WorldWideScience

Sample records for cell polyomavirus infection

  1. Merkel cell polyomavirus infection and Merkel cell carcinoma.

    Science.gov (United States)

    Liu, Wei; MacDonald, Margo; You, Jianxin

    2016-10-01

    Merkel cell polyomavirus is the only polyomavirus discovered to date that is associated with a human cancer. MCPyV infection is highly prevalent in the general population. Nearly all healthy adults asymptomatically shed MCPyV from their skin. However, in elderly and immunosuppressed individuals, the infection can lead to a lethal form of skin cancer, Merkel cell carcinoma. In the last few years, new findings have established links between MCPyV infection, host immune response, and Merkel cell carcinoma development. This review discusses these recent discoveries on how MCPyV interacts with host cells to achieve persistent infection and, in the immunocompromised population, contributes to MCC development. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    Science.gov (United States)

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  3. Merkel cell polyomavirus and Merkel cell carcinoma.

    Science.gov (United States)

    DeCaprio, James A

    2017-10-19

    Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  4. Virion assembly factories in the nucleus of polyomavirus-infected cells.

    Directory of Open Access Journals (Sweden)

    Kimberly D Erickson

    Full Text Available Most DNA viruses replicate in the cell nucleus, although the specific sites of virion assembly are as yet poorly defined. Electron microscopy on freeze-substituted, plastic-embedded sections of murine polyomavirus (PyV-infected 3T3 mouse fibroblasts or mouse embryonic fibroblasts (MEFs revealed tubular structures in the nucleus adjacent to clusters of assembled virions, with virions apparently "shed" or "budding" from their ends. Promyelocytic leukemia nuclear bodies (PML-NBs have been suggested as possible sites for viral replication of polyomaviruses (BKV and SV40, herpes simplex virus (HSV, and adenovirus (Ad. Immunohistochemistry and FISH demonstrated co-localization of the viral T-antigen (Tag, PyV DNA, and the host DNA repair protein MRE11, adjacent to the PML-NBs. In PML⁻/⁻ MEFs the co-localization of MRE11, Tag, and PyV DNA remained unchanged, suggesting that the PML protein itself was not responsible for their association. Furthermore, PyV-infected PML⁻/⁻ MEFs and PML⁻/⁻ mice replicated wild-type levels of infectious virus. Therefore, although the PML protein may identify sites of PyV replication, neither the observed "virus factories" nor virus assembly were dependent on PML. The ultrastructure of the tubes suggests a new model for the encapsidation of small DNA viruses.

  5. Merkel cell polyomavirus IgG antibody levels are associated with progression to AIDS among HIV-infected individuals.

    Science.gov (United States)

    Vahabpour, Rouhollah; Nasimi, Maryam; Naderi, Niloofar; Salehi-Vaziri, Mostafa; Mohajel, Nasir; Sadeghi, Farzin; Keyvani, Hossein; Monavari, Seyed Hamidreza

    2017-04-01

    The association of Merkel cell polyomavirus (MCP y V) with Merkel cell carcinoma (MCC) in immunocompromised individuals has been revealed in a number of surveys. The study of MCP y V specific antibody titers and viral loads in such patients has a great attraction for research groups interested in viral reactivation. In this cross-sectional study to evaluate MCP y V antibody titer, DNA prevalence and viral load in peripheral blood mononuclear cells (PBMCs), we examined 205 HIV-1 infected patients and 100 un-infected controls. The HIV-1 infected patients divided into two groups (HIV/AIDS and non-AIDS) according to their CD4 status. Total IgG antibody titer against MCP y V was analyzed by virus like particle (VLP)-based enzyme linked immunosorbent assay (ELISA). Presence of MCP y V-DNA in subject's PBMCs was examined by quantitative real-time PCR assay. Levels of anti-MCP y V IgG in HIV/AIDS patients were significantly higher than those in non-AIDS HIV-infected and control subjects (p value = <0.001). The prevalence rate of MCP y V-DNA in PBMCs of HIV/AIDS, non-AIDS HIV-infected and un-infected controls were 17%, 16%, and 14% respectively. The MCP y V viral load among the groups ranged between 0.15 to 2.9 copies/10 3 cells (median, 1.9 copies/10 3 cells), with no significant difference between the studied populations (p value = 0.3).

  6. Serological cross-reactivity between Merkel cell polyomavirus and two closely related chimpanzee polyomaviruses.

    Directory of Open Access Journals (Sweden)

    Jérôme T J Nicol

    Full Text Available Phylogenetic analyses based on the major capsid protein sequence indicate that Merkel cell polyomavirus (MCPyV and chimpanzee polyomaviruses (PtvPyV1, PtvPyV2, and similarly Trichodysplasia spinulosa-associated polyomavirus (TSPyV and the orangutan polyomavirus (OraPyV1 are closely related. The existence of cross-reactivity between these polyomaviruses was therefore investigated. The findings indicated serological identity between the two chimpanzee polyomaviruses investigated and a high level of cross-reactivity with Merkel cell polyomavirus. In contrast, cross-reactivity was not observed between TSPyV and OraPyV1. Furthermore, specific antibodies to chimpanzee polyomaviruses were detected in chimpanzee sera by pre-incubation of sera with the different antigens, but not in human sera.

  7. Natural history of polyomaviruses in men: the HPV infection in men (HIM) study.

    Science.gov (United States)

    Hampras, Shalaka S; Giuliano, Anna R; Lin, Hui-Yi; Fisher, Kate J; Abrahamsen, Martha E; McKay-Chopin, Sandrine; Gheit, Tarik; Tommasino, Massimo; Rollison, Dana E

    2015-05-01

    Several new polyomaviruses have been discovered in the last decade, including Merkel cell polyomavirus (MCPyV). Little is known about the natural history of the more recently discovered polyomaviruses. We estimated the incidence, prevalence, and persistence of 9 polyomaviruses (MCPyV, BK polyomavirus, KI polyomavirus, JC polyomavirus, WU polyomavirus, Human polyomavirus 6 [HPyV6], HPyV7, HPyV9, and Trichodysplasia spinulosa-associated polyomavirus) and examined factors associated with MCPyV infection in a prospective cohort of 209 men initially enrolled in the HPV Infection in Men (HIM) study. Participants enrolled at the US site of the HIM study were recruited into a substudy of cutaneous viral infections and followed for a median of 12.6 months. Eyebrow hair and normal skin swab specimens were obtained at each study visit, and the viral DNA load was measured using multiplex polymerase chain reaction. MCPyV infection showed the highest prevalence (65.1% of normal skin swab specimens and 30.6% of eyebrow hair specimens), incidence (81.7 cases per 1000 person-months among normal skin swab specimens, and 24.1 cases per 1000 person-months among eyebrow hair specimens), and persistence (85.8% of normal skin swab specimens and 58.9% of eyebrow hair specimens) among all polyomaviruses examined. Age of >44 years (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.03-4.33) and Hispanic race (OR, 2.64; 95% CI, 1.01-6.88) were associated with an increased prevalence of MCPyV infection in eyebrow hair and normal skin swab specimens, respectively. MCPyV infection is highly prevalent in adults, with age and race being predisposing factors. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Examining Merkel Cell Polyomavirus Minor Capsid Proteins | Center for Cancer Research

    Science.gov (United States)

    Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. It is a skin-dwelling polyomavirus species that appears to cause a rare but highly lethal form of skin cancer called Merkel cell carcinoma (MCC). Despite MCC being uncommon, chronic MCV infection of human skin is widespread, and most infected people have no known

  9. Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection

    Directory of Open Access Journals (Sweden)

    Margarita-Maria Panou

    2018-03-01

    Full Text Available BK polyomavirus (BKPyV; hereafter referred to as BK causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF attachment protein (α-SNAP is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.

  10. Novel human polyomaviruses, Merkel cell polyomavirus and human polyomavirus 9, in Japanese chronic lymphocytic leukemia cases

    Directory of Open Access Journals (Sweden)

    Imajoh Masayuki

    2012-06-01

    Full Text Available Abstract Background Chronic lymphocytic leukemia (CLL is the rarest adult leukemia in Japan, whereas it is the most common leukemia in the Western world. Recent studies from the United States and Germany suggest a possible etiological association between Merkel cell polyomavirus (MCPyV and CLL, although no data have been reported from Eastern countries. To increase the volume of relevant data, this study investigated the prevalence and DNA loads of MCPyV and human polyomavirus 9 (HPyV9, another lymphotropic polyomavirus, in Japanese CLL cases. Findings We found that 9/27 CLL cases (33.3 % were positive for MCPyV using quantitative real-time polymerase chain reaction analysis. The viral DNA loads ranged from 0.000017 to 0.0012 copies per cell. All cases were negative for HPyV9. One MCPyV-positive CLL case was evaluated by mutational analysis of the large T (LT gene, which indicated the presence of wild-type MCPyV without a nucleotide deletion. DNA sequence analysis of the entire small T (ST gene and the partial LT gene revealed that a Japanese MCPyV isolate, designated CLL-JK, had two nucleotide gaps when compared with the reference sequence of the North American isolate MCC350. Conclusions This study provides the first evidence that MCPyV is present in a subset of Japanese CLL cases with low viral DNA loads. MCPyV and HPyV9 are unlikely to contribute directly to the development of CLL in the majority of Japanese cases. MCPyV isolated from the Japanese CLL cases may constitute an Asian group and its pathogenicity needs to be clarified in future studies.

  11. Association of expression of the hedgehog signal with Merkel cell polyomavirus infection and prognosis of Merkel cell carcinoma.

    Science.gov (United States)

    Kuromi, Teruyuki; Matsushita, Michiko; Iwasaki, Takeshi; Nonaka, Daisuke; Kuwamoto, Satoshi; Nagata, Keiko; Kato, Masako; Akizuki, Gen; Kitamura, Yukisato; Hayashi, Kazuhiko

    2017-11-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that mostly occurs in the elderly. Merkel cell polyomavirus (MCPyV) is detected in approximately 80% of MCCs and is associated with carcinogenesis. Hedgehog signaling pathway plays a role in human embryogenesis and organogenesis. In addition, reactivation of this pathway later in life can cause tumors. Twenty-nineMCPyV-positive and 21 MCPyV-negative MCCs were immunohistochemically stained with primary antibodies for hedgehog signaling (SHH, IHH, PTCH1, SMO, GLI1, GLI2, and GLI3) and evaluated using H-score. Polymerase chain reaction and sequence analysis for SHH and GLI1 exons were also performed. Expression of SHH was higher in MCPyV-positive MCCs than in MCPyV-negative MCCs (PA. Only 2 mutations with amino acid changes were detected in MCPyV-negative MCCs only: 1 missense mutation in GLI1 exon 4 and 1 nonsense mutation in SHH-3B. Expression of SHH and GLI1 may be useful prognostic markers of MCC because increased expression was associated with better prognosis. The high rate of c.576G>A silent mutation in GLI1 exon 5 was a feature of MCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis.

    Science.gov (United States)

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Nagata, Keiko; Kato, Masako; Kuwamoto, Satoshi; Murakami, Ichiro; Hayashi, Kazuhiko

    2016-02-01

    Merkel cell carcinoma (MCC) is a clinically aggressive neuroendocrine skin cancer; 80% of the cases are associated with the Merkel cell polyomavirus (MCPyV). We previously reported that MCPyV-negative MCCs have more irregular nuclei with abundant cytoplasm and significantly unfavorable outcomes than do MCPyV-positive MCCs. These results suggest that some cell adhesion or structural stabilization molecules are differently expressed depending on MCPyV infection status. Thus, we investigated the association of prognosis or MCPyV infection status in MCCs with cell adhesion molecule 1 (CADM1)/differentially expressed in adenocarcinoma of the lung protein 1 (DAL-1)/membrane protein, palmitoylated 3 (MPP3) tripartite complex and mal T-cell differentiation protein (MAL) expression, which play important roles in cell adhesion and oncogenesis and are related to cancer outcomes in various malignancies, to elucidate the role of these molecules. We analyzed the pathological and molecular characteristics of 26 MCPyV-positive and 15 MCPyV-negative MCCs. Univariate Cox regression analysis showed that advanced age (hazard ratio [HR], 8.249; P = .007) and high CADM1 expression (HR, 5.214; P = .012) were significantly unfavorable overall survival parameters, whereas MCPyV infection (HR, 0.043, P Merkel cells expressed DAL-1 and MAL but not CADM1. This study revealed that MCPyV-negative MCCs significantly expressed higher CADM1 and lower MAL than MCPyV-positive MCCs; these expression levels were markedly related to unfavorable outcomes. These data will give us important insights to develop novel molecular target therapies for MCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke; Ito, Hideki; Shimonohara, Nozomi; Tsuji, Takahiro; Nakajima, Noriko; Suzuki, Yoshio; Matsuo, Koma; Nakagawa, Hidemi; Sata, Tetsutaro; Katano, Harutaka

    2010-01-01

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal in any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.

  14. History of chronic inflammatory disorders increases the risk of Merkel cell carcinoma, but does not correlate with Merkel cell polyomavirus infection.

    Science.gov (United States)

    Sahi, Helka; Sihto, Harri; Artama, Miia; Koljonen, Virve; Böhling, Tom; Pukkala, Eero

    2017-01-17

    We aimed to assess the connection between chronic inflammatory disorders (CIDs) and Merkel cell carcinoma (MCC). Merkel cell carcinoma cases diagnosed in 1978-2009 were extracted from the Finnish Cancer Registry and controls from the Population Registry. Information on reimbursed CIDs was linked to clinicopathological data including Merkel cell polyomavirus (MCV) status by qPCR and immunohistochemistry for the large T antigen of MCV (LTA), Ki-67 and tumour-infiltrating lymphocytes. Chronic inflammatory disorders increased the risk of MCC significantly (odds ratio (OR) 1.39, 95% confidence interval (CI) 1.03-1.88), specifically connective tissue/systemic diseases (OR 1.75, 95% CI 1.09-1.80) and diabetic conditions (OR 1.51, 95% CI 1.03-2.22). Chronic inflammatory disorders associated with larger tumour diameter (P=0.02) and higher Ki-67 expression (P=0.005). The expression of LTA was seen significantly more often in the absence of CIDs (P=0.05). Patients with CID are at significantly higher risk for aggressive MCC. Merkel cell polyomavirus positivity is more common in MCC patients unafflicted by CID.

  15. [A molecular epidemiological study of KI polyomavirus and WU polyomavirus in children with acute respiratory infection in Tianjin, China].

    Science.gov (United States)

    Lin, Shu-Xiang; Wang, Wei; Guo, Wei; Yang, Hong-Jiang; Ma, Bai-Cheng; Fang, Yu-Lian; Xu, Yong-Sheng

    2017-07-01

    To investigate the relationship of KI polyomavirus (KIPyV) and WU polyomavirus (WUPyV) with acute respiratory infection in children in Tianjin, China. A total of 3 730 nasopharyngeal secretions were collected from hospitalized children with acute respiratory infection in Tianjin Children's Hospital from January 2011 to December 2013. Viral nucleic acid was extracted, and virus infection (KIPyV and WUPyV) was determined by PCR. Some KIPyV-positive and WUPyV-positive PCR products were subjected to sequencing. Sequencing results were aligned with the known gene sequences of KIPyV and WUPyV to construct a phylogenetic tree. Amplified VP1 fragments of KIPyV were inserted into the cloning vector (PUCm-T) transformed into E. coli competent cells. Positive clones were identified by PCR and sequencing. The nucleotide sequences were submitted to GenBank. In addition, another seven common respiratory viruses in all samples were detected by direct immunofluorescence assay. In the 3 730 specimens, the KIPyV-positive rate was 12.14% (453/3 730) and the WUPyV-positive rate was 1.69% (63/3 730). The mean infection rate of KIPyV was significantly higher in June and July, while the mean infection rate of WUPyV peaked in February and March. Most of the KIPyV-positive or WUPyV-positive children were infections with KIPyV, WUPyV, and other respiratory viruses were observed in the children. The co-infection rate was 2.31% (86/3 730) and there were nine cases of co-infections with WUPyV and KIPyV. Thirty-five KIPyV-positive and twelve WUPyV-positive PCR products were sequenced and the alignment analysis showed that they had high homology with the known sequences (94%-100% vs 95%-100%). The VP1 gene sequences obtained from two KIPyV strains in this study were recorded in GenBank with the accession numbers of KY465925 and KY465926. For some children with acute respiratory infection in Tianjin, China, the acute respiratory infection may be associated with KIPyV and WUPy

  16. Are the Polyomaviruses BK and JC Associated with Opportunistic Infections, Graft-versus-Host Disease, or Worse Outcomes in Adult Patients Receiving Their First Allogeneic Stem Cell Transplantation with Low-Dose Alemtuzumab?

    Science.gov (United States)

    Schneidewind, Laila; Neumann, Thomas; Knoll, Florian; Zimmermann, Kathrin; Smola, Sigrun; Schmidt, Christian Andreas; Krüger, William

    2017-01-01

    The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding. © 2017 S. Karger AG, Basel.

  17. Cytokeratin 20-negative Merkel cell carcinoma is infrequently associated with the Merkel cell polyomavirus.

    Science.gov (United States)

    Miner, Andrew G; Patel, Rajiv M; Wilson, Deborah A; Procop, Gary W; Minca, Eugen C; Fullen, Douglas R; Harms, Paul W; Billings, Steven D

    2015-04-01

    Merkel cell carcinoma is a rare, highly aggressive cutaneous neuroendocrine carcinoma most commonly seen in sun-damaged skin. Histologically, the tumor consists of primitive round cells with fine chromatin and numerous mitoses. Immunohistochemical stains demonstrate expression of neuroendocrine markers. In addition, cytokeratin 20 (CK20) is expressed in ∼95% of cases. In 2008, Merkel cell carcinoma was shown to be associated with a virus now known as Merkel cell polyomavirus in ∼80% of cases. Prognostic and mechanistic differences between Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative Merkel cell carcinoma may exist. There has been the suggestion that CK20-negative Merkel cell carcinomas less frequently harbor Merkel cell polyomavirus, but a systematic investigation for Merkel cell polyomavirus incidence in CK20-negative Merkel cell carcinoma has not been done. To test the hypothesis that Merkel cell polyomavirus is less frequently associated with CK20-negative Merkel cell carcinoma, we investigated 13 CK20-negative Merkel cell carcinomas from the files of the Cleveland Clinic and the University of Michigan for the virus. The presence or absence of Merkel cell polyomavirus was determined by quantitative PCR performed for Large T and small T antigens, with sequencing of PCR products to confirm the presence of Merkel cell polyomavirus. Ten of these (77%) were negative for Merkel cell polyomavirus and three (23%) were positive for Merkel cell polyomavirus. Merkel cell polyomavirus is less common in CK20-negative Merkel cell carcinoma. Larger series and clinical follow-up may help to determine whether CK20-negative Merkel cell carcinoma is mechanistically and prognostically unique.

  18. In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection

    Directory of Open Access Journals (Sweden)

    Heidi Barth

    2016-10-01

    Full Text Available Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV. Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.

  19. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  20. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  1. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans.

    Science.gov (United States)

    Torres, Carolina; Barrios, Melina Elizabeth; Cammarata, Robertina Viviana; Victoria, Matías; Fernandez-Cassi, Xavier; Bofill-Mas, Silvia; Colina, Rodney; Blanco Fernández, María Dolores; Mbayed, Viviana Andrea

    2018-04-20

    New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of

  2. BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells.

    Science.gov (United States)

    Church, Molly E; Estrada, Marko; Leutenegger, Christian M; Dela Cruz, Florante N; Pesavento, Patricia A; Woolard, Kevin D

    2016-11-01

    Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.

  3. Merkel Cell Polyomavirus: Molecular Insights into the Most Recently Discovered Human Tumour Virus

    International Nuclear Information System (INIS)

    Stakaitytė, Gabrielė; Wood, Jennifer J.; Knight, Laura M.; Abdul-Sada, Hussein; Adzahar, Noor Suhana; Nwogu, Nnenna; Macdonald, Andrew; Whitehouse, Adrian

    2014-01-01

    A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC

  4. Merkel Cell Polyomavirus: Molecular Insights into the Most Recently Discovered Human Tumour Virus

    Energy Technology Data Exchange (ETDEWEB)

    Stakaitytė, Gabrielė; Wood, Jennifer J.; Knight, Laura M.; Abdul-Sada, Hussein; Adzahar, Noor Suhana; Nwogu, Nnenna; Macdonald, Andrew; Whitehouse, Adrian, E-mail: A.Whitehouse@leeds.ac.uk [School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2014-06-27

    A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC.

  5. Isolation and characterization of NIH 3T3 cells expressing polyomavirus small T antigen

    International Nuclear Information System (INIS)

    Noda, T.; Satake, M.; Robins, T.; Ito, Y.

    1986-01-01

    The polyomavirus small T-antigen gene, together with the polyomavirus promoter, was inserted into retrovirus vector pGV16 which contains the Moloney sarcoma virus long terminal repeat and neomycin resistance gene driven by the simian virus 40 promoter. This expression vector, pGVST, was packaged into retrovirus particles by transfection of PSI2 cells which harbor packaging-defective murine retrovirus genome. NIH 3T3 cells were infected by this replication-defective retrovirus containing pGVST. Of the 15 G418-resistant cell clones, 8 express small T antigen at various levels as revealed by immunoprecipitation. A cellular protein with an apparent molecular weight of about 32,000 coprecipitates with small T antigen. Immunofluorescent staining shows that small T antigen is mainly present in the nuclei. Morphologically, cells expressing small T antigen are indistinguishable from parental NIH 3T3 cells and have a microfilament pattern similar to that in parental NIH 3T3 cells. Cells expressing small T antigen form a flat monolayer but continue to grow beyond the saturation density observed for parental NIH 3T3 cells and eventually come off the culture plate as a result of overconfluency. There is some correlation between the level of expression of small T antigen and the growth rate of the cells. Small T-antigen-expressing cells form small colonies in soft agar. However, the proportion of cells which form these small colonies is rather small. A clone of these cells tested did not form tumors in nude mice within 3 months after inoculation of 10 6 cells per animal. Thus, present studies establish that the small T antigen of polyomavirus is a second nucleus-localized transforming gene product of the virus (the first one being large T antigen) and by itself has a function which is to stimulate the growth of NIH 3T3 cells beyond their saturation density in monolayer culture

  6. Association between the JC polyomavirus infection and male infertility.

    Directory of Open Access Journals (Sweden)

    Manola Comar

    Full Text Available In recent years the incidence of male infertility has increased. Many risk factors have been taken into consideration, including viral infections. Investigations into viral agents and male infertility have mainly been focused on human papillomaviruses, while no reports have been published on polyomaviruses and male infertility. The aim of this study was to verify whether JC virus and BK virus are associated with male infertility. Matched semen and urine samples from 106 infertile males and 100 fertile males, as controls, were analyzed. Specific PCR analyses were carried out to detect and quantify large T (Tag coding sequences of JCV and BKV. DNA sequencing, carried out in Tag JCV-positive samples, was addressed to viral protein 1 (VP1 coding sequences. The prevalence of JCV Tag sequences in semen and urine samples from infertile males was 34% (72/212, whereas the BKV prevalence was 0.94% (2/212. Specifically, JCV Tag sequences were detected in 24.5% (26/106 of semen and 43.4% (46/106 of urine samples from infertile men. In semen and urine samples from controls the prevalence was 11% and 28%, respectively. A statistically significant difference (p<0.05 in JCV prevalence was disclosed in semen and urine samples of cases vs. controls. A higher JC viral DNA load was detected in samples from infertile males than in controls. In samples from infertile males the JC virus type 2 strain, subtype 2b, was more prevalent than ubiquitous type 1. JCV type 2 strain infection has been found to be associated with male infertility. These data suggest that the JC virus should be taken into consideration as an infectious agent which is responsible for male infertility.

  7. Merkel Cell Polyomavirus: A New DNA Virus Associated with Human Cancer.

    Science.gov (United States)

    MacDonald, Margo; You, Jianxin

    2017-01-01

    Merkel cell polyomavirus (MCPyV or MCV) is a novel human polyomavirus that has been discovered in Merkel cell carcinoma (MCC), a highly aggressive skin cancer. MCPyV infection is widespread in the general population. MCPyV-associated MCC is one of the most aggressive skin cancers, killing more patients than other well-known cancers such as cutaneous T-cell lymphoma and chronic myelogenous leukemia (CML). Currently, however, there is no effective drug for curing this cancer. The incidence of MCC has tripled over the past two decades. With the widespread infection of MCPyV and the increase in MCC diagnoses, it is critical to better understand the biology of MCPyV and its oncogenic potential. In this chapter, we summarize recent discoveries regarding MCPyV molecular virology, host cellular tropism, mechanisms of MCPyV oncoprotein-mediated oncogenesis, and current therapeutic strategies for MCPyV-associated MCC. We also present epidemiological evidence for MCPyV infection in HIV patients and links between MCPyV and non-MCC human cancers.

  8. Vaccine for BK Polyomavirus-associated Infections in Transplant Recipients | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI researches identified a BK polyomavirus (BKV) virulent strain that causes chronic urinary tract infections, and the development of vaccine and therapeutic methods that would block BKV pathogenesis. The NCI Laboratory of Cellular Oncology, seek parties to license or co-develop this technology.

  9. Polyomavirus JCV excretion and genotype analysis in HIV-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Lednicky, John A.; Vilchez, Regis A.; Keitel, Wendy A.; Visnegarwala, Fehmida; White, Zoe S.; Kozinetz, Claudia A.; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    OBJECTIVE: To assess the frequency of shedding of polyomavirus JC virus (JCV) genotypes in urine of HIV-infected patients receiving highly active antiretroviral therapy (HAART). METHODS: Single samples of urine and blood were collected prospectively from 70 adult HIV-infected patients and 68 uninfected volunteers. Inclusion criteria for HIV-infected patients included an HIV RNA viral load < 1000 copies, CD4 cell count of 200-700 x 106 cells/l, and stable HAART regimen. PCR assays and sequence analysis were carried out using JCV-specific primers against different regions of the virus genome. RESULTS: JCV excretion in urine was more common in HIV-positive patients but not significantly different from that of the HIV-negative group [22/70 (31%) versus 13/68 (19%); P = 0.09]. HIV-positive patients lost the age-related pattern of JCV shedding (P = 0.13) displayed by uninfected subjects (P = 0.01). Among HIV-infected patients significant differences in JCV shedding were related to CD4 cell counts (P = 0.03). Sequence analysis of the JCV regulatory region from both HIV-infected patients and uninfected volunteers revealed all to be JCV archetypal strains. JCV genotypes 1 (36%) and 4 (36%) were the most common among HIV-infected patients, whereas type 2 (77%) was the most frequently detected among HIV-uninfected volunteers. CONCLUSION: These results suggest that JCV shedding is enhanced by modest depressions in immune function during HIV infection. JCV shedding occurred in younger HIV-positive persons than in the healthy controls. As the common types of JCV excreted varied among ethnic groups, JCV genotypes associated with progressive multifocal leukoencephalopathy may reflect demographics of those infected patient populations.

  10. ENDEMIC INFECTION OF STRANDED SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS) WITH NOVEL PARVOVIRUS, POLYOMAVIRUS, AND ADENOVIRUS.

    Science.gov (United States)

    Siqueira, Juliana D; Ng, Terry F; Miller, Melissa; Li, Linlin; Deng, Xutao; Dodd, Erin; Batac, Francesca; Delwart, Eric

    2017-07-01

    Over the past century, the southern sea otter (SSO; Enhydra lutris nereis) population has been slowly recovering from near extinction due to overharvest. The SSO is a threatened subspecies under federal law and a fully protected species under California law, US. Through a multiagency collaborative program, stranded animals are rehabilitated and released, while deceased animals are necropsied and tissues are cryopreserved to facilitate scientific study. Here, we processed archival tissues to enrich particle-associated viral nucleic acids, which we randomly amplified and deeply sequenced to identify viral genomes through sequence similarities. Anelloviruses and endogenous retroviral sequences made up over 50% of observed viral sequences. Polyomavirus, parvovirus, and adenovirus sequences made up most of the remaining reads. We characterized and phylogenetically analyzed the full genome of sea otter polyomavirus 1 and the complete coding sequence of sea otter parvovirus 1 and found that the closest known viruses infect primates and domestic pigs ( Sus scrofa domesticus), respectively. We tested archived tissues from 69 stranded SSO necropsied over 14 yr (2000-13) by PCR. Polyomavirus, parvovirus, and adenovirus infections were detected in 51, 61, and 29% of examined animals, respectively, with no significant increase in frequency over time, suggesting endemic infection. We found that 80% of tested SSO were infected with at least one of the three DNA viruses, whose tissue distribution we determined in 261 tissue samples. Parvovirus DNA was most frequently detected in mesenteric lymph node, polyomavirus DNA in spleen, and adenovirus DNA in multiple tissues (spleen, retropharyngeal and mesenteric lymph node, lung, and liver). This study describes the virome in tissues of a threatened species and shows that stranded SSO are frequently infected with multiple viruses, warranting future research to investigate associations between these infections and observed lesions.

  11. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    Science.gov (United States)

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-05-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.

  12. Histological, Immunohistological, and Clinical Features of Merkel Cell Carcinoma in Correlation to Merkel Cell Polyomavirus Status

    Directory of Open Access Journals (Sweden)

    T. Jaeger

    2012-01-01

    Full Text Available Merkel cell carcinoma is a rare, but highly malignant tumor of the skin with high rates of metastasis and poor survival. Its incidence rate rises and is currently about 0.6/100000/year. Clinical differential diagnoses include basal cell carcinoma, cyst, amelanotic melanoma, lymphoma and atypical fibroxanthoma. In this review article clinical, histopathological and immunhistochemical features of Merkel cell carcinoma are reported. In addition, the role of Merkel cell polyomavirus is discussed.

  13. Computed Tomography Findings of Human Polyomavirus BK (BKV)-Associated Cystitis in Allogeneic Hematopoietic Stem Cell Transplant Recipients

    International Nuclear Information System (INIS)

    Schulze, M.; Beck, R.; Igney, A.; Vogel, M.; Maksimovic, O.; Claussen, C.D.; Faul, C.; Horger, M.

    2008-01-01

    Background: Over 70% of the general population worldwide is positive for antibodies against polyomavirus hominis type 1 (BKV). Polyomavirus can be reactivated in immunocompromised patients and thereby induce urogenital tract infection, including cystitis. Purpose: To describe the computed tomography (CT) findings of human polyomavirus-induced cystitis in adult patients after allogeneic hematopoietic stem cell transplantation (allogeneic HCT). Material and Methods: The study population was a retrospective cohort of 11 consecutive adult patients (eight men, three women; age range 22-59 years, mean 42.9 years) who received allogeneic HCT between December 2003 and December 2007 and were tested positive for urinary BKV infection. All CT scans were evaluated with regard to bladder wall thickness, mucosal enhancement, distinct layering of thickened bladder wall, and presence of intravesical clots, perivesical stranding as well as attenuation values of intravesical urine. Clinical data concerning transplant and conditioning regimen variables and laboratory parameters were correlated with degree and extent of imaging findings. Results: All patients had clinical signs of cystitis with different degrees of thickening of the urinary bladder wall. Well-delineated urinary bladder layers were present in six patients. Thickening of the urinary bladder wall was continuous in nine of 11 patients. Increased attenuation of intravesical urine was found in seven patients with hemorrhagic cystitis. Four patients had intraluminal clots. Perivesical stranding was not a major CT finding, occurring in a mild fashion in three of 11 patients. The clinical classification of hemorrhagic cystitis did not correlate with the analyzed imaging parameters. Patient outcome was not influenced by this infectious complication. Conclusion: CT findings in patients with polyomavirus BK cystitis consist of different degrees of bladder wall thickening usually with good delineation of all mural layers and

  14. Computed Tomography Findings of Human Polyomavirus BK (BKV)-Associated Cystitis in Allogeneic Hematopoietic Stem Cell Transplant Recipients

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.; Beck, R.; Igney, A.; Vogel, M.; Maksimovic, O.; Claussen, C.D.; Faul, C.; Horger, M. [Dept. of Diagnostic Radiology, Dept. of Internal Medicine-Oncology, and Inst. of Medical Virology, Eberhard-Karls Univ., Tbingen (Germany)

    2008-12-15

    Background: Over 70% of the general population worldwide is positive for antibodies against polyomavirus hominis type 1 (BKV). Polyomavirus can be reactivated in immunocompromised patients and thereby induce urogenital tract infection, including cystitis. Purpose: To describe the computed tomography (CT) findings of human polyomavirus-induced cystitis in adult patients after allogeneic hematopoietic stem cell transplantation (allogeneic HCT). Material and Methods: The study population was a retrospective cohort of 11 consecutive adult patients (eight men, three women; age range 22-59 years, mean 42.9 years) who received allogeneic HCT between December 2003 and December 2007 and were tested positive for urinary BKV infection. All CT scans were evaluated with regard to bladder wall thickness, mucosal enhancement, distinct layering of thickened bladder wall, and presence of intravesical clots, perivesical stranding as well as attenuation values of intravesical urine. Clinical data concerning transplant and conditioning regimen variables and laboratory parameters were correlated with degree and extent of imaging findings. Results: All patients had clinical signs of cystitis with different degrees of thickening of the urinary bladder wall. Well-delineated urinary bladder layers were present in six patients. Thickening of the urinary bladder wall was continuous in nine of 11 patients. Increased attenuation of intravesical urine was found in seven patients with hemorrhagic cystitis. Four patients had intraluminal clots. Perivesical stranding was not a major CT finding, occurring in a mild fashion in three of 11 patients. The clinical classification of hemorrhagic cystitis did not correlate with the analyzed imaging parameters. Patient outcome was not influenced by this infectious complication. Conclusion: CT findings in patients with polyomavirus BK cystitis consist of different degrees of bladder wall thickening usually with good delineation of all mural layers and

  15. Computed Tomography Findings of Human Polyomavirus BK (BKV)-Associated Cystitis in Allogeneic Hematopoietic Stem Cell Transplant Recipients

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.; Beck, R.; Igney, A.; Vogel, M.; Maksimovic, O.; Claussen, C.D.; Faul, C.; Horger, M. (Dept. of Diagnostic Radiology, Dept. of Internal Medicine-Oncology, and Inst. of Medical Virology, Eberhard-Karls Univ., Tbingen (Germany))

    2008-12-15

    Background: Over 70% of the general population worldwide is positive for antibodies against polyomavirus hominis type 1 (BKV). Polyomavirus can be reactivated in immunocompromised patients and thereby induce urogenital tract infection, including cystitis. Purpose: To describe the computed tomography (CT) findings of human polyomavirus-induced cystitis in adult patients after allogeneic hematopoietic stem cell transplantation (allogeneic HCT). Material and Methods: The study population was a retrospective cohort of 11 consecutive adult patients (eight men, three women; age range 22-59 years, mean 42.9 years) who received allogeneic HCT between December 2003 and December 2007 and were tested positive for urinary BKV infection. All CT scans were evaluated with regard to bladder wall thickness, mucosal enhancement, distinct layering of thickened bladder wall, and presence of intravesical clots, perivesical stranding as well as attenuation values of intravesical urine. Clinical data concerning transplant and conditioning regimen variables and laboratory parameters were correlated with degree and extent of imaging findings. Results: All patients had clinical signs of cystitis with different degrees of thickening of the urinary bladder wall. Well-delineated urinary bladder layers were present in six patients. Thickening of the urinary bladder wall was continuous in nine of 11 patients. Increased attenuation of intravesical urine was found in seven patients with hemorrhagic cystitis. Four patients had intraluminal clots. Perivesical stranding was not a major CT finding, occurring in a mild fashion in three of 11 patients. The clinical classification of hemorrhagic cystitis did not correlate with the analyzed imaging parameters. Patient outcome was not influenced by this infectious complication. Conclusion: CT findings in patients with polyomavirus BK cystitis consist of different degrees of bladder wall thickening usually with good delineation of all mural layers and

  16. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies.

    Science.gov (United States)

    Neumann, Friederike; Czech-Sioli, Manja; Dobner, Thomas; Grundhoff, Adam; Schreiner, Sabrina; Fischer, Nicole

    2016-11-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.

  17. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants.

    Directory of Open Access Journals (Sweden)

    Emilie Sundqvist

    2014-04-01

    Full Text Available JC polyomavirus (JCV carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA, instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15 and controls (OR = 0.53, p = 2×10(-5. In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006, and controls (OR = 2.69, p = 1×10(-5. The German dataset confirmed these findings (OR = 0.54, p = 1×10(-4 and OR = 1.58, p = 0.03 respectively for these haplotypes. HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and

  18. Molecular epidemiology of WU polyomavirus in hospitalized children with acute respiratory tract infection in China.

    Science.gov (United States)

    Zhu, Teng; Lu, Qing-Bin; Zhang, Shu-Yan; Wo, Ying; Zhuang, Lu; Zhang, Pan-He; Zhang, Xiao-Ai; Wei, Wei; Liu, Wei

    2017-05-01

    To explore the molecular epidemiology and clinical characteristics of Washington University polyomavirus (WUPyV) infection in pediatric patients with acute respiratory tract infections in China. A laboratory surveillance was performed to recruit pediatric patients with acute respiratory tract infections. WUPyV was detected using real-time PCR and complete genome was sequenced for randomly selected positive nasopharyngeal aspirate. Altogether 122 (7.5%) of 1617 children found to be infected with WUPyV and 88 (72.1%) were coinfected with other viruses during 2012-2015. The phylogenetic analysis showed that 14 strains from our study formed two new clusters (Id and IIIc) within the Branch I and Branch III, respectively. WUPyV is persistently circulating in China. Surveillance on WUPyV infection in wider areas and long persistence is warranted.

  19. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors

    DEFF Research Database (Denmark)

    Lyngaa, Rikke; Pedersen, Natasja Wulff; Schrama, David

    2014-01-01

    Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic...

  20. Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

    Science.gov (United States)

    Hill, Sarah C; Murphy, Aisling A; Cotten, Matthew; Palser, Anne L; Benson, Phillip; Lesellier, Sandrine; Gormley, Eamonn; Richomme, Céline; Grierson, Sylvia; Bhuachalla, Deirdre Ni; Chambers, Mark; Kellam, Paul; Boschiroli, María-Laura; Ehlers, Bernhard; Jarvis, Michael A; Pybus, Oliver G

    2015-06-01

    Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.

  1. Detection of Merkel Cell Polyomavirus DNA in Serum Samples of Healthy Blood Donors

    Science.gov (United States)

    Mazzoni, Elisa; Rotondo, John C.; Marracino, Luisa; Selvatici, Rita; Bononi, Ilaria; Torreggiani, Elena; Touzé, Antoine; Martini, Fernanda; Tognon, Mauro G.

    2017-01-01

    Merkel cell polyomavirus (MCPyV) has been detected in 80% of Merkel cell carcinomas (MCC). In the host, the MCPyV reservoir remains elusive. MCPyV DNA sequences were revealed in blood donor buffy coats. In this study, MCPyV DNA sequences were investigated in the sera (n = 190) of healthy blood donors. Two MCPyV DNA sequences, coding for the viral oncoprotein large T antigen (LT), were investigated using polymerase chain reaction (PCR) methods and DNA sequencing. Circulating MCPyV sequences were detected in sera with a prevalence of 2.6% (5/190), at low-DNA viral load, which is in the range of 1–4 and 1–5 copies/μl by real-time PCR and droplet digital PCR, respectively. DNA sequencing carried out in the five MCPyV-positive samples indicated that the two MCPyV LT sequences which were analyzed belong to the MKL-1 strain. Circulating MCPyV LT sequences are present in blood donor sera. MCPyV-positive samples from blood donors could represent a potential vehicle for MCPyV infection in receivers, whereas an increase in viral load may occur with multiple blood transfusions. In certain patient conditions, such as immune-depression/suppression, additional disease or old age, transfusion of MCPyV-positive samples could be an additional risk factor for MCC onset. PMID:29238698

  2. Rationale for immune-based therapies in Merkel polyomavirus-positive and -negative Merkel cell carcinomas.

    Science.gov (United States)

    Vandeven, Natalie; Nghiem, Paul

    2016-07-01

    Merkel cell carcinoma (MCC) is a rare but often deadly skin cancer that is typically caused by the Merkel cell polyomavirus (MCPyV). Polyomavirus T-antigen oncoproteins are persistently expressed in virus-positive MCCs (˜80% of cases), while remarkably high numbers of tumor-associated neoantigens are detected in virus-negative MCCs, suggesting that both MCC subsets may be immunogenic. Here we review mechanisms by which these immunogenic tumors evade multiple levels of host immunity. Additionally, we summarize the exciting potential of diverse immune-based approaches to treat MCC. In particular, agents blocking the PD-1 axis have yielded strikingly high response rates in MCC as compared with other solid tumors, highlighting the potential for immune-mediated treatment of this disease.

  3. T cell recognition of large T and small T antigen in Merkel cell polyomavirus-associated cancer

    DEFF Research Database (Denmark)

    Hansen, Ulla Kring; Lyngaa, Rikke Birgitte; Straten, Per Thor

    Merkel Cell Carcinoma is an aggressive human skin cancer induced by Merkel Cell Polyomavirus (MCPyV). MCPyV is commonly found in human, but the oncogenic transformation takes place during immunosuppression. Two mutation events allow the clonal integration of the viral genome into the host genome...

  4. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    Science.gov (United States)

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease

  5. Detection of Merkel cell polyomavirus in cervical squamous cell carcinomas and adenocarcinomas from Japanese patients

    Directory of Open Access Journals (Sweden)

    Imajoh Masayuki

    2012-08-01

    Full Text Available Abstract Background Merkel cell polyomavirus (MCPyV was identified originally in Merkel cell carcinoma (MCC, a rare form of human skin neuroendocrine carcinoma. Evidence of MCPyV existence in other forms of malignancy such as cutaneous squamous cell carcinomas (SCCs is growing. Cervical cancers became the focus of our interest in searching for potentially MCPyV-related tumors because: (i the major histological type of cervical cancer is the SCC; (ii the uterine cervix is a common site of neuroendocrine carcinomas histologically similar to MCCs; and (iii MCPyV might be transmitted during sexual interaction as demonstrated for human papillomavirus (HPV. In this study, we aimed to clarify the possible presence of MCPyV in cervical SCCs from Japanese patients. Cervical adenocarcinomas (ACs were also studied. Results Formalin-fixed paraffin-embedded tissue samples from 48 cervical SCCs and 16 cervical ACs were examined for the presence of the MCPyV genome by polymerase chain reaction (PCR and sequencing analyses. PCR analysis revealed that 9/48 cervical SCCs (19% and 4/16 cervical ACs (25% were positive for MCPyV DNA. MCPyV-specific PCR products were sequenced to compare them with reference sequences. The nucleotide sequences in the MCPyV large T (LT-sequenced region were the same among MCPyV-positive cervical SCCs and AC. Conversely, in the MCPyV viral protein 1 (VP1-sequenced region, two cervical SCCs and three cervical ACs showed several nucleotide substitutions, of which three caused amino acid substitutions. These sequencing results suggested that three MCPyV variants of the VP1 were identified in our cases. Immunohistochemistry showed that the LT antigen was expressed in tumor cells in MCPyV-positive samples. Genotyping of human HPV in the MCPyV-positive samples revealed that infected HPVs were HPV types 16, 31 and 58 for SCCs and HPV types 16 and 18 for ACs. Conclusions This study provides the first observation that MCPyV coexists in a subset

  6. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  7. No detection of Merkel cell polyomavirus in oral lichen planus: Results of a preliminary study in a French cohort of patients.

    Science.gov (United States)

    Masson Regnault, Marie; Vigarios, Emmanuelle; Projetti, Fabrice; Herbault-Barres, Beatrice; Tournier, Emilie; Lamant, Laurence; Sibaud, Vincent

    2017-11-01

    Oral lichen planus (OLP) is a chronic inflammatory disease considered as a CD8+ T lymphocyte-mediated autoimmune reaction, which may be triggered by undetermined virus. Recent reports have described the detection of Merkel cell polyomavirus (MCPyV) DNA in oral samples from healthy patients and in patients with different forms of oral cancers. We therefore investigated in a prospective way whether MCPyV was detectable in oral lesions of patients with active OLP. Our preliminary results do not support the hypothesis that OLP may be triggered by MCPyV infection. Further studies are needed to evaluate the involvement of other human polyomaviruses in OLP pathogenesis. © 2017 Wiley Periodicals, Inc.

  8. Merkel cell polyomavirus in Merkel cell carcinogenesis: small T antigen-mediates c-Jun phosphorylation.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Rady, Peter L; Tyring, Stephen K

    2016-06-01

    Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer associated with the Merkel cell polyomavirus (MCPyV). The MCPyV genome, which is clonally integrated in the majority of MCCs, encodes the regulatory small T (sT) antigen. Previously, reports have established MCPyV sT antigen as a potent oncogene capable of inducing cell transformation. In the current study, we demonstrate a distinct role for c-Jun hyperactivation in MCPyV sT antigen pathogenesis. As MCPyV sT antigen's association with aggressive cancer growth has been previously established, this finding may represent a potential therapeutic target for the treatment of MCCs.

  9. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    cytotoxic and inhibits, in a dose dependent fashion, the synthesis of polyomavirus DNA in the infected cell. Furthermore, this inhibition is observed at non cytotoxic concentrations of the drug. Our data imply that cyto-toxicity may be attributed to the membrane damage caused by the drug and that the transfer of polyomavirus from the endoplasmic reticulum to the cytoplasm may be hindered. In conclusion, the cytotoxic and antiviral properties of resveratrol make it a potential candidate for the clinical control of proliferative as well as viral pathologies.

  10. T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles.

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    Full Text Available The newly discovered Merkel Cell Polyomavirus (MCPyV resides in approximately 80% of Merkel cell carcinomas (MCC. Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL, suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs, using human bocavirus (HBoV VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.

  11. Using Merkel cell polyomavirus specific TCR gene therapy for treatment of Merkel cellcarcinoma

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Pedersen, Natasja Wulff; Linnemann, C.

    2016-01-01

    T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with Mer......T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated...... with Merkel cell polyomavirus (MCPyV). Due to the clear viral correlation CD8+ T cells specific for viral epitopes could potentially form cancer-specific targets in MCC patients. We have identified MCPyV specific T cells using a high-throughput platform for T-cell enrichment and combinatorial encoding...

  12. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection.

    Directory of Open Access Journals (Sweden)

    Mengding Qian

    2009-06-01

    Full Text Available The mechanisms by which receptors guide intracellular virus transport are poorly characterized. The murine polyomavirus (Py binds to the lipid receptor ganglioside GD1a and traffics to the endoplasmic reticulum (ER where it enters the cytosol and then the nucleus to initiate infection. How Py reaches the ER is unclear. We show that Py is transported initially to the endolysosome where the low pH imparts a conformational change that enhances its subsequent ER-to-cytosol membrane penetration. GD1a stimulates not viral binding or entry, but rather sorting of Py from late endosomes and/or lysosomes to the ER, suggesting that GD1a binding is responsible for ER targeting. Consistent with this, an artificial particle coated with a GD1a antibody is transported to the ER. Our results provide a rationale for transport of Py through the endolysosome, demonstrate a novel endolysosome-to-ER transport pathway that is regulated by a lipid, and implicate ganglioside binding as a general ER targeting mechanism.

  13. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    Science.gov (United States)

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma.

    Science.gov (United States)

    Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A

    2017-01-03

    Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.

  15. Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and its absence in small cell carcinoma of the lung.

    Directory of Open Access Journals (Sweden)

    Charlotte T A H Wetzels

    Full Text Available BACKGROUND: A new virus called the Merkel Cell Polyomavirus (MCPyV has recently been found in Merkel Cell Carcinoma (MCC. MCC is a rare aggressive small cell neuroendocrine carcinoma primarily derived from the skin, morphologically indistinguishable from small cell lung carcinoma (SCLC. So far the actual presence of the virus in MCC tumour cells on a morphological level has not been demonstrated, and the presence of MCPyV in other small cell neuroendocrine carcinomas has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: We investigated MCC tissue samples from five patients and SCLCs from ten patients for the presence of MCPyV-DNA by PCR and sequencing. Electron microscopy was used to search ultrastructurally for morphological presence of the virus in MCPyV-DNA positive samples. MCPyV was detected in two out of five primary MCCs. In one MCC patient MCPyV-DNA was detected in the primary tumour as well as in the metastasis, strongly suggesting integration of MCPyV in the cellular DNA of the tumour in this patient. In the primary MCC of another patient viral particles in tumour cell nuclei and cytoplasm were identified by electron microscopy, indicating active viral replication in the tumour cells. In none of the SCLCs MCPyV-DNA was detected. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that MCPyV is an oncogenic polyomavirus in humans, and is potentially causally related to the development of MCC but not to the morphological similar SCLC.

  16. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting.

    Science.gov (United States)

    Kwun, H J; Wendzicki, J A; Shuda, Y; Moore, P S; Chang, Y

    2017-12-07

    The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.

  17. Seeking Standards for the Detection of Merkel Cell Polyomavirus and its Clinical Significance.

    Science.gov (United States)

    Eid, Mary; Nguyen, Jannett; Brownell, Isaac

    2017-04-01

    Merkel cell carcinoma is a rare skin cancer associated with Merkel cell polyomavirus in most cases. Prior studies associating Merkel cell carcinoma viral status with prognosis have inconsistent findings. Moshiri et al. used multimodal virus detection to determine that the 81% of patients with virus-positive Merkel cell carcinoma tumors had earlier stage disease and better outcomes relative to virus-negative cases. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation.

    Science.gov (United States)

    Stakaitytė, Gabrielė; Nwogu, Nnenna; Dobson, Samuel J; Knight, Laura M; Wasson, Christopher W; Salguero, Francisco J; Blackbourn, David J; Blair, G Eric; Mankouri, Jamel; Macdonald, Andrew; Whitehouse, Adrian

    2018-01-15

    Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of β 1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds

  19. High load of Merkel cell polyomavirus DNA detected in the normal skin of Japanese patients with Merkel cell carcinoma.

    Science.gov (United States)

    Hashida, Yumiko; Nakajima, Kimiko; Nakajima, Hideki; Shiga, Takeo; Tanaka, Moe; Murakami, Masanao; Matsuzaki, Shigenobu; Naganuma, Seiji; Kuroda, Naoki; Seki, Yasutaka; Katano, Harutaka; Sano, Shigetoshi; Daibata, Masanori

    2016-09-01

    Although Merkel cell polyomavirus (MCPyV) has the potential to cause Merkel cell carcinoma (MCC), it is also found in the normal skin of healthy individuals. However, the mechanism for transformation of MCPyV to an oncogenic form is unknown. To investigate the levels of MCPyV infection in the normal skin patients with MCC compared with those in a control cohort. We studied a total of six Japanese patients with cutaneous MCC. Sun-exposed and sun-unexposed skin swabs were obtained and analyzed for MCPyV loads using quantitative real-time polymerase chain reaction. At first, we found a patient with MCC carrying an extremely high load of MCPyV DNA in normal skin. This unique case prompted us to further explore the levels of MCPyV as skin microbiota in patients with MCC. We showed that MCPyV DNA levels were significantly higher in swabs obtained from normal skin samples of six patients with MCC compared with those from 30 age-matched healthy individuals and 19 patients with other cutaneous cancers. Whereas MCPyV strains obtained from the normal skin of patients with MCC had gene sequences without structural alterations, sequences of the tumor-derived strains showed truncating mutations or deletions. Although the number of patients with MCC studied was small, our findings suggest that MCC may occur with a background of high MCPyV load in the skin, and are expected to stimulate further studies on whether such skin virome levels could be one of predictive markers for the development of MCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Emerging differential roles of the pRb tumor suppressor in trichodysplasia spinulosa-associated polyomavirus and Merkel cell polyomavirus pathogeneses.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Doan, Hung Q; Rady, Peter L; Tyring, Stephen K

    2016-03-01

    Merkel cell carcinoma (MCC) and trichodysplasia spinulosa (TS) are two proliferative cutaneous diseases caused by the Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa-associated polyomavirus (TSPyV) respectively. Recently, studies have elucidated a key role of the small tumor (sT) antigen in the proliferative pathogenic mechanisms of MCPyV and likely TSPyV. While both sT antigens have demonstrated a capacity in regulating cellular pathways, it remains unknown whether MCPyV and TSPyV sT antigens contribute similarly or differentially to cell proliferation. The present study aims to explore the proliferative potential of MCPyV and TSPyV sT antigens by investigating their regulatory effects on the retinoblastoma protein (pRb) tumor suppressor. Inducible cell lines expressing MCPyV sT or TSPyV sT were created using a lentiviral packaging system. Cellular proteins were extracted and subjected to SDS-PAGE followed by Western blot detection and densitometric analysis. Expression of TSPyV sT markedly enhanced the phosphorylation of pRb in Western blot experiments. In contrast, expression of MCPyV sT did not alter pRb phosphorylation under the same experimental conditions. Densitometric analysis revealed that TSPyV sT antigen expression nearly doubled the ratio of phosphorylated to total pRb (P<0.001, Student's T-test), while MCPyV sT antigen expression did not cause significant change in pRb phosphorylation status. Given that hyperphosphorylation of pRb is associated with dysregulation of the cell cycle, S-phase induction, and increased cell proliferation, our findings support an important role of TSPyV-mediated pRb deactivation in the development of TS. The observation that the pRb tumor suppressor is inactivated by TSPyV sT but not MCPyV sT provides further insights into the distinct pathobiological mechanisms of MCC and TS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas.

    Science.gov (United States)

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Nagata, Keiko; Nakajima, Hideki; Sano, Shigetoshi; Hayashi, Kazuhiko

    2015-02-01

    Merkel cell polyomavirus (MCPyV) integrates monoclonally into the genomes of approximately 80% of Merkel cell carcinomas (MCCs), affecting their clinicopathological features. The molecular mechanisms underlying MCC development after MCPyV infection remain unclear. We investigated the association of MCPyV infection with activation of the Akt/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4E-BP1) signaling pathway in MCCs to elucidate the role of these signal transductions and to identify molecular targets for treatment. We analyzed the molecular and pathological characteristics of 41 MCPyV-positive and 27 MCPyV-negative MCCs. Expression of mTOR, TSC1, and TSC2 messenger RNA was significantly higher in MCPyV-negative MCCs, and Akt (T308) phosphorylation also was significantly higher (92% vs 66%; P = .019), whereas 4E-BP1 (S65 and T70) phosphorylation was common in both MCC types (92%-100%). The expression rates of most other tested signals were high (60%-100%) and not significantly correlated with MCPyV large T antigen expression. PIK3CA mutations were observed more frequently in MCPyV-positive MCCs (6/36 [17%] vs 2/20 [10%]). These results suggest that protein expression (activation) of most Akt/mTOR/4E-BP1 pathway signals was not significantly different in MCPyV-positive and MCPyV-negative MCCs, although these 2 types may differ in tumorigenesis, and MCPyV-negative MCCs showed significantly more frequent p-Akt (T308) activation. Therefore, certain Akt/mTOR/4E-BP1 pathway signals could be novel therapeutic targets for MCC regardless of MCPyV infection status. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation.

    Directory of Open Access Journals (Sweden)

    Christian Berrios

    2016-11-01

    Full Text Available Merkel cell polyomavirus (MCPyV is an etiological agent of Merkel cell carcinoma (MCC, a highly aggressive skin cancer. The MCPyV small tumor antigen (ST is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1. Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis.

  3. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.

    Directory of Open Access Journals (Sweden)

    Jingwei Cheng

    2017-10-01

    Full Text Available Merkel cell carcinoma (MCC frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT and an intact Small T antigen (ST. While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.

  4. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.

    Science.gov (United States)

    Cheng, Jingwei; Park, Donglim Esther; Berrios, Christian; White, Elizabeth A; Arora, Reety; Yoon, Rosa; Branigan, Timothy; Xiao, Tengfei; Westerling, Thomas; Federation, Alexander; Zeid, Rhamy; Strober, Benjamin; Swanson, Selene K; Florens, Laurence; Bradner, James E; Brown, Myles; Howley, Peter M; Padi, Megha; Washburn, Michael P; DeCaprio, James A

    2017-10-01

    Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.

  5. Polyomavirus EGFP-pseudocapsids:analysis of model particles for introduction of proteins and pepetides into mammalian cells

    Czech Academy of Sciences Publication Activity Database

    Bouřa, E.; Liebl, D.; Spíšek, R.; Frič, Jan; Marek, M.; Štokrová, Jitka; Holáň, Vladimír; Forstová, J.

    2005-01-01

    Roč. 579, č. 29 (2005), s. 6549-6558 ISSN 0014-5793 R&D Projects: GA MZd(CZ) NC6957; GA ČR(CZ) GA204/03/0593 Institutional research plan: CEZ:AV0Z50520514 Keywords : mouse polyomavirus * empty artificial virus-like particle * dendritic cell activation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.415, year: 2005

  6. Detection of the Merkel cell polyomavirus in the neuroendocrine component of combined Merkel cell carcinoma.

    Science.gov (United States)

    Kervarrec, Thibault; Samimi, Mahtab; Gaboriaud, Pauline; Gheit, Tarik; Beby-Defaux, Agnès; Houben, Roland; Schrama, David; Fromont, Gaëlle; Tommasino, Massimo; Le Corre, Yannick; Hainaut-Wierzbicka, Eva; Aubin, Francois; Bens, Guido; Maillard, Hervé; Furudoï, Adeline; Michenet, Patrick; Touzé, Antoine; Guyétant, Serge

    2018-05-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. The main etiological agent is Merkel cell polyomavirus (MCPyV), detected in 80% of cases. About 5% of cases, called combined MCC, feature an admixture of neuroendocrine and non-neuroendocrine tumor cells. Reports of the presence or absence of MCPyV in combined MCC are conflicting, most favoring the absence, which suggests that combined MCC might have independent etiological factors and pathogenesis. These discrepancies might occur with the use of different virus identification assays, with different sensitivities. In this study, we aimed to determine the viral status of combined MCC by a multimodal approach. We histologically reviewed 128 cases of MCC and sub-classified them as "combined" or "conventional." Both groups were compared by clinical data (age, sex, site, American Joint Committee on Cancer [AJCC] stage, immunosuppression, risk of recurrence, and death during follow-up) and immunochemical features (cytokeratin 20 and 7, thyroid transcription factor 1 [TTF1], p53, large T antigen [CM2B4], CD8 infiltrates). After a first calibration step with 12 conventional MCCs and 12 cutaneous squamous cell carcinomas as controls, all eight cases of combined MCC were investigated for MCPyV viral status by combining two independent molecular procedures. Furthermore, on multiplex genotyping assay, the samples were examined for the presence of other polyoma- and papillomaviruses. Combined MCC differed from conventional MCC in earlier AJCC stage, increased risk of recurrence and death, decreased CD8 infiltrates, more frequent TTF1 positivity (5/8), abnormal p53 expression (8/8), and frequent lack of large T antigen expression (7/8). With the molecular procedure, half of the combined MCC cases were positive for MCPyV in the neuroendocrine component. Beta papillomaviruses were detected in 5/8 combined MCC cases and 9/12 conventional MCC cases. In conclusion, the detection of MCPyV DNA in half of

  7. Replication, gene expression and particle production by a consensus Merkel Cell Polyomavirus (MCPyV genome.

    Directory of Open Access Journals (Sweden)

    Friederike Neumann

    Full Text Available Merkel Cell Polyomavirus (MCPyV genomes are clonally integrated in tumor tissues of approximately 85% of all Merkel cell carcinoma (MCC cases, a highly aggressive tumor of the skin which predominantly afflicts elderly and immunosuppressed patients. All integrated viral genomes recovered from MCC tissue or MCC cell lines harbor signature mutations in the early gene transcript encoding for the large T-Antigen (LT-Ag. These mutations selectively abrogate the ability of LT-Ag to support viral replication while still maintaining its Rb-binding activity, suggesting a continuous requirement for LT-Ag mediated cell cycle deregulation during MCC pathogenesis. To gain a better understanding of MCPyV biology, in vitro MCPyV replication systems are required. We have generated a synthetic MCPyV genomic clone (MCVSyn based on the consensus sequence of MCC-derived sequences deposited in the NCBI database. Here, we demonstrate that transfection of recircularized MCVSyn DNA into some human cell lines recapitulates efficient replication of the viral genome, early and late gene expression together with virus particle formation. However, serial transmission of infectious virus was not observed. This in vitro culturing system allows the study of viral replication and will facilitate the molecular dissection of important aspects of the MCPyV lifecycle.

  8. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    Science.gov (United States)

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  9. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells.

    Science.gov (United States)

    Hesbacher, Sonja; Pfitzer, Lisa; Wiedorfer, Katharina; Angermeyer, Sabrina; Borst, Andreas; Haferkamp, Sebastian; Scholz, Claus-Jürgen; Wobser, Marion; Schrama, David; Houben, Roland

    2016-05-31

    The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.

  10. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in rab11-positive endosomes

    Czech Academy of Sciences Publication Activity Database

    Liebl, D.; Difato, F.; Horníková, L.; Mannová, P.; Štokrová, Jitka; Forstová, J.

    2006-01-01

    Roč. 80, č. 9 (2006), s. 4610-4622 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA204/03/0593; GA MŠk(CZ) LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Polyomavirus internalization and trafficking * Early endosomes * Dependence of infection on endosomal pH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.341, year: 2006

  11. Merkel cell polyomavirus detection in Merkel cell cancer tumors in Northern Germany using PCR and protein expression.

    Science.gov (United States)

    Leitz, Miriam; Stieler, Kristin; Grundhoff, Adam; Moll, Ingrid; Brandner, Johanna M; Fischer, Nicole

    2014-10-01

    Merkel cell carcinoma is a highly malignant skin cancer which predominantly occurs in elderly and immunocompromised persons. The identification of the Merkel cell polyomavirus (MCPyV) has inaugurated a new understanding of Merkel cell carcinoma pathogenesis. The frequent detection of the virus in Merkel cell carcinoma tissue (70-90%), its monoclonal integration in the tumor cells and the expression of viral oncogenes highly suggest that MCPyV is causally linked to the pathogenesis of the majority of Merkel cell cancer (MCC) cases. Using qualitative and quantitative PCR together with immunohistochemical staining this study aimed at characterizing the presence of MCPyV sequences and viral early gene expression in a cohort of MCC cases (n = 32) selected in Northern Germany. 40-57% of the cases were identified as MCPyV positive with 40.6% of the cases positive by immunohistochemical staining and 51.6-57.6% positive by PCR. Interestingly, in the majority (64%) of LT-Antigen positive tumors only 25-50% of tumor cells express LT-Antigen. These data are in accord with published studies describing heterogeneity in MCPyV viral loads and suggest that detection of MCPyV in Merkel cell carcinoma by PCR should be undertaken using multiple primer pairs. © 2013 Wiley Periodicals, Inc.

  12. Absence of an association of human polyomavirus and papillomavirus infection with lung cancer in China: a nested case–control study

    International Nuclear Information System (INIS)

    Colombara, Danny V.; Manhart, Lisa E.; Carter, Joseph J.; Hawes, Stephen E.; Weiss, Noel S.; Hughes, James P.; Qiao, You-Lin; Taylor, Philip R.; Smith, Jennifer S.; Galloway, Denise A.

    2016-01-01

    Studies of human polyomavirus (HPyV) infection and lung cancer are limited and those regarding the association of human papillomavirus (HPV) infection and lung cancer have produced inconsistent results. We conducted a nested case–control study to assess the association between incident lung cancer of various histologies and evidence of prior infection with HPyVs and HPVs. We selected serum from 183 cases and 217 frequency matched controls from the Yunnan Tin Miner’s Cohort study, which was designed to identify biomarkers for early detection of lung cancer. Using multiplex liquid bead microarray (LBMA) antibody assays, we tested for antibodies to the VP1 structural protein and small T antigen (ST-Ag) of Merkel cell, KI, and WU HPyVs. We also tested for antibodies against HPV L1 structural proteins (high-risk types 16, 18, 31, 33, 52, and 58 and low-risk types 6 and 11) and E6 and E7 oncoproteins (high risk types 16 and 18). Measures of antibody reactivity were log transformed and analyzed using logistic regression. We found no association between KIV, WUV, and MCV antibody levels and incident lung cancer (P-corrected for multiple comparisons >0.10 for all trend tests). We also found no association with HPV-16, 18, 31, 33, 52, and 58 seropositivity (P-corrected for multiple comparisons >0.05 for all). Future studies of infectious etiologies of lung cancer should look beyond HPyVs and HPVs as candidate infectious agents. The online version of this article (doi:10.1186/s12885-016-2381-3) contains supplementary material, which is available to authorized users

  13. Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus.

    Science.gov (United States)

    Soldatova, Irina; Prilepskaja, Terezie; Abrahamyan, Levon; Forstová, Jitka; Huérfano, Sandra

    2018-03-31

    The mechanism used by mouse polyomavirus (MPyV) overcomes the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.

  14. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Science.gov (United States)

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  15. Structures of the major capsid proteins of the human Karolinska Institutet and Washington University polyomaviruses.

    Science.gov (United States)

    Neu, Ursula; Wang, Jianbo; Macejak, Dennis; Garcea, Robert L; Stehle, Thilo

    2011-07-01

    The Karolinska Institutet and Washington University polyomaviruses (KIPyV and WUPyV, respectively) are recently discovered human viruses that infect the respiratory tract. Although they have not yet been linked to disease, they are prevalent in populations worldwide, with initial infection occurring in early childhood. Polyomavirus capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which determines antigenicity and receptor specificity. The WUPyV and KIPyV VP1 proteins are distant in evolution from VP1 proteins of known structure such as simian virus 40 or murine polyomavirus. We present here the crystal structures of unassembled recombinant WUPyV and KIPyV VP1 pentamers at resolutions of 2.9 and 2.55 Å, respectively. The WUPyV and KIPyV VP1 core structures fold into the same β-sandwich that is a hallmark of all polyomavirus VP1 proteins crystallized to date. However, differences in sequence translate into profoundly different surface loop structures in KIPyV and WUPyV VP1 proteins. Such loop structures have not been observed for other polyomaviruses, and they provide initial clues about the possible interactions of these viruses with cell surface receptors.

  16. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model.

    Science.gov (United States)

    Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.

  17. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses

    Directory of Open Access Journals (Sweden)

    Eileen M. Geoghegan

    2017-10-01

    Full Text Available Summary: Progressive multifocal leukoencephalopathy (PML is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV. JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies. : Geoghegan et al. show that JC polyomavirus strains that cause brain disease infect cells via a pathway involving a heparin-like attachment receptor and a non-sialylated co-receptor. Candidate therapeutic human monoclonal antibodies neutralize by blocking co-receptor engagement. Keywords: polyomavirus, JC, BK, SV40, progressive multifocal leukoencephalopathy, PML, monoclonal antibody, mAb, virus entry, receptor

  18. Human exposure to bovine polyomavirus: a zoonosis

    Energy Technology Data Exchange (ETDEWEB)

    Parry, J V; Gardner, S D

    1986-01-01

    A competitive-type solid phase radioimmunoassay (RIA) was developed for the detection of antibody to bovine polyomavirus. Comparison of RIA and counter-immunoelectrophoresis (CIE) results on 273 cattle sera indicated that both techniques were detecting antibody of like specificity. Human sera from 256 blood donors, 219 people recently vaccinated against polio, rubella or rabies, 50 immunosuppressed patients and 472 people with various occupational exposure to cattle were tested for antibody to bovine polyomavirus, the foetal rhesus monkey kidney strain, (anti-FRKV) by RIA. Apart from one blood donor and one of 108 rabies vaccinees only those in close contact with cattle possessed anti-FRKV. Compared with 62 per cent seropositive in the natural hosts, cattle, 71 per cent of veterinary surgeons, 50 per cent of cattle farmers, 40 per cent of abattoir workers, 16 per cent of veterinary institute technical staff and 10 per cent of veterinary students were anti-FRKV positive. Our findings indicate that the theoretical hazard of FRKV infection from undetected contamination of current tissue culture derived vaccines may, in practice, be remote. Proposed wider use of primate kidney cells as substrates for new vaccines may increase this risk.

  19. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children.

    Directory of Open Access Journals (Sweden)

    Marta C Nunes

    Full Text Available Advances in molecular diagnostics have implicated newly-discovered respiratory viruses in the pathogenesis of pneumonia. We aimed to determine the prevalence and clinical characteristics of human bocavirus (hBoV, human rhinovirus (hRV, polyomavirus-WU (WUPyV and -KI (KIPyV and human coronaviruses (CoV-OC43, -NL63, -HKU1 and -229E among children hospitalized with lower respiratory tract infections (LRTI.Multiplex real-time reverse-transcriptase polymerase chain reaction was undertaken on archived nasopharyngeal aspirates from HIV-infected and -uninfected children (<2 years age hospitalized for LRTI, who had been previously investigated for respiratory syncytial virus, human metapneumovirus, parainfluenza I-III, adenovirus and influenza A/B.At least one of these viruses were identified in 274 (53.0% of 517 and in 509 (54.0% of 943 LRTI-episodes in HIV-infected and -uninfected children, respectively. Human rhinovirus was the most prevalent in HIV-infected (31.7% and -uninfected children (32.0%, followed by CoV-OC43 (12.2% and hBoV (9.5% in HIV-infected; and by hBoV (13.3% and WUPyV (11.9% in HIV-uninfected children. Polyomavirus-KI (8.9% vs. 4.8%; p = 0.002 and CoV-OC43 (12.2% vs. 3.6%; p<0.001 were more prevalent in HIV-infected than -uninfected children. Combined with previously-tested viruses, respiratory viruses were identified in 60.9% of HIV-infected and 78.3% of HIV-uninfected children. The newly tested viruses were detected at high frequency in association with other respiratory viruses, including previously-investigated viruses (22.8% in HIV-infected and 28.5% in HIV-uninfected children.We established that combined with previously-investigated viruses, at least one respiratory virus was identified in the majority of HIV-infected and HIV-uninfected children hospitalized for LRTI. The high frequency of viral co-infections illustrates the complexities in attributing causality to specific viruses in the aetiology of LRTI and may indicate a

  20. Detection and quantification of Merkel cell polyomavirus. Analysis of Merkel cell carcinoma cases from 1977 to 2015.

    Science.gov (United States)

    Álvarez-Argüelles, Marta E; Melón, Santiago; Rojo, Susana; Fernandez-Blázquez, Ana; Boga, Jose A; Palacio, Ana; Vivanco, Blanca; de Oña, María

    2017-12-01

    This study investigates the presence of Merkel cell polyomavirus (MCPyV) in skin lesions of patients with Merkel cell carcinoma (MCC). MCPyV was quantified using quantitative Real-Time-PCR (qRT-PCR) in 34 paraffinized MCC samples (resected/biopsied) originally taken between 1977 and 2015, and six non-MCC samples. In 31 (91.2%) MCC-individuals, MCPyV was detected. No virus was observed in any non-MCC tumor. Average age at diagnosis was 78.2 ± 9.35 (55-97) years for women (n = 19) and 69.5 ± 14.7 (45-91) for men (n = 15) (P = 0.04). MCC tumor location, known in 25 cases, was: 11 (44%) in the head region, 6 (24%) in upper limbs, 4 (16%) in lower limbs, and 4 (16%) in the trunk. All but one patient had received some sort of treatment: 15 (45.45%) underwent both radio and chemotherapy, 13 (39.39%) only surgery, 2 (6.06%) surgery, plus radio and chemotherapy, 2 (6.06%) surgery and chemotherapy, and 1 (3.03%) only radiotherapy. Follow up data were available for 21/34 patients: recurrence was recorded for 4 (19.04%), and metastasis for 13 (61.9%). Recorded data showed that 10 men and 5 women (total 44.1%) died during follow up, 7 (46.7%) of them within 2 years of diagnosis. Viral load was 5.8 ± 1.4 log copies/10 5 cells (3.1-8.6), independent of any variable. MCPyV was very frequent in MCC. It was principally associated with head and limb tumors, it more commonly affected men, who in this study were, on average, younger than women, and had high rates of recurrence and mortality. The amplification techniques described here are easily applied and suitable for detecting the presence of MCPyV virus in MCC. © 2017 Wiley Periodicals, Inc.

  1. La dicotomía de los virus polioma: ¿Infección lítica o inducción de neoplasias? The paradox of polyomaviruses Lytic infection or tumor induction?

    Directory of Open Access Journals (Sweden)

    Norberto A. Sanjuan

    2004-02-01

    Full Text Available Los virus Polioma murinos provocan infecciones líticas en cultivos de células de ratón y transforman in vitro células de rata a través de la interacción de su oncogén mT con diversos reguladores celulares. Luego de su inoculación en ratones neonatos inducen neoplasias epiteliales y mesenquimáticas. Se ha propuesto que las cepas de polioma más oncogénicas son aquellas que previamente replican más en el ratón. Sin embargo, a nivel de una sola célula la infección lítica y la transformación deberían ser mutuamente excluyentes. En cada neoplasia han sido descriptos 3 tipos celulares según expresen el DNA viral solo o concomitantemente con la proteína mayor de la cápside VP1, o que no contengan DNA viral ni VP-1. En nuestro laboratorio detectamos la existencia de un cuarto tipo celular en las neoplasias, en el que se expresa la totalidad del genoma viral pero no ocurre el ensamblaje, probablemente por alteraciones en la fosforilación de VP-1. Se discuten los mecanismos de migración intracelular de Polioma, la diseminación en el ratón y los factores que podrían estar involucrados en la inducción de neoplasias o en la infección lítica inducidas por el virus.Murine polyomaviruses can produce lytic infections in mouse cell cultures or transform in vitro rat fibroblasts through a complex interaction with key cellular regulators. After infection of newborn mice, some strains of polyomavirus induce epithelial and mesenchymal tumors. It has been described that there is a direct relationship between viral dissemination in the mouse and tumor induction. However, at a single cell level lytic infection and transformation would not be able to coexist. The existence of 3 distinct cell populations in polyoma-induced tumors, classified according to the presence or absence of viral DNA and viral capsid protein VP-1 have been described. We have reported a fourth type of cell in the neoplasms, that can express the early and the late viral

  2. The polyomaviruses WUPyV and KIPyV: a retrospective quantitative analysis in patients undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Motamedi Nasim

    2012-09-01

    Full Text Available Abstract Background The polyomaviruses WUPyV and KIPyV have been detected in various sample types including feces indicating pathogenicity in the gastrointestinal (GI system. However, quantitative viral load data from other simultaneously collected sample types are missing. As a consequence, primary replication in the GI system cannot be differentiated from swallowed virus from the respiratory tract. Here we present a retrospective quantitative longitudinal analysis in simultaneously harvested specimens from different organ sites of patients undergoing hematopoietic stem cell transplantation (HSCT. This allows the definition of sample types where deoxyribonucleic acid (DNA detection can be expected and, as a consequence, the identification of their primary replication site. Findings Viral DNA loads from 37 patients undergoing HSCT were quantified in respiratory tract secretions (RTS, stool and urine samples as well as in leukocytes (n = 449. Leukocyte-associated virus could not be found. WUPyV was found in feces, RTS and urine samples of an infant, while KIPyV was repeatedly detected in RTS and stool samples of 4 adult patients. RTS and stool samples were matched to determine the viral load difference showing a mean difference of 2.3 log copies/ml (p  Conclusions The data collected in this study suggest that virus detection in the GI tract results from swallowed virus from the respiratory tract (RT. We conclude that shedding from the RT should be ruled out before viral DNA detection in the feces can be correlated to GI symptoms.

  3. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures.

    Science.gov (United States)

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our

  4. Polyomavirus and Naturally Occuring Neuroglial Tumors in Raccoons (Procyon Lotor).

    Science.gov (United States)

    Pesavento, Patricia A; Brostoff, Terza; Church, Molly E; Dela Cruz, Florante N; Woolard, Kevin D

    2016-01-01

    Polyomavirus (PyV) infections are widespread in human populations and, although generally associated with silent persistence, rarely cause severe disease. Among diseases convincingly associated with natural PyV infections of humans, there are remarkably different tissue tropisms and outcomes, including progressive multifocal leukoencephalopathy, transient or progressive nephropathy, and cancer. The variable character and unpredictable outcomes of infection attest to large gaps in our basic understanding of PyV biology. In particular, the rich history of research demonstrating the oncogenic potential of PyVs in laboratory animals begs the question of why cancer is not more often associated with infection. Raccoon polyomavirus (RacPyV), discovered in 2010, is consistently identified in neuroglial tumors in free-ranging raccoons in the western United States. Exposure to RacPyV is widespread, and RacPyV is detected in tissues of raccoons without tumors. Studying the relationship of RacPyV with its natural host is a unique opportunity to uncover cogent cellular targets and protein interactions between the virus and its host. Our hypothesis is that RacPyV, as an intact episome, alters cellular pathways within neural progenitor cells and drives oncogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. The diagnostic utility of Merkel cell polyomavirus immunohistochemistry in a fine needle aspirate of metastatic Merkel cell carcinoma of unknown primary to the pancreas.

    Science.gov (United States)

    Li, Long; Molberg, Kyle; Cheedella, Naga; Thibodeaux, Joel; Hinson, Stacy; Lucas, Elena

    2018-01-01

    Merkel cell carcinoma (MCC) is an aggressive skin tumor with a high tendency for metastases. We report a case of MCC initially presenting as axillary and pancreatic metastases. A 33-year-old HIV-positive Hispanic male presented with a history of a rapidly growing axillary mass. A needle core biopsy demonstrated an epithelioid neoplasm composed of small to medium-sized cells with high nuclear-cytoplasmic ratio, nuclear molding, and frequent mitotic figures. A subsequent PET scan revealed a 1.5 cm FDG avid mass in the pancreas. Endoscopic ultrasound-guided FNA of the pancreatic mass showed neoplastic cells with similar morphology to those of the axillary mass. The tumor cells were positive with pancytokeratin AE1/AE3, CK20, CD56, synatophysin, chromogranin, and Merkel cell polyomavirus (MCPyV). This case of MCC most likely originated from a resolved primary skin lesion drained by the involved axillary lymph node with subsequent metastases to the pancreas and distant lymph nodes. © 2017 Wiley Periodicals, Inc.

  6. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta.

    Directory of Open Access Journals (Sweden)

    Jaione Simon-Santamaria

    Full Text Available Liver sinusoidal endothelial cells (LSECs are specialized scavenger cells that mediate high-capacity clearance of soluble waste macromolecules and colloid material, including blood-borne adenovirus. To explore if LSECs function as a sink for other viruses in blood, we studied the fate of virus-like particles (VLPs of two ubiquitous human DNA viruses, BK and JC polyomavirus, in mice. Like complete virions, VLPs specifically bind to receptors and enter cells, but unlike complete virions, they cannot replicate. 125I-labeled VLPs were used to assess blood decay, organ-, and hepatocellular distribution of ligand, and non-labeled VLPs to examine cellular uptake by immunohisto- and -cytochemistry. BK- and JC-VLPs rapidly distributed to liver, with lesser uptake in kidney and spleen. Liver uptake was predominantly in LSECs. Blood half-life (∼1 min, and tissue distribution of JC-VLPs and two JC-VLP-mutants (L55F and S269F that lack sialic acid binding affinity, were similar, indicating involvement of non-sialic acid receptors in cellular uptake. Liver uptake was not mediated by scavenger receptors. In spleen, the VLPs localized to the red pulp marginal zone reticuloendothelium, and in kidney to the endothelial lining of vasa recta segments, and the transitional epithelium of renal pelvis. Most VLP-positive vessels in renal medulla did not express PV-1/Meca 32, suggesting location to the non-fenestrated part of vasa recta. The endothelial cells of these vessels also efficiently endocytosed a scavenger receptor ligand, formaldehyde-denatured albumin, suggesting high endocytic activity compared to other renal endothelia. We conclude that LSECs very effectively cleared a large fraction of blood-borne BK- and JC-VLPs, indicating a central role of these cells in early removal of polyomavirus from the circulation. In addition, we report the novel finding that a subpopulation of endothelial cells in kidney, the main organ of polyomavirus persistence, showed

  7. Phosphohistone-H3 (PHH3) is prognostic relevant in Merkel cell carcinomas but Merkel cell polyomavirus is a more powerful prognostic factor than AJCC clinical stage, PHH3, Ki-67 or mitotic indices.

    Science.gov (United States)

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kato, Masako; Nagata, Keiko; Murakami, Ichiro; Hayashi, Kazuhiko

    2015-08-01

    Merkel cell carcinomas (MCCs) associated with Merkel cell polyomavirus (MCPyV) have better prognosis than those without MCPyV. The relationship between mitotic index (MI) and MCC outcome has remained elusive because of the difficulty in differentiating mitotic cells from apoptotic ones. We evaluated the role of phosphohistone-H3 (PHH3) (Ser10), a new mitotic count biomarker, in MCPyV-positive or -negative MCC patients, and assessed its prognostic value in comparison to Ki-67 labeling index or MI using hematoxylin and eosin (HE) staining. We compared the prognostic value of PHH3 mitotic index with that of MI by HE in 19 MCPyV-positive and 9 MCPyV-negative MCC patients. PHH3-positive immunoreactivity was mostly observed in mitotic figures. Multivariate analysis significantly showed that MCPyV status (HR, 0.004; 95% CI 0.0003-0.058) and the American Joint Committee of Cancer (AJCC) stage (HR, 5.02; 95% CI 1.23-20.51) were observed as significantly independent prognostic factors for OS. PHH3-positive cell counts/10 HPF was a slightly significant independent prognostic factor for OS (HR, 4.96; 95% CI 0.93-26.55). PHH3-positive MI and MCPyV status in MCC patients are useful in prognostication, although MCPyV-infection is a more powerful prognostic factor in MCCs than the AJCC scheme on proliferation or mitotic indices. © 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  8. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children

    NARCIS (Netherlands)

    Nunes, Marta C.; Kuschner, Zachary; Rabede, Zelda; Madimabe, Richard; Van Niekerk, Nadia; Moloi, Jackie; Kuwanda, Locadiah; Rossen, John W.; Klugman, Keith P.; Adrian, Peter V.; Madhi, Shabir A.

    2014-01-01

    Background: Advances in molecular diagnostics have implicated newly-discovered respiratory viruses in the pathogenesis of pneumonia. We aimed to determine the prevalence and clinical characteristics of human bocavirus (hBoV), human rhinovirus (hRV), polyomavirus-WU (WUPyV) and -KI (KIPyV) and human

  10. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas.

    Science.gov (United States)

    Haugg, Anke M; Rennspiess, Dorit; zur Hausen, Axel; Speel, Ernst-Jan M; Cathomas, Gieri; Becker, Jürgen C; Schrama, David

    2014-12-15

    The Merkel cell polyomavirus (MCPyV) is detected in 80% of Merkel cell carcinomas (MCC). Clonal integration and tumor-specific mutations in the large T antigen are strong arguments that MCPyV is a human tumor virus. However, the relationship between viral presence and cancer induction remains discussed controversially. Since almost all studies on virus prevalence are based on PCR techniques, we performed MCPyV fluorescence in situ hybridization (FISH) on MCC to gain information about the quality of the viral presence on the single cell level. MCPyV-FISH was performed on tissue microarrays containing 62 formalin-fixed and paraffin-embedded tissue samples including all tumor grades of 42 patients. The hybridization patterns were correlated to the qPCR data determined on corresponding whole tissue sections. Indeed, MCPyV-FISH and qPCR data were highly correlated, i.e. 83% for FISH-positive and 93% for FISH-negative cores. Accordingly, the mean of the qPCR values of all MCPyV-positive cores differed significantly from the mean of the negative cores (p = 0.0076). Importantly, two hybridization patterns were definable in the MCPyV-FISH: a punctate pattern (85%) indicating viral integration, which correlated with a moderate viral abundance and a combination of the punctate with a diffuse pattern (15%), suggesting a possible coexistence of integrated and episomal virus which was associated with very high viral load and VP1 expression. Thus, MCPyV-FISH adds important information on the single cell level within the histomorphological context and could therefore be an important tool to further elucidate MCPyV related carcinogenesis. © 2014 UICC.

  11. Merkel cell carcinoma: histopathologic and prognostic features according to the immunohistochemical expression of Merkel cell polyomavirus large T antigen correlated with viral load.

    Science.gov (United States)

    Leroux-Kozal, Valérie; Lévêque, Nicolas; Brodard, Véronique; Lesage, Candice; Dudez, Oriane; Makeieff, Marc; Kanagaratnam, Lukshe; Diebold, Marie-Danièle

    2015-03-01

    Merkel cell carcinoma (MCC) is a neuroendocrine skin malignancy frequently associated with Merkel cell polyomavirus (MCPyV), which is suspected to be oncogenic. In a series of MCC patients, we compared clinical, histopathologic, and prognostic features according to the expression of viral large T antigen (LTA) correlated with viral load. We evaluated the LTA expression by immunohistochemistry using CM2B4 antibody and quantified viral load by real-time polymerase chain reaction. We analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples (n = 36) and corresponding fresh-frozen biopsies when available (n = 12), of the primary tumor and/or metastasis from 24 patients. MCPyV was detected in 88% and 58% of MCC patients by real-time polymerase chain reaction and immunohistochemistry, respectively. The relevance of viral load measurements was demonstrated by the strong consistency of viral load level between FFPE and corresponding frozen tissues as well as between primary tumor and metastases. From FFPE samples, 2 MCC subgroups were distinguished based on a viral load threshold defined by the positivity of CM2B4 immunostaining. In the LTA-negative subgroup with no or low viral load (nonsignificant), tumor cells showed more anisokaryosis (P = .01), and a solar elastosis around the tumor was more frequently observed (P = .03). LTA-positive MCCs with significant viral load had a lower proliferation index (P = .03) and a longer survival of corresponding patients (P = .008). Depending on MCPyV involvement, 2 MCC subgroups can be distinguished on histopathologic criteria, and the CM2B4 antibody is able to differentiate them reliably. Furthermore, the presence of a significant viral load in tumors is predictive of better prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  13. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  14. Polyomavirus – an emergent pathogen in transplant recipients

    Directory of Open Access Journals (Sweden)

    Juliana de Moura Montagner

    2007-06-01

    Full Text Available Medical centers that work with transplants often face opportunisticinfections that demand specific tools to make diagnosis. Theprevalence of latent polyomavirus infections is high, and the mostcommon site of latency of the most prevalent polyomavirus in humans,BK virus (BKV, is the renal tissue. Hence, renal transplanted patientsare particularly vulnerable to the damage caused by viral reactivationduring immunosupression. In such patients BKV is associated toureteral stenosis and/or BKV nephropathy, leading to progressivedysfunction and graft loss, often diagnosed as rejection. In other organsrecipients (namely lung, liver, heart and pancreas, BKN is also the mostimportant clinical manifestation, whereas in bone marrow recipients themost common is hemorrhagic cystitis. This review presents the viralbiology and discusses the pathophysiology of polyomavirus diseasesand the diagnostic efficacy of the laboratory tests available, guidingto the best strategy for assessment and monitoring of patients at riskor under specific treatment.

  15. Polyomavirus-Negative Merkel Cell Carcinoma: A More Aggressive Subtype Based on Analysis of 282 Cases Using Multimodal Tumor Virus Detection.

    Science.gov (United States)

    Moshiri, Ata S; Doumani, Ryan; Yelistratova, Lola; Blom, Astrid; Lachance, Kristina; Shinohara, Michi M; Delaney, Martha; Chang, Oliver; McArdle, Susan; Thomas, Hannah; Asgari, Maryam M; Huang, Meei-Li; Schwartz, Stephen M; Nghiem, Paul

    2017-04-01

    Previous studies have reached conflicting conclusions regarding the proportion of Merkel cell carcinomas (MCCs) that contain the Merkel cell polyomavirus (MCPyV) and the clinical significance of tumor viral status. To address these controversies, we detected MCPyV large T antigen using immunohistochemistry with two distinct antibodies and MCPyV DNA using quantitative PCR. Tumors were called MCPyV-positive if two or more of these three assays indicated presence of this virus. A total of 53 of 282 (19%) MCC tumors in this cohort were virus-negative using this multimodal system. Immunohistochemistry with the CM2B4 antibody had the best overall performance (sensitivity = 0.882, specificity = 0.943) compared with the multimodal classification. Multivariate analysis including age, sex, and immunosuppression showed that, relative to MCC patients with virus-positive tumors, virus-negative MCC patients had significantly increased risk of disease progression (hazard ratio = 1.77, 95% confidence interval = 1.20-2.62) and death from MCC (hazard ratio = 1.85, 95% confidence interval = 1.19-2.89). We confirm that approximately 20% of MCCs are not driven by MCPyV and that such virus-negative MCCs, which can be quite reliably identified by immunohistochemistry using the CM2B4 antibody alone, represent a more aggressive subtype that warrants closer clinical follow-up. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  17. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Qi, Dunwu; Shan, Tongling; Liu, Zhijian; Deng, Xutao; Zhang, Zhihe; Bi, Wenlei; Owens, Jacob Robert; Feng, Feifei; Zheng, Lisong; Huang, Feng; Delwart, Eric; Hou, Rong; Zhang, Wen

    2017-10-27

    Polyomaviruses infect a wide variety of mammalian and avian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. Viral metagenomics and general PCR methods were used to detected viral nucleic acid in the samples from a diseased and healthy giant pandas. A novel polyomavirus, the giant panda polyomavirus 1 (GPPyV1) from the nasal cavity of a dead giant panda (Ailuropoda melanoleuca) was characterized. The GPPyV1 genome is 5144 bp in size and reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. Phylogenetic analyses of the large T antigen of the GPPyV1 indicated GPPyV1 belonged to a putative new species within genus Deltapolyomavirus, clustering with four human polyomavirus species. The GPPyV1 VP1 and VP2 clustered with genus Alphapolyomavirus. Our epidemiologic study indicated that this novel polyomavirus was also detected in nasal swabs and fecal samples collected from captive healthy giant pandas. A novel polyomavirus was detected in giant pandas and its complete genome was characterized, which may cause latency infection in giant pandas.

  18. Assessing host-virus codivergence for close relatives of Merkel cell polyomavirus infecting African great apes

    Czech Academy of Sciences Publication Activity Database

    Madinda, N. F.; Ehlers, B.; Wertheim, J. O.; Akoua-Koffi, C.; Bergl, R. A.; Boesch, C.; Akonkwa, D. B. M.; Eckardt, W.; Fruth, B.; Gillespie, T. R.; Gray, M.; Hohmann, G.; Karhemere, S.; Kujirakwinja, D.; Langergraber, K.; Muyembe, J.-J.; Nishuli, R.; Pauly, M.; Petrželková, Klára Judita; Robbins, M. M.; Todd, A.; Schubert, G.; Stoinski, T. S.; Wittig, R. M.; Zuberbühler, K.; Peeters, M.; Leendertz, F. H.; Calvignac-Spencer, S.

    2016-01-01

    Roč. 90, č. 19 (2016), s. 8531-8541 ISSN 0022-538X R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : JC virus * divergence times * evolution * phylogenies * selection * bats * coevolution * population * chimpanzee * diversity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.663, year: 2016

  19. Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes

    Czech Academy of Sciences Publication Activity Database

    Madinda, N. F.; Ehlers, B.; Wertheim, J. O.; Akoua-Koffi, C.; Bergl, R. A.; Boesch, C.; Akonkwa, D. B. M.; Eckardt, W.; Fruth, B.; Gillespie, T. R.; Gray, M.; Hohmann, G.; Karhemere, S.; Kujirakwinja, D.; Langergraber, K.; Muyembe, J.-J.; Nishuli, R.; Pauly, M.; Petrželková, Klára Judita; Robbins, M. M.; Todd, A.; Schubert, G.; Stoinski, T. S.; Wittig, R. M.; Zuberbühler, K.; Peeters, M.; Leendertz, F. H.; Calvignac-Spencer, S.

    2016-01-01

    Roč. 90, č. 19 (2016), s. 8531-8541 ISSN 0022-538X Institutional support: RVO:60077344 Keywords : JC virus * divergence times * evolution * phylogenies * selection * bats * coevolution * population * chimpanzee * diversity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.663, year: 2016

  20. The polyomavirus BK agnoprotein co-localizes with lipid droplets

    International Nuclear Information System (INIS)

    Unterstab, Gunhild; Gosert, Rainer; Leuenberger, David; Lorentz, Pascal; Rinaldo, Christine H.; Hirsch, Hans H.

    2010-01-01

    Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66 were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.

  1. A novel pulmonary polyomavirus in alpacas (Vicugna pacos).

    Science.gov (United States)

    Dela Cruz, Florante N; Li, Linlin; Delwart, Eric; Pesavento, P A

    2017-03-01

    Viral metagenomic analysis detected a novel polyomavirus in a 6-month old female alpaca (Vicugna pacos) euthanized after a diagnosis of disseminated lymphosarcoma. The viral genome was fully sequenced, found to be similar to other polyomaviruses in gene architecture and provisionally named Alpaca polyomavirus or AlPyV. Viral nucleic acid was detected by PCR in venous blood, spleen, thymus, and lung. AlPyV phylogenetically clustered in the "Wuki" group of PyVs, which includes WU and KI polyomaviruses, commonly found in human respiratory samples. In an ISH analysis of 17 alpaca necropsies, 7 had detectable virus within the lung. In animals without pneumonia, probe hybridization was restricted to the nuclei of scattered individual bronchiolar epithelial cells. Three of the ISH positive alpacas had interstitial pneumonia of unknown origin, and in these animals there was viral nucleic acid detected in bronchiolar epithelium, type II pneumocytes, and alveolar macrophages. The pattern of AlPyV distribution is consistent with a persistent respiratory virus that has a possible role in respiratory disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Impact of HMG-CoA reductase inhibitors on the incidence of polyomavirus-associated nephropathy in renal transplant recipients with human BK polyomavirus viremia.

    Science.gov (United States)

    Gabardi, S; Ramasamy, S; Kim, M; Klasek, R; Carter, D; Mackenzie, M R; Chandraker, A; Tan, C S

    2015-08-01

    Up to 20% of renal transplant recipients (RTR) will develop human BK polyomavirus (BKPyV) viremia. BKPyV viremia is a pre-requisite of polyomavirus-associated nephropathy (PyVAN). Risk of BKPyV infections increases with immunosuppression. Currently, the only effective therapy against PyVAN is reductions in immunosuppression, but this may increase the risk of rejection. In vitro data have shown that pravastatin dramatically decreased caveolin-1 expression in human renal proximal tubular epithelial cells (HRPTEC) and suppressed BKPyV infection in these cells. Based on these data, we postulated that statin therapy may prevent the progression of BKPyV viremia to PyVAN. A multicenter, retrospective study was conducted in adult RTR transplanted between July 2005 and March 2012. All patients with documented BKPyV viremia (viral load >500 copies/mL on 2 consecutive tests) were included. Group I consisted of patients taking a statin before the BKPyV viremia diagnosis (n = 32), and Group II had no statin exposure before or after the BKPyV viremia diagnosis (n = 36). The primary endpoint was the incidence of PyVAN. Demographic data, transplant characteristics, and the degree of immunosuppression (i.e., induction/maintenance therapies, rejection treatment) were similar between the groups, with the exception of more diabetics in Group I. The incidence of PyVAN was comparable between the 2 groups (Group I = 28.1% vs. Group II = 41.7%; P = 0.312). Despite the proven in vitro effectiveness of pravastatin preventing BKPyV infection in HRPTEC, statins at doses maximized for cholesterol lowering, in RTR with BKPyV viremia, did not prevent progression to PyVAN. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Cell migration is another player of the minute virus of mice infection

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2014-11-15

    The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edge of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication.

  4. Cell migration is another player of the minute virus of mice infection

    International Nuclear Information System (INIS)

    Garcin, Pierre O.; Panté, Nelly

    2014-01-01

    The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edge of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication

  5. A Naturally Transmitted Epitheliotropic Polyomavirus Pathogenic in Immunodeficient Rats: Characterization, Transmission, and Preliminary Epidemiologic Studies.

    Science.gov (United States)

    Besch-Williford, Cynthia; Pesavento, Patricia; Hamilton, Shari; Bauer, Beth; Kapusinszky, Beatrix; Phan, Tung; Delwart, Eric; Livingston, Robert; Cushing, Susan; Watanabe, Rie; Levin, Stephen; Berger, Diana; Myles, Matthew

    2017-07-01

    We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1 rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.

  6. Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection.

    Science.gov (United States)

    Prezioso, Carla; Scribano, Daniela; Bellizzi, Anna; Anzivino, Elena; Rodio, Donatella Maria; Trancassini, Maria; Palamara, Anna Teresa; Pietropaolo, Valeria

    2017-12-01

    John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.

  7. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  8. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    Science.gov (United States)

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  9. Renal expression of polyomavirus large T antigen is associated with nephritis in human systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Fenton, Kristin Andreassen; Mjelle, Janne Erikke; Jacobsen, Søren

    2008-01-01

    ) that these complexes bound induced anti-nucleosome antibodies and finally (iv) that they associated with glomerular membranes as immune complexes. This process may be relevant for human lupus nephritis, since productive polyomavirus infection is associated with this organ manifestation. Here, we compare nephritis...... to the evolution of lupus nephritis in human SLE....

  10. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2017-01-01

    Full Text Available The human polyomaviruses BK (BKPyV and JC (JCPyV are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  11. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors.

    Science.gov (United States)

    Brostoff, Terza; Dela Cruz, Florante N; Church, Molly E; Woolard, Kevin D; Pesavento, Patricia A

    2014-11-01

    Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in

  12. The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study

    Science.gov (United States)

    Ling, Paul D.; Lednicky, John A.; Keitel, Wendy A.; Poston, David G.; White, Zoe S.; Peng, RongSheng; Liu, Zhensheng; Mehta, Satish K.; Pierson, Duane L.; Rooney, Cliona M.; hide

    2003-01-01

    Humans are infected with viruses that establish long-term persistent infections. To address whether immunocompetent individuals control virus reactivation globally or independently and to identify patterns of sporadic reactivation, we monitored herpesviruses and polyomaviruses in 30 adults, over 14 months. Epstein-Barr virus (EBV) DNA was quantitated in saliva and peripheral blood mononuclear cells (PBMCs), cytomegalovirus (CMV) was assayed in urine, and JC virus (JCV) and BK virus (BKV) DNAs were assayed in urine and PBMCs. All individuals shed EBV in saliva, whereas 67% had >or=1 blood sample positive for EBV. Levels of EBV varied widely. CMV shedding occurred infrequently but occurred more commonly in younger individuals (Por=40 years old (P.50). Thus, adults independently control persistent viruses, which display discordant, sporadic reactivations.

  13. Novel polyomaviruses of nonhuman primates: genetic and serological predictors for the existence of multiple unknown polyomaviruses within the human population.

    Directory of Open Access Journals (Sweden)

    Nelly Scuda

    Full Text Available Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan, five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1 of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA. Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses.

  14. Novel Polyomaviruses of Nonhuman Primates: Genetic and Serological Predictors for the Existence of Multiple Unknown Polyomaviruses within the Human Population

    Science.gov (United States)

    Scuda, Nelly; Madinda, Nadege Freda; Akoua-Koffi, Chantal; Adjogoua, Edgard Valerie; Wevers, Diana; Hofmann, Jörg; Cameron, Kenneth N.; Leendertz, Siv Aina J.; Couacy-Hymann, Emmanuel; Robbins, Martha; Boesch, Christophe; Jarvis, Michael A.; Moens, Ugo; Mugisha, Lawrence; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Ehlers, Bernhard

    2013-01-01

    Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP) polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan), five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified) had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1) of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA). Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses. PMID:23818846

  15. ECIL guidelines for the prevention, diagnosis and treatment of BK polyomavirus-associated haemorrhagic cystitis in haematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Cesaro, Simone; Dalianis, Tina; Hanssen Rinaldo, Christine; Koskenvuo, Minna; Pegoraro, Anna; Einsele, Hermann; Cordonnier, Catherine; Hirsch, Hans H

    2018-01-01

    To define guidelines for BK polyomavirus (BKPyV)-associated haemorrhagic cystitis (BKPyV-HC) after paediatric and adult HSCT. Review of English literature and evidence-based recommendations by expert consensus. BKPyV-HC occurs in 8%-25% of paediatric and 7%-54% of adult recipients undergoing allogeneic HSCT. Diagnosis requires the triad of cystitis, macro-haematuria and high urine BKPyV loads >7 log10 copies/mL, and exclusion of other relevant aetiologies. BKPyV viraemia is frequent and may serve as a more specific semiquantitative follow-up marker. No randomized controlled trials are available to inform antiviral prophylaxis or treatment. However, hyper-hydration and/or bladder irrigation showed limited prophylactic value. Fluoroquinolones are not effective for prophylaxis or treatment, but rather increase antibiotic resistance. Hyperbaric oxygen or fibrin glue is marginally effective based on small case series from correspondingly equipped centres. Although cidofovir has been reported to improve and/or reduce BKPyV viraemia or viruria, the current data do not support its regular use. BKPyV-HC remains a disabling unmet clinical need in HSCT that requires novel approaches supported by proper clinical trials. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Science.gov (United States)

    Maru, Saumya; Jin, Ge; Schell, Todd D; Lukacher, Aron E

    2017-04-01

    Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  17. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Directory of Open Access Journals (Sweden)

    Saumya Maru

    2017-04-01

    Full Text Available Establishing functional tissue-resident memory (TRM cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  18. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies.

    Science.gov (United States)

    Arvia, Rosaria; Sollai, Mauro; Pierucci, Federica; Urso, Carmelo; Massi, Daniela; Zakrzewska, Krystyna

    2017-08-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma and high viral load in the skin was proposed as a risk factor for the occurrence of this tumour. MCPyV DNA was detected, with lower frequency, in different skin cancers but since the viral load was usually low, the real prevalence of viral DNA could be underestimated. To evaluate the performance of two assays (qPCR and ddPCR) for MCPyV detection and quantification in formalin fixed paraffin embedded (FFPE) tissue samples. Both assays were designed to simultaneous detection and quantification of both MCPyV as well as house-keeping DNA in clinical samples. The performance of MCPyV quantification was investigated using serial dilutions of cloned target DNA. We also evaluated the applicability of both tests for the analysis of 76 FFPE cutaneous biopsies. The two approaches resulted equivalent with regard to the reproducibility and repeatability and showed a high degree of linearity in the dynamic range tested in the present study. Moreover, qPCR was able to quantify ≥10 5 copies per reaction, while the upper limit of ddPCR was 10 4 copies. There was not significant difference between viral load measured by the two methods The detection limit of both tests was 0,15 copies per reaction, however, the number of positive samples obtained by ddPCR was higher than that obtained by qPCR (45% and 37% respectively). The ddPCR represents a better method for detection of MCPyV in FFPE biopsies, mostly these containing low copies number of viral genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of a Second Raccoon-Associated Polyomavirus.

    Science.gov (United States)

    Geoghegan, Eileen M; Welch, Nicole L; Yabsley, Michael J; Church, Molly E; Pesavento, Patricia A; Buck, Christopher B

    2017-06-29

    Raccoon polyomavirus 1 (RacPyV1) is the suspected cause of an outbreak of fatal brain tumors among raccoons ( Procyon lotor ) in the western United States. Spleen samples from Georgia raccoons were screened for polyomaviruses. Although RacPyV1 was not detected, a previously unknown polyomavirus, which we designate RacPyV2, was identified and sequenced. Copyright © 2017 Geoghegan et al.

  20. Point mutation in calcium-binding domain of mouse polyomavirus VP1 protein does not prevent virus-like particle formation, but changes VP1 interactions with Saccharomyces cerevisiae cell structures

    Czech Academy of Sciences Publication Activity Database

    Adamec, T.; Palková, Zdena; Velková, K.; Štokrová, Jitka; Forstová, J.

    2005-01-01

    Roč. 5, 4-5 (2005), s. 331-340 ISSN 1567-1356 R&D Projects: GA ČR GA204/03/0593 Institutional research plan: CEZ:AV0Z5052915 Keywords : polyomavirus VP1 * Saccharomyces cerevisiae * heterologous expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.477, year: 2005

  1. Mast cells in viral infections

    Directory of Open Access Journals (Sweden)

    Piotr Witczak

    2012-04-01

    Full Text Available  There are some premises suggesting that mast cells are involved in the mechanisms of anti-virus defense and in viral disease pathomechanisms. Mast cells are particularly numerous at the portals of infections and thus may have immediate and easy contact with the external environment and invading pathogens. These cells express receptors responsible for recognition of virus-derived PAMP molecules, mainly Toll-like receptors (TLR3, TLR7/8 and TLR9, but also RIG-I-like and NOD-like molecules. Furthermore, mast cells generate various mediators, cytokines and chemokines which modulate the intensity of inflammation and regulate the course of innate and adaptive anti-viral immunity. Indirect evidence for the role of mast cells in viral infections is also provided by clinical observations and results of animal studies. Currently, more and more data indicate that mast cells can be infected by some viruses (dengue virus, adenoviruses, hantaviruses, cytomegaloviruses, reoviruses, HIV-1 virus. It is also demonstrated that mast cells can release pre formed mediators as well as synthesize de novo eicosanoids in response to stimulation by viruses. Several data indicate that virus-stimulated mast cells secrete cytokines and chemokines, including interferons as well as chemokines with a key role in NK and Tc lymphocyte influx. Moreover, some information indicates that mast cell stimulation via TLR3, TLR7/8 and TLR9 can affect their adhesion to extracellular matrix proteins and chemotaxis, and influence expression of some membrane molecules. Critical analysis of current data leads to the conclusion that it is not yet possible to make definitive statements about the role of mast cells in innate and acquired defense mechanisms developing in the course of viral infection and/or pathomechanisms of viral diseases.

  2. Genome Sequence of Canine Polyomavirus in Respiratory Secretions of Dogs with Pneumonia of Unknown Etiology.

    Science.gov (United States)

    Delwart, Eric; Kapusinszky, Beatrix; Pesavento, Patricia A; Estrada, Marko; Seguin, M Alexis; Leutenegger, Christian M

    2017-07-20

    We report here the first canine polyomavirus genome, identified by metagenomics in respiratory secretions of two dogs with severe pneumonia, which tested negative for all canine respiratory pathogens except Mycoplasma cynos The isolate, Canis familiaris polyomavirus 1 (DogPyV-1), is a beta polyomavirus whose closest known LT antigen relatives are primate polyomaviruses. Copyright © 2017 Delwart et al.

  3. Serum IgG antibodies from healthy subjects up to 100 years old react to JC polyomavirus.

    Science.gov (United States)

    Bononi, Ilaria; Mazzoni, Elisa; Pietrobon, Silvia; Manfrini, Marco; Torreggiani, Elena; Rossini, Marika; Lotito, Francesca; Guerra, Giovanni; Rizzo, Paola; Martini, Fernanda; Tognon, Mauro

    2018-08-01

    JC polyomavirus (JCPyV) was identified in 1971 in the brain tissue of a patient (J.C.) affected by the progressive multifocal leukoencephalopathy (PML). JCPyV encodes for the oncoproteins large T antigen (Tag) and small t-antigen (tag). These oncoproteins are responsible of the cell transformation and tumorigenesis in experimental animals. JCPyV is ubiquitous in human populations. After the primary infection, which is usually asymptomatic, JCPyV remains lifelong in the host in a latent phase. Its reactivation may occur in heathy subjects and immunocompromised patients. Upon reactivation, JCPyV could reach (i) the CNS inducing the PML, (ii) the kidney of transplant patients causing the organ rejection. Association between JCPyV, which is a small DNA tumor virus, and gliomas and colorectal carcinomas has been published. In the present investigation, we report on a new indirect ELISA with two specific synthetic peptides mimicking JCPyV VP1 immunogenic epitopes to detect specific serum IgG antibodies against JCPyV. Serum samples of healthy subjects (n = 355) ranging 2-100 years old, were analyzed by this new indirect ELISA. The linear peptides VP1 K and VP1 N resemble the natural JCPyV VP1 capsidic epitopes constituting a docking site for serum antibodies. Data from this innovative immunologic assay indicate that the overall prevalence of JCPyV-VP1 antibodies in healthy subjects is at 39%. The innovative indirect ELISA with JCPyV VP1 mimotopes seems to be a useful method to detect specific IgG antibodies against this virus, without cross-reactivity with the closely related SV40 and BKPyV polyomaviruses. © 2018 Wiley Periodicals, Inc.

  4. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  5. The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors.

    Science.gov (United States)

    Hurdiss, Daniel L; Frank, Martin; Snowden, Joseph S; Macdonald, Andrew; Ranson, Neil A

    2018-04-21

    BK polyomavirus (BKV) causes polyomavirus-associated nephropathy and hemorrhagic cystitis in immunosuppressed patients. These are diseases for which we currently have limited treatment options, but potential therapies could include pre-transplant vaccination with a multivalent BKV vaccine or therapeutics which inhibit capsid assembly or block attachment and entry into target cells. A useful tool in such efforts would be a high-resolution structure of the infectious BKV virion and how this interacts with its full repertoire of cellular receptors. We present the 3.4-Å cryoelectron microscopy structure of native, infectious BKV in complex with the receptor fragment of GT1b ganglioside. We also present structural evidence that BKV can utilize glycosaminoglycans as attachment receptors. This work highlights features that underpin capsid stability and provides a platform for rational design and development of urgently needed pharmacological interventions for BKV-associated diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States.

    Science.gov (United States)

    Dela Cruz, Florante N; Giannitti, Federico; Li, Linlin; Woods, Leslie W; Del Valle, Luis; Delwart, Eric; Pesavento, Patricia A

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.

  7. Cell and molecular biology of simian virus 40: implications for human infections and disease

    Science.gov (United States)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  8. VP1, the major capsid protein of the mouse polyomavirus, binds microtubules, promotes their acetylation and blocks the host cell cycle

    Czech Academy of Sciences Publication Activity Database

    Horníková, L.; Fraiberk, M.; Man, Petr; Janovec, V.; Forstová, J.

    2017-01-01

    Roč. 284, č. 2 (2017), s. 301-323 E-ISSN 1742-4658 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1509 Grant - others:Ministerstvo pro místní rozvoj(CZ) CZ.2.16./3.1.00/24023 Institutional support: RVO:61388971 Keywords : cell cycle arrest * chaperone Hsp90 * microtubules Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  9. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  10. Tracing Males From Different Continents by Genotyping JC Polyomavirus in DNA From Semen Samples.

    Science.gov (United States)

    Rotondo, John Charles; Candian, Tommaso; Selvatici, Rita; Mazzoni, Elisa; Bonaccorsi, Gloria; Greco, Pantaleo; Tognon, Mauro; Martini, Fernanda

    2017-05-01

    The human JC polyomavirus (JCPyV) is an ubiquitous viral agent infecting approximately 60% of humans. Recently, JCPyV sequences have been detected in semen samples. The aim of this investigation was to test whether semen JCPyV genotyping can be employed to trace the origin continent of males. Semen DNA samples (n = 170) from males of different Continents were investigated by PCR for the polymorphic JCPyV viral capsid protein 1 (VP1) sequences, followed by DNA sequencing. JCPyV sequences were detected with an overall prevalence of 27.6% (47/170). DNA sequencing revealed that European males carried JCPyV types 1A (71.4%), 4 (11.4%), 2B (2.9%), 2D1 (2.9%), and 3A (2.9%). Asians JCPyV type 2D1 (66.7%) and Africans JCPyV types 3A (33.3%) and 1A (33.3%). In 10.6% of males, two different JCPyV genotypes were detected, suggesting that the second JCPyV genotype was acquired in the destination country. This study indicates that the majority of semen samples found to be JCPyV-positive, were infected with the JCPyV genotype found in the geographic area of male origin. Therefore, semen JCPyV genotyping could be employed to trace the origin continent of males. Our findings could be applied to forensic investigations, in case of for instance sexual crimes. Indeed, JCPyV genotyping should enable investigators to make additional detailed profiling of the offender. J. Cell. Physiol. 232: 982-985, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. HCV Infection and B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Masahiko Ito

    2011-01-01

    Full Text Available Hepatitis C virus (HCV has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that HCV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia, rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin's lymphoma (NHL. Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.

  12. High prevalence of human polyomavirus JC VP1 gene sequences in pediatric malignancies.

    Science.gov (United States)

    Shiramizu, B; Hu, N; Frisque, R J; Nerurkar, V R

    2007-05-15

    The oncogenic potential of human polyomavirus JC (JCV), a ubiquitous virus that establishes infection during early childhood in approximately 70% of the human population, is unclear. As a neurotropic virus, JCV has been implicated in pediatric central nervous system tumors and has been suggested to be a pathogenic agent in pediatric acute lymphoblastic leukemia. Recent studies have demonstrated JCV gene sequences in pediatric medulloblastomas and among patients with colorectal cancer. JCV early protein T-antigen (TAg) can form complexes with cellular regulatory proteins and thus may play a role in tumorigenesis. Since JCV is detected in B-lymphocytes, a retrospective analysis of pediatric B-cell and non-B-cell malignancies as well as other HIV-associated pediatric malignancies was conducted for the presence of JCV gene sequences. DNA was extracted from 49 pediatric malignancies, including Hodgkin disease, non-Hodgkin lymphoma, large cell lymphoma and sarcoma. Polymerase chain reaction (PCR) was conducted using JCV specific nested primer sets for the transcriptional control region (TCR), TAg, and viral capsid protein 1 (VP1) genes. Southern blot analysis and DNA sequencing were used to confirm specificity of the amplicons. A 215-bp region of the JCV VP1 gene was amplified from 26 (53%) pediatric tumor tissues. The JCV TCR and two JCV gene regions were amplified from a leiomyosarcoma specimen from an HIV-infected patient. The leiomyosarcoma specimen from the cecum harbored the archetype strain of JCV. Including the leiomyosarcoma specimen, three of five specimens sequenced were typed as JCV genotype 2. The failure to amplify JCV TCR, and TAg gene sequences in the presence of JCV VP1 gene sequence is surprising. Even though JCV TAg gene, which is similar to the SV40 TAg gene, is oncogenic in animal models, the presence of JCV gene sequences in pediatric malignancies does not prove causality. In light of the available data on the presence of JCV in normal and cancerous

  13. Efferocytosis of Pathogen-Infected Cells

    Directory of Open Access Journals (Sweden)

    Niloofar Karaji

    2017-12-01

    Full Text Available The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via “find me” signals, recognition via “eat me” signals and down-modulation of regulatory “don’t eat me” signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.

  14. Infectious offspring: how birds acquire and transmit an avian polyomavirus in the wild.

    Directory of Open Access Journals (Sweden)

    Jaime Potti

    Full Text Available Detailed patterns of primary virus acquisition and subsequent dispersal in wild vertebrate populations are virtually absent. We show that nestlings of a songbird acquire polyomavirus infections from larval blowflies, common nest ectoparasites of cavity-nesting birds, while breeding adults acquire and renew the same viral infections via cloacal shedding from their offspring. Infections by these DNA viruses, known potential pathogens producing disease in some bird species, therefore follow an 'upwards vertical' route of an environmental nature mimicking horizontal transmission within families, as evidenced by patterns of viral infection in adults and young of experimental, cross-fostered offspring. This previously undescribed route of viral transmission from ectoparasites to offspring to parent hosts may be a common mechanism of virus dispersal in many taxa that display parental care.

  15. Detection of polyomavirus major capsid antigen (VP-1 in human pilomatricomas Detección del antígeno mayor de la cápside de poliomavirus (VP-1 en pilomatricomas humanos

    Directory of Open Access Journals (Sweden)

    Norberto A. Sanjuán

    2010-04-01

    Full Text Available The family Polyomaviridae is composed of small, non-enveloped, double-stranded DNA viruses widely used to study cell transformation in vitro and tumor induction in vivo. The development of pilomatricomas in mice experimentally infected with polyomavirus led us to detect the viral major capsid protein VP-1 in human pilomatricomas. This tumor, even uncommon, is one of the most frequent benign hair follicle tumors in humans and is composed of proliferating matrix cells that undergo keratinization, and form cystic neoplasms. The detection of VP-1 was performed using the peroxidase-antiperoxidase technique in paraffin-embedded slides with a specific primary serum. Adjacent slides treated with normal rabbit serum as a primary were employed as internal control. Positive and negative controls were also employed as well as slides of lesions caused by human papillomavirus to rule out any unspecific cross-reactivity. In 4 out of 10 cases polyomavirus VP-1 was clearly detected in nuclei of human pilomatricomas proliferating cells, in a patchy pattern of distribution. The controls confirmed the specificity of the immunocytochemical procedure. These results could indicate either an eventual infection of the virus in already developed tumors or alternatively, a direct involvement of polyomavirus in the pathogenesis of some pilomatricomas. The recent discovery of a new human polyomavirus associated with Merkel cell carcinomas has been a strong contribution to better understand the pathogenesis of some human uncommon skin cancers. Hopefully the results reported in this work will encourage further research on the role of polyomavirus in other human skin neoplasms.La familia Poliomaviridae está compuesta por virus oncogénicos pequeños, no envueltos, con ADN de doble cadena. En un modelo experimental murino pudimos desarrollar pilomatricomas inducidos por la inoculación de virus polioma. Eso nos llevó a estudiar la posibilidad de que otro virus polioma

  16. Dendritic cells during Epstein Barr virus infection

    Directory of Open Access Journals (Sweden)

    Christian eMunz

    2014-06-01

    Full Text Available Epstein Barr virus (EBV causes persistent infection in more than 90% of the human adult population and is associated with 2% of all tumors in humans. This -herpesvirus infects primarily human B and epithelial cells, but has been reported to be sensed by dendritic cells (DCs during primary infection. These activated DCs are thought to contribute to innate restriction of EBV infection and initiate EBV specific adaptive immune responses via cross-priming. The respective evidence and their potential importance for EBV specific vaccine development will be discussed in this review.

  17. Polyomavirus BK replication in renal transplant recipients: combined monitoring of viremia and VP1 mRNA in urine

    Directory of Open Access Journals (Sweden)

    Sara Astegiano

    2010-06-01

    Full Text Available Introduction. Human polyomavirus BK (BKV is worldwide distributed, with a seroprevalence rate of 70–90% in the adults. Following primary infection, BK remains latent in the renourinary tract as the epidemiologically most relevant latency site, and in B cell, brain, spleen and probably other tissues. Reactivation may occur in both immunocompetent subjects and immunocompromised patients. In renal transplantation, in the context of intense immunosuppression, viral replication may determine BKV-associated nephropathy (BKVAN with interstitial nephritis and/or ureteral stenosis in 1–10% of the patients and leading to graft failure and return to haemodialysis in 30 to 80% of the cases (5. Screening of BKV replication represents the basic strategy to predict early the onset of BKVAN and may allow for earlier intervention with reduced allograft loss (3, 4. Nowadays, replication of BKV is monitored by quantification of BKV-DNA in serum and urine (2. The aim of this study was to evaluated the role of BKV VP1 mRNA in urine as a marker of viral replication in renal transplant recipients.

  18. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Murid herpesvirus-4 exploits dendritic cells to infect B cells.

    Directory of Open Access Journals (Sweden)

    Miguel Gaspar

    2011-11-01

    Full Text Available Dendritic cells (DCs play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4, infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.

  20. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  1. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  2. Prevalence of cutaneous viral infections in incident cutaneous squamous cell carcinoma detected among chronic lymphocytic leukemia and hematopoietic stem cell transplant patients.

    Science.gov (United States)

    Hampras, Shalaka S; Locke, Frederick L; Chavez, Julio C; Patel, Nishit S; Giuliano, Anna R; Miller, Kyle; Gheit, Tarik; Tommasino, Massimo; Rollison, Dana E

    2018-04-01

    The role of cutaneous viral infections in the development of non-melanoma skin cancer (NMSC), including cutaneous squamous cell carcinoma (SCC), among chronic lymphocytic leukemia (CLL) and blood and marrow transplant (BMT) patients is not established. CLL (n = 977) and BMT (n = 3587) patients treated at the Moffitt Cancer Center were included in a retrospective cohort study. Human papillomavirus (HPV) and human polyomavirus (HPyV) DNA were examined in a subset of incident SCC tumors. Five-year cumulative incidence of NMSC was 1.42% in both BMT (n = 31 NMSCs) and CLL (n = 18 NMSCs) cohorts. Of the nine SCC tumors examined from each cohort, 22.2% and 33.3% were positive for viral DNA in the transplant (HPV 65, MCV) and CLL (HPV 38, HPV 15, HPyV6) cohort, respectively. Enhanced skin cancer screening of BMT/CLL patients should be conducted to better capture incident NMSCs and examine the role of viral infections in these tumors.

  3. Detection of polyomavirus simian virus 40 tumor antigen DNA in AIDS-related systemic non-Hodgkin lymphoma

    Science.gov (United States)

    Vilchez, Regis A.; Lednicky, John A.; Halvorson, Steven J.; White, Zoe S.; Kozinetz, Claudia A.; Butel, Janet S.

    2002-01-01

    Systemic non-Hodgkin lymphoma (S-NHL) is a common malignancy during HIV infection, and it is hypothesized that infectious agents may be involved in the etiology. Epstein-Barr virus DNA is found in <40% of patients with AIDS-related S-NHL, suggesting that other oncogenic viruses, such as polyomaviruses, may play a role in pathogenesis. We analyzed AIDS-related S-NHL samples, NHL samples from HIV-negative patients, peripheral blood leukocytes from HIV-infected and -uninfected patients without NHL, and lymph nodes without tumors from HIV-infected patients. Specimens were examined by polymerase chain reaction analysis with use of primers specific for an N-terminal region of the oncoprotein large tumor antigen ( T-ag ) gene conserved among all three polyomaviruses (simian virus 40 [SV40], JC virus, and BK virus). Polyomavirus T-ag DNA sequences, proven to be SV40-specific, were detected more frequently in AIDS-related S-NHL samples (6 of 26) than in peripheral blood leukocytes from HIV-infected patients (6 of 26 vs. 0 of 69; p =.0001), NHL samples from HIV-negative patients (6 of 26 vs. 0 of 10; p =.09), or lymph nodes (6 of 26 vs. 0 of 7; p =.16). Sequences of C-terminal T-ag DNA from SV40 were amplified from two AIDS-related S-NHL samples. Epstein-Barr virus DNA sequences were detected in 38% (10 of 26) AIDS-related S-NHL samples, 50% (5 of 10) HIV-negative S-NHL samples, and 57% (4 of 7) lymph nodes. None of the S-NHL samples were positive for both Epstein-Barr virus DNA and SV40 DNA. Further studies of the possible role of SV40 in the pathogenesis of S-NHL are warranted.

  4. Number of infection events per cell during HIV-1 cell-free infection.

    Science.gov (United States)

    Ito, Yusuke; Remion, Azaria; Tauzin, Alexandra; Ejima, Keisuke; Nakaoka, Shinji; Iwasa, Yoh; Iwami, Shingo; Mammano, Fabrizio

    2017-07-26

    HIV-1 accumulates changes in its genome through both recombination and mutation during the course of infection. For recombination to occur, a single cell must be infected by two HIV strains. These coinfection events were experimentally demonstrated to occur more frequently than would be expected for independent infection events and do not follow a random distribution. Previous mathematical modeling approaches demonstrated that differences in target cell susceptibility can explain the non-randomness, both in the context of direct cell-to-cell transmission, and in the context of free virus transmission (Q. Dang et al., Proc. Natl. Acad. Sci. USA 101:632-7, 2004: K. M. Law et al., Cell reports 15:2711-83, 2016). Here, we build on these notions and provide a more detailed and extensive quantitative framework. We developed a novel mathematical model explicitly considering the heterogeneity of target cells and analysed datasets of cell-free HIV-1 single and double infection experiments in cell culture. Particularly, in contrast to the previous studies, we took into account the different susceptibility of the target cells as a continuous distribution. Interestingly, we showed that the number of infection events per cell during cell-free HIV-1 infection follows a negative-binomial distribution, and our model reproduces these datasets.

  5. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    Science.gov (United States)

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  6. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  7. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  8. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  9. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  10. Zika virus infection of Hofbauer cells.

    Science.gov (United States)

    Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M; Fikrig, Erol; Guller, Seth

    2017-02-01

    Recent studies have linked antenatal infection with Zika virus (ZIKV) with major adverse fetal and neonatal outcomes, including microcephaly. There is a growing consensus for the existence of a congenital Zika syndrome (CZS). Previous studies have indicated that non-placental macrophages play a key role in the replication of dengue virus (DENV), a closely related flavivirus. As the placenta provides the conduit for vertical transmission of certain viruses, and placental Hofbauer cells (HBCs) are fetal-placental macrophages located adjacent to fetal capillaries, it is not surprising that several recent studies have examined infection of HBCs by ZIKV. In this review, we describe congenital abnormalities associated with ZIKV infection, the role of HBCs in the placental response to infection, and evidence for the susceptibility of HBCs to ZIKV infection. We conclude that HBCs may contribute to the spread of ZIKV in placenta and promote vertical transmission of ZIKV, ultimately compromising fetal and neonatal development and function. Current evidence strongly suggests that further studies are warranted to dissect the specific molecular mechanism through which ZIKV infects HBCs and its potential impact on the development of CZS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  12. Complete Genome Sequence of a Porcine Polyomavirus from Nasal Swabs of Pigs with Respiratory Disease.

    Science.gov (United States)

    Hause, Ben M; Smith, Catherine; Bishop, Brian; Stewart, Chelsea; Simonson, Randy

    2018-04-26

    Metagenomic sequencing of pooled nasal swabs from pigs with unexplained respiratory disease identified a large number of reads mapping to a previously uncharacterized porcine polyomavirus. Sus scrofa polyomavirus 2 was most closely related to betapolyomaviruses frequently detected in mammalian respiratory samples. Copyright © 2018 Hause et al.

  13. Detection and characterization of two chimpanzee polyomavirus genotypes from different subspecies

    NARCIS (Netherlands)

    I. Deuzing (Ilona); Z. Fagrouch (Zahra); M.J. Groenewoud (Marlous); H. Niphuis (Henk); I. Kondova (Ivanela); W. Bogers (Willy); E.J. Verschoor (Ernst)

    2010-01-01

    textabstractThe complete nucleotide sequences of three chimpanzee polyomavirus genetic variants were determined. Phylogenetic analysis indicated that the viruses form two different genotypes of ChPyV. Comparison with other primate polyomaviruses revealed a putative agnogene, and an unusually long

  14. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  15. Defective Natural Killer cell antiviral capacity in paediatric HBV infection

    DEFF Research Database (Denmark)

    Heiberg, Ida Louise; Laura J., Pallett; Winther, Thilde Nordmann

    2015-01-01

    Natural Killer (NK) cells exhibit dysregulated effector function in adult chronic HBV infection (CHB), which may contribute to virus persistence. The role of NK cells in children infected perinatally with HBV is less studied. Access to a unique cohort enabled the cross-sectional evaluation of NK...... cell frequency, phenotype and function in HBV-infected children relative to uninfected children. We observed a selective defect in NK cell IFN-γ production, with conserved cytolytic function, mirroring the functional dichotomy observed in adult infection. Reduced expression of NKp30 on NK cells...

  16. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  17. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  18. Polypeptide synthesis in alphavirus-infected aedes albopictus cells during the establishment of persistent infection

    International Nuclear Information System (INIS)

    Richardson, M.A.; Boulton, R.W.; Raghow, R.S.; Dalgarno, L.

    1980-01-01

    Polypeptide synthesis was examined in mosquito cells during the establishment of a persistent infection with two alphaviruses, Ross River virus (RRV) and Semliki Forest virus (SFV), and in vertebrate cells cytopathically-infected with the same viruses. In Aedes albopictus cells, RRV reached peak titres at 34-48 hours p.i. At 12 hours 85 per cent of cells assayed as infected by infective centre assay; by 48 hours when persistence was established, virus production was reduced and <5 per cent of cells assayed as infected. There was not shutdown of host polypeptide synthesis during infection. Viral polypeptide synthesis was maximal between 10 and 24 hours p.i. The major viral polypeptides labelled were nucleocapsid protein and envelope protein(s).The precursor polypeptide p95 which was prominent in infected BHK cells was not detected in mosquito cells. Similar results were obtained on SFV infection. During the establishment of persistence there was a coordinate decline in the synthesis of RRV polypeptides, reaching undetectable levels by 72 hours p.i. Subculturing persistently-infected cells led to a small increase in viral polypeptide synthesis and virus titre. In contrast, during RRV growth in BHK cells host protein synthesis was severely inhibited and by 9-11 hours p.i. virus-specific polypeptide synthesis represented more than 90 per cent of total protein synthetic activity. (author)

  19. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  20. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1

    Directory of Open Access Journals (Sweden)

    Ugo Moens

    2017-11-01

    Full Text Available Human polyomavirus 9 (HPyV9 was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20–50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg. Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.

  1. Activation of DNA damage repair pathways by murine polyomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L., E-mail: Robert.Garcea@Colorado.edu

    2016-10-15

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.

  2. [Immunotherapy for refractory viral infections].

    Science.gov (United States)

    Morio, Tomohiro; Fujita, Yuriko; Takahashi, Satoshi

    Various antiviral agents have been developed, which are sometimes associated with toxicity, development of virus-resistant strain, and high cost. Virus-specific T-cell (VST) therapy provides an alternative curative therapy that can be effective for a prolonged time without eliciting drug resistance. VSTs can be directly separated using several types of capture devices and can be obtained by stimulating peripheral blood mononuclear cells with viral antigens (virus, protein, or peptide) loaded on antigen-presenting cells (APC). APC can be transduced with virus-antigen coding plasmid or pulsed with overlapping peptides. VST therapy has been studied in drug non-responsive viral infections after hematopoietic cell transplantation (HCT). Several previous studies have demonstrated the efficacy of VST therapy without significant severe GVHD. In addition, VSTs from a third-party donor have been prepared and administered for post-HCT viral infection. Although target viruses of VSTs include herpes virus species and polyomavirus species, a wide variety of pathogens, such as papillomavirus, intracellular bacteria, and fungi, can be treated by pathogen-specific T-cells. Perhaps, these specific T-cells could be used for opportunistic infections in other immunocompromised hosts in the near future.

  3. BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients.

    Science.gov (United States)

    Varella, Rafael B; Zalona, Ana Carolina J; Diaz, Nuria C; Zalis, Mariano G; Santoro-Lopes, Guilherme

    2018-01-02

    BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    International Nuclear Information System (INIS)

    Labadie, Karine; Pelletier, Isabelle; Saulnier, Aure; Martin, Javier; Colbere-Garapin, Florence

    2004-01-01

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  5. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell.

    Directory of Open Access Journals (Sweden)

    Mikaël Boullé

    2016-11-01

    Full Text Available Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.

  6. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    Science.gov (United States)

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We

  7. Brucella abortus-infected B cells induce osteoclastogenesis.

    Science.gov (United States)

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2016-09-01

    Brucella abortus is an intracellular bacterium that establishes lifelong infections in livestock and humans although the mechanisms of its chronicity are poorly understood. Activated B cells have long lifespan and B. abortus infection activates B cells. Our results indicate that the direct infection of B cells with B. abortus induced matrix metalloproteinase-9 (MMP-9), receptor activator for NF κB ligand (RANKL), tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion. In addition, supernatants from B. abortus-infected B cells induced bone marrow-derived monocytes to undergo osteoclastogenesis. Using osteoprotegerin, RANKL's decoy receptor, we determined that RANKL is involved in osteoclastogenesis induced by supernatants from B. abortus-infected B cells. The results presented here shed light on how the interactions of B. abortus with B cells may have a role in the pathogenesis of brucellar osteoarticular disease. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Characterization of highly frequent epitope-specific CD45RA+/CCR7+/- T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors

    Directory of Open Access Journals (Sweden)

    Zajac Paul

    2006-11-01

    Full Text Available Abstract Human polyomavirus BK (BKV has been implicated in oncogenic transformation. Its ability to replicate is determined by the binding of its large tumor antigen (LTag to products of tumor-suppressor genes regulating cell cycle, as specifically p53. We investigated CD8+ T immune responses to BKV LTag portions involved in p53 binding in HLA-A*0201+ BKV LTag experienced individuals. Peptides selected from either p53-binding region (LTag351–450 and LTag533–626 by current algorithms and capacity to bind HLA-A*0201 molecule were used to stimulate CD8+ T responses, as assessed by IFN-γ gene expression ex vivo and detected by cytotoxicity assays following in vitro culture. We observed epitope-specific immune responses in all HLA-A*0201+ BKV LTag experienced individuals tested. At least one epitope, LTag579–587; LLLIWFRPV, was naturally processed in non professional antigen presenting cells and induced cytotoxic responses with CTL precursor frequencies in the order of 1/20'000. Antigen specific CD8+ T cells were only detectable in the CD45RA+ subset, in both CCR7+ and CCR7- subpopulations. These data indicate that widespread cellular immune responses against epitopes within BKV LTag-p53 binding regions exist and question their roles in immunosurveillance against tumors possibly associated with BKV infection.

  9. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection.

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2018-01-01

    Full Text Available Dengue virus (DENV and Zika virus (ZIKV are members of the Flaviviridae and are predominantly transmitted via mosquito bites. Both viruses are responsible for a growing number of infections in tropical and subtropical regions. DENV infection can cause lethargy with severe morbidity and dengue shock syndrome leading to death in some cases. ZIKV is now linked with Guillain-Barré syndrome and fetal malformations including microcephaly and developmental disorders (congenital Zika syndrome. The protective and pathogenic roles played by the immune response in these infections is unknown. Mucosal-associated invariant T (MAIT cells are a population of innate T cells with potent anti-bacterial activity. MAIT cells have also been postulated to play a role in the immune response to viral infections. In this study, we evaluated MAIT cell frequency, phenotype, and function in samples from subjects with acute and convalescent DENV infection. We found that in acute DENV infection, MAIT cells had elevated co-expression of the activation markers CD38 and HLA-DR and had a poor IFNγ response following bacterial stimulation. Furthermore, we found that MAIT cells can produce IFNγ in response to in vitro infection with ZIKV. This MAIT cell response was independent of MR1, but dependent on IL-12 and IL-18. Our results suggest that MAIT cells may play an important role in the immune response to Flavivirus infections.

  10. NKT cell depletion in humans during early HIV infection.

    Science.gov (United States)

    Fernandez, Caroline S; Kelleher, Anthony D; Finlayson, Robert; Godfrey, Dale I; Kent, Stephen J

    2014-08-01

    Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.

  11. Intracellular Events and Cell Fate in Filovirus Infection

    Directory of Open Access Journals (Sweden)

    Elena Ryabchikova

    2011-08-01

    Full Text Available Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.

  12. Merkel cell carcinoma in an immunosuppressed patient.

    Science.gov (United States)

    Góes, Heliana Freitas de Oliveira; Lima, Caren Dos Santos; Issa, Maria Cláudia de Almeida; Luz, Flávio Barbosa; Pantaleão, Luciana; Paixão, José Gabriel Miranda da

    2017-01-01

    Merkel cell carcinoma is an uncommon neuroendocrine carcinoma with a rising incidence and an aggressive behavior. It predominantly occurs in older patients, with onset occurring at a mean age of 75-80 years. Recognized risk factors are ultraviolet sunlight exposure, immunosuppression, and, more recently, Merkel cell polyomavirus. We report a case of Merkel cell carcinoma in a young HIV positive patient with Merkel Cell polyomavirus detected in the tumor.

  13. Alemtuzumab-induced elimination of HIV-1-infected immune cells.

    Science.gov (United States)

    Ruxrungtham, Kiat; Sirivichayakul, Sunee; Buranapraditkun, Supranee; Krause, Werner

    2016-01-01

    Currently, there is no drug known that is able to eradicate either HIV or HIV-infected host cells. The effectiveness of all available treatments is based on the prevention of viral replication. We investigated whether the monoclonal, CD52 receptor-targeting antibody, alemtuzumab, which is currently approved for the treatment of multiple sclerosis, is able to eliminate HIV-infected immune cells. In blood samples from healthy donors and from HIV-1-infected subjects who were either treatment-naïve or resistant to HAART, we studied whether the CD52 expression on T cells and their subsets (CD3, CD4, CD8), B cells (CD19), dendritic cells (CD123) and monocytes (CD11c) is retained in HIV-1 infection and whether alemtuzumab is able to eradicate infected cells, using four-colour flow cytometry. We found that CD52 expression on immune cells is retained in HIV-1 infection regardless of CD4 cell count, viral load and treatment status, and is amenable to alemtuzumab-induced depletion. For the first time it could be shown in vitro that HIV-1-infected immune cells can be eliminated by using the monoclonal antibody alemtuzumab.

  14. Effects of interferon on cultured cells persistently infected with viruses

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M

    1986-01-01

    The role of interferon (IFN) in viral persistence at the cellular level was investigated. Two types of persistent infections were chosen. The first type was cell lines which contained hepatitis B virus (HBV) DNA (PLC/PRF/5 and Hep 3B cells) uninfected control hepatoma cells, (Mahlavu, HA22T and Hep G2 cells) or simian virus 40 (SV40) DNA (C2, C6, C11 cells) and control uninfected (CV-1 cells). In the second type of infection Vero cells persistently infected with SSPE or Sendai virus were used. The aim of this work was to determine what effect IFN had in these infections in terms of its antiviral and antiproliferative effects; which of the two major IFN-induced pathways, E enzyme or protein kinase were induced; whether there were any differences in sensitivity to IFN between the DNA and RNA virus persistent infections. The anti-viral effect of IFN was examined by its ability to inhibit Sindbis virus replication using a radioimmunoassay system. The antiproliferative effect of IFN was determined by cell counting and /sup 3/H-thymidine incorporation. The activation of the ribonuclease F, determined by the inhibition of /sup 3/H-leucine incorporation after introduction of 2-5 actin into the cells, was variable, being activated in all cell lines with the exception of the PLC/PRF/5, Hep 3B and Hep G2 cells. Major differences between the two DNA persistent infections and the two RNA persistent infections were found. No correlation was found between the presence of HBV or SV40 persistent infections and the sensitivity of the cell lines to IFN. Both the SSPE and Sendai virus persistent infections were resistant to the antiviral and antiproliferative effect of IFN.

  15. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  16. JC Polyomavirus (JCV and Monoclonal Antibodies: Friends or Potential Foes?

    Directory of Open Access Journals (Sweden)

    Roberta Antonia Diotti

    2013-01-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the central nervous system (CNS, observed in immunodeficient patients and caused by JC virus ((JCV, also called JC polyomavirus (JCPyV. After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS, and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.

  17. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  18. Combination of anti-retroviral drugs and radioimmunotherapy specifically kills infected cells from HIV infected individuals

    Directory of Open Access Journals (Sweden)

    Dina Tsukrov

    2016-09-01

    Full Text Available Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT, a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infect-ed cells. Since gp41 expression by infected cells is likely down-regulated in patients on an-tiretroviral therapy (ART, we evaluated the ability of RIT to kill ART-treated infected cells us-ing both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal anti-body to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. conjugated to the human monoclonal antibody 2556, which binds to HIV gp41. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: ten on ART and five ART-naive. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART, and supports continued development of 213Bi

  19. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  20. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  1. Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells.

    Science.gov (United States)

    Laucirica, Daniel R; Triantis, Vassilis; Schoemaker, Ruud; Estes, Mary K; Ramani, Sasirekha

    2017-09-01

    Background: Oligosaccharides in milk act as soluble decoy receptors and prevent pathogen adhesion to the infant gut. Milk oligosaccharides reduce infectivity of a porcine rotavirus strain; however, the effects on human rotaviruses are less well understood. Objective: In this study, we determined the effect of specific and abundant milk oligosaccharides on the infectivity of 2 globally dominant human rotavirus strains. Methods: Four milk oligosaccharides-2'-fucosyllactose (2'FL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and galacto-oligosaccharides-were tested for their effects on the infectivity of human rotaviruses G1P[8] and G2P[4] through fluorescent focus assays on African green monkey kidney epithelial cells (MA104 cells). Oligosaccharides were added at different time points in the infectivity assays. Infections in the absence of oligosaccharides served as controls. Results: When compared with infections in the absence of glycans, all oligosaccharides substantially reduced the infectivity of both human rotavirus strains in vitro; however, virus strain-specific differences in effects were observed. Compared with control infections, the maximum reduction in G1P[8] infectivity was seen with 2'FL when added after the onset of infection (62% reduction, P rotaviruses in MA104 cells, primarily through an effect on the virus. Although breastfed infants are directly protected, the addition of specific oligosaccharides to infant formula may confer these benefits to formula-fed infants. © 2017 American Society for Nutrition.

  2. Identification of a Polyomavirus microRNA Highly Expressed in Tumors

    Science.gov (United States)

    Chen, Chun Jung; Cox, Jennifer E.; Azarm, Kristopher; Wylie, Karen N.; Woolard, Kevin D.; Pesavento, Patricia A.; Sullivan, Christopher S.

    2014-01-01

    Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors. PMID:25514573

  3. In vivo infection of IgG-containing cells by Jembrana disease virus during acute infection

    International Nuclear Information System (INIS)

    Desport, Moira; Tenaya, I.W. Masa; McLachlan, Alexander; McNab, Tegan J.; Rachmat, Judhi; Hartaningsih, Nining; Wilcox, Graham E.

    2009-01-01

    Jembrana disease virus (JDV) is an unusual bovine lentivirus which causes a non-follicular proliferation of lymphocytes, a transient immunosuppression and a delayed humoral response in infected Bali cattle in Indonesia. A double-immunofluorescent labeling method was developed to identify the subset of mononuclear cells in which the viral capsid protein could be detected. Viral antigen was present in pleomorphic centroblast-like cells which were identified as IgG-containing cells, including plasma cells, in lymphoid tissues. There was no evidence of infection of CD3 + T-cells or MAC387 + monocytes in tissues but large vacuolated cells with a macrophage-like morphology in the lung were found to contain viral antigen although they could not be shown conclusively to be infected. The tropism of JDV for mature IgG-containing cells may be relevant to understanding the pathogenesis of Jembrana disease, the delayed antibody responses and the genetic composition of this atypical lentivirus.

  4. The involvement of plasmacytoid cells in HIV infection and pathogenesis.

    Science.gov (United States)

    Aiello, Alessandra; Giannessi, Flavia; Percario, Zulema A; Affabris, Elisabetta

    2018-04-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  6. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis

    Science.gov (United States)

    Zhu, Feng; Willette-Brown, Jami; Song, Na-Young; Lomada, Dakshayani; Song, Yongmei; Xue, Liyan; Gray, Zane; Zhao, Zitong; Davis, Sean R.; Sun, Zhonghe; Zhang, Peilin; Wu, Xiaolin; Zhan, Qimin; Richie, Ellen R.; Hu, Yinling

    2018-01-01

    SUMMARY Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell–driven autoimmune disease caused by impaired central tolerance, are susceptible to developing chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop phenotypes reminiscent of APECED, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the potential link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or depletion of autoreactive CD4 T cells rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or EGFR activity decreases fungal burden. Importantly, fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development. PMID:28407484

  7. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  8. Selective receptor expression restricts Nipah virus infection of endothelial cells

    Directory of Open Access Journals (Sweden)

    Diederich Sandra

    2008-11-01

    Full Text Available Abstract Nipah virus (NiV is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2 or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.

  9. Transfusion associated hepatitis B virus infection among sickle cell ...

    African Journals Online (AJOL)

    Background: Transfusion of blood products is a recognised way of transmitting infections particularly viruses. The extent to which blood transfusion contributes to hepatitis B virus (HBV) infections in transfused patients with sickle cell anaemia (SCA) has been found to be 20% in Lagos, Nigeria. Mamman in Zaria however ...

  10. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective ...

  11. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  12. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  13. Invariant NKT cells: regulation and function during viral infection.

    Directory of Open Access Journals (Sweden)

    Jennifer A Juno

    Full Text Available Natural killer T cells (NKT cells represent a subset of T lymphocytes that express natural killer (NK cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT, express a highly restricted T cell receptor (TCR and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.

  14. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  15. Regulation of NKT Cell Localization in Homeostasis and Infection

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection. PMID:26074921

  16. Regulation of NKT Cell Localization in Homeostasis and Infection.

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.

  17. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    Science.gov (United States)

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  18. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    Science.gov (United States)

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p apoptosis at 12 hpi (p apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  19. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  20. Dynamics of NKT-Cell Responses to Chlamydial Infection.

    Science.gov (United States)

    Shekhar, Sudhanshu; Joyee, Antony George; Yang, Xi

    2015-01-01

    Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40-CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.

  1. Human neuronal cell protein responses to Nipah virus infection

    Directory of Open Access Journals (Sweden)

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  2. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    Science.gov (United States)

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  3. Hepatitis B Virus Infection In Patients With Homozygous Sickle Cell ...

    African Journals Online (AJOL)

    Nnebe-Agumadu U H, and Abiodun P O. Hepatitis B Virus Infection in Patients with Homozygous Sickle Cell Disease (HbSS): Need for Intervention. Annals Biomedical Sciences 2002; 1:79-87. This is a prospective study of 213 patients with sickle cell anaemia (SCA) (112 males and 101 females) aged 6 months to 18 years ...

  4. Vaccination against feline immunodeficiency virus using fixed infected cells

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Alphen, W.E. van; Joosten, I.; Boog, C.J.P.; Ronde, A. de

    1995-01-01

    Crandell feline kidney cells and feline thymocytes, either feline immunodeficiency virus (FIV) infected or uninfected, were fixed with paraformaldehyde and used to vaccinate cats. The cells were mixed with a 30:70 water/mineral oil emulsion containing 250 mu g ml−1 N-acetyl-d-glucosaminyl-beta-(1

  5. Electron Microscopy of Ebola Virus-Infected Cells.

    Science.gov (United States)

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  6. Early events associated with infection of Epstein-Barr virus infection of primary B-cells.

    Directory of Open Access Journals (Sweden)

    Sabyasachi Halder

    2009-09-01

    Full Text Available Epstein Barr virus (EBV is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology was used to introduce an expression cassette of green fluorescent protein (GFP by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

  7. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  8. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection

    International Nuclear Information System (INIS)

    Barretto, Naina; Hallak, Louay K.; Peeples, Mark E.

    2003-01-01

    Respiratory syncytial virus (RSV) infection of HeLa cells induces fusion, but transient expression of the three viral glycoproteins induces fusion poorly, if at all. We found that neuraminidase treatment of RSV-infected cells to remove sialic acid (SA) increases fusion dramatically and that the same treatment of transiently transfected cells expressing the three viral glycoproteins, or even cells expressing the fusion (F) protein alone, results in easily detectable fusion. Neuraminidase treatment of the effector cells, expressing the viral glycoproteins, enhanced fusion while treatment of the target cells did not. Likewise, infectivity was increased by treating virions with neuraminidase, but not by treating target cells. Reduction of charge repulsion by removal of the negatively charged SA is unlikely to explain this effect, since removal of negative charges from either membrane would reduce charge repulsion. Infection with neuraminidase-treated virus remained heparan-sulfate-dependent, indicating that a novel attachment mechanism is not revealed by SA removal. Interestingly, neuraminidase enhancement of RSV infectivity was less pronounced in a virus expressing both the G and the F glycoproteins, compared to virus expressing only the F glycoprotein, possibly suggesting that the G protein sterically hinders access of the neuraminidase to its fusion-enhancing target

  9. Activation of Natural Killer cells during microbial infections

    Directory of Open Access Journals (Sweden)

    Amir eHorowitz

    2012-01-01

    Full Text Available Natural killer (NK cells are large granular lymphocytes that express a diverse array of germline encoded inhibitory and activating receptors for MHC Class I and Class I-like molecules, classical co-stimulatory ligands and cytokines. The ability of NK cells to be very rapidly activated by inflammatory cytokines, to secrete effector cytokines and to kill infected or stressed host cells, suggests that they may be among the very early responders during infection. Recent studies have also identified a small number of pathogen-derived ligands that can bind to NK cell surface receptors and directly induce their activation. Here we review recent studies that have begun to elucidate the various pathways by which viral, bacterial and parasite pathogens activate NK cells. We also consider two emerging themes of NK cell-pathogen interactions, namely their contribution to adaptive immune responses and their potential to take on regulatory and immunomodulatory functions.

  10. Semen CD4+ T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques

    Science.gov (United States)

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Corneau, Aurélien B.; Guenounou, Sabrina; Torres, Claire; Dejucq-Rainsford, Nathalie; Cosma, Antonio; Dereuddre-Bosquet, Nathalie; Le Grand, Roger

    2013-01-01

    The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure. PMID:24348253

  11. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  12. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    Science.gov (United States)

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  13. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O

    1994-01-01

    -4, LFA-1, and ICAM-1, are up-regulated on CD8+ cells, whereas the lymph node homing receptor MEL-14 is down-regulated during the infection; only marginal changes were observed for CD4+ cells. Basically similar but less marked results were obtained in mice infected with Pichinde virus. Further...

  14. IL-15 STIMULATED NATURAL KILLER CELLS CLEAR HIV-1 INFECTED CELLS FOLLOWING LATENCY REVERSAL EX VIVO.

    Science.gov (United States)

    Garrido, Carolina; Abad-Fernandez, Maria; Tuyishime, Marina; Pollara, Justin J; Ferrari, Guido; Soriano-Sarabia, Natalia; Margolis, David M

    2018-03-28

    Current efforts towards HIV eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8 + T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of IL-15 treatment on NK cell function and the potential of stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-dependent cytotoxicity (ADCC), cytotoxicity, IFN-γ production and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and more importantly, IL-15-treated NK cells were able to clear latently HIV infected cells after exposure to vorinostat, a clinically relevant latency reversing agent. We also demonstrate that NK cells from HIV infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation towards future immunotherapies to clear persistent HIV infection using NK cells. IMPORTANCE In the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential, and more importantly, clearing HIV infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication. Copyright © 2018 American Society for Microbiology.

  15. Roles for Endothelial Cells in Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Nadine A. Dalrymple

    2012-01-01

    Full Text Available Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.

  16. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  17. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  18. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  19. HIV-1 isolation from infected peripheral blood mononuclear cells.

    Science.gov (United States)

    Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A; Schuitemaker, Hanneke; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and not in tumor derived cell lines. The procedure involves culture of PBMCs from an infected patient with phytohemagglutinin (PHA)-stimulated PBMC from seronegative donors, which provide susceptible target cells for HIV replication. HIV can be isolated from the bulk population of PBMCs or after cloning of the cells to obtain viral biological clones. Viral production is determined with p24 antigen (Ag) detection assays or with reverse transcriptase (RT) activity assay. Once isolated, HIV-1 can be propagated by infecting PHA-stimulated PBMCs from healthy donors. Aliquots from culture with a high production of virus are stored for later use.

  20. Research progress of follicular cytotoxic T cells in HIV infection

    Directory of Open Access Journals (Sweden)

    Guo Ming

    2018-04-01

    Full Text Available Recently, a new type of CD8+ T-cell subset, namely, the chemokine (C-X-C motif receptor 5 (CXCR5+ cluster of differentiation (CD8+ T-cell subset (also called the follicular cytotoxic T-cell (TFC subgroup, has been discovered around B-cell follicles. The discovery has aroused widespread interest. However, the processes and mechanisms of TFCs taking part in the immune response of the germinal center and their specific roles must still be clearly identified. This article reviews domestic and foreign studies on factors regulating the phenotype, physiological functions, maturity, and differentiation of TFCs and roles and clinical significance of these cells in HIV infection. This review has shown good application prospects for TFCs. The author believes that further studies on TFCs can provide another tool for cytotherapy to control or cure chronic viral infections or tumors.

  1. Secretin receptor involvement in prion-infected cells and animals.

    Science.gov (United States)

    Kimura, Tomohiro; Nishizawa, Keiko; Oguma, Ayumi; Nishimura, Yuki; Sakasegawa, Yuji; Teruya, Kenta; Nishijima, Ichiko; Doh-ura, Katsumi

    2015-07-08

    The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland.

    Science.gov (United States)

    Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind

    2015-09-24

    Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV). Copyright © 2015 Dayaram et al.

  3. Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland

    OpenAIRE

    Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind

    2015-01-01

    Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV).

  4. Modulation of antigen presenting cell functions during chronic HPV infection

    Directory of Open Access Journals (Sweden)

    Abate Assefa Bashaw

    2017-12-01

    Full Text Available High-risk human papillomaviruses (HR-HPV infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.

  5. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  6. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  7. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection

    NARCIS (Netherlands)

    Geldmacher, Christof; Ngwenyama, Njabulo; Schuetz, Alexandra; Petrovas, Constantinos; Reither, Klaus; Heeregrave, Edwin J.; Casazza, Joseph P.; Ambrozak, David R.; Louder, Mark; Ampofo, William; Pollakis, Georgios; Hill, Brenna; Sanga, Erica; Saathoff, Elmar; Maboko, Leonard; Roederer, Mario; Paxton, William A.; Hoelscher, Michael; Koup, Richard A.

    2010-01-01

    HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common

  8. Modulation of PML protein expression regulates JCV infection

    International Nuclear Information System (INIS)

    Gasparovic, Megan L.; Maginnis, Melissa S.; O'Hara, Bethany A.; Dugan, Aisling S.; Atwood, Walter J.

    2009-01-01

    JC virus (JCV) is a human polyomavirus that infects the majority of the human population worldwide. It is responsible for the fatal demyelinating disease Progressive Multifocal Leukoencephalopathy. JCV binds to cells using the serotonin receptor 5-HT 2A R and α(2-6)- or α(2-3)-linked sialic acid. It enters cells using clathrin-dependent endocytosis and traffics to the early endosome and possibly to the endoplasmic reticulum. Viral DNA is then delivered to the nucleus where transcription, replication, and assembly of progeny occur. We found that the early regulatory protein large T antigen accumulates in microdomains in the nucleus adjacent to ND-10 or PML domains. This observation prompted us to explore the role of these domains in JCV infection. We found that a reduction of nuclear PML enhanced virus infection and that an increase in nuclear PML reduced infection. Infection with JCV did not directly modulate nuclear levels of PML but our data indicate that a host response involving interferon beta is likely to restrict virus infection by increasing nuclear PML.

  9. Helicobacter pylori impairs murine dendritic cell responses to infection.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Wang

    Full Text Available BACKGROUND: Helicobacter pylori, a human pathogen associated with chronic gastritis, peptic ulcer and gastric malignancies, is generally viewed as an extracellular microorganism. Here, we show that H. pylori replicates in murine bone marrow derived-dendritic cells (BMDCs within autophagosomes. METHODOLOGY/PRINCIPAL FINDINGS: A 10-fold increase of CFU is found between 2 h and 6 h p.i. in H. pylori-infected BMDCs. Autophagy is induced around the bacterium and participates at late time points of infection for the clearance of intracellular H. pylori. As a consequence of infection, LC3, LAMP1 and MHC class II molecules are retained within the H. pylori-containing vacuoles and export of MHC class II molecules to cell surface is blocked. However, formalin-fixed H. pylori still maintain this inhibitory activity in BMDC derived from wild type mice, but not in from either TLR4 or TLR2-deficient mice, suggesting the involvement of H. pylori-LPS in this process. TNF-alpha, IL-6 and IL-10 expression was also modulated upon infection showing a TLR2-specific dependent IL-10 secretion. No IL-12 was detected favoring the hypothesis of a down modulation of DC functions during H. pylori infection. Furthermore, antigen-specific T cells proliferation was also impaired upon infection. CONCLUSIONS/SIGNIFICANCE: H. pylori can infect and replicate in BMDCs and thereby affects DC-mediated immune responses. The implication of this new finding is discussed for the biological life cycle of H. pylori in the host.

  10. DRAM Triggers Lysosomal Membrane Permeabilization and Cell Death in CD4+ T Cells Infected with HIV

    Science.gov (United States)

    Laforge, Mireille; Limou, Sophie; Harper, Francis; Casartelli, Nicoletta; Rodrigues, Vasco; Silvestre, Ricardo; Haloui, Houda; Zagury, Jean-Francois; Senik, Anna; Estaquier, Jerome

    2013-01-01

    Productive HIV infection of CD4+ T cells leads to a caspase-independent cell death pathway associated with lysosomal membrane permeabilization (LMP) and cathepsin release, resulting in mitochondrial outer membrane permeabilization (MOMP). Herein, we demonstrate that HIV infection induces damage-regulated autophagy modulator (DRAM) expression in a p53-dependent manner. Knocking down the expression of DRAM and p53 genes with specific siRNAs inhibited autophagy and LMP. However, inhibition of Atg5 and Beclin genes that prevents autophagy had a minor effect on LMP and cell death. The knock down of DRAM gene inhibited cytochrome C release, MOMP and cell death. However, knocking down DRAM, we increased viral infection and production. Our study shows for the first time the involvement of DRAM in host-pathogen interactions, which may represent a mechanism of defense via the elimination of infected cells. PMID:23658518

  11. DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+ T cells infected with HIV.

    Directory of Open Access Journals (Sweden)

    Mireille Laforge

    Full Text Available Productive HIV infection of CD4(+ T cells leads to a caspase-independent cell death pathway associated with lysosomal membrane permeabilization (LMP and cathepsin release, resulting in mitochondrial outer membrane permeabilization (MOMP. Herein, we demonstrate that HIV infection induces damage-regulated autophagy modulator (DRAM expression in a p53-dependent manner. Knocking down the expression of DRAM and p53 genes with specific siRNAs inhibited autophagy and LMP. However, inhibition of Atg5 and Beclin genes that prevents autophagy had a minor effect on LMP and cell death. The knock down of DRAM gene inhibited cytochrome C release, MOMP and cell death. However, knocking down DRAM, we increased viral infection and production. Our study shows for the first time the involvement of DRAM in host-pathogen interactions, which may represent a mechanism of defense via the elimination of infected cells.

  12. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  13. Transfusion Related Hepatitis C Virus (HCV) Infection in Sickle Cell ...

    African Journals Online (AJOL)

    Rev Olaleye

    ABSTRACT: This study aimed to determine retrospectively, the prevalence of hepatitis C virus infection in relation to a background history of blood transfusion; through anti HCV antibody screening test, amongst adult sickle cell disease patients. Anti HCV antibody was tested for in the serum of 92 consecutively selected ...

  14. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Patel, Hetalkumar D; Sapp, Martin

    2009-07-01

    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  15. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Directory of Open Access Journals (Sweden)

    Malgorzata Bienkowska-Haba

    2009-07-01

    Full Text Available Following attachment to primary receptor heparan sulfate proteoglycans (HSPG, human papillomavirus type 16 (HPV16 particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  16. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  17. Skewing to the LFA-3 adhesion pathway by influenza infection of antigen-presenting cells

    NARCIS (Netherlands)

    van Kemenade, F. J.; Kuijpers, K. C.; de Waal-Malefijt, R.; van Lier, R. A.; Miedema, F.

    1993-01-01

    The effect of influenza (FLU) infection on heterotypic conjugate formation between antigen-presenting cells and T lymphocytes has been studied with FLU-specific T cell clones and FLU-infected B-lymphoblastoid cells (B-LCL). Conjugate formation between FLU-infected B-LCL (FLU+ B-LCL) and T cells was

  18. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-01-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  19. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    International Nuclear Information System (INIS)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica

    2006-01-01

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity

  20. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity.

    Science.gov (United States)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A; Branza-Nichita, Norica

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  1. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins.

    OpenAIRE

    Martin, M E; Piette, J; Yaniv, M; Tang, W J; Folk, W R

    1988-01-01

    The polyomavirus enhancer is composed of multiple DNA sequence elements serving as binding sites for proteins present in mouse nuclear extracts that activate transcription and DNA replication. We have identified three such proteins and their binding sites and correlate them with enhancer function. Mutation of nucleotide (nt) 5140 in the enhancer alters the binding site (TGACTAA, nt 5139-5145) for polyomavirus enhancer A binding protein 1 (PEA1), a murine homolog of the human transcription fac...

  3. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection.

    Directory of Open Access Journals (Sweden)

    Kristin L Boswell

    2014-01-01

    Full Text Available The interaction between follicular T helper cells (TFH and B cells in the lymph nodes and spleen has a major impact on the development of antigen-specific B cell responses during infection or vaccination. Recent studies described a functional equivalent of these cells among circulating CD4 T cells, referred to as peripheral TFH cells. Here, we characterize the phenotype and in vitro B cell helper activity of peripheral TFH populations, as well as the effect of HIV infection on these populations. In co-culture experiments we confirmed CXCR5+ cells from HIV-uninfected donors provide help to B cells and more specifically, we identified a CCR7(highCXCR5(highCCR6(highPD-1(high CD4 T cell population that secretes IL-21 and enhances isotype-switched immunoglobulin production. This population is significantly decreased in treatment-naïve, HIV-infected individuals and can be recovered after anti-retroviral therapy. We found impaired immunoglobulin production in co-cultures from HIV-infected individuals and found no correlation between the frequency of peripheral TFH cells and memory B cells, or with neutralization activity in untreated HIV infection in our cohort. Furthermore, we found that within the peripheral TFH population, the expression level of TFH-associated genes more closely resembles a memory, non-TFH population, as opposed to a TFH population. Overall, our data identify a heterogeneous population of circulating CD4 T cells that provides in vitro help to B cells, and challenges the origin of these cells as memory TFH cells.

  4. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  5. Innate Lymphoid Cells in HIV/SIV Infections.

    Science.gov (United States)

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  6. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection

    Directory of Open Access Journals (Sweden)

    Romain eGrangeon

    2013-12-01

    Full Text Available To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs. However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked towards the plasma membrane and were associated with plasmodesmata (PD. We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP to visualize how 6K2 move intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2.

  7. Infectious mononucleosis accompanied by clonal proliferation of EBV-infected cells and infection of CD8-positive cells.

    Science.gov (United States)

    Arai, Ayako; Yamaguchi, Takeshi; Komatsu, Honami; Imadome, Ken-Ichi; Kurata, Morito; Nagata, Kaoru; Miura, Osamu

    2014-01-01

    A 22-year-old male was admitted for a sustained fever of 2 months, lymphadenopathy, and liver dysfunction. Anti-VCA-IgM antibody was positive, with elevated Epstein-Barr virus (EBV)-DNA load in the peripheral blood. Liver biopsy revealed infiltration of CD8-positive and EBV-positive cells. Most peripheral blood mononuclear cells (PBMCs) were also positive for CD8, and showed detectable levels of EBV-DNA. Monoclonal proliferation of EBV-infected cells was detected in the PBMCs by Southern blotting for EBV-terminal repeat (EBV-TR). Although EBV-positive T-cell lymphoproliferative disease (EBV-T-LPD) was suspected, the symptoms spontaneously resolved within 12 months. Anti-VCA-IgM antibody and the clonal band of EBV-TR were negative 1 year after the onset, while anti-EBNA antibody was positive. The final diagnosis was thus confirmed as infectious mononucleosis (IM). Our results indicate that EBV-infected CD8-positive cells and clonal proliferation of EBV-infected cells may be temporally detected in IM. EBV-T-LPDs should be carefully excluded in such cases.

  8. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  9. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques

    NARCIS (Netherlands)

    Boer, R.J. de; Mohri, H.; Ho, D.D.; Perelson, A.S.

    2003-01-01

    We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques

  10. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    Science.gov (United States)

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  11. Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections.

    Science.gov (United States)

    Craig, Evan; Huyghues-Despointes, Charles-Eugene; Yu, Chun; Handy, Emma L; Sello, Jason K; Kima, Peter E

    2017-05-01

    In infected mammalian cells, Leishmania parasites reside within specialized compartments called parasitophorous vacuoles (LPVs). We have previously shown that Retro-2, a member of a novel class of small retrograde pathway inhibitors caused reduced LPV sizes and lower parasite numbers during experimental L. mexicana sp. infections. The purpose of this study was to determine if structural analogs of Retro-2cycl reported to have superior potency in the inhibition of retrograde pathway-dependent phenomena (i.e., polyomavirus cellular infection by polyomavrius and Shiga toxin trafficking in cells) are also more effective than the parent compound at controlling Leishmania infections. In addition to their effects on LPV development, we show that two optimized analogs of Retro-2cycl, DHQZ 36 and DHQZ 36.1 limit Leishmania amazonensis infection in macrophages at EC50 of 13.63+/-2.58μM and10.57+/-2.66μM, respectively, which is significantly lower than 40.15μM the EC50 of Retro-2cycl. In addition, these analogs caused a reversal in Leishmania induced suppression of IL-6 release by infected cells after LPS activation. Moreover, we show that in contrast to Retro-2cycl that is Leishmania static, the analogs can kill Leishmania parasites in axenic cultures, which is a desirable attribute for any drug to treat Leishmania infections. Together, these studies validate and extend the published structure-activity relationship analyses of Retro-2cycl.

  12. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G_1/G_0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  13. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  14. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors.

    Directory of Open Access Journals (Sweden)

    Dmitriy Mazurov

    2010-02-01

    Full Text Available We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction.

  15. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Bahr, U.; Muranyi, W.; Mueller, S.; Kehm, R.; Handermann, M.; Darai, G.; Zeier, M.

    2004-01-01

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing α V β 3 -integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  16. Reduction of prion infectivity in packed red blood cells

    International Nuclear Information System (INIS)

    Morales, Rodrigo; Buytaert-Hoefen, Kimberley A.; Gonzalez-Romero, Dennisse; Castilla, Joaquin; Hansen, Eric T.; Hlavinka, Dennis; Goodrich, Raymond P.; Soto, Claudio

    2008-01-01

    The link between a new variant form of Creutzfeldt-Jakob disease (vCJD) and the consumption of prion contaminated cattle meat as well as recent findings showing that vCJD can be transmitted by blood transfusion have raised public health concerns. Currently, a reliable test to identify prions in blood samples is not available. The purpose of this study was to evaluate the possibility to remove scrapie prion protein (PrP Sc ) and infectivity from red blood cell (RBC) suspensions by a simple washing procedure using a cell separation and washing device. The extent of prion removal was assessed by Western blot, PMCA and infectivity bioassays. Our results revealed a substantial removal of infectious prions (≥3 logs of infectivity) by all techniques used. These data suggest that a significant amount of infectivity present in RBC preparations can be removed by a simple washing procedure. This technology may lead to increased safety of blood products and reduce the risk of further propagation of prion diseases.

  17. Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

    Directory of Open Access Journals (Sweden)

    Dânia Sofia Marques

    2011-01-01

    Full Text Available Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections. This is a major cause of morbidity and mortality. We report a case of a 17-year-old male patient diagnosed with severe idiopathic acquired aplastic anemia who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis, its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies.

  18. Dendritic cell immunotherapy for HIV infection: from theory to reality.

    Science.gov (United States)

    Oshiro, Telma Miyuki; de Almeida, Alexandre; da Silva Duarte, Alberto José

    2009-11-01

    Knowledge concerning the immunology of dendritic cells (DCs) accumulated over the last few decades and the development of methodologies to generate and manipulate these cells in vitro has made their therapeutic application a reality. Currently, clinical protocols for DC-based therapeutic vaccine in HIV-infected individuals show that it is a safe and promising approach. Concomitantly, important advances continue to be made in the development of methodologies to optimize DC acquisition, as well as the selection of safe, immunogenic HIV antigens and the evaluation of immune response in treated individuals.

  19. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...... describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture...

  20. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  1. BACTERIAL INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    Elisa Balletto

    2015-07-01

    Full Text Available Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT. They consist mainly of bloodstream infections (BSI, followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of an increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, thorough evaluation of local epidemiology is mandatory in order to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended is resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogens. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place in order to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres.

  2. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    Science.gov (United States)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  3. Update on Merkel Cell Carcinoma.

    Science.gov (United States)

    Harms, Paul W

    2017-09-01

    Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous neuroendocrine malignancy. Merkel cell polyomavirus, a tumorigenic DNA virus, is present in most MCC tumors, with implications for tumor biology, diagnosis, and management. Merkel cell polyomavirus-negative tumors have a high burden of UV-signature mutations, similar to melanoma. The histopathologic diagnosis of MCC requires immunohistochemistry to exclude morphologically similar entities. Therapies for advanced disease are currently lacking. Here, the features of MCC are reviewed, including recent molecular discoveries with implications for improved therapy for advanced disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Why infection-induced anorexia? The case for enhanced apoptosis of infected cells.

    Science.gov (United States)

    LeGrand, E K

    2000-04-01

    A medically important paradox is why the body's own cytokines lead to reduced appetite and apparently inefficient metabolism as part of the acute-phase response. This self-induced nutrient restriction occurs just when the body must maintain a fever and other defensive functions. This paradox is often ignored or considered a metabolic derangement. Others, recognizing it to be a programmed response which must have net beneficial effects, consider the nutrient restriction to be an attempt to deny resources to infectious organisms. However, this explanation fails to address how the pathogen can be harmed more than the host. The hypothesis presented here offers an explanation. Apoptosis, or cell suicide, is becoming recognized as a useful defense against intracellular parasites, and nutrient restriction promotes apoptosis. Thus, nutrient restriction may encourage apoptosis of infected cells. Nutrient restriction can thereby offer protection by simultaneously limiting nutrients to both the host cells and the infectious organisms. Copyright 2000 Harcourt Publishers Ltd.

  6. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  7. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  8. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  9. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  10. Recent Insights and Advances in the Management of Merkel Cell Carcinoma.

    Science.gov (United States)

    Banks, Patricia D; Sandhu, Shahneen; Gyorki, David E; Johnston, Meredith L; Rischin, Danny

    2016-07-01

    Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine malignancy with a propensity for recurrence and a poor prognosis. Incidence of MCC is on the rise and is known to increase with advanced age, immunosuppression, and UV exposure. Merkel cell polyomavirus is implicated in the pathogenesis of virus-positive MCC and accounts for 80% of MCCs in the northern hemisphere and 25% in southern latitudes. In contrast, tumorigenesis of virus-negative MCC is linked to UV-induced DNA damage. Interplay between ubiquitous Merkel cell polyomavirus skin infections that commonly occur in healthy skin and other established risk factors, such as immunosuppression and UV exposure, remains poorly understood. Surgery and radiotherapy achieves excellent locoregional control; however, invariably, a significant proportion of patients develop disseminated disease that is incurable. Chemotherapy offers a high response rate for metastatic disease, but responses are short-lived and the impact on survival is not established. Recent advances in our understanding of the genetic landscape and immunobiology of MCC has led to investigation of novel treatments, including immune checkpoint inhibitors, which are likely to rapidly transform the way we manage these patients. We review epidemiologic, clinical, and histopathologic features of MCC; describe recent insights in MCC biology; and discuss novel therapeutic approaches. Copyright © 2016 by American Society of Clinical Oncology.

  11. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  12. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  13. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  14. Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, Anneline; Madsen, Andreas Nygaard

    2003-01-01

    T cell mediated immunity and in particular CD8+ T cells are pivotal for the control of most viral infections. T cells exclusively exert their antiviral effect through close cellular interaction with relevant virus-infected target cells in vivo. It is therefore imperative that efficient mechanisms...

  15. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    Science.gov (United States)

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Bartek, J; Rahbar, A

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  17. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    International Nuclear Information System (INIS)

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer; Hirsch, Hans H.; Rinaldo, Christine Hanssen

    2010-01-01

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectious progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.

  18. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  19. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat......Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks...... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  20. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Science.gov (United States)

    Hannemann, Sebastian; Galán, Jorge E

    2017-07-01

    Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  1. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    2017-07-01

    Full Text Available Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  2. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    Science.gov (United States)

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  3. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence

    OpenAIRE

    Lawatscheck, R.; Aleksaite, E.; Schenk, J.A.; Micheel, B.; Jandrig, B.; Holland, G.; Sasnauskas, K.; Gedvilaite, A.; Ulrich, R.G.

    2007-01-01

    We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast-expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed ...

  4. A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time

    Directory of Open Access Journals (Sweden)

    Michael J. McFadden

    2018-02-01

    Full Text Available Zika virus (ZIKV is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3 to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.

  5. Concurrence of Iridovirus, Polyomavirus, and a Unique Member of a New Group of Fish Papillomaviruses in Lymphocystis Disease-Affected Gilthead Sea Bream.

    Science.gov (United States)

    López-Bueno, Alberto; Mavian, Carla; Labella, Alejandro M; Castro, Dolores; Borrego, Juan J; Alcami, Antonio; Alejo, Alí

    2016-10-01

    Lymphocystis disease is a geographically widespread disease affecting more than 150 different species of marine and freshwater fish. The disease, provoked by the iridovirus lymphocystis disease virus (LCDV), is characterized by the appearance of papillomalike lesions on the skin of affected animals that usually self-resolve over time. Development of the disease is usually associated with several environmental factors and, more frequently, with stress conditions provoked by the intensive culture conditions present in fish farms. In gilthead sea bream (Sparus aurata), an economically important cultured fish species in the Mediterranean area, a distinct LCDV has been identified but not yet completely characterized. We have used direct sequencing of the virome of lymphocystis lesions from affected S. aurata fish to obtain the complete genome of a new LCDV-Sa species that is the largest vertebrate iridovirus sequenced to date. Importantly, this approach allowed us to assemble the full-length circular genome sequence of two previously unknown viruses belonging to the papillomaviruses and polyomaviruses, termed Sparus aurata papillomavirus 1 (SaPV1) and Sparus aurata polyomavirus 1 (SaPyV1), respectively. Epidemiological surveys showed that lymphocystis disease was frequently associated with the concurrent appearance of one or both of the new viruses. SaPV1 has unique characteristics, such as an intron within the L1 gene, and as the first member of the Papillomaviridae family described in fish, provides evidence for a more ancient origin of this family than previously thought. Lymphocystis disease affects marine and freshwater fish species worldwide. It is characterized by the appearance of papillomalike lesions on the skin that contain heavily enlarged cells (lymphocysts). The causative agent is the lymphocystis disease virus (LCDV), a large icosahedral virus of the family Iridoviridae In the Mediterranean area, the gilthead sea bream (Sparus aurata), an important farmed

  6. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  7. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen.

    Science.gov (United States)

    Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew

    2017-04-11

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.

  8. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status.

    Science.gov (United States)

    Circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a HoBi-...

  9. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status [Abstract

    Science.gov (United States)

    The circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a H...

  10. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  11. Prosthetic graft infection: limitations of indium white blood cell scanning

    International Nuclear Information System (INIS)

    Brunner, M.C.; Mitchell, R.S.; Baldwin, J.C.; James, D.R.; Olcott, C. IV; Mehigan, J.T.; McDougall, I.R.; Miller, D.C.

    1986-01-01

    The lack of a rapid, noninvasive, and accurate method to confirm or rule out prosthetic graft infection continues to constitute a compelling and vexing clinical problem. A host of adjunctive diagnostic techniques has been used in the past, but early promising results subsequently have usually not yielded acceptable sensitivity (reflecting false negatives) and specificity (reflecting false positive) data. White blood cell (WBC) indium 111 scanning has recently been added to this list. The utility and accuracy of 111 In WBC scans were assessed by retrospective review of WBC scan results in 70 patients undergoing evaluation for possible prosthetic graft infection over a 7-year period. Operative and autopsy data (mean follow-up, 18 months for survivors with negative scans) were used to confirm the 22 positive, 45 negative, and three equivocal WBC scans. The false positive rate (+/- 70% confidence limits) was 36% +/- 6% (n = 8) among the 22 patients with positive scans (44% +/- 6% [11 of 25] if the three equivocal scans are included as false positive), yielding a specificity of 85% +/- 5% and an overall accuracy rate of 88% +/- 4% (80% +/- 5% and 84% +/- 5%, respectively, if the three equivocal cases are considered as false positive). All three patients with equivocal scans ultimately were judged not to have prosthetic graft infection. As implied by the high accuracy rate, the sensitivity of the test was absolute (100% [14 of 14]); there were no false negative results

  12. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma.

    Science.gov (United States)

    Schadendorf, Dirk; Nghiem, Paul; Bhatia, Shailender; Hauschild, Axel; Saiag, Philippe; Mahnke, Lisa; Hariharan, Subramanian; Kaufman, Howard L

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.

  13. Laser irradiation reduces HIV-1 infection in TZM-bl cells

    CSIR Research Space (South Africa)

    Lugongolo, Masixole Y

    2016-10-01

    Full Text Available HIV-1 epidemic remains a major health challenge. This study explores the effects of low level laser therapy on HIV-1 infected cells. Infection is reduced by irradiation and the mechanism needs to be investigated further....

  14. CD3+CD8+CD161high Tc17 cells are depleted in HIV-infection

    DEFF Research Database (Denmark)

    Gaardbo, Julie Christine; Hartling, Hans Jakob; Thorsteinsson, Kristina

    2012-01-01

    CD8+ Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are undescribed. CD3+CD8+CD161 Tc17 cells and the production of Interleukin-17 were examined in untreated and treated HIV-infected patients, HIV-HCV co-infected patients...... and healthy controls. Depletion of CD3+CD8+CD161 Tc17 cells and diminished production of Interleukin-17 in HIV-infected patients was found. The level of Tc17 cells was associated with the level of the CD4+ count in treated patients....

  15. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells.

    Science.gov (United States)

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-06-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.

  16. Role of Bruton’s Tyrosine Kinase inhibitors in HIV-1 infected cells

    Science.gov (United States)

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-01-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high throughput proteomic assays, we have previously identified Bruton’s tyrosine kinase (BTK) as a host protein that was uniquely up-regulated in the plasma membrane of HIV-1 infected T-cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant up-regulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells, however new BTK protein complexes were identified and distributed in both high molecular weight (~600 kDa) and a small molecular weight complex (~60–120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1 infected cells using siRNA resulted in selective death of infected, but not uninfected, cells. Using BTK specific antibody and small molecule inhibitors including LFM-A13 and a FDA approved compound, Ibrutinib (PCI – 32765), we have found that HIV-1 infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1 infected cells are sensitive to treatments targeting BTK expressed in infected cells. PMID:25672887

  17. Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro.

    Directory of Open Access Journals (Sweden)

    Shrilakshmi Hegde

    Full Text Available Mycoplasma agalactiae is the etiological agent of the contagious agalactia syndrome in sheep and goats and causes significant economic losses worldwide. Yet the mechanism of pathogenesis is largely unknown. Even whole-genome sequence analysis of its pathogenic type strain did not lead to any conclusions regarding its virulence or pathogenicity factors. Although inflammation and tissue destruction at the local site of M. agalactiae infection are largely considered as effects of the host immune response, the direct effect of the agent on host cells is not completely understood. The aim of this study was to investigate the effect of M. agalactiae infection on the quality and viability of host cells in vitro. Changes in cell morphology including cell elongation, cytoplasm shrinkage and membrane blebbing were observed in infected HeLa cells. Chromatin condensation and increased caspase-3 cleavage in infected HeLa cells 48 h after infection suggests an apoptosis-like phenomenon in M. agalactiae-infected cells. In compliance with these results, decreased viability and cell lysis of M. agalactiae-infected HeLa cells was also observed. Measurement of the amount of LDH released after M. agalactiae infection revealed a time- and dose-dependent increase in HeLa cell lysis. A significant decrease in LDH released after gentamicin treatment of infected cells confirmed the major role of cytadherent M. agalactiae in inducing host cell lysis. This is the first study illustrating M. agalactiae's induction of cytopathic effects in infected HeLa cells. Further detailed investigation of infected host tissue for apoptotic markers might demonstrate the association between M. agalactiae-induced host cell lysis and the tissue destruction observed during M. agalactiae natural infection.

  18. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Joaquín Martínez Martínez

    Full Text Available Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  19. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Martínez Martínez, Joaquín; Poulton, Nicole J; Stepanauskas, Ramunas; Sieracki, Michael E; Wilson, William H

    2011-01-01

    Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  20. Endothelial cell death and intimal foam cell accumulation in the coronary artery of infected hypercholesterolemic minipigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Saraste, Antti; Hyttel, Poul

    2013-01-01

    Apoptosis of endothelial cells (ECs) has been suggested to play a role in atherosclerosis. We studied the synergism of hypercholesterolemia with Chlamydia pneumoniae and influenza virus infections on EC morphology and intimal changes in a minipig model. The coronary artery was excised at euthanasia...

  1. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection.

    Science.gov (United States)

    Luo, Xueping; Xie, Hongyan; Chen, Dianhui; Yu, Xiuxue; Wu, Fan; Li, Lu; Wu, Changyou; Huang, Jun

    2014-03-01

    The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.

  2. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.; Balch, C.M.; Lakeman, A.D.; Whitley, R.J.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar to those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.

  3. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Directory of Open Access Journals (Sweden)

    Alexandra Wittmann

    Full Text Available In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  4. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  5. Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression

    International Nuclear Information System (INIS)

    Hoever, Gerold; Vogel, Jens-Uwe; Lukashenko, Polina; Hofmann, Wolf-Karsten; Komor, Martina; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2005-01-01

    In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples. Nine of these 11 genes may contribute to the previously observed changes in malignant phenotype of persistently HCMV infected NB cells by influencing invasive growth, apoptosis, angiogenesis, and proliferation. Thus, this work provides the basis for further functional studies

  6. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  7. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  8. Virus specific antigens in mammalian cells infected with herpes simplex virus

    Science.gov (United States)

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  9. Macrophages are required for dendritic cell uptake of respiratory syncytial virus from an infected epithelium.

    Science.gov (United States)

    Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.

  10. Adrenaline-induced mobilization of T cells in HIV-infected patients

    DEFF Research Database (Denmark)

    Søndergaard, S R; Cozzi-Lepri, A; Ullum, H

    2000-01-01

    The present study aimed to investigate lymphocyte mobilization from peripheral cell reservoirs in HIV-infected patients. Nine HIV-infected patients on stable highly active anti-retroviral therapy (HAART), eight treatment-naive HIV-infected patients and eight HIV- controls received a 1-h adrenaline...... infusion. The adrenaline infusion induced a three-fold increase in the concentration of lymphocytes in all three groups. All HIV-infected patients mobilized significantly higher numbers of CD8+ cells but less CD4+ cells. All subjects mobilized CD45RA+CD62L+ and CD8+CD28+ cells to a lesser extent than CD45......RO+CD45RA- and CD8+CD28-cells. Furthermore, high numbers of CD8+CD38+ cells were mobilized only in the HIV-infected patients. It was therefore predominantly T cells with an activated phenotype which were mobilized after adrenaline stimulation. It is concluded that the HIV-associated immune defect...

  11. Sickle cell children traveling abroad: primary risk is infection.

    Science.gov (United States)

    Runel-Belliard, Camille; Lesprit, Emmanuelle; Quinet, Béatrice; Grimprel, Emmanuel

    2009-01-01

    Pediatricians taking care of sickle cell children in France are concerned about giving travel advice. Very few articles are published and no study has been done about it. A lot of pediatricians are using their own experience to decide if sickle cell children can travel abroad. Studying the consequences of such travel for sickle cell children is important to discuss common recommendations. We conducted a prospective study from June 2006 to December 2007 on desires to travel expressed during our consultations with sickle cell children. We studied notable events that occurred during travel and at least 2 months after return. Of 52 desires to travel, 10 were cancelled. All of the 42 trips were to Africa. Median duration of travel was 1.29 months (0.5-3). Median age at travel was 7.6 years (0.2-17.7). Events during travel were two hospitalizations (4.8%), a transfusion (2.4%), and four paramedical or medical examinations (9.6%). After return, four events occurred: two SS children had Plasmodium falciparum malaria (4.8%) and two had digestive bacteremia (4.8%) in SC and Sbeta+ children. No event occurred during plane travel. None of our patients died. The primary risk for sickle cell children traveling to Africa is infection: malaria first and digestive septicemia second. These risks are increased by long travel and poor sanitary conditions. Each travel should be prepared a long time before departure, and each pediatrician should insist on malaria prophylaxis and sanitary conditions, especially for young children. Trips should be shorter than 1 month when possible. A longer prospective study will be done to confirm these results.

  12. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  13. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  14. Analysis of gene expression in fetal and adult cells infected with rubella virus

    International Nuclear Information System (INIS)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-01

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  15. Host Cell Restriction Factors that Limit Influenza A Infection

    Directory of Open Access Journals (Sweden)

    Fernando Villalón-Letelier

    2017-12-01

    Full Text Available Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors” can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.

  16. CD4 T Cell Responses in Latent and Chronic Viral Infections

    Science.gov (United States)

    Walton, Senta; Mandaric, Sanja; Oxenius, Annette

    2013-01-01

    The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308

  17. Mycoplasma orale infection affects K+ and Cl- currents in the HSG salivary gland cell line.

    Science.gov (United States)

    Izutsu, K T; Fatherazi, S; Belton, C M; Oda, D; Cartwright, F D; Kenny, G E

    1996-06-01

    The relations between K+ channel and Cl- channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl- channels, but only the latter decrease was statistically significant. Also, Cl- currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl- channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurred in vivo.

  18. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    Science.gov (United States)

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  19. Biosynthesis of measles virus hemagglutinin in persistently infected cells

    International Nuclear Information System (INIS)

    Bellini, W.J.; Silver, G.D.; McFarlin, D.E.

    1983-01-01

    The synthesis of the hemagglutinin (HA) glycoprotein of measles virus was investigated in a persistently infected cell line using a monoclonal anti-HA. The synthesis of the HA protein was shown to be associated with the rough endoplasmic reticulum. The unglycosylated (HA 0 ) apoprotein is synthesized as a 65.000 dalton peptide and is inserted into the rough endoplasmic reticulum as a transmembrane protein with approximately 2 to 3000 daltons of the peptide exposed to the cytoplasmic membrane surface. Primary glycosylation of the HA protein was found to occur through the lipid-linked carrier, dolichol-phosphate, as determined by inhibition of glycosylation by tunicamycin. Glycosylation, however, was not a prerequisite for membrane insertion. Endo-β-N-acetyl-Glucosaminidase H digestion of the fully glycosylated HA protein indicated that both simple and complex oligosaccharides are present on the surface glycoprotein. (Author)

  20. CD154 costimulated ovine primary B cells, a cell culture system that supports productive infection by bovine leukemia virus.

    Science.gov (United States)

    Van den Broeke, A; Cleuter, Y; Beskorwayne, T; Kerkhofs, P; Szynal, M; Bagnis, C; Burny, A; Griebel, P

    2001-02-01

    Bovine leukemia virus (BLV) is closely associated with the development of B-cell leukemia and lymphoma in cattle. BLV infection has also been studied extensively in an in vivo ovine model that provides a unique system for studying B-cell leukemogenesis. There is no evidence that BLV can directly infect ovine B cells in vitro, and there are no direct data regarding the oncogenic potential of the viral Tax transactivator in B cells. Therefore, we developed ovine B-cell culture systems to study the interaction between BLV and its natural target, the B cell. In this study, we used murine CD154 (CD40 ligand) and gamma-chain-common cytokines to support the growth of B cells isolated from ovine lymphoid tissues. Integrated provirus, extrachromosomal forms, and viral transcripts were detected in BLV-exposed populations of immature, rapidly dividing surface immunoglobulin M-positive B cells from sheep ileal Peyer's patches and also in activated mature B cells isolated from blood. Conclusive evidence of direct B-cell infection by BLV was obtained through the use of cloned B cells derived from sheep jejunal Peyer's patches. Finally, inoculation of sheep with BLV-infected cultures proved that infectious virus was shed from in vitro-infected B cells. Collectively, these data confirm that a variety of ovine B-cell populations can support productive infection by BLV. The development of ovine B-cell cultures permissive for BLV infection provides a controlled system for investigating B-cell leukemogenic processes and the pathogenesis of BLV infection.

  1. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  3. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  4. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  5. Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection

    Directory of Open Access Journals (Sweden)

    Damián Pérez-Mazliah

    2017-10-01

    Full Text Available CD4+ follicular helper T (Tfh cells have been shown to be critical for the activation of germinal center (GC B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM-Associated Protein (SAP-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses.

  6. Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells

    Science.gov (United States)

    Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.

    1991-08-01

    The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.

  7. Cytomegalovirus (CMV) Infection: A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Infection: A Guide for Patients and Families after Stem Cell Transplant What is cytomegalovirus (CMV)? Cytomegalovirus (CMV), a ... weakened by medicines that you must take after stem cell transplant and by the transplant itself. Your body ...

  8. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  9. Identification of XMRV infection-associated microRNAs in four cell types in culture.

    Directory of Open Access Journals (Sweden)

    Ketha V K Mohan

    Full Text Available INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC and chronic fatigue syndrome (CFS in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA, which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS: Two prostate cell lines (LNCaP and DU145 and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs. miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.

  10. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  11. T-cell-dependent control of acute Giardia lamblia infections in mice.

    Science.gov (United States)

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  12. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  13. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  14. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  15. B-Cell and T-Cell Immune Responses to Experimental Helicobacter pylori Infection in Humans

    Science.gov (United States)

    Nurgalieva, Zhannat Z.; Conner, Margaret E.; Opekun, Antone R.; Zheng, Carl Q.; Elliott, Susan N.; Ernst, Peter B.; Osato, Michael; Estes, Mary K.; Graham, David Y.

    2005-01-01

    The acute antibody and T-cell immune response to Helicobacter pylori infection in humans has not been studied systematically. Serum from H. pylori-naive volunteers challenged with H. pylori and cured after 4 or 12 weeks was tested by enzyme-linked immunosorbent assays for anti-H. pylori-specific immunoglobulin M (IgM) and IgA established using bacterial lysates from homologous (the infecting strain) and heterologous H. pylori. Proteins recognized by IgM antibody were identified by mass spectrometry of immunoreactive bands separated by two-dimensional gel electrophoresis. Mucosal T-cell subsets (CD4, CD8, CD3, and CD30 cells) were assessed by immunohistochemistry. All 18 infected volunteers developed H. pylori-specific IgM responses to both homologous or heterologous H. pylori antigens. H. pylori antigens reacted with IgM antibody at 4 weeks postinfection. IgM Western blotting showed immunoreactivity of postinfection serum samples to multiple H. pylori proteins with molecular weights ranging between 9,000 (9K) to 150K with homologous strains but only a 70K band using heterologous antigens. Two-dimensional electrophoresis demonstrated that production of H. pylori-specific IgM antibodies was elicited by H. pylori flagellins A and B, urease B, ABC transporter binding protein, heat shock protein 70 (DnaK), and alkyl hydroperoxide reductase. Mucosal CD3, CD4, and CD8 T-cell numbers increased following infection. IgM antibody responses were detected to a range of homologous H. pylori antigens 2 to 4 weeks postchallenge. The majority of H. pylori proteins were those involved in motility and colonization and may represent targets for vaccine development. PMID:15845507

  16. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  17. Alterations in the nuclear proteome of HIV-1 infected T-cells

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Jagadish, Teena; Haverland, Nicole A. [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Ciborowski, Pawel [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States)

    2014-11-15

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.

  18. Alterations in the nuclear proteome of HIV-1 infected T-cells

    International Nuclear Information System (INIS)

    DeBoer, Jason; Jagadish, Teena; Haverland, Nicole A.; Madson, Christian J.; Ciborowski, Pawel; Belshan, Michael

    2014-01-01

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines

  19. Retroviral infection of non-dividing cells: Old and new perspectives

    International Nuclear Information System (INIS)

    Yamashita, Masahiro; Emerman, Michael

    2006-01-01

    The dependence of retroviral replication on cell proliferation was described as early as 1958, although different classes of retroviruses are able to infect non-dividing cells with different efficiencies. For example, the human immunodeficiency virus (HIV) and other lentiviruses infect most non-dividing cells nearly as well as dividing cells, while the gammaretroviruses such as the murine leukemia virus (MLV) cannot infect non-dividing cells, and other retroviruses have intermediate phenotypes. One exception to the ability of HIV to infect non-dividing cells involves resting CD4+ T cells in vitro where there are multiple restrictions. However, recent data show that there is massive infection of non-activated CD4+ T cell during acute infection which suggests that the situation is different in vivo. Finally, much work trying to explain the difference between HIV and MLV in non-dividing cells has focused on describing the ability of HIV to enter the nucleus during interphase. However, we suggest that events in the viral lifecycle other than nuclear import may be more important in determining the ability of a given retrovirus to infect non-dividing cells

  20. Tax gene expression and cell cycling but not cell death are selected during HTLV-1 infection in vivo

    Directory of Open Access Journals (Sweden)

    Pinatel Christiane

    2010-03-01

    Full Text Available Abstract Background Adult T cell leukemia results from the malignant transformation of a CD4+ lymphoid clone carrying an integrated HTLV-1 provirus that has undergone several oncogenic events over a 30-60 year period of persistent clonal expansion. Both CD4+ and CD8+ lymphocytes are infected in vivo; their expansion relies on CD4+ cell cycling and on the prevention of CD8+ cell death. Cloned infected CD4+ but not CD8+ T cells from patients without malignancy also add up nuclear and mitotic defects typical of genetic instability related to theexpression of the virus-encoded oncogene tax. HTLV-1 expression is cancer-prone in vitro, but in vivo numerous selection forces act to maintain T cell homeostasis and are possibly involved in clonal selection. Results Here we demonstrate that the HTLV-1 associated CD4+ preleukemic phenotype and the specific patterns of CD4+ and CD8+ clonal expansion are in vivo selected processes. By comparing the effects of recent (1 month experimental infections performed in vitro and those observed in cloned T cells from patients infected for >6-26 years, we found that in chronically HTLV-1 infected individuals, HTLV-1 positive clones are selected for tax expression. In vivo, infected CD4+ cells are positively selected for cell cycling whereas infected CD8+ cells and uninfected CD4+ cells are negatively selected for the same processes. In contrast, the known HTLV-1-dependent prevention of CD8+ T cell death pertains to both in vivo and in vitro infected cells. Conclusions Therefore, virus-cell interactions alone are not sufficient to initiate early leukemogenesis in vivo.

  1. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  2. Epstein-Barr Virus Type 2 Infects T Cells in Healthy Kenyan Children.

    Science.gov (United States)

    Coleman, Carrie B; Daud, Ibrahim I; Ogolla, Sidney O; Ritchie, Julie A; Smith, Nicholas A; Sumba, Peter O; Dent, Arlene E; Rochford, Rosemary

    2017-09-15

    The 2 strains of Epstein-Barr virus (EBV), EBV type 1 (EBV-1) and EBV-2, differ in latency genes, suggesting that they use distinct mechanisms to establish latency. We previously reported that EBV-2 infects T cells in vitro. In this study, we tested the possibility that EBV-2 infects T cells in vivo. Purified T-cell fractions isolated from children positive for EBV-1 or EBV-2 and their mothers were examined for the presence of EBV and for EBV type. We detected EBV-2 in all T-cell samples obtained from EBV-2-infected children at 12 months of age, with some children retaining EBV-2-positive T cells through 24 months of age, suggesting that EBV-2 persists in T cells. We were unable to detect EBV-2 in T-cell samples from mothers but could detect EBV-2 in samples of their breast milk and saliva. These data suggest that EBV-2 uses T cells as an additional latency reservoir but that, over time, the frequency of infected T cells may drop below detectable levels. Alternatively, EBV-2 may establish a prolonged transient infection in the T-cell compartment. Collectively, these novel findings demonstrate that EBV-2 infects T cells in vivo and suggest EBV-2 may use the T-cell compartment to establish latency. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. IL-4Rα-associated antigen processing by B cells promotes immunity in Nippostrongylus brasiliensis infection.

    Directory of Open Access Journals (Sweden)

    William G C Horsnell

    2013-10-01

    Full Text Available In this study, B cell function in protective T(H2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα⁻/⁻ mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4⁺ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88⁻/⁻ B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4⁺ T cell-mediated protective immunity against N. brasiliensis infection.

  4. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.

    Directory of Open Access Journals (Sweden)

    Manuela Fogli

    2008-07-01

    Full Text Available Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7. This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I molecules, HIV-1-infected p24(pos blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs and with the high frequency of the anergic CD56(neg/CD16(pos subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos blasts derived from primary T cells.

  5. T cells for viral infections after allogeneic hematopoietic stem cell transplant.

    Science.gov (United States)

    Bollard, Catherine M; Heslop, Helen E

    2016-06-30

    Despite recent advances in the field of allogeneic hematopoietic stem cell transplantation (HSCT), viral infections are still a major complication during the period of immune suppression that follows the procedure. Adoptive transfer of donor-derived virus-specific cytotoxic T cells (VSTs) is a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after HSCT. Early proof of principle studies demonstrated that the administration of donor-derived T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could effectively restore virus-specific immunity and control viral infections. Subsequent studies using different expansion or direct selection techniques have shown that donor-derived VSTs confer protection in vivo after adoptive transfer in 70% to 90% of recipients. Because a major cause of failure is lack of immunity to the infecting virus in a naïve donor, more recent studies have infused closely matched third-party VSTs and reported response rates of 60% to 70%. Current efforts have focused on broadening the applicability of this approach by: (1) extending the number of viral antigens being targeted, (2) simplifying manufacture, (3) exploring strategies for recipients of virus-naïve donor grafts, and (4) developing and optimizing "off the shelf" approaches. © 2016 by The American Society of Hematology.

  6. Clearance of Giardia muris infection in mice deficient in natural killer cells.

    OpenAIRE

    Heyworth, M F; Kung, J E; Eriksson, E C

    1986-01-01

    Immunocompetent C57BL/6J mice and beige mice (which are deficient in natural killer cells) were infected with Giardia muris. Both types of mice cleared G. muris infection at similar rates. This observation suggests that clearance of G. muris parasites from the mouse intestine is not mediated by natural killer cells.

  7. T-cell dynamics in healthy and HIV-infected individuals

    NARCIS (Netherlands)

    Vrisekoop, N.

    2007-01-01

    This thesis focuses on T-cell dynamics in healthy and both treated and untreated HIV-infected individuals. Although the progressive decline in CD4+ T-cell numbers is the hallmark of HIV infection, the mechanisms behind this depletion remain controversial. Currently the most prevailing ideas include

  8. Membrane prteins of herpes simplex infected cells. Immunological and biochemical studies

    NARCIS (Netherlands)

    Welling-Wester, Sijtske

    1981-01-01

    As a consequence of infection with herpes simplex virus (HSV), cells exhibit a number of alterations. One of these is expressed as a change in the polypeptide composition of the surface of the infected cells. In this study several methods used for the isolation of these polypeptides expressed on the

  9. Sofosbuvir and Simeprevir Treatment of a Stem Cell Transplanted Teenager With Chronic Hepatitis C Infection.

    Science.gov (United States)

    Fischler, Björn; Priftakis, Peter; Sundin, Mikael

    2016-06-01

    There have been no previous reports on the use of interferon-free combinations in pediatric patients with chronic hepatitis C infection. An infected adolescent with severe sickle cell disease underwent stem cell transplantation and subsequent treatment with sofosbuvir and simeprevir during ongoing immunosuppression. Despite the emergence of peripheral edema as a side effect, treatment was continued with sustained antiviral response.

  10. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    Science.gov (United States)

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  11. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  12. Cell-mediated immunity to herpes simplex in humans: lymphocyte cytotoxicity measured by 51Cr release from infected cells

    International Nuclear Information System (INIS)

    Russell, A.S.; Percy, J.S.; Kovithavongs, T.

    1975-01-01

    We assessed cell-mediated immunity to herpes simplex virus type 1 antigen in patients suffering from recurrent cold sores and in a series of healthy controls. Paradoxically, all those subject to recurrent herpetic infections had, without exception, evidence of cell-mediated immunity to herpes antigens. This was demonstrated by lymphocyte transformation and specific 51 Cr release from infected human amnion cells after incubation with peripheral blood mononuclear cells. Where performed, skin tests with herpes antigen were also positive. In addition, serum from these patients specifically sensitized herpes virus-infected cells to killing by nonimmune, control mononuclear cells. These tests were negative in the control patients except in a few cases, and it is suggested that these latter may be the asymptomatic herpes virus carriers previously recognized or that they may have experienced a genital infection. (U.S.)

  13. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment

    Directory of Open Access Journals (Sweden)

    Frédéric Boal

    2016-02-01

    Full Text Available Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1, a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment.

  14. Urinary Tract Infection in Febrile Children with Sickle Cell Anaemia ...

    African Journals Online (AJOL)

    Eastern Nigeria. Children with this disease have increased tendency to develop frequent and severe infections especially of the urinary tract, bones and lungs. The prevalence of urinary tract infection (UTI) has however not been reported in this part ...

  15. CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection

    DEFF Research Database (Denmark)

    Nansen, A; Marker, O; Bartholdy, C

    2000-01-01

    Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic choriomeningi......Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic...... a rapidly lethal, T cell-independent encephalitis, and infection resulted in a dramatic early up-regulation of chemokine gene expression. Similar marked up-regulation of chemokine expression was not seen until late after LCMV infection and required the presence of activated T cells. Cerebral CCR gene...... expression was dominated by CCR1, CCR2 and CCR5. However, despite a stronger initial chemokine signal in VSV-infected mice, only LCMV-induced T cell-dependent inflammation was found to be associated with substantially increased expression of CCR genes. Virus-activated CD8+ T cells were found to express CCR2...

  16. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2016-01-01

    Full Text Available The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.

  17. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques.

    Directory of Open Access Journals (Sweden)

    Félicien Moukambi

    2015-12-01

    Full Text Available Follicular T helper cells (Tfh, a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies.

  18. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  20. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  1. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  2. Merkel cell carcinoma: Epidemiology, pathogenesis, diagnosis and therapy.

    Science.gov (United States)

    Amaral, Teresa; Leiter, Ulrike; Garbe, Claus

    2017-12-01

    Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with a neuroendocrine phenotype. Incidence varies according to the geographic regions but is overall increasing. Different risk factors have been identified namely advanced age, immunosuppression, and ultraviolet light exposure. An association between MCC and polyomavirus infection is known. However, the exact mechanism that leads to carcinogenesis is yet to be fully understood. Surgery when feasible is the recommended treatment for localized disease, followed by adjuvant radiation or chemoradiation. In the metastatic setting, chemotherapy has been the standard treatment. However, two recently published trials with immune checkpoint inhibitors in first and second line showed promising results with a tolerable safety profile and these might become the standard therapy shortly. Somatostatin receptors are expressed in many MCC but such expression is not associated with disease severity. Presently there are no biomarkers predictive of response that could help to better select patients to these new therapies, and additional research is essential.

  3. Lymphocytes and macrophages are infected by Theileria equi, but T cells and B cells are not required to establish infection in vivo.

    Directory of Open Access Journals (Sweden)

    Joshua D Ramsay

    Full Text Available Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata, the intraleukocyte stage (schizont of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID, which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis

  4. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. BK virus infection in a renal transplant Saudi child

    International Nuclear Information System (INIS)

    Maghrabi, M.; Marwan, D.; Osoba, Abimbola O.

    2007-01-01

    BK human polyomavirus (BKV) causes an asymptomatic primary infection in children, but later, establishes latency mainly in the urinary tract. Virus-host interactions influencing persistence and pathogenicity are not well-understood. We present here a 12-year-old Saudi boy, who had renal transplant in Egypt. Seven months later, he was admitted to our Pediatric Nephrology Unit as a case of renal impairment. He developed BKV infection, diagnosed and successfully managed in our hospital. This case demonstrates the expanding clinical importance of BKV in a post renal transplant patient. This virus can be detected in transitional cells in the urine (decoy cells) using cytology. Testing for BKV deoxyribonucleic acid in urine and blood is an early detection assay, and can be used as a screening test in the early stages. The early reduction of immunosuppression can improve the prognosis. No specific antiviral treatment has been established yet. This is the first report of detecting BK virus in a Saudi post-transplant child in urine and blood specimens by using polymerase chain reaction. (author)

  6. Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection

    Directory of Open Access Journals (Sweden)

    Haifeng C. Xu

    2017-11-01

    Full Text Available NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV. However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.

  7. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  8. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    Rivera, Julie A.; McGuire, Travis C.

    2005-01-01

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV WSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51 Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  9. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  10. Lipid Metabolism in Vascular Smooth Muscle Cells Infuenced by HCMV Infection

    Directory of Open Access Journals (Sweden)

    Lingfang Li

    2016-10-01

    Full Text Available Background: The present study was designed to observe the infection of human cytomegalovirus (HCMV to human vascular smooth muscle cells (VSMCs, and the effect of viral infection on lipid metabolism in VSMCs. Methods: The cytopathic effects were observed by inverted microscopy and viral infection were examined by electron microscopy and RT-PCR. The lipid metabolism related gene profiling of VSMCs after HCMV infection was assayed by cDNA assay and the abnormal expression of genes were validated by quantitative RT-PCR. The content of cholesterol in VSMCs after HCMV infection was assayed by cholesterol detection kit. Results: VSMCs showed obvious cytopathic effects after HCMV infection. Intact viral particles could be detected in VSMCs using electron microscope. By use of RT-PCR technology, IE gene of HCMV could be amplified from VSMCs. The expression of cell lipid metabolism related gene profiling showed obvious disorders. The expression levels of HMG-CoA synthase and HMG-CoA reductase after infection increased significantly. The cellular cholesterol content (µmol/106 cells was significantly higher than that of mock infected group at 72h post infection. Conclusion: HCMV can infect VSMCs and the infection can affect cellular lipid metabolism related gene expression, which get involved in the occurrence and development of atherosclerosis (AS.

  11. EBV infection is common in gingival epithelial cells of the periodontium and worsens during chronic periodontitis.

    Directory of Open Access Journals (Sweden)

    Séverine Vincent-Bugnas

    Full Text Available An amplifying role for oral epithelial cells (ECs in Epstein-Barr Virus (EBV infection has been postulated to explain oral viral shedding. However, while lytic or latent EBV infections of oro/nasopharyngeal ECs are commonly detected under pathological conditions, detection of EBV-infected ECs in healthy conditions is very rare. In this study, a simple non-surgical tissue sampling procedure was used to investigate EBV infection in the periodontal epithelium that surrounds and attaches teeth to the gingiva. Surprisingly, we observed that the gingival ECs of the periodontium (pECs are commonly infected with EBV and may serve as an important oral reservoir of latently EBV-infected cells. We also found that the basal level of epithelial EBV-infection is significantly increased in chronic periodontitis, a common inflammatory disease that undermines the integrity of tooth-supporting tissues. Moreover, the level of EBV infection was found to correlate with disease severity. In inflamed tissues, EBV-infected pECs appear to be prone to apoptosis and to produce larger amounts of CCL20, a pivotal inflammatory chemokine that controls tissue infiltration by immune cells. Our discovery that the periodontal epithelium is a major site of latent EBV infection sheds a new light on EBV persistence in healthy carriers and on the role of this ubiquitous virus in periodontitis. Moreover, the identification of this easily accessible site of latent infection may encourage new approaches to investigate and monitor other EBV-associated disorders.

  12. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  13. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers.

    Science.gov (United States)

    Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J

    2015-02-01

    Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.

  14. Impact of HPV infection on oral squamous cell carcinoma.

    Science.gov (United States)

    Götz, Carolin; Drecoll, Enken; Straub, Melanie; Bissinger, Oliver; Wolff, Klaus-Dietrich; Kolk, Andreas

    2016-11-22

    Head and neck squamous cell carcinomas (HNSCC) are often divided by their aetiology. Noxae associated collectives are compared with the human papilloma virus (HPV)-associated group, whereas different localisations of oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas are mostly discussed as one single group. Our aim was to show that classification by aetiology is not appropriate for OSCC. HPV DNA was detected by PCR in 7 (3.47%) patients, and we identified 12 (5.94%) positive (+) cases by p16INK4a immunostaining. Only 4 (1.98%) of the p16INK4a+ cases were + for HPV using PCR. Our homogenous collective of OSCC allowed us to compare HPV+ and HPV negative (-) patients without creating bias for tumour localisation, age, gender or tumour stage. After testing OSCC samples for HPV positivity, we compared the results of two commonly used HPV detection methods, p16INK4a immunostaining and HPV DNA-related PCR, on 202 OSCC patients. HPV subtypes were determined with an HPV LCD Array Kit. Clinicopathological features of the patients were analysed, and the disease specific survival rates (DSS) for HPV+ and HPV- patients were obtained. p16INK4a immunostaining is a not a reliable HPV detection method for OSCC. Positive p16INK4a immunostaining did not agree with + results from PCR of HPV DNA. Furthermore, the influence of HPV-related oncogenic transformation in OSCC is overestimated. The significance of HPV infection remains clinically unclear, and its influence on survival rates is not relevant to OSCC cases.

  15. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  16. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells.

    Science.gov (United States)

    Alugubelly, Navatha; Hercik, Kamil; Kibler, Peter; Nanduri, Bindu; Edelmann, Mariola J

    2016-05-01

    Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells. Copyright © 2016. Published by Elsevier B.V.

  17. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  18. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes.

    Science.gov (United States)

    Carvalho Barros, Luciana Rodrigues; Linhares-Lacerda, Leandra; Moreira-Ramos, Klaysa; Ribeiro-Alves, Marcelo; Machado Motta, Maria Cristina; Bou-Habib, Dumith Chequer; Savino, Wilson

    2017-12-01

    The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD4 + T cells are the main target of HTLV-1, but other cell types are known to be infected, including immature lymphocytes. Developing T cells undergo differentiation in the thymus, through migration and interaction with the thymic microenvironment, in particular with thymic epithelial cells (TEC) the major component of this three dimensional meshwork of non-lymphoid cells. Herein, we show that TEC express the receptors for HTLV-1 and can be infected by this virus through cell-cell contact and by cell-free virus suspensions. The expression of anti-apoptosis, chemokine and adhesion molecules genes are altered in HTLV-1-infected TEC, although gene expression of antigen presentation molecules remained unchanged. Furthermore, HTLV-1-infected TEC transmitted the virus to a CD4 + T cell line and to CD4 + T cells from healthy donors, during in vitro cellular co-cultures. Altogether, our data point to the possibility that the human thymic epithelial cells play a role in the establishment and progression of HTLV-1 infection, functioning as a reservoir and transmitting the virus to maturing CD4 + T lymphocytes, which in turn will cause disease in the periphery. Copyright © 2017. Published by Elsevier GmbH.

  19. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells.

    Science.gov (United States)

    Byk, T; Haddada, H; Vainchenker, W; Louache, F

    1998-11-20

    Adenoviral vectors have the potential to infect a large number of cell types including quiescent cells. Their use in hematopoietic cells is limited by the episomal form of their DNA, leading to transgene loss in the progeny cells. However, the use of this vector may be interesting for short-term in vitro modifications of primitive human hematopoietic cells. Therefore, we have investigated the ability of adenovirus to transduce cord blood CD34+ cells. Several promoters were tested using the lacZ reporter gene. The PGK and CMV promoters induced transgene expression in 18-25% of the cells, whereas the HTLV-I and especially the RSV promoter were almost inactive. To improve infection efficiency, adenovirus was complexed with cationic lipids. Lipofectamine, Cellfectin, and RPR120535b, but not Lipofectin, Lipofectace, or DOTAP, markedly improved transgene expression in CD34+ cells (from 19 to 35%). Lipofectamine strongly enhanced infection efficiency of the poorly infectable primitive CD34+CD38low cells (from 11 to 28%) whereas the more mature CD34+CD38+ cells were only slightly affected (from 24 to 31%). Lipofectamine tripled the infection of CFU-GMs and LTC-ICs derived from the CD34+CD38low cell fraction (from 4 to 12% and from 5 to 16%, respectively) and doubled that of BFU-Es (from 13 to 26%). We conclude that cationic lipids can markedly increase the efficiency of adenovirus-mediated gene transfer into primitive hematopoietic cells.

  20. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    Science.gov (United States)

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  1. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    Science.gov (United States)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  2. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  3. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  4. Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics.

    Directory of Open Access Journals (Sweden)

    Elizabeth Wen Sun

    Full Text Available During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA(- mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA(-.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA(- infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility

  5. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    Science.gov (United States)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  6. Diagnosis of arterial prosthetic graft infection by 111In oxine white blood cell scans

    International Nuclear Information System (INIS)

    McKeown, P.P.; Miller, D.C.; Jamieson, S.W.; Mitchell, R.S.; Reitz, B.A.; Olcott, C.; Mehigan, J.T.; Silberstein, R.J.; McDougall, I.R.

    1982-01-01

    Early and accurate diagnosis of infected prosthetic arterial grafts is difficult, despite the application of diverse diagnostic modalities. Delay in making the diagnosis is largely responsible for the high amputation and mortality rates associated with this complication. In nine patients with suspected graft infections, 111 In white blood cell scanning was useful and accurate. Graft infection was proved in five cases and ruled out in three. One false-positive scan was due to a sigmoid diverticular abscess overlying the graft. 111 In white blood cell scans may improve the accuracy of diagnosing infected prosthetic grafts, which may result in better limb and patient salvage rates

  7. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection

    NARCIS (Netherlands)

    J.A. Karlas (Jos); C.H.J. Siebelink (Kees); M.A. Peer; W. Huisman (Willem); A.M. Cuisinier; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1999-01-01

    textabstractCats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore,

  8. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques.

    Science.gov (United States)

    Chang, W L William; Gonzalez, Denise F; Kieu, Hung T; Castillo, Luis D; Messaoudi, Ilhem; Shen, Xiaoying; Tomaras, Georgia D; Shacklett, Barbara L; Barry, Peter A; Sparger, Ellen E

    2017-01-01

    Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.

  9. Chronic schistosomiasis during pregnancy epigenetically reprograms T-cell differentiation in offspring of infected mothers.

    Science.gov (United States)

    Klar, Kathrin; Perchermeier, Sophie; Bhattacharjee, Sonakshi; Harb, Hani; Adler, Thure; Istvanffy, Rouzanna; Loffredo-Verde, Eva; Oostendorp, Robert A; Renz, Harald; Prazeres da Costa, Clarissa

    2017-05-01

    Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into T H 1 cells, whereas T H 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting T H 2 and T H 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection

    Directory of Open Access Journals (Sweden)

    Pilar Alberdi

    2016-07-01

    Full Text Available Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.

  11. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  12. JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants

    DEFF Research Database (Denmark)

    Sundqvist, Emilie; Buck, Dorothea; Warnke, Clemens

    2014-01-01

    sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15)) and controls (OR = 0.53, p = 2×10(-5)). In contrast...

  13. Molecular infection biology : interactions between microorganisms and cells

    National Research Council Canada - National Science Library

    Hacker, Jörg (Jörg Hinrich); Heesemann, Jurgen

    2002-01-01

    ... and epidemiology of infectious diseases. Investigators, specialists, clinicians, and graduate students in biology, pharmacy, and medicine will find Molecular Infection Biology an invaluable addition to their professional libraries...

  14. Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help.

    Directory of Open Access Journals (Sweden)

    Christopher M Collins

    2014-05-01

    Full Text Available X linked lymphoproliferative disease (XLP is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP. One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV, a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM. However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68, a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.

  15. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Directory of Open Access Journals (Sweden)

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  16. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  17. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Directory of Open Access Journals (Sweden)

    Rodrigo Delvecchio

    2016-11-01

    Full Text Available Zika virus (ZIKV infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  18. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-11-29

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  19. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-01-01

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837

  20. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  1. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  2. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor.

    Directory of Open Access Journals (Sweden)

    Mathilda Eriksson

    Full Text Available Virus-like particles (VLPs consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV VLPs carrying the entire human Prostate Specific Antigen (PSA (PSA-MPyVLPs for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs. Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4(+ and CD8(+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4(+ and CD8(+ cells with a low induction of anti-VLP antibodies.

  3. Murine Polyomavirus Virus-Like Particles Carrying Full-Length Human PSA Protect BALB/c Mice from Outgrowth of a PSA Expressing Tumor

    Science.gov (United States)

    Eriksson, Mathilda; Andreasson, Kalle; Weidmann, Joachim; Lundberg, Kajsa; Tegerstedt, Karin

    2011-01-01

    Virus-like particles (VLPs) consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV) VLPs carrying the entire human Prostate Specific Antigen (PSA) (PSA-MPyVLPs) for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs). Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4+ and CD8+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4+ and CD8+ cells with a low induction of anti-VLP antibodies. PMID:21858228

  4. Cell-mediated cytotoxicity in rainbow trout, Oncorhynchus mykiss, infected with viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Utke, K.; Bergmann, S.; Lorenzen, Niels

    2007-01-01

    classical MHC class I locus Onmy-UBA is identical in the rainbow trout clone C25 and in the permanent rainbow trout cell line RTG-2. This enabled us to develop an assay to measure antiviral cytotoxicity in rainbow trout using a system of MHC class I-matched effector and target cells. Peripheral blood...... leucocytes (PBL) isolated from low dose viral haemorrhagic septicaemia virus (VHSV)-infected rainbow trout killed MHC class I-matched and later also xenogeneic MHC class I-mismatched VHSV-infected cells. When compared to PBL from uninfected control fish PBL from infected fish showed a higher transcriptional...

  5. Deferoxamine compensates for decreases in B cell counts and reduces mortality in enterovirus 71-infected mice.

    Science.gov (United States)

    Yang, Yajun; Ma, Jing; Xiu, Jinghui; Bai, Lin; Guan, Feifei; Zhang, Li; Liu, Jiangning; Zhang, Lianfeng

    2014-07-07

    Enterovirus 71 is one of the major causative agents of hand, foot and mouth disease in children under six years of age. No vaccine or antiviral therapy is currently available. In this work, we found that the number of B cells was reduced in enterovirus 71-infected mice. Deferoxamine, a marine microbial natural product, compensated for the decreased levels of B cells caused by enterovirus 71 infection. The neutralizing antibody titer was also improved after deferoxamine treatment. Furthermore, deferoxamine relieved symptoms and reduced mortality and muscle damage caused by enterovirus 71 infection. This work suggested that deferoxamine has the potential for further development as a B cell-immunomodulator against enterovirus 71.

  6. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  7. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection

    Directory of Open Access Journals (Sweden)

    Deborah M. Brown

    2016-03-01

    Full Text Available CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL play a role in chronic, as well as, acute infections such as influenza A virus (IAV infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections such as HIV, mouse pox, murine gamma herpes virus, CMV, EBV and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and anti-tumor immunity through their ability to acquire perforin mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other anti-viral and anti-tumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell mediated immune protection against heterosubtypic IAV infection.

  8. Imbalance of placental regulatory T cell and Th17 cell population dynamics in the FIV-infected pregnant cat

    Directory of Open Access Journals (Sweden)

    Boudreaux Crystal E

    2012-05-01

    Full Text Available Abstract Background An appropriate balance in placental regulatory T cells (Tregs, an immunosuppressive cell population, and Th17 cells, a pro-inflammatory cell population, is essential in allowing tolerance of the semi-allogeneic fetus. TGF-β and IL-6 are cytokines that promote differentiation of Tregs and Th17 cells from a common progenitor; aberrant expression of the cytokines may perturb the balance in the two cell populations. We previously reported a pro-inflammatory placental environment with decreased levels of FoxP3, a Treg marker, and increased levels of IL-6 in the placentas of FIV-infected cats at early pregnancy. Thus, we hypothesized that FIV infection in the pregnant cat causes altered placental Treg and Th17 cell populations, possibly resulting in placental inflammation. Methods We examined the effect of FIV infection on Treg and Th17 populations in placentas at early pregnancy using quantitative confocal microscopy to measure FoxP3 or RORγ, a Th17 marker, and qPCR to quantify expression of the key cytokines TGF-β and IL-6. Results FoxP3 and RORγ were positively correlated in FIV-infected placentas at early pregnancy, but not placentas from normal cats, indicating virus-induced alteration in the balance of these cell populations. In control cats the expression of IL-6 and RORγ was positively correlated as predicted, but this relationship was disrupted in infected animals. TGF-β was reduced in infected queens, an occurrence that could dysregulate both Treg and Th17 cell populations. Co-expression analyses revealed a highly significant positive correlation between IL-6 and TGF-β expression in control animals that did not occur in infected animals. Conclusion Collectively, these data point toward potential disruption in the balance of Treg and Th17 cell populations that may contribute to FIV-induced inflammation in the feline placenta.

  9. [Enhanced lymphocyte proliferation in the presence of epidermal cells of HIV-infected patients in vitro].

    Science.gov (United States)

    Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M

    1992-07-01

    Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.

  10. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  11. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  12. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  13. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  14. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Directory of Open Access Journals (Sweden)

    Jerod A Skyberg

    Full Text Available γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/- mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-, and GMCSF(-/- mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/- mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.

  15. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  16. Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis.

    Science.gov (United States)

    Terry, Anne; Kilbey, Anna; Naseer, Asif; Levy, Laura S; Ahmad, Shamim; Watts, Ciorsdaidh; Mackay, Nancy; Cameron, Ewan; Wilson, Sam; Neil, James C

    2017-03-01

    The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most

  17. Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells

    NARCIS (Netherlands)

    Yssel, H.; de Waal Malefyt, R.; Duc Dodon, M. D.; Blanchard, D.; Gazzolo, L.; de Vries, J. E.; Spits, H.

    1989-01-01

    The effect of human T cell leukemia/lymphoma virus type I (HTLV-I) infection on the function and the phenotype of a human proliferating/cytotoxic T cell clone, specific for tetanus toxin, was investigated. During the period after infection, two distinct phases were observed, based on growth

  18. Surveillance of polyomavirus BK in relation to immunosuppressive therapy in kidney transplantation

    Directory of Open Access Journals (Sweden)

    Cristina Costa

    2012-03-01

    Full Text Available Introduction. Reactivation of polyomavirus BK in kidney transplant recipients has been associated to the development of nephropathy (polyomavirus-associated nephropathy, PVAN, possibly leading to the loss of the transplanted organ. Immunosuppression is the condicio sine qua non for the onset of PVAN; however, a lower incidence of BK viremia has been reported with low-level tacrolimus based immunosuppressive protocols in comparison to cyclosporine A.Aim of this study was to compare the two immunosuppressive protocols. Methods. Virological monitoring of BK was performed in 468 consecutive renal transplant patients over a period of 3 years (2370 urine e 2370 serum specimens: in particular, 1780 specimens from 362 patients treated with tacrolimus and 590 from 106 treated with cyclosporine A. Results. BK viremia was evidenced in 124 (7.0% and 12 (2.0% specimens from 40 (11.0% and 11 (10.4% patients treated with tacrolimus and cyclosporine A, respectively; similarly, BK viruria in 289 (16.2% and 58 (9.8% specimens from 67 (18.5% and 27 (25.5% patients, being the difference of incidence highly significant (p <0.0001 for both viremia and viruria at comparison between specimens and not significant for patients. No case of PVAN was diagnosed at histophatology evaluation. Conclusions. The incidence of viremia and viruria was similar to that previously reported. Our results evidenced that with low-level tacrolimus-based protocols the overall incidence of reactivation in renal transplant patients is not significantly different and there is no increased risk of PVAN, nevertheless the higher incidence of episodes of reactivation.

  19. Reactivation of BK polyomavirus in patients with multiple sclerosis receiving natalizumab therapy.

    LENUS (Irish Health Repository)

    Lonergan, Roisin M

    2012-02-01

    Natalizumab therapy in multiple sclerosis has been associated with JC polyomavirus-induced progressive multifocal leucoencephalopathy. We hypothesized that natalizumab may also lead to reactivation of BK, a related human polyomavirus capable of causing morbidity in immunosuppressed groups. Patients with relapsing remitting multiple sclerosis treated with natalizumab were prospectively monitored for reactivation of BK virus in blood and urine samples, and for evidence of associated renal dysfunction. In this cohort, JC and BK DNA in blood and urine; cytomegalovirus (CMV) DNA in blood and urine; CD4 and CD8 T-lymphocyte counts and ratios in peripheral blood; and renal function were monitored at regular intervals. BK subtyping and noncoding control region sequencing was performed on samples demonstrating reactivation. Prior to commencement of natalizumab therapy, 3 of 36 patients with multiple sclerosis (8.3%) had BK viruria and BK reactivation occurred in 12 of 54 patients (22.2%). BK viruria was transient in 7, continuous in 2 patients, and persistent viruria was associated with transient viremia. Concomitant JC and CMV viral loads were undetectable. CD4:CD8 ratios fluctuated, but absolute CD4 counts did not fall below normal limits. In four of seven patients with BK virus reactivation, transient reductions in CD4 counts were observed at onset of BK viruria: these resolved in three of four patients on resuppression of BK replication. No renal dysfunction was observed in the cohort. BK virus reactivation can occur during natalizumab therapy; however, the significance in the absence of renal dysfunction is unclear. We propose regular monitoring for BK reactivation or at least for evidence of renal dysfunction in patients receiving natalizumab.

  20. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients

    International Nuclear Information System (INIS)

    Orme, I.M.; Collins, F.M.

    1983-01-01

    The results of this study demonstrate that spleen cells taken from mice at the height of the primary immune response to intravenous infection with Mycobacterium tuberculosis possess the capacity to transfer adoptive protection to M. tuberculosis-infected recipients, but only if these recipients are first rendered T cell-deficient, either by thymectomy and gamma irradiation, or by sublethal irradiation. A similar requirement was necessary to demonstrate the adoptive protection of the lungs after exposure to an acute aerosol-delivered M. tuberculosis infection. In both infectious models successful adoptive immunotherapy was shown to be mediated by T lymphocytes, which were acquired in the donor animals in response to the immunizing infection. It is proposed that the results of this study may serve as a basic model for the subsequent analysis of the nature of the T cell-mediated immune response to both systemic and aerogenic infections with M. tuberculosis

  1. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    International Nuclear Information System (INIS)

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4"+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4"+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4"+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation (IR) increases

  2. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  3. Measuring bovine gamma delta T cell function at the site of Mycobacterium bovis infection

    Science.gov (United States)

    Bovine gamma delta T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/gamma delta T cell co-culture system to eluc...

  4. Spinal cord compression caused by anaplastic large cell lymphoma in an HIV infected individual

    Directory of Open Access Journals (Sweden)

    Kumar Susheel

    2010-01-01

    Full Text Available Lymphomas occur with an increased frequency in patients with Human Immunodeficiency Virus (HIV infection. These are usually high-grade immunoblastic lymphomas and primary central nervous system lymphomas. Anaplastic large cell lymphoma (ALCL is a distinct type of non-Hodgkin′s lymphoma. It is uncommon in HIV infected individuals. We describe here an uncommon presentation of this relatively rare lymphoma in the form of spinal cord compression syndrome in a young HIV infected individual.

  5. Ethanol suppression of peripheral blood mononuclear cell trafficking across brain endothelial cells in immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Lola C Hudson

    2010-01-01

    Full Text Available Lola C Hudson1, Brenda A Colby1, Rick B Meeker21Department of Molecular Biosciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; 2Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAbstract: Earlier studies suggested that the combination of alcohol use and immunodeficiency virus infection resulted in more severe neurologic disease than either condition individually. These deleterious interactions could be due to increased immune cell and virus trafficking or may result from interactions between ethanol and human immunodeficiency virus (HIV-associated toxicity within the brain. To determine the extent to which increased trafficking played a role, we examined the effect of ethanol on the migration of different peripheral blood mononuclear cell (PBMCs subsets across a brain endothelial cell monolayer. We utilized combinations of feline brain endothelial cells with astrocytes, and/or microglia with either acute exposure to 0.08 g/dL ethanol, a combination of ethanol and feline immunodeficiency virus (FIV, or FIV alone. Adherence of PBMCs to endothelium was increased in all combinations of cells with the addition of ethanol. Despite increased PBMC adhesion with ethanol treatment, transmigration of B cells, monocytes, CD4 T cells and CD8 T cells was not increased and was actually decreased in the presence of astrocytes. Expression of three common adhesion molecules, intercellular adhesion molecule-1 (ICAM1, ICAM2, and vascular cell adhesion molecule, was unchanged or slightly decreased by ethanol. This indicated that although adherence is increased by ethanol it is not due to an increased expression of adhesion molecules. RANTES, MIP1α, MIP1β, and MCP-1 mRNA expression was also studied in brain endothelial cells, astrocytes and microglia by reverse transcriptase-polymerase chain reaction. Ethanol treatment of astrocytes resulted in modest changes of

  6. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Allison S Thomas

    2017-09-01

    Full Text Available HIV-specific CD8+ T-cell responses limit viral replication in untreated infection. After the initiation of antiretroviral therapy (ART, these responses decay and the infected cell population that remains is commonly considered to be invisible to T-cells. We hypothesized that HIV antigen recognition may persist in ART-treated individuals due to low-level or episodic protein expression. We posited that if persistent recognition were occurring it would be preferentially directed against the early HIV gene products Nef, Tat, and Rev as compared to late gene products, such as Gag, Pol, and Env, which have higher barriers to expression. Using a primary cell model of latency, we observed that a Nef-specific CD8+ T-cell clone exhibited low-level recognition of infected cells prior to reactivation and robust recognition shortly thereafter. A Gag-specific CD8+ T-cell clone failed to recognized infected cells under these conditions, corresponding with a lack of detectable Gag expression. We measured HIV-specific T-cell responses in 96 individuals who had been suppressed on ART for a median of 7 years, and observed a significant, direct correlation between cell-associated HIV DNA levels and magnitudes of IFN-γ-producing Nef/Tat/Rev-specific T-cell responses. This correlation was confirmed in an independent cohort (n = 18. Correlations were not detected between measures of HIV persistence and T-cell responses to other HIV antigens. The correlation with Nef/Tat/Rev-specific T-cells was attributable to Nef-specific responses, the breadth of which also correlated with HIV DNA levels. These results suggest that ongoing Nef expression in ART-treated individuals drives preferential maintenance and/or expansion of T-cells reactive to this protein, implying sensing of infected cells by the immune system. The direct correlation, however, suggests that recognition does not result in efficient elimination of infected cells. These results raise the possibility that

  7. Mechanics governs single-cell signaling and multi-cell robustness in biofilm infections

    Science.gov (United States)

    Gordon, Vernita

    In biofilms, bacteria and other microbes are embedded in extracellular polymers (EPS). Multiple types of EPS can be produced by a single bacterial strain - the reasons for this redundancy are not well-understood. Our work suggests that different polymers may confer distinct mechanical benefits. Our model organism is Pseudomonas aeruginosa, an opportunistic human pathogen that forms chronic biofilm infections associated with increased antibiotic resistance and evasion of the immune defense. Biofilms initiate when bacteria attach to a surface, sense the surface, and change their gene expression. Changes in gene expression are regulated by a chemical signal, cyclic-di-GMP. We find that one EPS material, called ``PEL,'' enhances surface sensing by increasing mechanical coupling of single bacteria to the surface. Measurements of bacterial motility suggest that PEL may increase frictional interactions between the surface and the bacteria. Consistent with this, we show that bacteria increase cyclic-di-GMP signaling in response to mechanical shear stress. Mechanosensing has long been known to be important to the function of cells in higher eukaryotes, but this is one of only a handful of studies showing that bacteria can sense and respond to mechanical forces. For the mature biofilm, the embedding polymer matrix can protect bacteria both chemically and mechanically. P. aeruginosa infections in the cystic fibrosis (CF) lung often last for decades, ample time for the infecting strain(s) to evolve. Production of another EPS material, alginate, is well-known to tend to increase over time in CF infections. Alginate chemically protects biofilms, but also makes them softer and weaker. Recently, it is being increasingly recognized that bacteria in chronic CF infections also evolve to increase PSL production. We use oscillatory bulk rheology to determine the unique contributions of EPS materials to biofilm mechanics. Unlike alginate, increased PSL stiffens biofilms. Increasing both

  8. Antigen Requirements for Efficient Priming of CD8+ T Cells by Leishmania major-Infected Dendritic Cells

    Science.gov (United States)

    Bertholet, Sylvie; Debrabant, Alain; Afrin, Farhat; Caler, Elisabeth; Mendez, Susana; Tabbara, Khaled S.; Belkaid, Yasmine; Sacks, David L.

    2005-01-01

    CD4+ and CD8+ T-cell responses have been shown to be critical for the development and maintenance of acquired resistance to infections with the protozoan parasite Leishmania major. Monitoring the development of immunodominant or clonally restricted T-cell subsets in response to infection has been difficult, however, due to the paucity of known epitopes. We have analyzed the potential of L. major transgenic parasites, expressing the model antigen ovalbumin (OVA), to be presented by antigen-presenting cells to OVA-specific OT-II CD4+ or OT-I CD8+ T cells. Truncated OVA was expressed in L. major as part of a secreted or nonsecreted chimeric protein with L. donovani 3′ nucleotidase (NT-OVA). Dendritic cells (DC) but not macrophages infected with L. major that secreted NT-OVA could prime OT-I T cells to proliferate and release gamma interferon. A diminished T-cell response was observed when DC were infected with parasites expressing nonsecreted NT-OVA or with heat-killed parasites. Inoculation of mice with transgenic parasites elicited the proliferation of adoptively transferred OT-I T cells and their recruitment to the site of infection in the skin. Together, these results demonstrate the possibility of targeting heterologous antigens to specific cellular compartments in L. major and suggest that proteins secreted or released by L. major in infected DC are a major source of peptides for the generation of parasite-specific CD8+ T cells. The ability of L. major transgenic parasites to activate OT-I CD8+ T cells in vivo will permit the analysis of parasite-driven T-cell expansion, differentiation, and recruitment at the clonal level. PMID:16177338

  9. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus.

    Directory of Open Access Journals (Sweden)

    Ruili Ma

    Full Text Available The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV-infected swine testicular (ST cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1, caspase-8, and heat shock protein 90 alpha (HSP90α were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.

  10. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    International Nuclear Information System (INIS)

    Watson, A.J.; Klaniecki, J.; Hanson, C.V.

    1990-01-01

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase 125 I iodination procedure

  11. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    International Nuclear Information System (INIS)

    Offerdahl, Danielle K.; Dorward, David W.; Hansen, Bryan T.; Bloom, Marshall E.

    2017-01-01

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  12. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Offerdahl, Danielle K. [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Dorward, David W.; Hansen, Bryan T. [Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Bloom, Marshall E., E-mail: mbloom@nih.gov [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States)

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  13. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    Science.gov (United States)

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  14. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection

    Directory of Open Access Journals (Sweden)

    Günther eSchönrich

    2015-05-01

    Full Text Available Varicella zoster virus (VZV, a human alphaherpesvirus, causes varicella and subsequently estab-lishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems’ Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article.

  15. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpesviruses reacted with fewer HHV-6-infected cell proteins, and only a 135,000-M r polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105k and gp82k, gp116k, gp64k, and gp54k, and gp102k

  16. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpes viruses reacted with few HHV-6-infected cell proteins, and only a 135,000-M/sub r/ polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105K and gp92k, gp116k, gp64k, and gp54k, and gp102k

  17. Use of indium-111-labeled white blood cells in the diagnosis of diabetic foot infections

    International Nuclear Information System (INIS)

    Zeiger, L.S.; Fox, I.M.

    1990-01-01

    The diagnosis of bone infection in the patient with nonvirgin bone is a diagnostic dilemma. This is especially true in the diabetic patient with a soft tissue infection and an underlying osteoarthropathy. The authors present a retrospective study using the new scintigraphic technique of indium-111-labeled white blood cells as a method of attempting to solve this diagnostic dilemma

  18. Use of Anti-HIV Immunotoxins as Probes of the Biology of HIV-Infected Cells

    Directory of Open Access Journals (Sweden)

    SETH H Pincus

    1994-01-01

    Full Text Available OBJECTIVE: Anti-human immunodeficiency virus (HIV immunotoxins are potential treatments for HIV infection. but they may also be used as probes to study the relationship between HIV and the cell it infects. Data from the present study indicate the complexity of this relationship.

  19. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  20. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  1. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    Science.gov (United States)

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  2. Candidate Microbicides Block HIV-1 Infection of Human Immature Langerhans Cells within Epithelial Tissue Explants

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Cohen, Sandra S.; Borris, Debra L.; Aquilino, Elisabeth A.; Glushakova, Svetlana; Margolis, Leonid B.; Orenstein, Jan M.; Offord, Robin E.; Neurath, A. Robert; Blauvelt, Andrew

    2000-01-01

    Initial biologic events that underlie sexual transmission of HIV-1 are poorly understood. To model these events, we exposed human immature Langerhans cells (LCs) within epithelial tissue explants to two primary and two laboratory-adapted HIV-1 isolates. We detected HIV-1Ba-L infection in single LCs that spontaneously emigrated from explants by flow cytometry (median of infected LCs = 0.52%, range = 0.08–4.77%). HIV-1–infected LCs downregulated surface CD4 and CD83, whereas MHC class II, CD80, and CD86 were unchanged. For all HIV-1 strains tested, emigrated LCs were critical in establishing high levels of infection (0.1–1 μg HIV-1 p24 per milliliter) in cocultured autologous or allogeneic T cells. HIV-1Ba-L (an R5 HIV-1 strain) more efficiently i