Furthermore, in order to couple the sensor to the power source, system electronic components were designed and fabricated. These consisted of an energy harvester (EH) and a micropotentiostat (MP). The EH was employed for harvesting power provided by the biofuel cell as well as up-converting the voltage to 3.0 V needed for the operation of the MP. The sensor was attached to MP for chronoamperometric detection of lactate. The Sensor Patch System was demonstrated under laboratory conditions.

  9. Design of a low energy reaction cell for distributed power applications

    International Nuclear Information System (INIS)

    Power units using Low Energy Nuclear Reactions (LENRs) potentially offer a radical new approach to power units that could provide distributed power units in the 1- 50 kW range. As described in an ICONE-8 paper (Miley, et al. 2000-c), these cells employ thin metallic film cathodes (order of 500.10-10 m, using variously Ni, Pd and Ti) with electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cc in the films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total volume. If this is achieved, power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications involving distributed power. In the present paper, prior work is briefly reviewed, and the design of a cell employing integrated electrode and solid-state electrical-conversion systems is described along with some recent experimental results. (authors)

  10. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  11. Near-term markets for PEM fuel cell power modules: industrial vehicles and hydrogen recovery

    International Nuclear Information System (INIS)

    'Full text:' Nuvera Fuel Cells, Inc. is a global leader in the development and advancement of multifuel processing and fuel cell technology. With offices located in Italy and the USA, Nuvera is committed to advancing the commercialization of hydrogen fuel cell power modules for industrial vehicles and equipment and stationary applications by 2006, natural gas fuel cell power systems for cogeneration applications by 2007, and on-board gasoline fuel processors and fuel cell stacks for automotive applications by 2010. Nuvera Fuel Cells Europe is ISO 9001:2000 certified for 'Research, Development, Design, Production and Servicing of Fuel Cell Stacks and Fuel Cell Systems.' In the chemical industry, one of the largest operating expenses today is the cost of electricity. For example, caustic soda and chlorine are produced today using industrial membrane electrolysis which is an energy intensive process. Production of 1 metric ton of caustic soda consumes 2.5 MWh of energy. However, about 20% of the electricity consumed can be recovered by converting the hydrogen byproduct of the caustic soda production process into electricity via PEM fuel cells. The accessible market is a function of the economic value of the hydrogen whether flared, used as fuel, or as chemical. Responding to this market need, we are currently developing large hydrogen fuel cell power modules 'Forza' that use excess hydrogen to produce electricity, representing a practical economic alternative to reducing the net electricity cost. Due for commercial launch in 2006, Forza is a low-pressure, steady state, base-load power generation solution that will operate at high efficiency and 100% capacity over a 24-hour period. We believe this premise is also true for chemical and electrochemical plants and companies that convert hydrogen to electricity using renewable sources like windmills or hydropower. The second near-term market that Nuvera is developing utilizes a 5.5 kW hydrogen fueled power module 'H2e' for

  12. Efficient controller area network data compression for automobile applications

    Institute of Scientific and Technical Information of China (English)

    Yu-jing WU; Jin-Gyun CHUNG

    2015-01-01

    Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06%with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms;consequently, the proposed algorithm can be successfully used in automobile applications.

  13. Introduction. L’automobile, objet d’étude pluridisciplinaire

    OpenAIRE

    Garçon, Anne-Françoise

    2015-01-01

    « Révolutionnaire… ! » Cet adjectif, Citroën en fit un slogan publicitaire, il y a quelques années, pour imposer auprès de sa clientèle sa voiture dernière-née. Le constructeur résumait ainsi tout à la fois ce qui faisait la spécificité de la marque et d’une manière générale, ce qui fait la spécificité de l’objet. Et si le modèle, en tant que tel, n’a pas vraiment défrayé la chronique automobile, du moins, par la grâce du jeu publicitaire s’inséra-t-il dans la lignée des voitures innovantes –...

  14. A knowledge-based system for controlling automobile traffic

    Science.gov (United States)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  15. ALGORITHM OF PRETREATMENT ON AUTOMOBILE BODY POINT CLOUD

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; ZHOU Yu; DU Farong; QU Weiwei; XIONG Yonghua

    2007-01-01

    As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, Computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck.

  16. CORPORATE SOCIAL RESPONSIBILITY IN THE AUTOMOBILE INDUSTRY IN SLOVAK REPUBLIC

    Directory of Open Access Journals (Sweden)

    Jana Vicianová

    2011-01-01

    Full Text Available At present, the corporate social responsibility should be seen not only in theory, but mainlyat the level of business practice. Companies that apply the concept of corporate socialresponsibility are aware not only of social and environmental benefits, but also theeconomic benefits that this approach brings. Assumptions of social responsibility are tomaximize the market value of the business provided that companies respect the laws andresponsibilities of owners, managers and employees. Benefits of the corporate socialresponsibility are not only companies and their stakeholders, but also society. This factinspires many large enterprises to start up a socially responsible business. The paper dealswith the corporate social responsibility concept and its implementation in the car industryin Slovak republic. The aim of the article is basically on the theories of corporate socialresponsibility to identify the level of application of this concept in automobile industry inSlovakia.

  17. Numerical Investigation of Thermal Effect in Plasma Electrode Pockels Cell for High Average Power

    Institute of Scientific and Technical Information of China (English)

    CAO Ding-Xiang; ZHANG Xiong-Jun; ZHENG Wan-Guo; HE Shao-Bo; SUI Zhan

    2006-01-01

    @@ The average power of a Pockels cell is limited by thermal effects arising from the optical absorption of the laser pulse. These thermal effects can be managed by configuring the switch as a plasma-electrode thin plate Pockels cell, which works under heat-capacity operation. Simulation results show that, based on KD*P (in thickness 0.5cm) at an average power loading of 1 kW, the aperture integrated depolarization loss at 1.06 um is less than 10% in 5min working time.

  18. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong

    2012-01-01

    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  19. Subcarrier and power allocation algorithm based on inter-cell interference mitigation for OFDMA system

    Institute of Scientific and Technical Information of China (English)

    ZOU Ting; DENG Gang; WANG Ying; ZHANG Ping

    2007-01-01

    This article proposes a dynamic subcarrier and power allocation algorithm for multicell orthogonal frequency division multiple access (OFDMA) downlink system, based on inter-cell interference (ICI) mitigation. Different from other ICI mitigation schemes, which pay little attention to power allocation in the system, the proposed algorithm assigns channels to each user, based on proportional-fair (PF) scheduling and ICI coordination, whereas allocating power is based on link gain distribution and the loading bit based on adaptive modulation and coding (AMC) in base transceiver station (BTS). Simulation results show that the algorithm yields better performance for data services under fast fading.

  20. Improvement of hydrogenated microcrystalline silicon solar cell performance by VHF power profiling technique

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiaoyan; Hou, Guofu; Zhang, Xiaodan; Wei, Changchun; Li, Guijun; Zhang, Jianjun; Chen, Xinliang; Zhang, Dekun; Sun, Jian; Zhao, Ying; Geng, Xinhua [Institute of Photo-electronics, Nankai University, Weijin Road 94, Tianjin 300071 (China)

    2010-02-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) solar cells were deposited with very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) process at high deposition rates in high-power and a high-pressure regime. A novel VHF power profiling technique, designed by dynamically decreasing the VHF power step by step during the deposition of {mu}c-Si:H intrinsic layers, has been developed for the first time to control the structural evolution along the growth direction. The profiling parameters such as the amount and the rate of change in VHF power were optimized in detail and the experimental results demonstrate that this technique not only controls the microstructure evolution but also results in reduced ion bombardments on growth surface. Using this method, a significant improvement in the solar cell performance has been achieved. A high conversion efficiency of 9.36% (V{sub oc}=542 mV, J{sub sc}=25.4 mA/cm{sup 2}, FF=68%) was obtained for a single-junction {mu}c-Si:H p-i-n solar cell at a deposition rate of 12 Aa/s. Then, the single-junction solar cell was used as a bottom component in micromorph solar cell, which leads to an efficiency of 11.14% (V{sub oc}=1.367 V, J{sub sc}=11.92 mA/cm{sup 2}, FF=69.4%). (author)

  1. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  2. Multi-cell uplink power allocation game for user minimum performance guarantee in OFDMA systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-kui; XIAO Lin; ZENG Zhi-min; Laurie Cuthbert

    2010-01-01

    The multi-cell uplink power allocation problem for orthogonal frequency division multiplexing access (OFDMA) cellular networks is investigated with the uplink transmission power allocation on each co-frequency subchannel being defined as a multi-cell non-cooperative power allocation game (MNPG). The principle of the design oftbe utility function is given and a novel utility function is proposed for MNPG. By using this utility function, the minimum signal to interference plus noise ratio (SINR) requirement of a user can be guaranteed. It can be shown that MNPG will converge to the Nash equilibrium and that this Nash equilibrium is unique. In considering the simulation results, the effect of the algorithm parameters on the system performance is discussed, and the convergence of the MNPG is verified. The performance of MNPG is compared with that of traditional power allocation schemes, the simulation results showing that the proposed algorithm increases the cell-edge user throughput greatly with only a small decrease in cell total throughput; this gives a good tradeoff between the throughput of cell-edge users and the system spectrum efficiency.

  3. Study of a molten carbonate fuel cell combined heat, hydrogen and power system

    International Nuclear Information System (INIS)

    To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP (combined heat, hydrogen and power) system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the fuel cell system at peak capacity. Following the resource assessment study, the team selects FuelCell Energy DFC (direct fuel cell) 1500™ unit as a molten carbonate fuel cell. The CHHP system provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. In conclusion, the CHHP system will be able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus. - Highlights: • A molten carbonate fuel cell tri-generation by using anaerobic digestion system. • Anaerobic digestion system will be able to supply fuel for the DFC1500™ unit. • Use locally available feedstock to production electric power, hydrogen and heat. • Application energy end-uses on the university. • CHHP system will reduce energy consumption, fossil fuel usage, and GHG emissions

  4. Environmental practices of the auxiliary companies to the Spanish automobile industry

    Science.gov (United States)

    González-Torre, Pilar L.; González, Beatriz A.; Gupta, Surendra M.

    2005-11-01

    The automobile manufacturing industry plays a very important role in a country's economy. The importance of automobile manufacturing industry lies in its sheer size and complexity in terms of the direct and indirect influence it commands across many other industries. While millions of people are employed in the automobile manufacturing industry, it is estimated that more than two and half times that number are employed in the auxiliary companies that supply parts to the automobile manufacturing companies. The auxiliary companies represent a group of businesses of various sizes, types, and geographical locations, producing a vast variety of products ranging from the very simple to the extremely intricate. In this study, the current environmental practices of management in the core Spanish auxiliary companies that do business with the automobile manufacturing industry (and thus form a large part of the automobile manufacturing industry's supply chain) are investigated. We show that while automobile manufacturing companies are under scrutiny to become more and more environmentally friendly, not only at their manufacturing stage but also at their products' useful and EOL stages, there appears to be no such burden on the auxiliary companies. Our conclusion is based on an elaborate survey conducted during the fall of 2004 of Spanish auxiliary companies with questions about the characteristics, environmental practices and reverse logistics related activities carried out by the companies.

  5. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery and...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....... ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...

  6. A power pack based on organometallic perovskite solar cell and supercapacitor.

    Science.gov (United States)

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle. PMID:25611128

  7. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  8. Two novel low-power and high-speed dynamic carbon nanotube full-adder cells

    OpenAIRE

    Eshghi Mohammad; Bagherizadeh Mehdi

    2011-01-01

    Abstract In this paper, two novel low-power and high-speed carbon nanotube full-adder cells in dynamic logic style are presented. Carbon nanotube field-effect transistors (CNFETs) are efficient in designing a high performance circuit. To design our full-adder cells, CNFETs with three different threshold voltages (low threshold, normal threshold, and high threshold) are used. First design generates SUM and COUT through separate transistors, and second design is a multi-output dynamic full adde...

  9. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant

    OpenAIRE

    Marc Folcher; Sabine Oesterle; Katharina Zwicky; Thushara Thekkottil; Julie Heymoz; Muriel Hohmann; Matthias Christen; Marie Daoud El-Baba; Peter Buchmann; Martin Fussenegger

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain–computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered...

  10. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  11. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation

  12. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  13. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  14. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  16. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  17. Effect of Air Velocity on Thermal Comfort in an Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Mehmet Özgün Korukçu

    2011-06-01

    Full Text Available The aim of this study is to evaluate the effect of air velocity on thermal comfort during heating period in an automobile cabin with experiments. In the evaluation of comfort in automobiles, in general temperature, humidity, air velocity and radiant temperature measurements are taken. In the study, ambient temperature, relative humidity, mean radiant temperature and mean skin temperature of the driver inside the automobile cabin during heating for different vent air mass flow rates were measured in a parked car. Subjective survey was performed during the experiments to the driver. The results for different vent air mass flow rate values were compared with answers taken from the subject and discussed.

  18. Hierarchical functional model for automobile development; Jidosha kaihatsu no tame no kaisogata kino model

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, S. [U-shin Ltd., Tokyo (Japan); Nagamatsu, M.; Maruyama, K. [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.

  19. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  20. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users\\' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.