WorldWideScience

Sample records for cell polyfunctional response

  1. Polyfunctional cytokine production by central memory T cells from cattle in response to Mycobacterium bovis infection and BCG vaccination

    Science.gov (United States)

    Polyfunctional T cells simultaneously produce IFN-gamma, IL-2 and TNF-alpha and play relevant roles in several chronic infections, including TB. Mycobacterium bovis infection of cattle elicits ex vivo polyfunctional T cell responses. Vaccine-elicited IFN-gamma Tcm (CD4 plus CD45RO plus CCR7 plus) re...

  2. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+and CD4+T cells.

    Science.gov (United States)

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  3. CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals.

    Directory of Open Access Journals (Sweden)

    Alejandra Pera

    Full Text Available Cytomegalovirus (CMV latent infection has a deleterious effect on the efficacy of influenza vaccination in the elderly, suggesting that CMV restricts immunological diversity impairing the immune system functionality in old age. Polyfunctional T cells produce multiple cytokines and higher amounts than mono-functional T cells. High number of polyfunctional T cells correlates with better prognosis during infection. Thus, the efficiency of T cell response associates with quality (polyfunctionality rather than with quantity (percentage of T cells. We analyze the effect of CMV infection on CD8+ T cells polyfunctionality --degranulation (CD107a, IFN-gamma and TNF-alpha production--, from young CMV-seropositive and CMV-seronegative individuals and in middle age CMV-seropositive donors, in response to Staphylococcal Enterotoxin B (SEB. Our results show a higher percentage of polyfunctional CD8+ T cells in young CMV-seropositive individuals compared to CMV-seronegative. Also, we find an expansion of CD8+CD57+ T cells in CMV-seropositive individuals, which are more polyfunctional than CD8+CD57- cells. In middle age individuals there is a higher frequency of SEB-responding CD8+ T cells, mainly TNF-alpha or TNF-alpha/IFN-gamma producers, whereas the percentage of polyfunctional cells (IFN-gamma/TNF-alpha/CD107a is similar to the percentages found in young CMV-seropositive. Therefore, whereas it has been shown that CMV latent infection can be detrimental for immune response in old individuals, our results indicate that CMV-seropositivity is associated to higher levels of polyfunctional CD8+ T cells in young and middle age donors. This increase in polyfunctionality, which can provide an immunological advantage in the response to other pathogens, is due to a CD8+CD57+ T cell expansion in CMV-seropositive individuals and it is independent of age. Conversely, age could contribute to the inflammation found in old individuals by increasing the percentage of cells

  4. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination

    Directory of Open Access Journals (Sweden)

    Deborah A. Lewinsohn

    2017-10-01

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG. Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2 as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in

  5. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Daniela Santoro Rosa

    Full Text Available T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+ T cells are important for the generation and maintenance of functional CD8(+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18, capable of eliciting broad CD4(+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+/CD8(+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+ and CD8(+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2 simultaneously in response to HIV-1 peptides. For CD4(+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2. The vaccine also generated long-lived central and effector memory CD4(+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+ T cells and antibody responses- elicited by other HIV immunogens.

  6. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response.

    Science.gov (United States)

    Xue, Qiong; Bettini, Emily; Paczkowski, Patrick; Ng, Colin; Kaiser, Alaina; McConnell, Timothy; Kodrasi, Olja; Quigley, Máire F; Heath, James; Fan, Rong; Mackay, Sean; Dudley, Mark E; Kassim, Sadik H; Zhou, Jing

    2017-11-21

    It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high

  7. Polyfunctional CD4+ T cell responses to a set of pathogenic arenaviruses provide broad population coverage

    OpenAIRE

    Kotturi, Maya F; Botten, Jason; Maybeno, Matt; Sidney, John; Glenn, Jean; Bui, Huynh-Hoa; Oseroff, Carla; Crotty, Shane; Peters, Bjoern; Grey, Howard; Altmann, Daniel M; Buchmeier, Michael J; Sette, Alessandro

    2010-01-01

    Abstract Background Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus in...

  8. Emergence of CD4+ and CD8+ Polyfunctional T Cell Responses Against Immunodominant Lytic and Latent EBV Antigens in Children With Primary EBV Infection

    Directory of Open Access Journals (Sweden)

    Janice K. P. Lam

    2018-03-01

    Full Text Available Long term carriers were shown to generate robust polyfunctional T cell (PFC responses against lytic and latent antigens of Epstein-Barr virus (EBV. However, the time of emergence of PFC responses against EBV antigens, pattern of immunodominance and difference between CD4+ and CD8+ T cell responses during various stages of EBV infection are not clearly understood. A longitudinal study was performed to assess the development of antigen-specific PFC responses in children diagnosed to have primary symptomatic (infectious mononucleosis [IM] and asymptomatic (AS EBV infection. Evaluation of IFN-γ secreting CD8+ T cell responses upon stimulation by HLA class I-specific peptides of EBV lytic and latent proteins by ELISPOT assay followed by assessment of CD4+ and CD8+ PFC responses upon stimulation by a panel of overlapping EBV peptides for co-expression of IFN-γ, TNF-α, IL-2, perforin and CD107a by flow cytometry were performed. Cytotoxicity of T cells against autologous lymphoblastoid cell lines (LCLs as well as EBV loads in PBMC and plasma were also determined. Both IM and AS patients had elevated PBMC and plasma viral loads which declined steadily during a 12-month period from the time of diagnosis whilst decrease in the magnitude of CD8+ T cell responses toward EBV lytic peptides in contrast to increase toward latent peptides was shown with no significant difference between those of IM and AS patients. Both lytic and latent antigen-specific CD4+ and CD8+ T cells demonstrated polyfunctionality (defined as greater or equal to three functions concurrent with enhanced cytotoxicity against autologous LCLs and steady decrease in plasma and PBMC viral loads over time. Immunodominant peptides derived from BZLF1, BRLF1, BMLF1 and EBNA3A-C proteins induced the highest proportion of CD8+ as well as CD4+ PFC responses. Diverse functional subtypes of both CD4+ and CD8+ PFCs were shown to emerge at 6–12 months. In conclusion, EBV antigen-specific CD4+ and CD

  9. Polyfunctional T-cell responses are disrupted by the ovarian cancer ascites environment and only partially restored by clinically relevant cytokines.

    Science.gov (United States)

    Tran, Eric; Nielsen, Julie S; Wick, Darin A; Ng, Alvin V; Johnson, Lisa D S; Nesslinger, Nancy J; McMurtrie, Elissa; Webb, John R; Nelson, Brad H

    2010-12-22

    Host T-cell responses are associated with favorable outcomes in epithelial ovarian cancer (EOC), but it remains unclear how best to promote these responses in patients. Toward this goal, we evaluated a panel of clinically relevant cytokines for the ability to enhance multiple T-cell effector functions (polyfunctionality) in the native tumor environment. Experiments were performed with resident CD8+ and CD4+ T cells in bulk ascites cell preparations from high-grade serous EOC patients. T cells were stimulated with α-CD3 in the presence of 100% autologous ascites fluid with or without exogenous IL-2, IL-12, IL-18 or IL-21, alone or in combination. T-cell proliferation (Ki-67) and function (IFN-γ, TNF-α, IL-2, CCL4, and CD107a expression) were assessed by multi-parameter flow cytometry. In parallel, 27 cytokines were measured in culture supernatants. While ascites fluid had variable effects on CD8+ and CD4+ T-cell proliferation, it inhibited T-cell function in most patient samples, with CD107a, IFN-γ, and CCL4 showing the greatest inhibition. This was accompanied by reduced levels of IL-1β, IL-1ra, IL-9, IL-17, G-CSF, GM-CSF, Mip-1α, PDGF-bb, and bFGF in culture supernatants. T-cell proliferation was enhanced by exogenous IL-2, but other T-cell functions were largely unaffected by single cytokines. The combination of IL-2 with cytokines engaging complementary signaling pathways, in particular IL-12 and IL-18, enhanced expression of IFN-γ, TNF-α, and CCL4 in all patient samples by promoting polyfunctional T-cell responses. Despite this, other functional parameters generally remained inhibited. The EOC ascites environment disrupts multiple T-cell functions, and exogenous cytokines engaging diverse signaling pathways only partially reverse these effects. Our results may explain the limited efficacy of cytokine therapies for EOC to date. Full restoration of T-cell function will require activation of signaling pathways beyond those engaged by IL-2, IL-12, IL-18

  10. Polyfunctional T-cell responses are disrupted by the ovarian cancer ascites environment and only partially restored by clinically relevant cytokines.

    Directory of Open Access Journals (Sweden)

    Eric Tran

    Full Text Available BACKGROUND: Host T-cell responses are associated with favorable outcomes in epithelial ovarian cancer (EOC, but it remains unclear how best to promote these responses in patients. Toward this goal, we evaluated a panel of clinically relevant cytokines for the ability to enhance multiple T-cell effector functions (polyfunctionality in the native tumor environment. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed with resident CD8+ and CD4+ T cells in bulk ascites cell preparations from high-grade serous EOC patients. T cells were stimulated with α-CD3 in the presence of 100% autologous ascites fluid with or without exogenous IL-2, IL-12, IL-18 or IL-21, alone or in combination. T-cell proliferation (Ki-67 and function (IFN-γ, TNF-α, IL-2, CCL4, and CD107a expression were assessed by multi-parameter flow cytometry. In parallel, 27 cytokines were measured in culture supernatants. While ascites fluid had variable effects on CD8+ and CD4+ T-cell proliferation, it inhibited T-cell function in most patient samples, with CD107a, IFN-γ, and CCL4 showing the greatest inhibition. This was accompanied by reduced levels of IL-1β, IL-1ra, IL-9, IL-17, G-CSF, GM-CSF, Mip-1α, PDGF-bb, and bFGF in culture supernatants. T-cell proliferation was enhanced by exogenous IL-2, but other T-cell functions were largely unaffected by single cytokines. The combination of IL-2 with cytokines engaging complementary signaling pathways, in particular IL-12 and IL-18, enhanced expression of IFN-γ, TNF-α, and CCL4 in all patient samples by promoting polyfunctional T-cell responses. Despite this, other functional parameters generally remained inhibited. CONCLUSIONS/SIGNIFICANCE: The EOC ascites environment disrupts multiple T-cell functions, and exogenous cytokines engaging diverse signaling pathways only partially reverse these effects. Our results may explain the limited efficacy of cytokine therapies for EOC to date. Full restoration of T-cell function will

  11. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    Science.gov (United States)

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  12. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses.

    Science.gov (United States)

    Macal, M; Sankaran, S; Chun, T-W; Reay, E; Flamm, J; Prindiville, T J; Dandekar, S

    2008-11-01

    Human immunodeficiency virus (HIV) infection leads to severe CD4+ T-cell depletion in gut-associated lymphoid tissue (GALT) that persists despite the initiation of highly active antiretroviral therapy (HAART). It is not known whether restoration of gut mucosal CD4+ T cells and their functions is feasible during therapy and how that relates to immune correlates and viral reservoirs. Intestinal biopsies and peripheral blood samples from HIV-infected patients who were either HAART naive or on long-term HAART were evaluated. Our data demonstrated that gut CD4+ T-cell restoration ranged from modest (50%), compared with uninfected controls. Despite persistent CD4+ T-cell proviral burden and residual immune activation in GALT during HAART, effective CD4+ T-cell restoration (>50%) was achieved, which was associated with enhanced Th17 CD4+ T-cell accumulation and polyfunctional anti-HIV cellular responses. Our findings suggest that a threshold of>50% CD4+ T-cell restoration may be sufficient for polyfunctional HIV-specific T cells with implications in the evaluation of vaccines and therapeutics.

  13. The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens.

    Science.gov (United States)

    Gómez, Carmen Elena; Nájera, José Luis; Perdiguero, Beatriz; García-Arriaza, Juan; Sorzano, Carlos Oscar S; Jiménez, Victoria; González-Sanz, Rubén; Jiménez, José Luis; Muñoz-Fernández, María Angeles; López Bernaldo de Quirós, Juan Carlos; Guardo, Alberto C; García, Felipe; Gatell, José M; Plana, Montserrat; Esteban, Mariano

    2011-11-01

    Attenuated poxvirus vectors expressing human immunodeficiency virus type 1 (HIV-1) antigens are considered promising HIV/AIDS vaccine candidates. Here, we describe the nature of T cell immune responses induced in healthy volunteers participating in a phase I clinical trial in Spain after intramuscular administration of three doses of the recombinant MVA-B-expressing monomeric gp120 and the fused Gag-Pol-Nef (GPN) polyprotein of clade B. The majority (92.3%) of the volunteers immunized had a positive specific T cell response at any time postvaccination as detected by gamma interferon (IFN-γ) intracellular cytokine staining (ICS) assay. The CD4(+) T cell responses were predominantly Env directed, whereas the CD8(+) T cell responses were similarly distributed against Env, Gag, and GPN. The proportion of responders after two doses of MVA-B was similar to that obtained after the third dose of MVA-B vaccination, and the responses were sustained (84.6% at week 48). Vaccine-induced CD8(+) T cells to HIV-1 antigens after 1 year were polyfunctional and distributed mainly within the effector memory (TEM) and terminally differentiated effector memory (TEMRA) T cell populations. Antivector T cell responses were mostly induced by CD8(+) T cells, highly polyfunctional, and of TEMRA phenotype. These findings demonstrate that the poxvirus MVA-B vaccine candidate given alone is highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4 and CD8 T cell responses to HIV-1 antigens, with preference for TEM. Thus, on the basis of the immune profile of MVA-B in humans, this immunogen can be considered a promising HIV/AIDS vaccine candidate.

  14. PD-1+ polyfunctional T cells dominate the periphery after tumor-infiltrating lymphocyte therapy for cancer

    DEFF Research Database (Denmark)

    Donia, Marco; Kjeldsen, Julie Westerlin; Andersen, Rikke

    2017-01-01

    -lived memory responses are currently unknown. Here we studied the dynamics of bulk tumor-reactive CD8+ T cell populations in patients with metastatic melanoma following treatment with TILs. Experimental Design: We analyzed the function and phenotype of tumor-reactive CD8+ T cells contained in serial blood...... levels of PD-1. These partially differentiated PD-1+ polyfunctional TILs have a high capacity for persistence and may be susceptible to PD-L1/PD-L2-mediated inhibition....

  15. Polyfunctional Specific Response to Echinococcus Granulosus Associates to the Biological Activity of the Cysts.

    Directory of Open Access Journals (Sweden)

    Linda Petrone

    2015-11-01

    Full Text Available Cystic echinococcosis (CE is a complex disease caused by Echinococcus granulosus (E.granulosus, and its immunophatogenesis is still not clearly defined. A peculiar feature of chronic CE is the coexistence of Th1 and Th2 responses. It has been suggested that Th1 cytokines are related to disease resistance, whereas Th2 cytokines are related to disease susceptibility and chronicity. The aim of this study was to evaluate, by multi-parametric flow cytometry (FACS, the presence of CE specific immune signatures.We enrolled 54 subjects with suspected CE; 42 of them had a confirmed diagnosis, whereas 12 were classified as NO-CE. Based on the ultrasonography images, CE patients were further categorized as being in "active stages" (25 and "inactive stages" (17. The ability of CD4+ T-cells to produce IFN-γ, IL-2, TNF-α, Th2 cytokines or IL-10 was assessed by FACS on antigen-specific T-cells after overnight stimulation with Antigen B (AgB of E.granulosus. Cytokine profiles were evaluated in all the enrolled subjects. The results show that none of the NO-CE subjects had a detectable AgB-specific response. Among the CE patients, the frequency and proportions of AgB-specific CD4+ T-cells producing IL-2+TNF-α+Th2+ or TNF-α+Th2+ were significantly increased in the "active stages" group compared to the "inactive stages" group. Moreover, an increased proportion of the total polyfunctional subsets, as triple-and double-functional CD4 T-cells, was found in CE patients with active disease. The response to the mitogen, used as a control stimulus to evaluate the immune competence status, was characterized by the same cytokine subsets in all the subjects enrolled, independent of CE.We demonstrate, for the first time to our knowledge, that polyfunctional T-cell subsets as IL-2+TNF-α+Th2+ triple-positive and TNF-α+Th2+ double-positive specific T-cells associate with cyst biological activity. These results contribute to increase knowledge of CE immunophatogenesis and

  16. HIV-1–Infected Individuals in Antiretroviral Therapy React Specifically With Polyfunctional T-Cell Responses to Gag p24

    DEFF Research Database (Denmark)

    Brandt, Lea; Benfield, Thomas; Kronborg, Gitte

    2013-01-01

    Still no effective HIV-1 prophylactic or therapeutic vaccines are available. However, as the proportion of HIV-1-infected individuals on antiretroviral treatment is increasing, knowledge about the residual immune response is important for the possible development of an HIV-1 vaccine.......Still no effective HIV-1 prophylactic or therapeutic vaccines are available. However, as the proportion of HIV-1-infected individuals on antiretroviral treatment is increasing, knowledge about the residual immune response is important for the possible development of an HIV-1 vaccine....

  17. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior.

    Science.gov (United States)

    Spear, Timothy T; Nishimura, Michael I; Simms, Patricia E

    2017-08-01

    Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets. © Society

  18. Polyfunctional radiosensitizers

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Smithen, C.E.

    1978-01-01

    Three biradical nitroxyl compounds have been shown to modify the slope and shoulder region of the hypoxic cell survival curve of V79 cells to different degrees. The amount of sensitization produced by these compounds is dependent on the cell-drug contact time at both 20 0 C and 37 0 C whereas sensitization by the monoradical nitroxyl, NPPN, is independent of these factors. The results suggest that biradicals may modify cellular biochemistry in such a way as to change the repair capacity of the cells. This could be responsible for changes in the shape of survival curves when cell-drug contact times are increased. (author)

  19. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas.

    Science.gov (United States)

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-11-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell tumors directly ex vivo following mechanical disaggregation and without any culture step. Subpopulations of memory and effector CD4(+) Th1, Th2, and Th17 and CD8(+) Tc1 cells were identified based on surface phenotype, activation potential, and multicytokine production. Compared with the same patient's peripheral blood, T lymphocytes present inside tumors were found to be enriched in functional CD4(+) cells of the Th1 lineage and in effector memory CD8(+) cells. Additionally, several populations of CD4(+) and CD8(+) regulatory T cells were identified that may synergize to locally dampen antitumor T-cell responses.

  20. Simultaneous Infiltration of Polyfunctional Effector and Suppressor T Cells into Renal Cell Carcinomas

    NARCIS (Netherlands)

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D.; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-01-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell

  1. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Science.gov (United States)

    Central memory T cells (Tcm’s) and polyfunctional CD4 T responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by ...

  2. Polyfunctional radiosensitizers. I. Effects of a nitroxyl biradical on the survival of mammalian cells in vitro

    International Nuclear Information System (INIS)

    Cooke, B.C.; Fielden, E.M.; Johnson, M.; Smithen, C.E.

    1976-01-01

    The effect of bis(2,2,6,6-Tetramethyl-1-oxyl-4-piperidinyl)succinate (Ro-03-6061) on the survival parameters of V-79 Chinese hamster cells, irradiated under hypoxia, has been compared with related monofunctional nitroxyl compounds. The biradical is more effective in reducing the D 0 value than the three monoradical nitroxyls tested. It also removed the shoulder in asynchronous cell survival experiments, although this effect did not occur in the presence of oxygen. The shoulder for the survival curve for cells irradiated during late S phase was also reduced. Possible mechanisms for its actions are discussed in terms of the bifunctionality of the compound and the potential of such a sensitizer in radiotherapy is emphasized

  3. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients.

    Science.gov (United States)

    Gasser, Olivier; Sharples, Katrina J; Barrow, Catherine; Williams, Geoffrey M; Bauer, Evelyn; Wood, Catherine E; Mester, Brigitta; Dzhelali, Marina; Caygill, Graham; Jones, Jeremy; Hayman, Colin M; Hinder, Victoria A; Macapagal, Jerome; McCusker, Monica; Weinkove, Robert; Painter, Gavin F; Brimble, Margaret A; Findlay, Michael P; Dunbar, P Rod; Hermans, Ian F

    2018-02-01

    Vaccines that elicit targeted tumor antigen-specific T-cell responses have the potential to be used as adjuvant therapy in patients with high risk of relapse. However, the responses induced by vaccines in cancer patients have generally been disappointing. To improve vaccine function, we investigated the possibility of exploiting the immunostimulatory capacity of type 1 Natural killer T (NKT) cells, a cell type enriched in lymphoid tissues that can trigger improved antigen-presenting function in dendritic cells (DCs). In this phase I dose escalation study, we treated eight patients with high-risk surgically resected stage II-IV melanoma with intravenous autologous monocyte-derived DCs loaded with the NKT cell agonist α-GalCer and peptides derived from the cancer testis antigen NY-ESO-1. Two synthetic long peptides spanning defined immunogenic regions of the NY-ESO-1 sequence were used. This therapy proved to be safe and immunologically effective, inducing increases in circulating NY-ESO-1-specific T cells that could be detected directly ex vivo in seven out of eight patients. These responses were achieved using as few as 5 × 10 5 peptide-loaded cells per dose. Analysis after in vitro restimulation showed increases in polyfunctional CD4 + and CD8 + T cells that were capable of manufacturing two or more cytokines simultaneously. Evidence of NKT cell proliferation and/or NKT cell-associated cytokine secretion was seen in most patients. In light of these strong responses, the concept of including NKT cell agonists in vaccine design requires further investigation.

  4. Polyfunctional radiosensitizers. III. Effect of the biradical (Ro-03-6061) in combination with other radiosensitizers on the survival of hypoxic V-79 cells

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Smithen, C.E.

    1977-01-01

    The biradical Ro-03-6061 removes the shoulder from the survival curve of hypoxic V-79 whereas both NPPN and PNAP are dose-modifying sensitizers like oxygen. When hypoxic cells were irradiated in the presence of a combination of NPPN and the biradical at equivalent radical concentrations, the survival curve was similar to that for cells irradiated in the presence of NPPN alone. When a combination of PNAP and the biradical were used at a concentration where the number of electron affinic (PNAP) molecules was equal to the number of free radical moieties, the resultant D 0 value was similar to that for PNAP alone, but the shoulder of the curve was not completely restored. In experiments where the biradical was used in combination with diamide the effect was additive. Cell kill was exponential even at low doses when 0.05 mM diamide was used in combination with 0.1 mM biradical; the extrapolation number was 1.0 and the D 0 was 240 rad. The results suggest mechanistic differences between electron affinic, free radical, and sulfhydryl-binding radiosensitizers, and also differences between monofunctional and polyfunctional sensitizers

  5. A Novel Method Linking Antigen Presentation by Human Monocyte-Derived Macrophages to CD8(+) T Cell Polyfunctionality.

    NARCIS (Netherlands)

    Short, K.R.; Grant, E.J.; Vissers, M.; Reading, P.C.; Diavatopoulos, D.A.; Kedzierska, K.

    2013-01-01

    To understand the interactions between innate and adaptive immunity, and specifically how virally infected macrophages impact T cell function, novel assays examining the ability of macrophages to present antigen to CD8(+) T cells are needed. In the present study, we have developed a robust in vitro

  6. Genome-Based In Silico Identification of New Mycobacterium tuberculosis Antigens Activating Polyfunctional CD8+ T Cells in Human Tuberculosis

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; van Meijgaarden, Krista E.; Caccamo, Nadia

    2011-01-01

    infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis...

  7. Polyfunctional dispersants for controlling viscosity of phyllosilicates

    Science.gov (United States)

    Chaiko, David J.

    2006-07-25

    This invention provides phyllosilicates and polyfunctional dispersants which can be manipulated to selectively control the viscosity of phyllosilicate slurries. The polyfunctional dispersants used in the present invention, which include at least three functional groups, increase the dispersion and exfoliation of phyllosilicates in polymers and, when used in conjunction with phyllosilicate slurries, significantly reduce the viscosity of slurries having high concentrations of phyllosilicates. The functional groups of the polyfunctional dispersants are capable of associating with multivalent metal cations and low molecular weight organic polymers, which can be manipulated to substantially increase or decrease the viscosity of the slurry in a concentration dependent manner. The polyfunctional dispersants of the present invention can also impart desirable properties on the phyllosilicate dispersions including corrosion inhibition and enhanced exfoliation of the phyllosilicate platelets.

  8. From Polyfunctional to Monofunctional Accounting Dictionaries

    African Journals Online (AJOL)

    ... do on a regular basis. Keywords: specialized lexicography, function theory, polyfunctional dictionary, monofunctional dictionary, accounting dictionaries, information tools, lexicographical information costs, online dictionary, electronic lexicography, internet, meaning, writing, translation, knowledge, danish, english, spanish ...

  9. From Polyfunctional to Monofunctional Accounting Dictionaries

    African Journals Online (AJOL)

    tha

    Lexikos 23 (AFRILEX-reeks/series 23: 2013): 323-347. Development in Lexicography: From Polyfunctional to Monofunctional. Accounting Dictionaries. Sandro Nielsen, Centre for Lexicography, Aarhus University,. Aarhus, Denmark and International Centre for Lexicography,. Universidad de Valladolid, Valladolid, Spain.

  10. HLA-A02:01-Restricted Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP11/12 Preferentially Recall Polyfunctional Effector Memory CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect “Humanized” HLA-A*02:01 Transgenic Mice Against Ocular Herpes

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A.; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P.; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T.; Huang, Jiawei; Scarfone, Vanessa M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    The Herpes Simplex Virus type 1 virion tegument phosphoprotein 11/12 (HSV-1 VP11/12) is a major antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether and which VP11/12-epitope-specific CD8+ T cells play a role in the “natural” protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes from the 716 amino acids sequence of VP11/12. Three out of ten epitopes exhibited high to moderate binding affinity to HLA-A*02:01 molecules. In ten sequentially studied HLA-A*02:01 positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust and polyfunctional effector CD8+ T-cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107a/b cytotoxic degranulation, IFN-γ and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266–74, VP11/12220–228 and VP11/12702–710. Interestingly, ASYMP individuals had significantly higher proportion of CD45RAlowCCR7lowCD44highCD62LlowCD27lowCD28lowCD8+ effector memory T cells (TEM) specific to the three epitopes, compared to symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8+ TEM cell epitopes induced robust and polyfunctional epitope-specific CD8+ TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of an effective T-cell-based herpes vaccine. PMID:25617474

  11. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    Directory of Open Access Journals (Sweden)

    Xavier Chauchet

    2016-01-01

    Full Text Available Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy.

  13. MHC class II tetramer analyses in AE37-vaccinated prostate cancer patients reveal vaccine-specific polyfunctional and long-lasting CD4(+) T-cells.

    Science.gov (United States)

    Anastasopoulou, Eleftheria A; Voutsas, Ioannis F; Papamichail, Michael; Baxevanis, Constantin N; Perez, Sonia A

    2016-07-01

    Realizing the basis for generating long-lasting clinical responses in cancer patients after therapeutic vaccinations provides the means to further ameliorate clinical efficacy. Peptide cancer vaccines stimulating CD4(+) T helper cells are often promising for inducing immunological memory and persistent CD8(+) cytotoxic T cell responses. Recent reports from our clinical trial with the AE37 vaccine, which is a HER2 hybrid polypeptide, documented its efficacy to induce CD4(+) T cell immunity, which was associated with clinical improvements preferentially among HLA-DRB1*11(+) prostate cancer patients. Here, we performed in-depth investigation of the CD4(+) T cell response against the AE37 vaccine. We used the DR11/AE37 tetramer in combination with multicolor flow cytometry to identify and characterize AE37-specific CD4(+) T cells regarding memory and Tregs phenotype in HLA-DRB1*11(+) vaccinated patients. To verify vaccine-specific immunological memory in vivo, we also assessed AE37-specific CD4(+) T cells in defined CD4(+) memory subsets by cell sorting. Finally, vaccine-induced AE37-specific CD4(+) T cells were assessed regarding their functional profile. AE37-specific memory CD4(+) T cells could be detected in peptide-stimulated cultures from prostate cancer patients following vaccination even 4 y post-vaccination. The vast majority of vaccine-induced AE37-specific CD4(+) T cells exhibited a multifunctional, mostly Th1 cytokine signature, with the potential of granzyme B production. In contrast, we found relatively low frequencies of Tregs among AE37-specific CD4(+) T cells. This is the first report on the identification of vaccine-induced HER2-specific multifunctional long-lasting CD4(+) T cells in vaccinated prostate cancer patients.

  14. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes1

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-01-01

    In humans, Th1/17 cells, identified by co-expression of the chemokine receptors CCR6 and CXCR3, have been proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the pro-inflammatory cytokines IL-17, IFN-γ and GM-CSF. However, their developmental requirements, relationship with “classic” Th17 and Th1 cells and physiological role in normal immune responses are not well understood. Here, we examined CCR6+CXCR3+ Th1/17 cells from healthy individuals, and found that ex vivo those cells produced the effector cytokines IL-17, IL-22 and IFN-γ in all possible combinations, and were highly responsive to both IL-12 and IL-23. Moreover, although the antigen specificity of CCR6+CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into “pathogenic” CCR6+CXCR3+ Th1/17 cells in patients with autoimmune diseases. PMID:24890729

  15. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy

    DEFF Research Database (Denmark)

    Andersen, Rikke; Westergaard, Marie Christine Wulff; Kjeldsen, Julie Westerlin

    2018-01-01

    . Immune recognition of autologous TCLs or fresh tumor digests was observed in CD8+ TILs from 82% of patients (18/22). Cytotoxicity assays confirmed the tumoricidal capacity of RCC-TILs. The overall expansion capacity of RCC-TILs was similar to MM-TILs. However, the magnitude, polyfunctionality......-/oligofunctional pattern. The ability to select and expand polyfunctional T cells may improve cell therapy for RCC. Cancer Immunol Res; 1-14. ©2018 AACR....

  16. Effect of age and latent CMV infection on CD8+ CD56+ T cells (NKT-like) frequency and functionality.

    Science.gov (United States)

    Hassouneh, Fakhri; Campos, Carmen; López-Sejas, Nelson; Alonso, Corona; Tarazona, Raquel; Solana, Rafael; Pera, Alejandra

    2016-09-01

    Changes in the T cell pool caused by CMV infection have been proposed to contribute to immunosenescence, but it has been postulated that CMV can also have some beneficial effects in young individuals improving the immune response to other pathogens. T cells expressing CD56 (NKT-like cells) are cytotoxic effector cells with a significant role in the immune response against cancer. We have studied how age and latent CMV infection affect the frequency of NKT-like cells (CD8+ CD56+ T cells) and their response to Staphylococcal Enterotoxin B (SEB) in the context of CMV and ageing. NKT-like cell percentage increases with the combination of both CMV and age. The response to SEB and the polyfunctional index of NKT-like cells also increase with age in CMV-seropositive individuals. In young individuals, CMV infection induces a shift on the polyfunctional profile of CD8+ CD56- T cells not observed on the NKT-like cells response. NKT-like cells expressing CD57 are expanded in CMV-seropositive individuals and are more polyfunctional than their CD57-  counterpart. In addition CD57- NKT-like cells are more polyfunctional than CD8+ CD56- CD57- T cells. The results support that the expansion of polyfunctional NKT-cells may have a beneficial effect on the immune response against pathogens. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Mayara Fernanda Maggioli

    2016-10-01

    Full Text Available Central memory T cells (Tcm and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB; however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated. BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection, non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.

  18. Polyfunctional radiosensitizers-v. sensitization of hypoxic chinese hamster cells, V. 79-753B, in vitro by a series of bifunctional nitroxyl compounds

    International Nuclear Information System (INIS)

    Millar, B.C.; Jenkins, T.C.; Fielden, E.M.

    1982-01-01

    A homologous series of uncharged nitroxyl biradicals have been examined as hyposic cell sensitizers. In the series piperidinic nitroxyl moieties were separated by alkane-dicarboxamide bridging groups containing an increasing number (0 - 7) of methylene groups. In each instance sensitization was characterized by changes in both extrapolation number (n) and the slope of the hypoxic cell survival curve. Increasing the cell-drug contact time from 1 to 3 hr produced an increase in the slope of the survival curve. This was not always associated with a further decrease in n. The present data support the hypothesis that lack of interaction between the radical centers in these and other bifunctional nitroxyls is important for events leading to shoulder modification. The degree of interaction between the radical moieties was assessed from their ESR spectra in solution. In addition, comparison has been made between charged and uncharged forms of a bifunctional nitroxyl compound. In this instance a 3-hr cell-drug contact time in the presence of the uncharge compound resulted in an increase in both slope and n, whereas there was no change in n when cells were irradiated in the presence of the charged compound. When cells which had been preexposed for 3 hr to a biradical, RSU-4072, were irradiated in the presence of a mixture of the biradical and the monoradical TMPN, the survival parameters were characteristic of those seen for TMPN alone. The implications of these results are discussed

  19. Characterization of CD4 and CD8 T Cell Responses in MuSK Myasthenia Gravis

    Science.gov (United States)

    Yi, JS; Guidon, A; Sparks, S; Osborne, R; Juel, VC; Massey, JM; Sanders, DB; Weinhold, KJ; Guptill, JT

    2014-01-01

    Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T-cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T-cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T-cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T-cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T-cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T-cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in Treg function or number. PMID:24378287

  20. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses.

    Science.gov (United States)

    Bizzell, Erica; Sia, Jonathan Kevin; Quezada, Melanie; Enriquez, Ana; Georgieva, Maria; Rengarajan, Jyothi

    2017-12-28

    Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge. ©2017 Society for Leukocyte Biology.

  1. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8 + T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8 + T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8 + T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8 + T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107 a/b cytotoxic degranulation. High frequencies of multifunctional CD8 + T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14 286-294 ), VP13/14 from amino acids 504 to 512 (VP13/14 504-512 ), and VP13/14 from amino acids 544 to 552 (VP13/14 544-552 ), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RA low CD44 high CCR7 low CD62L low CD8 + effector memory T cells (T EM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T EM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic

  2. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A.; Garg, Sumit; Syed, Sabrina A.; Furness, Julie N.; Vahed, Hawa; Pham, Tiffany; Yu, Howard T.; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8+ T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8+ T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8+ T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107a/b cytotoxic degranulation. High frequencies of multifunctional CD8+ T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14286–294), VP13/14 from amino acids 504 to 512 (VP13/14504–512), and VP13/14 from amino acids 544 to 552 (VP13/14544–552), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RAlow CD44high CCR7low CD62Llow CD8+ effector memory T cells (TEM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ TEM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and

  3. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation.

    Science.gov (United States)

    Musumeci, Lauren E; Ryona, Imelda; Pan, Bruce S; Loscos, Natalia; Feng, Hui; Cleary, Michael T; Sacks, Gavin L

    2015-07-06

    Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH), 3-mercaptohexylacetate (3-MHA), and 4-mercapto-4-methyl-2-pentanone (4-MMP)) are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS). We describe a method in which thiols are converted to pentafluorobenzyl (PFB) derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME) and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%-109%) and precision (5%-11% RSD) were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines), V. labruscana (Niagara), and Vitis spp. (Cayuga White). Mean 4-MMP concentrations in New York Niagara (17 ng/L) were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  4. Human T cell responses to Japanese encephalitis virus in health and disease.

    Science.gov (United States)

    Turtle, Lance; Bali, Tanushka; Buxton, Gemma; Chib, Savita; Chan, Sajesh; Soni, Mohammed; Hussain, Mohammed; Isenman, Heather; Fadnis, Prachi; Venkataswamy, Manjunatha M; Satishkumar, Vishali; Lewthwaite, Penny; Kurioka, Ayako; Krishna, Srinivasa; Shankar, M Veera; Ahmed, Riyaz; Begum, Ashia; Ravi, Vasanthapuram; Desai, Anita; Yoksan, Sutee; Fernandez, Stefan; Willberg, Christian B; Kloverpris, Henrik N; Conlon, Christopher; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2016-06-27

    Japanese encephalitis (JE) virus (JEV) is an important cause of encephalitis in children of South and Southeast Asia. However, the majority of individuals exposed to JEV only develop mild symptoms associated with long-lasting adaptive immunity. The related flavivirus dengue virus (DENV) cocirculates in many JEV-endemic areas, and clinical data suggest cross-protection between DENV and JEV. To address the role of T cell responses in protection against JEV, we conducted the first full-breadth analysis of the human memory T cell response using a synthetic peptide library. Ex vivo interferon-γ (IFN-γ) responses to JEV in healthy JEV-exposed donors were mostly CD8(+) and targeted nonstructural (NS) proteins, whereas IFN-γ responses in recovered JE patients were mostly CD4(+) and targeted structural proteins and the secreted protein NS1. Among patients, a high quality, polyfunctional CD4(+) T cell response was associated with complete recovery from JE. T cell responses from healthy donors showed a high degree of cross-reactivity to DENV that was less apparent in recovered JE patients despite equal exposure. These data reveal divergent functional CD4(+) and CD8(+) T cell responses linked to different clinical outcomes of JEV infection, associated with distinct targeting and broad flavivirus cross-reactivity including epitopes from DENV, West Nile, and Zika virus. © 2016 Turtle et al.

  5. Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Jakobsen, Jeanne Toft

    2017-01-01

    in order to generate a certain type of immune response. To investigate this area further, we used Göttingen minipigs asan animal model especially due to the similar body size and high degree of immunome similarity between humans and pigs. In this study, we show that both a humoral and a cell......-dose immunization. Independent of antigen dose, intraperitoneal administration of antigen increased the amount of TT-specific cytotoxic CD8β+ T cells within the cytokine-producing T-cell pool when compared to the non-cytokine producing T-cell compartment. Taken together, these results demonstrate that a full...... protein formulated in the CAF09 adjuvant and administered to pigs via the intraperitoneal route effectively generates a cytotoxic T-cell response. Moreover, we confirm the inverse relationship between the antigen dose and the induction of polyfunctional T cells in a large animal model. These finding can...

  6. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation

    Directory of Open Access Journals (Sweden)

    Lauren E. Musumeci

    2015-07-01

    Full Text Available Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH, 3-mercaptohexylacetate (3-MHA, and 4-mercapto-4-methyl-2-pentanone (4-MMP are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS. We describe a method in which thiols are converted to pentafluorobenzyl (PFB derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%–109% and precision (5%–11% RSD were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines, V. labruscana (Niagara, and Vitis spp. (Cayuga White. Mean 4-MMP concentrations in New York Niagara (17 ng/L were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  7. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV vaccinated rhesus macaques

    Directory of Open Access Journals (Sweden)

    Pahar Bapi

    2012-08-01

    Full Text Available Abstract Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV vector – simian immunodeficiency virus (SIV envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.

  8. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Ørskov, Cathrine; Thomsen, Allan Randrup

    2010-01-01

    Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T...... correlated positively with dissemination, whereas the functional capacity of the generated T cells correlated inversely with vector dissemination. A comparison of the immune response to s.c. or i.v. administration at moderate doses revealed that inoculation by both routes induced a transient peak of IFN......-gamma-producing CD8(+) T cells 2 to 3 wk postinfection, but following i.v. administration, these cells were only detected in the liver. Two to four months after systemic, but not peripheral, immunization, dysfunctional transgene-specific CD8(+) T cells impaired in both cytokine production and important in vivo...

  9. Polyfunctionality and distribution of reflexive verbs in Latvian

    Directory of Open Access Journals (Sweden)

    Andra Kalnača

    2017-02-01

    Full Text Available The aim of the current paper is to analyze Latvian reflexive verbs from the point of view of their polyfunctionality and distributon.The polysemy of the reflexive verbs is not usually disucussed in the connection with its distribution pattern in the sentence either. This can be partly explianed by the fact that the reflexive verb can have some non-standard language meanings, which following the established practice of the traditional grammars and sometimes even dictionaries,  were not depicted in the language system description either. So the current paper is an attempt to analyze the polyfunctionality of reflexive verbs in connection with their semantic and syntactic functions, without judging the language use from the normative point of view.The classification of Latvian reflexive verbs is based on the relationship between semantic roles and syntactic structure according to the principles devised by Palmer (1994 and Saeed (1997.One and the same reflexive verb may have different lexical meanings with a different distribution for each of the meanings. One and the same verb can belong to different subclasses of the subject and object (or impersonal verbs.Some reflexive verbs have evaluative or aspectual (iterative meanings. The evaluative meanings usually are manifested by a positive or negative assessment of the event (the context can be enhanced by the adverbs good or bad and the consequences while the aspectual meaning is manifested by the intensity of the action, that is – iterativity.The study confirms the assumption that reflexive verbs are independent lexemes as opposed to non-reflexive verb forms. Each reflexive verb has its distinct semantic system and distribution which is different from polysemy of non-reflexive verbs and their distribution. The system of reflexive verbs in Latvian is open where new meanings and even new reflexive verbs arise particularly in colloquial use.

  10. Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Jakobsen, Jeanne Toft

    2017-01-01

    The relationship between the antigen dose and the quality of an immune response generated upon immunization is poorly understood. However, findings show that the immune system is indeed influenced by the antigen dose; hence underlining the importance of correctly determining which dose to use...... in order to generate a certain type of immune response. To investigate this area further, we used Göttingen minipigs asan animal model especially due to the similar body size and high degree of immunome similarity between humans and pigs. In this study, we show that both a humoral and a cell......-mediated immune (CMI) response can be generated following intraperitoneal immunization with tetanus toxoid (TT) formulated in the CAF09 liposomal adjuvant. Importantly, a low antigen dose induced more TT-specific polyfunctional T cells, whereas antigen-specific IgG production was observed upon high...

  11. Cell response to surgery.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    OBJECTIVES: To describe the profound alterations in host immunity that are produced by major surgery as demonstrated by experimental and clinical studies, and to evaluate the benefits of therapeutic strategies aimed at attenuating perioperative immune dysfunction. DATA SOURCES: A review of the English-language literature was conducted, incorporating searches of the MEDLINE, EMBASE, and Cochrane collaboration databases to identify laboratory and clinical studies investigating the cellular response to surgery. STUDY SELECTION: Original articles and case reports describing immune dysfunction secondary to surgical trauma were included. DATA EXTRACTION: The results were compiled to show outcomes of different studies and were compared. DATA SYNTHESIS: Current evidence indicates that the early systemic inflammatory response syndrome observed after major surgery that is characterized by proinflammatory cytokine release, microcirculatory disturbance, and cell-mediated immune dysfunction is followed by a compensatory anti-inflammatory response syndrome, which predisposes the patient to opportunistic infection, multiple organ dysfunction syndrome, and death. Because there are currently no effective treatment options for multiple organ dysfunction syndrome, measures to prevent its onset should be initiated at an early stage. Accumulating experimental evidence suggests that targeted therapeutic strategies involving immunomodulatory agents such as interferon gamma, granulocyte colony-stimulating factor, the prostaglandin E(2) antagonist, indomethacin, and pentoxifylline may be used for the treatment of systemic inflammatory response syndrome to prevent the onset of multiple organ dysfunction syndrome. CONCLUSIONS: Surgical trauma produces profound immunological dysfunction. Therapeutic strategies directed at restoring immune homeostasis should aim to redress the physiological proinflammatory-anti-inflammatory cell imbalance associated with major surgery.

  12. Polyfunctional Modifiers for Bitumen and Bituminous Materials with High Performance

    Directory of Open Access Journals (Sweden)

    Alim Feizrakhmanovich Kemalov

    2018-01-01

    Full Text Available Over the last decade increase in capacity and the intensity of vehicular traffic has increased manifoldly, including heavy trucks, super singles, and higher tire pressures, resulting in significant increase of dynamic loads on the road surface which in turn lead to high quality requirements for bitumen in order to avoid premature wear and failure of asphalt concrete pavements. One of the possibilities to increase the quality of bitumen is to use special additives and modifiers that can provide a high adhesion to mineral filler and inhibit the aging and degradation processes in the asphalt coating. To achieve this, in the present study composite modifiers based on bisimidazolines derivatives were synthesized. The developed polyfunctional modifier (PFM of complex action provides enhanced thermal stability, significantly improves the adhesion between bitumen binder and aggregates, and also improves the physical-mechanical properties of the asphalt concrete. Based on the test results it is recommended to use the synthesized samples of the PFM additive with complex action in asphalt mixtures for road paving.

  13. Toward development of a comprehensive external quality assurance program for polyfunctional intracellular cytokine staining assays.

    Science.gov (United States)

    Staats, Janet S; Enzor, Jennifer H; Sanchez, Ana M; Rountree, Wes; Chan, Cliburn; Jaimes, Maria; Chan, Ray Chun-Fai; Gaur, Amitabh; Denny, Thomas N; Weinhold, Kent J

    2014-07-01

    The External Quality Assurance Program Oversight Laboratory (EQAPOL) Flow Cytometry Program assesses the proficiency of NIH/NIAID/DAIDS-supported and potentially other interested research laboratories in performing Intracellular Cytokine Staining (ICS) assays. The goal of the EQAPOL Flow Cytometry External Quality Assurance Program (EQAP) is to provide proficiency testing and remediation for participating sites. The program is not punitive; rather, EQAPOL aims to help sites identify areas for improvement. EQAPOL utilizes a highly standardized ICS assay to minimize variability and readily identify those sites experiencing technical difficulties with their assays. Here, we report the results of External Proficiency 3 (EP3) where participating sites performed a 7-color ICS assay. On average, sites perform well in the Flow Cytometry EQAP (median score is "Good"). The most common technical issues identified by the program involve protocol adherence and data analysis; these areas have been the focus of site remediation. The EQAPOL Flow Cytometry team is now in the process of expanding the program to 8-color ICS assays. Evaluating polyfunctional ICS responses would align the program with assays currently being performed in support of HIV immune monitoring assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  15. Strong vaccine-induced CD8 T-cell responses have cytolytic function in a chimpanzee clearing HCV infection.

    Directory of Open Access Journals (Sweden)

    Babs E Verstrepen

    Full Text Available A single correlate of effective vaccine protection against chronic HCV infection has yet to be defined. In this study, we analyzed T-cell responses in four chimpanzees, immunized with core-E1-E2-NS3 and subsequently infected with HCV1b. Viral clearance was observed in one animal, while the other three became chronically infected. In the animal that cleared infection, NS3-specific CD8 T-cell responses were observed to be more potent in terms of frequency and polyfunctionality of cytokine producing cells. Unique to this animal was the presence of killing-competent CD8 T-cells, specific for NS3 1258-1272, being presented by the chimpanzee MHC class I molecule Patr-A*03∶01, and a high affinity recognition of this epitope. In the animals that became chronically infected, T-cells were able to produce cytokines against the same peptide but no cytolysis could be detected. In conclusion, in the animal that was able to clear HCV infection not only cytokine production was observed but also cytolytic potential against specific MHC class I/peptide-combinations.

  16. The research and analysis of the chocolate nut butter with polyfunctional properties

    OpenAIRE

    Кондратюк, Наталія Вячеславівна; Гаркуша, Ігор Миколайович

    2016-01-01

    The usefulness of the protein and fat composition consisting of whey and blended mixture of vegetable oils in the production technology of chocolate nut butter with a sweet extract from stevia leaves is theoretically proved and verified under production conditions. The composition of the fatty base of the product comprising a mixture of refined sunflower oil and palm oil is developed. The paper examines the polyfunctionality of the chocolate nut butter on the human body, which is due to a hig...

  17. Fragmentation of SIV-gag vaccine induces broader T cell responses.

    Directory of Open Access Journals (Sweden)

    Adel Benlahrech

    Full Text Available High mutation rates of human immunodeficiency virus (HIV allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise

  18. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  19. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses.

    Science.gov (United States)

    Tan, Hyon-Xhi; Gilbertson, Brad P; Jegaskanda, Sinthujan; Alcantara, Sheilajen; Amarasena, Thakshila; Stambas, John; McAuley, Julie L; Kent, Stephen J; De Rose, Robert

    2016-02-24

    Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  1. NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis.

    Science.gov (United States)

    Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M

    2016-07-15

    The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials

    Directory of Open Access Journals (Sweden)

    Stephanie Oyola-Reynoso

    2015-12-01

    Full Text Available Modifying the chemistry of a surface has been widely used to influence interfacial properties of a material or nature of interaction between two materials. This article provides an overview on the role of polyfunctional molecules, specifically silanes, in surface modification of polar surfaces (bearing soft nucleophiles. An emphasis on the mechanism of the reaction in the presence of adsorbed water, where the modifying reagents are hydrolysable, is discussed. To highlight the complexity of the reaction, modification of paper with trichlorosilanes is highlighted. Preparation of hydrophobic cellulosic paper, and structure–property relations under different treatment conditions is used to highlight that a monolayer is not always formed during the surface modification. Gel-formation via step-growth polymerization suggests that at the right monomer:adsorbed water ratio, a monolayer will not form but rather self-assembly driven particle formation will occur leading to a textured surface. The review highlights recent work indicating that the focus on monolayer formation, is at the very least, not always the case but gel formation, with concomitant self-assembly, might be the culprit in understanding challenges associated with the use of polyfunctional molecules in surface modification.

  3. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Science.gov (United States)

    Kitchen, Scott G; Bennett, Michael; Galić, Zoran; Kim, Joanne; Xu, Qing; Young, Alan; Lieberman, Alexis; Joseph, Aviva; Goldstein, Harris; Ng, Hwee; Yang, Otto; Zack, Jerome A

    2009-12-07

    There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  4. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  5. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Programmed death 1 is highly expressed on CD8+CD57+T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein-Barr virus.

    Science.gov (United States)

    Cencioni, Maria T; Magliozzi, Roberta; Nicholas, Richard; Ali, Rehiana; Malik, Omar; Reynolds, Richard; Borsellino, Giovanna; Battistini, Luca; Muraro, Paolo A

    2017-12-01

    Growing evidence points to a deregulated response to Epstein-Barr virus (EBV) in the central nervous system of patients with multiple sclerosis (MS) as a possible cause of disease. We have investigated the response of a subpopulation of effector CD8 + T cells to EBV in 36 healthy donors and in 35 patients with MS in active and inactive disease. We have measured the expression of markers of degranulation, the release of cytokines, cytotoxicity and the regulation of effector functions by inhibitory receptors, such as programmed death 1 (PD-1) and human inhibitor receptor immunoglobulin-like transcript 2 (ILT2). We demonstrate that polyfunctional cytotoxic CD8 + CD57 + T cells are able to kill EBV-infected cells in healthy donors. In contrast, an anergic exhaustion-like phenotype of CD8 + CD57 + T cells with high expression of PD-1 was observed in inactive patients with MS compared with active patients with MS or healthy donors. Detection of CD8 + CD57 + T cells in meningeal inflammatory infiltrates from post-mortem MS tissue confirmed the association of this cell phenotype with the disease pathological process. The overall results suggest that ineffective immune control of EBV in patietns with MS during remission may be one factor preceding and enabling the reactivation of the virus in the central nervous system and may cause exacerbation of the disease. © 2017 John Wiley & Sons Ltd.

  7. Poly-functional porous-organic polymers to access functionality – CO 2 sorption energetic relationships

    KAUST Repository

    Alkordi, Mohamed H.

    2015-09-21

    Herein, we report a facile approach towards the construction of poly-functional porous organic polymers (POPs). The functional groups employed were selected to span the range of Lewis-base to neutral to Lewis-acid character. Our results underline the effect of chemical functionality on the observed Q for CO adsorption inside the material, being largest for functional groups with electron donating O- and N-centered Lewis base sites. Our systematic investigation within a family of POPs revealed a wide range for CO heat of adsorption (23.8-53.8 kJ mol) that is clearly associated with the chemical nature of the functional groups present. In addition, post-synthetic modification of POPs reported herein demonstrated a facile pathway to dramatically enhance carbon dioxide uptake energetics.

  8. Regulation of T cell responses in atherosclerosis

    NARCIS (Netherlands)

    Puijvelde, Gijsbrecht Henricus Maria van

    2007-01-01

    One of the most important characteristics of atherosclerosis is the chronic inflammatory response in which T cells and NKT cells are very important. In this thesis several methods to modulate the activity of these T and NKT cells in atherosclerosis are described. The induction of regulatory T cells

  9. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    Directory of Open Access Journals (Sweden)

    Sama Adnan

    2016-12-01

    Full Text Available Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  10. Strong mucosal immune responses in SIV infected macaques contribute to viral control and preserved CD4+ T-cell levels in blood and mucosal tissues.

    Science.gov (United States)

    Schultheiss, Tina; Schulte, Reiner; Sauermann, Ulrike; Ibing, Wiebke; Stahl-Hennig, Christiane

    2011-04-11

    Since there is still no protective HIV vaccine available, better insights into immune mechanism of persons effectively controlling HIV replication in the absence of any therapy should contribute to improve further vaccine designs. However, little is known about the mucosal immune response of this small unique group of patients. Using the SIV-macaque-model for AIDS, we had the rare opportunity to analyze 14 SIV-infected rhesus macaques durably controlling viral replication (controllers). We investigated the virological and immunological profile of blood and three different mucosal tissues and compared their data to those of uninfected and animals progressing to AIDS-like disease (progressors). Lymphocytes from blood, bronchoalveolar lavage (BAL), and duodenal and colonic biopsies were phenotypically characterized by polychromatic flow cytometry. In controllers, we observed higher levels of CD4+, CD4+CCR5+ and Gag-specific CD8+ T-cells as well as lower immune activation in blood and all mucosal sites compared to progressors. However, we could also demonstrate that immunological changes are distinct between these three mucosal sites.Intracellular cytokine staining demonstrated a significantly higher systemic and mucosal CD8+ Gag-specific cellular immune response in controllers than in progressors. Most remarkable was the polyfunctional cytokine profile of CD8+ lymphocytes in BAL of controllers, which significantly dominated over their blood response. The overall suppression of viral replication in the controllers was confirmed by almost no detectable viral RNA in blood and all mucosal tissues investigated. A strong and complex virus-specific CD8+ T-cell response in blood and especially in mucosal tissue of SIV-infected macaques was associated with low immune activation and an efficient suppression of viral replication. This likely afforded a repopulation of CD4+ T-cells in different mucosal compartments to almost normal levels. We conclude, that a robust SIV

  11. Responses of Cells to Flow in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available The response of cells to a flow has been studied in vitro. The response of cells was examined in two types of flow channels: a circumnutating flow in a donut-shaped open channel in a culture dish, and a one-way flow in a parallelepiped rhombus flow channel. Variation was made on the material of the parallelepiped channel to study on adhesion of cells to the plates: glass and polydimethylsiloxane. Behavior of cells on the plate was observed under a flow of a medium with an inverted phase-contrast-microscope. The shear stress on the plate is calculated with an estimated parabolic distribution of the velocity between the parallel plates. The adhesion of cells was evaluated with the cumulated shear, which is a product of the shear stress and the exposure time. The experimental results show that cells are responsive to the flow, which governs orientation, exfoliation, and differentiation. The response depends on the kinds of cells: endothelial cells orient along the stream line, although myocytes orient perpendicular to the stream line. The adhesion depends on the combination between scaffold and cell: myocytes are more adhesive to glass than cartilage cells, and fibroblasts are more adhesive to oxygenated polydimethylsiloxane than glass.

  12. Frequency Responses of Rat Retinal Ganglion Cells.

    Directory of Open Access Journals (Sweden)

    Alex E Hadjinicolaou

    Full Text Available There are 15-20 different types of retinal ganglion cells (RGC in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell's intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type and their stratification (inner (i, outer (o or bistratified in the inner plexiform layer (IPL. Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15-30 Hz and low-pass cutoffs above 56 Hz (A2 cells and ~42 Hz (C1 and C4o cells. A1 and C2i/o cells were low-pass with peaks of 10-15 Hz (cutoffs 19-25 Hz. Bistratified D1 and D2 cells were also low-pass with peaks of 5-10 Hz (cutoffs ~16 Hz. The least responsive cells were the B2 and C3 types (peaks: 2-5 Hz, cutoffs: 8-11 Hz. We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag had little impact on frequency response at low frequencies, but account for 30-40% of response variability at frequencies >30 Hz.

  13. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    from cutaneous leishmaniasis (CL) responded by IFN-gamma production following stimulation with Leishmania antigens whereas cells from patients recovered from visceral leishmaniasis (VL) showed a mixed pattern of IFN-gamma and IL-4 responses. The cells producing these cytokines were predominantly CD4......In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  14. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered...... from cutaneous leishmaniasis (CL) responded by IFN-gamma production following stimulation with Leishmania antigens whereas cells from patients recovered from visceral leishmaniasis (VL) showed a mixed pattern of IFN-gamma and IL-4 responses. The cells producing these cytokines were predominantly CD4......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  15. Cytomegalovirus evasion of natural killer cell responses.

    Science.gov (United States)

    Farrell, H E; Degli-Esposti, M A; Davis-Poynter, N J

    1999-04-01

    Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.

  16. Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics.

    Science.gov (United States)

    Emam, Hossam E; Saleh, N H; Nagy, Khaled S; Zahran, M K

    2016-03-01

    Nowadays, functional clothes are employed for human body protection in addition to be fashionable clothes. Hence functionalization of clothes increases the attention of scientists and business. In the current study, poly-functional cotton fabric was carried out by instantly deposition of AgNPs using two solventless techniques namely; sorption and padding. Sorption technique was exhibited extremely high efficiency than padding one by ca. 10 times. By using the same concentrations of AgNO3, Ag content was ranged 69.3-6094.8 mg/kg and 33.8-609.3 mg/kg for sorption and padding, respectively. After AgNPs deposition, fabrics color was turned to gray-reddish yellow. By applying 5912.3 mgAg/kg fabric, bacterial reduction and UPF value were reached 99% and 12.59. Bacterial reduction and UPF were lessened to 90% and 10.19 after 20 washings. These findings proved that the direct AgNPs deposition into cotton using solventless/sorption technique is applicable in manufacturing of antibacterial/UV resistant fabrics with acquired decorative color. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols.

    Science.gov (United States)

    Bailly, Sabine; Jerkovic, Vesna; Marchand-Brynaert, Jacqueline; Collin, Sonia

    2006-09-20

    The aim of the present work was to investigate Sauternes wine aromas. In all wine extracts, polyfunctional thiols were revealed to have a huge impact. A very strong bacon-petroleum odor emerged at RI = 845 from a CP-Sil5-CB column. Two thiols proved to participate in this perception: 3-methyl-3-sulfanylbutanal and 2-methylfuran-3-thiol. A strong synergetic effect was evidenced between the two compounds. The former, never mentioned before in wines, and not found in the musts of this study, is most probably synthesized during fermentation. 3-Methylbut-2-ene-1-thiol, 3-sulfanylpropyl acetate, 3-sulfanylhexan-1-ol, and 3-sulfanylheptanal also contribute to the global aromas of Sauternes wines. Among other key odorants, the presence of a varietal aroma (alpha-terpineol), sotolon, fermentation alcohols (3-methylbutan-1-ol and 2-phenylethanol) and esters (ethyl butyrate, ethyl hexanoate, and ethyl isovalerate), carbonyls (trans-non-2-enal and beta-damascenone), and wood flavors (guaiacol, vanillin, eugenol, beta-methyl-gamma-octalactone, and Furaneol) is worth stressing.

  18. Endothelial Cell Response to Fusobacterium nucleatum.

    Science.gov (United States)

    Mendes, Reila Tainá; Nguyen, Daniel; Stephens, Danielle; Pamuk, Ferda; Fernandes, Daniel; Van Dyke, Thomas E; Kantarci, Alpdogan

    2016-07-01

    Vascular response is an essential aspect of an effective immune response to periodontal disease pathogens, as new blood vessel formation contributes to wound healing and inflammation. Gaining a greater understanding of the factors that affect vascular response may then contribute to future breakthroughs in dental medicine. In this study, we have characterized the endothelial cell response to the common bacterium Fusobacterium nucleatum, an important bridging species that facilitates the activity of late colonizers of the dental biofilm. Endothelial cells were infected with Fusobacterium nucleatum (strain 25586) for periods of 4, 12, 24, or 48 h. Cell proliferation and tube formation were analyzed, and expression of adhesion molecules (CD31 and CD34) and vascular endothelial growth factor (VEGF) receptors 1 and 2 was measured by fluorescence-activated cell sorter (FACS) analysis. Data indicate that F. nucleatum impaired endothelial cell proliferation and tube formation. The findings suggest that the modified endothelial cell response acts as a mechanism promoting the pathogenic progression of periodontal diseases and may potentially suggest the involvement of periodontopathogens in systemic diseases associated with periodontal inflammation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  20. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    Science.gov (United States)

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  1. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector.

    Directory of Open Access Journals (Sweden)

    Isabelle Magalhaes

    Full Text Available BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB. We tested BCG (SSI1331 (in 6 animals, delivered intradermally and a recombinant (rBCG AFRO-1 expressing perfringolysin (in 6 animals followed by two boosts (delivered intramuscullary with non-replicating adenovirus 35 (rAd35 expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta. Control animals received diluent (3 animals. METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma, T cell proliferation was measured in CD4(+, CD8alpha/beta(+, and CD8alpha/alpha(+ T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml, ii stronger T cell proliferation in the CD8alpha/alpha(+ T cell subset (proliferative index 17% as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+ T cells. Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell

  2. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging.

    Science.gov (United States)

    Gustafson, Claire E; Qi, Qian; Hutter-Saunders, Jessica; Gupta, Sheena; Jadhav, Rohit; Newell, Evan; Maecker, Holden; Weyand, Cornelia M; Goronzy, Jörg J

    2017-01-01

    Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs) CD8 T cells, which increase with age, in cytomegalovirus (CMV) infection and in males. CD85j + CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j + and CD85j - compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57) but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of "senescent," but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  3. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria......, and discusses factors affecting the responses of T cells to malaria antigens....

  4. T-cell responses in malaria

    DEFF Research Database (Denmark)

    Hviid, L; Jakobsen, P H; Abu-Zeid, Y A

    1992-01-01

    Malaria is caused by infection with protozoan parasites of the genus Plasmodium. It remains one of the most severe health problems in tropical regions of the world, and the rapid spread of resistance to drugs and insecticides has stimulated intensive research aimed at the development of a malaria...... vaccine. Despite this, no efficient operative vaccine is currently available. A large amount of information on T-cell responses to malaria antigens has been accumulated, concerning antigens derived from all stages of the parasite life cycle. The present review summarizes some of that information......, and discusses factors affecting the responses of T cells to malaria antigens....

  5. Identification of class I HLA T cell control epitopes for West Nile virus.

    Directory of Open Access Journals (Sweden)

    Saghar Kaabinejadian

    Full Text Available The recent West Nile virus (WNV outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1 the number of viral ligands presented by the HLA of infected cells, and 2 the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.

  6. Radiation response of rodent neural precursor cells

    International Nuclear Information System (INIS)

    Limoli, C.L.; Fike, J.R.

    2003-01-01

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  7. The T Cell Response to Staphylococcus aureus

    Science.gov (United States)

    Bröker, Barbara M.; Mrochen, Daniel; Péton, Vincent

    2016-01-01

    Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research. PMID:26999219

  8. Apoptotic response of malignant rhabdoid tumor cells

    Directory of Open Access Journals (Sweden)

    Nocentini Silvano

    2003-07-01

    Full Text Available Abstract Background Malignant rhabdoid tumors (MRTs are extremely aggressive and resist current radio- and chemotherapic treatments. To gain insight into the dysfunctions of MRT cells, the apoptotic response of a model cell line, MON, was analyzed after exposure to several genotoxic and non-genotoxic agents employed separately or in association. Results Fluorescence microscopy of chromatin morphology and electrophoretic analysis of internucleosomal DNA fragmentation revealed that MON cells were, comparatively to HeLa cells, resistant to apoptosis after treatment with etoposide, cisplatin (CisPt or X-rays, but underwent some degree of apoptosis after ultraviolet (UV C irradiation. Concomitant treatment of MON cells with X-rays or vinblastine and the phosphatidylinositol 3-kinase (PI3-K inhibitor wortmannin resulted in synergistic induction of apoptosis. Western blot analysis showed that the p53 protein was upregulated in MON cells after exposure to all the different agents tested, singly or in combination. In treated cells, the p53 downstream effectors p21WAF1/CIP1, Mdm2 and Bax were induced with some inconsistency with regard to the accumulation of p53. Poly ADP-ribose polymerase (PARP cleavage, indicative of ongoing apoptosis, occurred in UVC-irradiated cells and, especially, in cells treated with combinations of X-rays or vinblastine with wortmannin. However, there was moderate or no PARP cleavage in cells treated with CisPt, X-rays, vinblastine or wortmannin singly or with the combinations X-rays plus CisPt or vinblastine and CisPt plus vinblastine or wortmannin. The synergistic effect on the induction of apoptosis exerted by some agent combinations corresponded with synergy in respect of MON cell growth inhibition. Conclusion These results suggest abnormalities in the p53 pathway and apoptosis control in MRT cells. The Ras/PI3-K/AKT signaling pathway might also be deregulated in these cells by generating an excess of survival factors. These

  9. Regulatory T Cells in Radiotherapeutic Responses

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Xie, Michael W.; Ratikan, Josephine A.; McBride, William H.

    2012-01-01

    Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling “danger.” The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the “brakes” on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  10. Regulatory T cells in radiotherapeutic responses

    Directory of Open Access Journals (Sweden)

    Dörthe eSchaue

    2012-08-01

    Full Text Available Radiation therapy (RT can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling danger. The multiple mechanisms that can be evoked include a shift towards a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs, suppressor macrophages and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the brakes on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  11. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  12. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-CII and PsHSP18.1-CI, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  13. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  14. IFN-γ and TNF-α producing CD4+ T-cells in the blood after Mycoplasma hyosynoviae challenge of vaccinated pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Hansen, Mette Sif; Lauritsen, Klara Tølbøll

    In a vaccine trial against Mycoplasma hyosynoviae infection, pigs were vaccinated with formalin fixed whole-cell-antigen formulated with adjuvant DDA/TDB (SSI). Placebo pigs received adjuvant with saline. Vaccinations were performed at five and eight weeks of age, followed by an intranasal M....... hyosynoviae challenge inoculation three weeks later. Vaccination induced both antibodies and a cell-mediated immune response (CMI) in vaccinated pigs compared to placebo pigs as shown by M. hyosynoviae antigen (Ag) specific IFN-γ response in an IL-18 potentiated whole-blood IFN-γ stimulation assay (mean IFN......-γ level 1936 pg/ml vs. 82 pg/ml (p=0.0001)). A central memory T cell phenotype with polyfunctional capacity to produce all three cytokines IFN-γ, TNF-α and IL-2 has recently been linked to development of vaccine induced protection in several infections. In a subset of seven vaccinated pigs and four...

  15. Functional effector memory T cells contribute to protection from superinfection with heterologous simian immunodeficiency virus or simian-human immunodeficiency virus isolates in Chinese rhesus macaques.

    Science.gov (United States)

    Sun, Ming; Zheng, Huiwen; Xie, Yingpeng; Li, Bingxiang; Long, Haiting; Guo, Ge; Guo, Lei; Wang, Jingjing; Ning, Ruotong; Li, Yue; Liu, Longding

    2017-05-01

    Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4 + effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.

  16. Quantitation Method for Polyfunctional Thiols in Hops (Humulus lupulus L.) and Beer Using Specific Extraction of Thiols and Gas Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Takazumi, Koji; Takoi, Kiyoshi; Koie, Koichiro; Tuchiya, Youichi

    2017-11-07

    A method for the quantitation of six polyfunctional thiols, 4-methyl-4-sulfanylpentan-2-one (4MSP), 3-sulfanyl-4-methylpentan-1-ol (3S4MP), 3-sulfanyl-4-methylpentyl acetate (3S4MPA), 3-sulfanyl-3-methylbutan-1-ol (3S3MB), 3-sulfanylhexan-1-ol (3SH), and 3-sulfanylhexyl acetate (3SHA), in hops and beer without organic mercury compounds was developed. The method employed specific extraction of thiols using a silver ion solid phase extraction (SPE) cartridge and gas chromatography-tandem mass spectrometry (GC-MS/MS). For all thiols analyzed, good linearity was achieved by adding thioglycerol as an analyte protectant. Recoveries for both hops (74-100%) and beer (79-113%) were acceptable, and the repeatability for both was also good (relative standard deviations of 2.8-8.4%). The limits of detection for the six polyfunctional thiols were below their odor thresholds in beer. The method was applied to quantitation of hops and beer flavored with thiol-containing hop varieties. Due to their detected levels and level variations in different beers, 4MSP and 3S4MP are thought to be important polyfunctional thiols for the characteristic flavor of hop varieties.

  17. Cell cycle progression in response to oxygen levels.

    Science.gov (United States)

    Ortmann, Brian; Druker, Jimena; Rocha, Sonia

    2014-09-01

    Hypoxia' or decreases in oxygen availability' results in the activation of a number of different responses at both the whole organism and the cellular level. These responses include drastic changes in gene expression, which allow the organism (or cell) to cope efficiently with the stresses associated with the hypoxic insult. A major breakthrough in the understanding of the cellular response to hypoxia was the discovery of a hypoxia sensitive family of transcription factors known as the hypoxia inducible factors (HIFs). The hypoxia response mounted by the HIFs promotes cell survival and energy conservation. As such, this response has to deal with important cellular process such as cell division. In this review, the integration of oxygen sensing with the cell cycle will be discussed. HIFs, as well as other components of the hypoxia pathway, can influence cell cycle progression. The role of HIF and the cell molecular oxygen sensors in the control of the cell cycle will be reviewed.

  18. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  19. Peripheral Blood CD4 T-Cell and Plasmacytoid Dendritic Cell (pDC) Reactivity to Herpes Simplex Virus 2 and pDC Number Do Not Correlate with the Clinical or Virologic Severity of Recurrent Genital Herpes

    Science.gov (United States)

    Moss, Nicholas J.; Magaret, Amalia; Laing, Kerry J.; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E.; Schiffer, Joshua T.; Wald, Anna

    2012-01-01

    Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals. PMID:22761381

  20. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  1. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  2. Cardio–Pulmonary Response Of Patients With Sickle Cell Anaemia ...

    African Journals Online (AJOL)

    The purpose of this study was to compare the response of sickle cell anaemia patients with their age-matched counterparts to exercise test. This was to see whether patients with sickle cell disease could be given exercise therapy without any risk of adverse cardio-respiratory response during the course of physical ...

  3. Fluoride inhibits the response of bone cells to mechanical loading

    NARCIS (Netherlands)

    Willems, H.M.E.; van den Heuvel, E.G.H.M.; Castelein, S.; Buisman, J.K.; Bronckers, A.L.J.J.; Bakker, A.D.; Klein-Nulend, J.

    2011-01-01

    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The

  4. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses.

    Science.gov (United States)

    Kursar, Mischo; Bonhagen, Kerstin; Fensterle, Joachim; Köhler, Anne; Hurwitz, Robert; Kamradt, Thomas; Kaufmann, Stefan H E; Mittrücker, Hans-Willi

    2002-12-16

    CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.

  6. Investigation of the response of low-dose irradiated cells. Pt. 2. Radio-adaptive response of human embryonic cells is related to cell-to-cell communication

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Watanabe, Masami.

    1994-01-01

    To clarify the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells and HeLa cells with low-dose X-ray and examined the changes in sensitivity to subsequent high-dose X-irradiation. The results obtained were as follows; (1) When HE cells were irradiated by a high-dose of 200 cGy, the growth ratio of the living cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a preliminary irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the relative growth ratios increased significantly to 45-53%. (2) This preliminary irradiation effect was not observed in HeLa cells, being cancer cells. (3) When the HE cells suspended in a Ca 2+ iron-free medium or TPA added medium while receiving the preliminary irradiation of 13 cGy, the effect of the preliminary irradiation in increasing the relative growth ratio of living cells was not observed. (4) This indicates that normal cells shows an adaptive response to low-dose radiation and become more radioresistant. This phenomenon is considered to involve cell-to-cell communication maintained in normal cells and intracellular signal transduction in which Ca 2+ ion plays a role. (author)

  7. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  8. Stem Cells Matter in Response to Fasting

    Directory of Open Access Journals (Sweden)

    Badi Sri Sailaja

    2015-12-01

    Full Text Available The molecular processes underlying intestinal adaptation to fasting and re-feeding remain largely uncharacterized. In this issue of Cell Reports, Richmond et al. report that dormant intestinal stem cells are regulated by PTEN and nutritional status.

  9. Cellular automaton model of cell response to targeted radiation

    International Nuclear Information System (INIS)

    Richard, M.; Kirkby, K.J.; Webb, R.P.; Kirkby, N.F.

    2009-01-01

    It has been shown that the response of cells to low doses of radiation is not linear and cannot be accurately extrapolated from the high dose response. To investigate possible mechanisms involved in the behaviour of cells under very low doses of radiation, a cellular automaton (CA) model was created. The diffusion and consumption of glucose in the culture dish were computed in parallel to the growth of cells. A new model for calculating survival probability was introduced; the communication between targeted and non-targeted cells was also included. Early results on the response of non-confluent cells to targeted irradiation showed the capability of the model to take account for the non-linear response in the low-dose domain

  10. Role of Different Subpopulations of CD8+T Cells during HIV Exposure and Infection.

    Science.gov (United States)

    Gonzalez, Sandra Milena; Taborda, Natalia Andrea; Rugeles, María Teresa

    2017-01-01

    During HIV infection, specific responses exhibited by CD8 + T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8 + T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8 + T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8 + T cells, as evidenced in HLA-DR + CD38 - cells. CD8 + T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8 + T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8 + T cells in relation with natural resistance to HIV infection and progression.

  11. System-wide Analysis of the T Cell Response

    Directory of Open Access Journals (Sweden)

    Ruxandra Covacu

    2016-03-01

    Full Text Available The T cell receptor (TCR controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses.

  12. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Science.gov (United States)

    Mak, W.C.; Olesen, K.; Sivlér, P.; Lee, C.J.; Moreno-Jimenez, I.; Edin, J.; Courtman, D.; Skog, M.; Griffith, M.

    2015-01-01

    Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation. PMID:26096147

  13. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Directory of Open Access Journals (Sweden)

    W.C. Mak

    2015-06-01

    Full Text Available Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs. While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.

  14. Polyfunctional radiosensitizers. II. Interaction of the biradical (Ro 03-6061) with reducing species

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Smithen, C.E.

    1977-01-01

    Preincubation of the biradical Ro 03-6061 with human erythrocytes rendered the molecule ineffective as a sensitizer of hypoxic V79 cells. The rate of reduction of the biradical with reduced glutathione proceeded much more slowly than that of the monoradical nitroxyl NPPN, and the reaction was faster at 37 0 C than at room temperature. The reduction of the free radical centers was reflected in its radiosensitizing ability, causing changes in the survival curves of hypoxic V79 cells with respect to both D 0 and the extrapolation number. The efficacy of the biradical as a sensitizer was not completely removed by treatment with reduced glutathione at 37 0 C whereas there was no sensitization of hypoxic cells in the presence of NPPN that had been pretreated similarly with reduced glutathione. The results are discussed in terms of the chemistry of the molecule and possible mechanistic differences between mono- and biradical nitroxyls, and other shoulder-modifying sensitizers such as diamide

  15. Polyfunctional radiosensitizers. VII. Radiosensitization by conformationally-restricted isomers of a nitroxyl biradical in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jenkins, T.C.; Smithen, C.E.; Jinks, S.

    1985-01-01

    Both trans-N,N'-bis(2,2,6,6-tetramethyl-1-oxy-4-piperidinyl)-1,2-diaminocyclopropane[Ro31-2269] and its cis isomer [Ro 31-2778] selectively sensitized hypoxic Chinese hamster cells, line V-79-753B, to radiation by decreasing both the D 0 value and extrapolation number, whereas a related dibasic monoradical Ro 31-2655 decreased D 0 alone.There was no evidence for competition between either biradical and 2,2,6,6-tetramethyl-4-piperidinol-N-oxyl (TMPN) at equimolar concentration or biradical and 0.82 μM oxygen when cells were equilibrated with the biradicals for 3 hr prior to irradiation in the presence of mixtures of either oxygen and biradical, TMPN and biradical, or TMPN alone. Examination of the plasma membrane from cells equilibrated with the trans biradical Ro 31-2269 showed that the drug accumulated in the membrane when compared with the concentration found in whole cells. Experiments with the conformationally-unrestricted biradical bis(2,2,6,6-tetramethyl-1-oxyl-4-piperidinyl) succinate [Ro 03-6061] showed that when cell were equilibrated with the compound for 1 hr prior to irradiation in hypoxia in the presence of a mixture containing an equimolar radical concentration of TMPN, there was an increase in both the slope and the extrapolation number compared with values for hypoxic cells irradiated in the presence of this biradical alone. The results are discussed in terms of a model to account for sensitization by these compounds

  16. Mesenchymal stem cells induce dermal fibroblast responses to injury

    International Nuclear Information System (INIS)

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  17. The radiation response of cells recovering after chronic hypoxia

    International Nuclear Information System (INIS)

    Kwok, T.T.; Sutherland, R.M.

    1989-01-01

    Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment

  18. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  19. The T Cell Response to Actinobacillus actinomycetemcomitans

    Science.gov (United States)

    2006-05-01

    50-54). Other factors enable Aa to attach to extracellular matrix proteins and invade epithelial cells; thereby making them resistant to non...aggressive therapy involving surgical intervention in conjunction with systemic antibiotics, including metronidazole, amoxicillin , or tetracycline...family derivatives (38-40). The increasing resistance of A. actinomycetemcomitans to antibiotics is prompting concern among the dental community, as

  20. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor.

    Science.gov (United States)

    Scianna, Marco; Merks, Roeland M H; Preziosi, Luigi; Medico, Enzo

    2009-09-07

    The different behaviors of colonies of two cell lines, ARO (thyroid carcinoma-derived cells) and MLP-29 (mouse liver progenitor cells), in response to hepatocyte growth factor (HGF) are described deducing suitable cellular Potts models (CPM). It is shown how increased motility and decreased adhesiveness are responsible for cell-cell dissociation and tissue invasion in the ARO cells. On the other hand, it is shown that, in addition to the biological mechanisms above, it is necessary to include directional persistence in cell motility and HGF diffusion to describe the scattering and the branching processes characteristic of MLP-29 cells.

  1. iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Ryan L Bjordahl

    Full Text Available The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT mice or Jalpha18(-/- mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/- mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+ T cells. In contrast, lymphoma growth in CD1d1(-/- mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.

  2. Phenomenon of adaptive response of cells in radiobiology

    International Nuclear Information System (INIS)

    Fillipovich, I.V.

    1991-01-01

    Consideration is given to various adaptive reactions to low-level radiation, their association with an absorbed dose, dose rate, radiation quality and time-interval between exposures, as well as with a cell cycle phase. Possible mechanisms of the adaptive response and the character and role of DNA damages, that can induce gene expression of the adaptive response, are discussed. The data on the influence of a preliminary long-term exposure to low-level radiation on the radiosensitivity of biological objects are analyzed with due regard for the adaptive cell response. It is concluded that the adaptive response of cells to ionizing radiation is a particular case of the phenomenon of cell adaptation of the effect of genotoxic factors of the environment

  3. Dynamics of NKT-Cell Responses to Chlamydial Infection.

    Science.gov (United States)

    Shekhar, Sudhanshu; Joyee, Antony George; Yang, Xi

    2015-01-01

    Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40-CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.

  4. Transient response of a proton exchange membrane fuel cell

    Science.gov (United States)

    Weydahl, Helge; Møller-Holst, Steffen; Hagen, Georg; Børresen, Børre

    The transient response of a proton exchange membrane fuel cell (PEMFC) supplied with pure hydrogen and oxygen was investigated by load step measurements assisted by electrochemical impedance spectroscopy and chronoamperometry. Using an in-house designed resistance board, the uncontrolled response in both cell voltage and current upon step changes in a resistive load was observed. The PEMFC was found to respond quickly and reproducibly to load changes. The transient PEMFC response was limited by a cathodic charge transfer process with a potential-dependent response time. For load steps to high-current densitities, a second transient process with a constant response time was observed. This transient was offset from the charge transfer transient by a temporarily stable plateau. Results from chronoamperometry indicated that the second transient could be related to a diffusion process. Transient paths were plotted in the V- i diagram, matching a predicted pattern with overshooting cell voltage and current during a load step.

  5. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  6. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  7. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  8. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  9. T Cell Responses: Naive to Memory and Everything in Between

    Science.gov (United States)

    Pennock, Nathan D.; White, Jason T.; Cross, Eric W.; Cheney, Elizabeth E.; Tamburini, Beth A.; Kedl, Ross M.

    2013-01-01

    The authors describe the actions that take place in T cells because of their amazing capacity to proliferate and adopt functional roles aimed at clearing a host of an infectious agent. There is a drastic decline in the T cell population once the primary response is over and the infection is terminated. What remains afterward is a population of T…

  10. Cyperus scariosus Chloroform Fraction Inhibits T cell Responses in ...

    African Journals Online (AJOL)

    Erah

    CSC did not significantly (p < 0.01) suppress Th2 (IL-4) system. Conclusion: The findings from this investigation reveal that C. scariosus causes immunosuppression by inhibiting Th1 cytokines. Keywords: Cyperus scariosus; Immunosuppression; Humoral antibody titre; Cell-mediated immune response; CD 4+ T- helper cells ...

  11. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi

    NARCIS (Netherlands)

    Mason, Lauren M. K.; Hovius, Joppe W. R.

    2018-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells that recognize and phagocytose pathogens, and help to orchestrate adaptive immune responses to combat them. DCs are abundant in the skin where Borrelia burgdorferi first enters the body during a tick bite, and are thus critical in

  12. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    Science.gov (United States)

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  13. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  14. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  15. Temporal Analyses of the Response of Intervertebral Disc Cells and Mesenchymal Stem Cells to Nutrient Deprivation

    Directory of Open Access Journals (Sweden)

    Sarah A. Turner

    2016-01-01

    Full Text Available Much emphasis has been placed recently on the repair of degenerate discs using implanted cells, such as disc cells or bone marrow derived mesenchymal stem cells (MSCs. This study examines the temporal response of bovine and human nucleus pulposus (NP cells and MSCs cultured in monolayer following exposure to altered levels of glucose (0, 3.15, and 4.5 g/L and foetal bovine serum (0, 10, and 20% using an automated time-lapse imaging system. NP cells were also exposed to the cell death inducers, hydrogen peroxide and staurosporine, in comparison to serum starvation. We have demonstrated that human NP cells show an initial “shock” response to reduced nutrition (glucose. However, as time progresses, NP cells supplemented with serum recover with minimal evidence of cell death. Human NP cells show no evidence of proliferation in response to nutrient supplementation, whereas MSCs showed greater response to increased nutrition. When specifically inducing NP cell death with hydrogen peroxide and staurosporine, as expected, the cell number declined. These results support the concept that implanted NP cells or MSCs may be capable of survival in the nutrient-poor environment of the degenerate human disc, which has important clinical implications for the development of IVD cell therapies.

  16. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections.

    Science.gov (United States)

    Panagioti, Eleni; Klenerman, Paul; Lee, Lian N; van der Burg, Sjoerd H; Arens, Ramon

    2018-01-01

    For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4 + and CD8 + T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.

  17. Ultraviolet responses of Gorlin syndrome primary skin cells.

    Science.gov (United States)

    Brellier, F; Valin, A; Chevallier-Lagente, O; Gorry, P; Avril, M-F; Magnaldo, T

    2008-08-01

    Gorlin syndrome, or naevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant disorder associated with mutations in the PTCH1 gene, which encodes the receptor of SONIC HEDGEHOG. In addition to developmental abnormalities, patients with NBCCS are prone to basal cell carcinoma (BCC), the most frequent type of nonmelanoma skin cancer in humans. As ultraviolet (UV) exposure plays a prominent role in the development of sporadic BCC, we aimed to determine whether primary NBCCS skin cells exhibit differential responses to UV exposure compared with wild-type (WT) skin cells. Primary fibroblast and keratinocyte strains were isolated from nonlesional skin biopsies of 10 patients with characteristic NBCCS traits. After identification of PTCH1 mutations, capacities of NBCCS cells to repair UV-induced DNA lesions and to survive after UV irradiation, as well as p53 responses, were compared with those of WT skin cells. The c1763insG PTCH1 mutation is described for the first time. DNA repair and cell survival analyses following UV irradiation revealed no obvious differences between responses of NBCCS and WT fibroblasts and keratinocytes. However, p53 accumulation after UV irradiation was abnormally persistent in all NBCCS primary keratinocyte strains compared with WT keratinocytes. Our observations that NBCCS cells harbour normal DNA repair and survival capacities following UV irradiation better explain that BCC proneness of patients with NBCCS does not solely concern body areas exposed to sunlight and suggest rather that it might be due to cell cycle alterations.

  18. Effect of maraviroc intensification on HIV-1-specific T cell immunity in recently HIV-1-infected individuals.

    Science.gov (United States)

    Kawana-Tachikawa, Ai; Llibre, Josep M; Bravo, Isabel; Escrig, Roser; Mothe, Beatriz; Puig, Jordi; Puertas, Maria C; Martinez-Picado, Javier; Blanco, Julia; Manzardo, Christian; Miro, Jose M; Iwamoto, Aikichi; Pozniak, Anton L; Gatell, Jose M; Clotet, Bonaventura; Brander, Christian

    2014-01-01

    The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown. Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation). Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8⁺ T cells were indistinguishable between the two arms and did not change over time between the groups. Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.

  19. Studies on adaptive responses in Chinese hamster cells

    International Nuclear Information System (INIS)

    Michelin, S.C.; Perez, M.R. Del; Dubner, D.; Gisone, P.A.

    1997-01-01

    For many years the possibility has been considered of low doses of radiation inducing adaptive responses in cells and organisms against the mutagenic effects of radiation. Currently, a number of experimental data appraise the existence of an adaptive response that is characterized by a decrease of radiation induced genetic damages. The understanding of the molecular mechanism involved in this phenomenon permits to estimate the effects and risks of low dose exposure. In this work, preliminary results of studies on the induction of adaptive response in cells subjected to different doses of ionizing radiation are presented

  20. The STATs in cell stress-type responses

    Directory of Open Access Journals (Sweden)

    Best James

    2004-08-01

    Full Text Available Abstract In the early 1990's, a new cell signaling pathway was described. This new paradigm, now known as the JAK/STAT pathway, has been extensively investigated in immune-type cells in response to interferons and interleukins. However, recent evidence suggests that the JAK/STAT pathway also mediates diverse cellular responses to various forms of biological stress including hypoxia/reperfusion, endotoxin, ultraviolet light, and hyperosmolarity. The current literature describing the JAK/STAT pathway's role in cellular stress responses has been reviewed herein, but it is clear that our knowledge in this area is far from complete.

  1. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection

    Directory of Open Access Journals (Sweden)

    Laura M. Snell

    2016-09-01

    Full Text Available Viral persistence specifically inhibits CD4 Th1 responses and promotes Tfh immunity, but the mechanisms that suppress Th1 cells and the disease consequences of their loss are unclear. Here, we demonstrate that the loss of CD4 Th1 cells specifically leads to progressive CD8 T cell decline and dysfunction during viral persistence. Therapeutically reconstituting CD4 Th1 cells restored CD4 T cell polyfunctionality, enhanced antiviral CD8 T cell numbers and function, and enabled viral control. Mechanistically, combined interaction of PD-L1 and IL-10 by suppressive dendritic cell subsets inhibited new CD4 Th1 cells in both acute and persistent virus infection, demonstrating an unrecognized suppressive function for PD-L1 in virus infection. Thus, the loss of CD4 Th1 cells is a key event leading to progressive CD8 T cell demise during viral persistence with important implications for restoring antiviral CD8 T cell immunity to control persistent viral infection.

  2. Antitumor Responses of Invariant Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Jennie B. Altman

    2015-01-01

    Full Text Available Natural killer T (NKT cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.

  3. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    Directory of Open Access Journals (Sweden)

    Neelkamal Chaudhary

    2010-02-01

    Full Text Available Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H1-T(H17 and destructive allergic (T(H2 immunity. How Aspergillus allergens (Asp f proteins participate in the development of allergic sensitization is unknown.To determine whether Asp f proteins are strictly associated with T(H2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17 to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H1-responses to Asp f3 (a putative peroxismal membrane protein, Asp f9/16 (cell wall glucanase, Asp f11 (cyclophilin type peptidyl-prolyl isomerase and Asp f22 (enolase. Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals.Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  4. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    Science.gov (United States)

    Chaudhary, Neelkamal; Staab, Janet F; Marr, Kieren A

    2010-02-17

    Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H)1-T(H)17) and destructive allergic (T(H)2) immunity. How Aspergillus allergens (Asp f proteins) participate in the development of allergic sensitization is unknown. To determine whether Asp f proteins are strictly associated with T(H)2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17) to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H)1-responses to Asp f3 (a putative peroxismal membrane protein), Asp f9/16 (cell wall glucanase), Asp f11 (cyclophilin type peptidyl-prolyl isomerase) and Asp f22 (enolase). Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals. Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  5. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  6. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  7. T-cell activation and early gene response in dogs.

    Science.gov (United States)

    Mortlock, Sally-Anne; Wei, Jerry; Williamson, Peter

    2015-01-01

    T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle

  8. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  9. Rapid flow-induced responses in endothelial cells

    Science.gov (United States)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  10. Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders

    Directory of Open Access Journals (Sweden)

    Jian-Chih Chen

    2013-01-01

    Full Text Available The main objective of this study is to characterize the thermal, mineralization, and osteoblast cells response of pearl nanocrystallites. The results obtained from X-ray diffraction, FTIR spectra demonstrate that the pearl nano-crystallites can induce the formation of an HA layer on their surface in SBF, even after only short soaking periods. The in vitro cell response to nano-grade pearl powders is assessed by evaluating the cytotoxicity against a mouse embryonic fibroblast cell line and by characterizing the attachment ability and alkaline phosphatase activity of mouse bone cells (MC3T3-E1, abbreviated to E1 and bone marrow stromal precursor (D1 cells. The cytotoxicities of pearls were tested by the filtration and culture of NIH-3T3 mouse embryonic fibroblast cells. The viability of the cultured cells in media containing pearl crystallites for 24 and 72 h is greater than 90%. The bone cells seen in these micrographs are elongated and align predominately along the pearl specimen. The cells observed in these images also appeared well attached and cover the surface almost completely after 1 h. The pearl nanocrystallites had a positive effect on the osteogenic ability of ALP activity, and this promoted the osteogenic differentiation of MSCs significantly at explanations.

  11. Relation between radio-adaptive response and cell to cell communication

    International Nuclear Information System (INIS)

    Keiichiro Ishii

    1996-01-01

    Ionizing radiation has been considered to cause severe damages to DNA and do harm to cells in proportion to the dose, however low it might be. In 1984, Wolff et al. showed that human peripheral lymphocytes adapted to the low-dose radiation from 3 H-TdR added in culture medium and became resistant to the subsequent irradiation with high-doses of X-rays. This response, which is called radio-adaptive response, is also induced by X-rays and gamma-rays in human lymphocytes and Chinese hamster V79 cells. However, the mechanisms of and conditions for adaptive responses to radiation have not been clarified. With an objective of clarifying the conditions for adaptive responses of cells to radiation, we examined how the cell to cell communication is involved in the adaptive responses. We irradiated normal human embryo-derived (HE) cells and cancer cells (HeLa) in culture at high density with low-dose X-ray and examined their radio-adaptive responses by measuring the changes in sensitivity to subsequent high-dose X-ray irradiation using the Trypan Blue dye-exclusion test method. We also conducted experiments to examine the effects of Ca 2+ ions and Phorbol 12-Myristate 13-Acetate (TPA) which are supposed to be involved in cell to cell communication. (author)

  12. Evaluating Stem Cell Response to a Spider Silk Scaffold

    Science.gov (United States)

    Hafner, Katherine Lee

    Micropatterning on a surface using fibers, channels, and troughs, can act as an effective means of inducing cell attachment and alignment. These morphological and pattern changes as a response to physical cues can impact the potential that a cell has to differentiate into a different cell line. This thesis evaluated the response of human dental pulp stem cells (DPSCs), and other cell types, to spider dragline silk fibers, a potential scaffold material for tissue regeneration, and further observed the effects of morphology, orientation, and composition of silk on the adherence of cells. Several cell lines were studied in this thesis, including adipose derived stem cells (ADSCs), osteoblasts (7F2s), and fibroblasts (3T3s), but DPSCs were the main cell type of interest. This is due to the fact that DPSCs are a proposed source of stem cells for nerve regeneration based on their close embryonic origin to neurons and the ease with which DPSCs can be obtained from a donor. The cells' morphologies and spread patterns were characterized after they were plated onto Nephila clavipes dragline fibers in media. The inclusion of 3T3s and 7F2s in this study allowed for both direct comparisons to prior published work and a qualitative comparison to the morphology of the DPSCs. After twelve days, the DPSCs exhibited greater relative alignment and adherence to the spider dragline fibers than the 3T3s and 7F2s when silk was wrapped in an aligned orientation rather than a random orientation. The impact of a common sterilization method (ultraviolet light) on the spider dragline fiber surface and subsequent cell response to this modified surface was also characterized. Exposure of the silk to ultraviolet light did not have a measureable effect on cell alignment, but it did eliminate bacterial growth and changed fiber surface roughness. Spiders' exposure to stressful environments did not have an effect on silk to impair cell alignment or adhesion, and synthetic recombinant protein silk

  13. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells

    DEFF Research Database (Denmark)

    Payne, Rebecca P; Kløverpris, Henrik; Sacha, Jonah B

    2010-01-01

    control of HIV, we first characterized the CD8(+) T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B 2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B 2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response...... by the respective CD8(+) T-cell response. By comparing inhibitions of viral replication by CD8(+) T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B 2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early...... recognition of HIV-1-infected cells, within 6 h of infection, by KK10- and KY9-specific CD8(+) T cells but not until 18 h postinfection by VL9-specific CD8(+) T cells. There was no association between antiviral efficacy and proliferative capacity, cytotoxicity, polyfunctionality, or T-cell receptor (TCR...

  14. Transcriptional regulation during CD8 T-cell immune responses.

    Science.gov (United States)

    Munitic, Ivana; Evaristo, César; Sung, Hsueh Cheng; Rocha, Benedita

    2010-01-01

    Naïve CD8 T cells differentiate in response to antigen stimulation. They acquire the capacity to express multiple effector molecules and mediate effector functions that contribute to infection control. Once antigen loads are reduced they revert progressively to a less activated status and eventually reach a steady-state referred to as "memory" that is very different from that of naive cells. Indeed, these "memory" cells are "ready-to-go" populations that acquired the capacity to respond more efficiently to antigen stimulation. They modify their cell cycle machinery in order to divide faster; they likely improve DNA repair and other cell survival mechanisms in order to survive during division and thus to generate much larger clones of effector cells; finally, they also mediate effector functions much faster. These modifications are the consequence of changes in the expression of multiple genes, i.e., on the utilization of a new transcription program.

  15. Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells.

    Science.gov (United States)

    Chiao, Chuan-Chin; Masland, Richard H

    2002-12-15

    The mechanism of direction selectivity in retinal ganglion cells remains controversial. An important issue is how the starburst amacrine cells, which are known to provide a major synaptic input to the direction-selective ganglion cells, participate in the directional discrimination. Here, we present evidence that the cholinergic outputs of the starburst cells affect the responses of the ganglion cells symmetrically; they provide a feedforward excitation that facilitates the response of the ganglion cells to movement in both the preferred and null directions. This seems to place a constraint on models of the directional discrimination in which the starburst cells participate, namely, that their cholinergic synapses be nondirectional in their effects on the ganglion cells.

  16. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses.

    Science.gov (United States)

    Kang, Sukmo; Ahn, Sukyung; Lee, Jeewon; Kim, Jin Yong; Choi, Minsuk; Gujrati, Vipul; Kim, Hyungjun; Kim, Jinjoo; Shin, Eui-Cheol; Jon, Sangyong

    2017-06-28

    Although it has been shown that the size of nanoparticle-based vaccines is a key determining factor for the induction of immune responses, few studies have provided detailed analyses of thresholds or critical sizes of nanoparticle vaccines. Here we report effects of the size of gold nanoparticle (GNP)-based vaccines on their efficiency of delivery to lymph nodes (LNs) and induction of CD8 + T-cell responses. We further propose a threshold size of GNPs for use as an effective vaccine. To examine the effects of GNP size, we synthesized GNPs with diameters of 7, 14 and 28nm, and then conjugated them with recombinant ovalbumin (OVA) as a model antigen. The resulting OVA-GNPs had hydrodynamic diameter (HD) of ~10, 22, and 33nm for 7, 14 and 28nm GNPs, respectively and exhibited a size-dependent increase in cellular uptake by dendritic cells (DCs) and subsequent T-cell cross-priming and activation. Upon injection into a mouse footpad, both 22- and 33-nm OVA-GNPs showed much higher delivery efficiency to draining LNs than did 10-nm OVA-GNPs. An ex vivo restimulation assay using OVA as an antigen revealed that frequencies of OVA-specific CD8 + T cells were higher in mice immunized with 22- and 33-nm OVA-GNPs than in those immunized with 10-nm OVA-GNPs; moreover, these cells were shown to be poly-functional. In a tumor-prevention study, 22-nm OVA-GNPs showed greater antitumor efficacy, and higher infiltration of CD8 + T-cells and greater tumor cell apoptosis and cell death than 10-nm OVA-GNPs. Taken together, our results suggest that the size threshold for induction of potent cellular responses and T-cell poly-functionality by GNPs lies between 10nm and 22nm, and highlight the importance of nanoparticle size as a critical parameter in designing and developing nanoparticle-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bisphosphonates target B cells to enhance humoral immune responses

    Science.gov (United States)

    Tonti, Elena; Jiménez de Oya, Nereida; Galliverti, Gabriele; Moseman, E. Ashley; Di Lucia, Pietro; Amabile, Angelo; Sammicheli, Stefano; De Giovanni, Marco; Sironi, Laura; Chevrier, Nicolas; Sitia, Giovanni; Gennari, Luigi; Guidotti, Luca G.; von Andrian, Ulrich H.; Iannacone, Matteo

    2013-01-01

    Summary Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4+ and γδ T cells, neutrophils or dendritic cells and their effect does not rely on local macrophage depletion nor does it depend upon Toll-like receptor signaling or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as a novel class of adjuvants that boost humoral immune responses. PMID:24120862

  18. Bisphosphonates Target B Cells to Enhance Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Elena Tonti

    2013-10-01

    Full Text Available Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens, and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4+ and γδ T cells, neutrophils, or dendritic cells, and their effect does not rely on local macrophage depletion, Toll-like receptor signaling, or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as an additional class of adjuvants that boost humoral immune responses.

  19. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  20. The Inflammation Response to DEHP through PPARγ in Endometrial Cells

    Directory of Open Access Journals (Sweden)

    Qiansheng Huang

    2016-03-01

    Full Text Available Epidemiological studies have shown the possible link between phthalates and endometrium-related gynecological diseases, however the molecular mechanism(s behind this is/are still unclear. In the study, both primary cultured endometrial cells and an endometrial adenocarcinoma cell line (Ishikawa were recruited to investigate the effects of di-(2-ethylhexyl phthalate (DEHP at human-relevant concentrations. The results showed that DEHP did not affect the viability of either type of cell, which showed different responses to inflammation. Primary cultured cells showed stronger inflammatory reactions than the Ishikawa cell line. The expression of inflammatory factors was induced both at the mRNA and protein levels, however the inflammation did not induce the progress of epithelial-mesenchymal transition (EMT as the protein levels of EMT markers were not affected after exposure to either cell type. Further study showed that the mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ wereup-regulated after exposure. In all, our study showed that human-relevant concentrations of DEHP could elicit the inflammatory response in primary cultured endometrial cells rather than in Ishikawa cell line. PPARγ may act as the mediating receptor in the inflammation reaction.

  1. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults

    NARCIS (Netherlands)

    Abel, Brian; Tameris, Michele; Mansoor, Nazma; Gelderbloem, Sebastian; Hughes, Jane; Abrahams, Deborah; Makhethe, Lebohang; Erasmus, Mzwandile; de Kock, Marwou; van der Merwe, Linda; Hawkridge, Anthony; Veldsman, Ashley; Hatherill, Mark; Schirru, Giulia; Pau, Maria Grazia; Hendriks, Jenny; Weverling, Gerrit Jan; Goudsmit, Jaap; Sizemore, Donata; McClain, J. Bruce; Goetz, Margaret; Gearhart, Jacqueline; Mahomed, Hassan; Hussey, Gregory D.; Sadoff, Jerald C.; Hanekom, Willem A.

    2010-01-01

    RATIONALE: AERAS-402 is a novel tuberculosis vaccine designed to boost immunity primed by bacillus Calmette-Guérin (BCG), the only licensed vaccine. OBJECTIVES: We investigated the safety and immunogenicity of AERAS-402 in healthy Mycobacterium tuberculosis-uninfected BCG-vaccinated adults from a

  2. Cell microcarriers and microcapsules of stimuli-responsive polymers.

    Science.gov (United States)

    Brun-Graeppi, Amanda K Andriola Silva; Richard, Cyrille; Bessodes, Michel; Scherman, Daniel; Merten, Otto-Wilhelm

    2011-02-10

    Cell microcarriers and microcapsules have presented a wide range of potential applications. This article overviews their role in biotechnology with focus on the progress accomplished using stimuli-responsive polymers. Key properties of cell microcarriers and microcapsules are identified, followed by a description of the chemistry and gel formation mechanism of some of the stimuli-responsive polymers used to design them. Production methods are introduced and characterization techniques for evaluating such microsystems are equally presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  4. Ionizing radiation response of primary normal human lens epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Hamada

    Full Text Available Whilst the cataractogenic potential of ionizing radiation has been known for over the past 120 years, little is known about radiation responses of lens cells. Our previous work was the first to evaluate the radiosensitivity of lens cells with the clonogenic assay, documenting that the survival of HLEC1 human lens epithelial cells is comparable to that of WI-38 human lung fibroblasts. Moreover, HLEC1 cells were found to contain subsets where irradiation stimulates proliferation or facilitates formation of abortive colonies with fewer cells than human fibroblasts. This study aims to gain insights into these mechanisms. Irradiation of HLEC1 cells with 10% survival dose caused a growth delay but did not reduce viability. HLEC1 cells at high cumulative population doubling level were more susceptible to radiogenic premature senescence than WI-38 cells. Concerning p53 binding protein 1 (53BP1 foci, HLEC1 cells harbored less spontaneous foci but more radiogenic foci than in WI-38 cells, and the focus number returned to spontaneous levels within 48 h postirradiation both in HLEC1 and WI-38. The chemical inhibition of DNA repair kinases ataxia telangiectasia mutated, DNA-dependent protein kinase or both delayed and attenuated the appearance and disappearance of radiogenic 53BP1 foci, increased radiogenic premature senescence and enhanced clonogenic inactivation. The DNA microarray analysis suggested both radiogenic stimulation and inhibition of cell proliferation. Treatment with conditioned medium from irradiated cells did not change growth and the plating efficiency of nonirradiated cells. These results partially explain mechanisms of our previous observations, such that unrepaired or incompletely repaired DNA damage causes a growth delay in a subset of HLEC1 cells without changing viability through induction of premature senescence, thereby leading to clonogenic inactivation, but that growth is stimulated in another subset via as yet unidentified

  5. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  6. ERK2 Mediates Metabolic Stress Response to Regulate Cell Fate.

    Science.gov (United States)

    Shin, Sejeong; Buel, Gwen R; Wolgamott, Laura; Plas, David R; Asara, John M; Blenis, John; Yoon, Sang-Oh

    2015-08-06

    Insufficient nutrients disrupt physiological homeostasis, resulting in diseases and even death. Considering the physiological and pathological consequences of this metabolic stress, the adaptive responses that cells utilize under this condition are of great interest. We show that under low-glucose conditions, cells initiate adaptation followed by apoptosis responses using PERK/Akt and MEK1/ERK2 signaling, respectively. For adaptation, cells engage the ER stress-induced unfolded protein response, which results in PERK/Akt activation and cell survival. Sustained and extreme energetic stress promotes a switch to isoform-specific MEK1/ERK2 signaling, induction of GCN2/eIF2α phosphorylation, and ATF4 expression, which overrides PERK/Akt-mediated adaptation and induces apoptosis through ATF4-dependent expression of pro-apoptotic factors including Bid and Trb3. ERK2 activation during metabolic stress contributes to changes in TCA cycle and amino acid metabolism, and cell death, which is suppressed by glutamate and α-ketoglutarate supplementation. Taken together, our results reveal promising targets to protect cells or tissues from metabolic stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  8. The response of human and rodent cells to hyperthermia

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Pirro, J.P.

    1991-01-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat

  9. B cell activating factor (BAFF) selects IL-10-B cells over IL-10+B cells during inflammatory responses.

    Science.gov (United States)

    Ma, Ning; Zhang, Yu; Liu, Qilin; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Yu, Dandan; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Ma, Yuanfang; Shen, Beifen; Li, Yan; Xiao, He; Wang, Renxi

    2017-05-01

    B cell activating factor (BAFF) regulates B cell maturation, survival, function, and plays a critical pathogenic role in autoimmune diseases. It remains unclear how BAFF affects IL-10 - B cells versus regulatory B cells (Bregs) in inflammatory responses. In this study, we found that IL-10-expressing Bregs decreased in lupus-prone MRL/lpr mice and experimental allergic encephalomyelitis (EAE) mice. On blockade of the effects of BAFF with TACI-IgG, IL-10 + Bregs were upregulated in MRL/lpr and EAE mice. In addition, BAFF expanded IL-10 + B cells over IL-10 - B cells under noninflammatory conditions in vitro, whereas it expanded IL-10 - B cells over IL-10 + B cells during inflammatory responses, such as stimulation with autoantigen and LPS. Finally, the selection of IL-10 - B cells over IL-10 + B cells by BAFF was dependent on BAFF receptors (BAFFR, TACI, and BCMA) that were upregulated by inflammatory responses. This study suggests that BAFF selects IL-10 - B cells over IL-10 + regulatory B cells via BAFF receptors in inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  12. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  13. Inferring Toxicological Responses of HepG2 Cells from ...

    Science.gov (United States)

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  14. Lysophosphatidic acid mediates pleiotropic responses in skeletal muscle cells

    International Nuclear Information System (INIS)

    Jean-Baptiste, Gael; Yang Zhao; Khoury, Chamel; Greenwood, Michael T.

    2005-01-01

    Lysophosphatidic acid (LPA) is a potent modulator of growth, cell survival, and apoptosis. Although all four LPA receptors are expressed in skeletal muscle, very little is known regarding the role they play in this tissue. We used RT-PCR to demonstrate that cultured skeletal muscle C2C12 cells endogenously express multiple LPA receptor subtypes. The demonstration that LPA mediates the activation of ERK1/2 MAP kinase and Akt/PKB in C2C12 cells is consistent with the widely observed mitogenic properties of LPA. In spite of these observations, LPA did not induce proliferation in C2C12 cells. Paradoxically, we found that prolonged treatment of C2C12 cells with LPA led to caspase 3 and PARP cleavage as well as the activation of stress-associated MAP kinases JNK and p38. In spite of these typically pro-apoptotic responses, LPA did not induce cell death. Blocking ERK1/2 and Akt/PKB activation with specific pharmacological inhibitors, nevertheless, stimulated LPA-mediated apoptosis. Taken together, these results suggest that both mitogenic and apoptotic responses serve to counterbalance the effects of LPA in cultured C2C12 cells

  15. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  16. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach

    Science.gov (United States)

    Won, Kyung-Jong; Sanders, Kenton M.; Ward, Sean M.

    2005-10-01

    Changes in motor activity are a basic response to filling of smooth muscle organs. Responses to gastric filling, for example, are thought to be regulated by neural reflexes. Here, we demonstrate a previously uncharacterized aspect of stretch-dependent responses in visceral smooth muscles that is mediated by mechanosensitive interstitial cells of Cajal. Length ramps were applied to the murine antral muscles while recording intracellular electrical activity and isometric force. Stretching muscles by an average of 27 ± 1% of resting length resulted in 5 mN of force. Increasing length caused membrane depolarization and increased slow-wave frequency. The responses were dependent on the rate of stretch. Stretch-dependent responses were not inhibited by neuronal antagonists or nifedipine. Increases in slow-wave frequency, but not membrane depolarization, were inhibited by reducing external Ca2+ (100 μM) and by Ni2+ (250 μM). Responses to stretch were inhibited by indomethacin (1 μM) and were absent in cyclooxygenase II-deficient mice, suggesting that cyclooxygenase II-derived eicosanoids may mediate these responses. Dual microelectrode impalements of muscle cells within the corpus and antrum showed that stretch-induced changes in slow-wave frequency uncoupled proximal-to-distal propagation of slow waves. This uncoupling could interfere with gastric peristalsis and impede gastric emptying. Stretch of antral muscles of W/WV mice, which lack intramuscular interstitial cells of Cajal, did not affect membrane depolarization or slow-wave frequency. These data demonstrate a previously uncharacterized nonneural stretch reflex in gastric muscles and provide physiological evidence demonstrating a mechanosensitive role for interstitial cells of Cajal in smooth muscle tissues. gastric compliance | pacemaker | stretch | slow waves | propagation

  17. CD4 + CELL RESPONSE TO ANTI-RETROVIRAL THERAPY (ARTs ...

    African Journals Online (AJOL)

    East African Medical Journal Vol. 90 No. 12 (Supplement) December 2013. CD4 + CELL RESPONSE TO ANTI-RETROVIRAL THERAPY (ARTs) IN ROUTINE CLINICAL CARE OVER ONE YEAR. PERIOD IN A COHORT OF HAART NAIVE, HIV POSITIVE KENYAN PATIENTS. C. F. Otieno, MBChB, MMed (Int. Med), ...

  18. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  19. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  20. Molecular mechanisms of radioadaptive responses in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Kakimoto, Ayana; Taki, Keiko; Nakajima, Tetsuo

    2008-01-01

    Radioadaptive response is a biodefensive response observed in a variety of mammalian cells and animals where exposure to low dose radiation induces resistance against the subsequent high dose radiation. Elucidation of its mechanisms is important for risk estimation of low dose radiation because the radioadaptive response implies that low dose radiation affects cells/individuals in a different manner from high dose radiation. In the present study, we explored the molecular mechanisms of the radioadaptive response in human lymphoblastoid cells AHH-1 in terms of mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene locus. First we observed that preexposure to the priming dose in the range from 0.02 Gy to 0.2 Gy significantly reduced mutation frequency at HPRT gene locus after irradiation with 3 Gy of X rays. As no significant adaptive response was observed with the priming dose of 0.005 Gy, it was indicated that the lower limit of the priming dose to induce radioadaptive response may be between 0.005 Gy and 0.02 Gy. Second, we examined the effect of 3-amino-benzamide (3AB), an inhibitor of poly(ADP-ribose)polymerase1, which has been reported to inhibit the radioadaptive response in terms of chromosome aberration. However we could observe significant radioadaptive responses in terms of mutation even in the presence of 3AB. These findings suggested that molecular mechanisms of the radioadaptive response in terms of mutation may be different from that for radioadaptive responses in terms of chromosomal aberration, although we could not exclude a possibility that the differential effects of 3AB was due to cell type difference. Finally, by performing a comprehensive analysis of alterations in gene expression using high coverage expression profiling (HiCEP), we could identify 17 genes whose expressions were significantly altered 6 h after irradiation with 0.02 Gy. We also found 17 and 20 genes, the expressions of which were different with or without priming

  1. Antibody B cell responses in HIV-1 infection.

    Science.gov (United States)

    Mouquet, Hugo

    2014-11-01

    In rare cases, B cells can supply HIV-1-infected individuals with unconventional antibodies equipped to neutralize the wide diversity of viral variants. Innovations in single-cell cloning, high-throughput sequencing, and structural biology methods have enabled the capture and thorough characterization of these exceptionally potent broadly neutralizing antibodies (bNAbs). Here, I review the recent findings in humoral responses to HIV-1, focusing on the interplay between naturally occurring bNAbs and the virus both at systemic and mucosal levels. In this context, I discuss how an improved understanding of bNAb generation may provide invaluable insight into the fundamental mechanisms governing adaptive B cell responses to viruses, and how this knowledge is currently contributing to the development of vaccine and therapeutic strategies against HIV-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Responses to recipient and donor B cells by genetically donor T cells from human haploidentical chimeras

    International Nuclear Information System (INIS)

    Schiff, S.; Sampson, H.; Buckley, R.

    1986-01-01

    Following administration of haploidentical stem cells to infants with severe combined immunodeficiency (SCID), mature T cells of donor karyotype appear later in the recipient without causing graft-versus-host disease. To investigate the effect of the host environment on the responsiveness of these genetically donor T cells, blood B and T lymphocytes from 6 SCID recipients, their parental donors and unrelated controls were purified by double SRBC rosetting. T cells were stimulated by irradiated B cells at a 1:1 ratio in 6 day cultures. Engrafted T cells of donor karyotype gave much smaller responses to irradiated genetically recipient B cells than did fresh donor T cells. Moreover, engrafted T cells of donor karyotype from two of the three SCIDs who are longest post-transplantation responded more vigorously (14,685 and 31,623 cpm) than fresh donor T cells (5141 and 22,709 cpm) to donor B cells. These data indicate that T lymphocytes which have matured from donor stem cells in the recipient microenvironment behave differently from those that have matured in the donor

  3. Estradiol partially recapitulates murine pituitary cell cycle response to pregnancy.

    Science.gov (United States)

    Toledano, Yoel; Zonis, Svetlana; Ren, Song-Guang; Wawrowsky, Kolja; Chesnokova, Vera; Melmed, Shlomo

    2012-10-01

    Because pregnancy and estrogens both induce pituitary lactotroph hyperplasia, we assessed the expression of pituitary cell cycle regulators in two models of murine pituitary hyperplasia. Female mice were assessed during nonpregnancy, pregnancy, day of delivery, and postpartum. We also implanted estradiol (E(2)) pellets in female mice and studied them for 2.5 months. Pituitary weight in female mice increased 2-fold after E(2) administration and 1.4-fold at day of delivery, compared with placebo-treated or nonpregnant females. Pituitary proliferation, as assessed by proliferating cell nuclear antigen and/or Ki-67 staining, increased dramatically during both mid-late pregnancy and E(2) administration, and lactotroph hyperplasia was also observed. Pregnancy induced pituitary cell cycle proliferative and inhibitory responses at the G(1)/S checkpoint. Differential cell cycle regulator expression included cyclin-dependent kinase inhibitors, p21(Cip1), p27(Kip1), and cyclin D1. Pituitary cell cycle responses to E(2) administration partially recapitulated those effects observed at mid-late pregnancy, coincident with elevated circulating mouse E(2), including increased expression of proliferating cell nuclear antigen, Ki-67, p15(INK4b), and p21(Cip1). Nuclear localization of pituitary p21(Cip1) was demonstrated at mid-late pregnancy but not during E(2) administration, suggesting a cell cycle inhibitory role for p21(Cip1) in pregnancy, yet a possible proproliferative role during E(2) administration. Most observed cell cycle protein alterations were reversed postpartum. Murine pituitary meets the demand for prolactin during lactation associated with induction of both cell proliferative and inhibitory pathways, mediated, at least partially, by estradiol.

  4. Cell response to quasi-monochromatic light with different coherence

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)

  5. Molecular clutch drives cell response to surface viscosity.

    Science.gov (United States)

    Bennett, Mark; Cantini, Marco; Reboud, Julien; Cooper, Jonathan M; Roca-Cusachs, Pere; Salmeron-Sanchez, Manuel

    2018-02-06

    Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior. Copyright © 2018 the Author(s). Published by PNAS.

  6. Heterogeneous response of isolated adult rat heart cells to insulin

    International Nuclear Information System (INIS)

    Haworth, R.A.; Hunter, D.R.; Berkoff, H.A.

    1984-01-01

    3-O-Methylglucose uptake by Ca2+-resistant adult rat heart cells in suspension was measured, free of artifactual inhibitor-insensitive uptake, and with an accuracy of +/- 1.9% pellet water. (Ca2+-resistant cells are cells which retain their original rod-shaped morphology in the presence of physiological levels of Ca2+.) High levels of insulin (10(-6) M) stimulated the rate of 3-O-methylglucose uptake approximately 10-fold. In the presence of low levels of insulin (3 X 10(-11) M, 10(-10) M) uptake was biphasic; it could not be described by a single exponential function within experimental error, but required the sum of two exponentials. Deviation from a single exponential function was not so great with high levels of insulin (10(-6) M) or no insulin. Cell sugar uptake was also investigated using autoradiography of cells which had accumulated [2-14C]deoxyglucose under similar conditions. This showed considerable heterogeneity of 2-deoxyglucose uptake by cells treated with low levels of insulin, but significantly less heterogeneity of 2-deoxyglucose uptake by cells treated with high levels of insulin. It is concluded that the deviation of 3-O-methylglucose uptake from a single exponential observed at low insulin levels can be accounted for in terms of a heterogeneous response of cells to insulin

  7. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K; McCall, Charles E

    2012-04-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.

  8. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Monitoring the cytoskeletal EGF response in live gastric carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marco Felkl

    Full Text Available Altered cell motility is considered to be a key factor in determining tumor invasion and metastasis. Epidermal growth factor (EGF signaling has been implicated in this process by affecting cytoskeletal organization and dynamics in multiple ways. To sort the temporal and spatial regulation of EGF-dependent cytoskeletal re-organization in relation to a cell's motile behavior time-lapse microscopy was performed on EGF-responsive gastric carcinoma-derived MKN1 cells co-expressing different fluorescently labeled cytoskeletal filaments and focal adhesion components in various combinations. The experiments showed that EGF almost instantaneously induces a considerable increase in membrane ruffling and lamellipodial activity that can be inhibited by Cetuximab EGF receptor antibodies and is not elicited in non-responsive gastric carcinoma Hs746T cells. The transient cell extensions are rich in actin but lack microtubules and keratin intermediate filaments. We show that this EGF-induced increase in membrane motility can be measured by a simple image processing routine. Microtubule plus-ends subsequently invade growing cell extensions, which start to accumulate focal complexes at the lamellipodium-lamellum junction. Such paxillin-positive complexes mature into focal adhesions by tyrosine phosphorylation and recruitment of zyxin. These adhesions then serve as nucleation sites for keratin filaments which are used to enlarge the neighboring peripheral keratin network. Focal adhesions are either disassembled or give rise to stable zyxin-rich fibrillar adhesions which disassemble in the presence of EGF to support formation of new focal adhesion sites in the cell periphery. Taken together the results serve as a basis for modeling the early cytoskeletal EGF response as a tightly coordinated and step-wise process which is relevant for the prediction of the effectiveness of anti-EGF receptor-based tumor therapy.

  10. Boosting antibody responses by targeting antigens to dendritic cells.

    Science.gov (United States)

    Caminschi, Irina; Shortman, Ken

    2012-02-01

    Delivering antigens directly to dendritic cells (DCs) in situ, by injecting antigens coupled to antibodies specific for DC surface molecules, is a promising strategy for enhancing vaccine efficacy. Enhanced cytotoxic T cell responses are obtained if an adjuvant is co-administered to activate the DC. Such DC targeting is also effective at enhancing humoral immunity, via the generation of T follicular helper cells. Depending on the DC surface molecule targeted, antibody production can be enhanced even in the absence of adjuvants. In the case of Clec9A as the DC surface target, enhanced antibody production is a consequence of the DC-restricted expression of the target molecule. Few other cells absorb the antigen-antibody construct, therefore, it persists in the bloodstream, allowing sustained antigen presentation, even by non-activated DCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Multifunctional T-cell Analyses to Study Response and Progression in Adoptive Cell Transfer Immunotherapy

    Science.gov (United States)

    Ma, Chao; Cheung, Ann F.; Chodon, Thinle; Koya, Richard C.; Wu, Zhongqi; Ng, Charles; Avramis, Earl; Cochran, Alistair J.; Witte, Owen N.; Baltimore, David; Chmielowski, Bartosz; Economou, James S.; Comin-Anduix, Begonya; Ribas, Antoni; Heath, James R.

    2013-01-01

    Adoptive cell transfer (ACT) of genetically engineered T cells expressing cancer-specific T-cell receptors (TCR) is a promising cancer treatment. Here, we investigate the in vivo functional activity and dynamics of the transferred cells by analyzing samples from 3 representative patients with melanoma enrolled in a clinical trial of ACT with TCR transgenic T cells targeted against the melanosomal antigen MART-1. The analyses included evaluating 19 secreted proteins from individual cells from phenotypically defined T-cell subpopulations, as well as the enumeration of T cells with TCR antigen specificity for 36 melanoma antigens. These analyses revealed the coordinated functional dynamics of the adoptively transferred, as well as endogenous, T cells, and the importance of highly functional T cells in dominating the antitumor immune response. This study highlights the need to develop approaches to maintaining antitumor T-cell functionality with the aim of increasing the long-term efficacy of TCR-engineered ACT immunotherapy. SIGNIFICANCE A longitudinal functional study of adoptively transferred TCR–engineered lymphocytes yielded revealing snapshots for understanding the changes of antitumor responses over time in ACT immunotherapy of patients with advanced melanoma. PMID:23519018

  12. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  13. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  14. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  15. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  16. Interplay between CD8α+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses.

    Directory of Open Access Journals (Sweden)

    Dilnawaz Kapadia

    2011-04-01

    Full Text Available During the course of a microbial infection, different antigen presenting cells (APCs are exposed and contribute to the ensuing immune response. CD8α(+ dendritic cells (DCs are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm and are crucial for CD8(+ T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+ DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+ DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+ DCs primarily secrete low levels of TNFα while CD8α(+ DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+ DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS. Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.

  17. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  18. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  19. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available The ketogenic diet (KD is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB. Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H2O2, significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  20. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies.

    Science.gov (United States)

    Meroni, Erika; Papini, Nadia; Criscuoli, Franca; Casiraghi, Maria C; Massaccesi, Luca; Basilico, Nicoletta; Erba, Daniela

    2018-02-22

    The ketogenic diet (KD) is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB). Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H₂O₂), significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  1. A Delayed Virus Infection Model with Cell-to-Cell Transmission and CTL Immune Response

    Science.gov (United States)

    Yang, Yu; Zhang, Tonghua; Xu, Yancong; Zhou, Jinling

    In this paper, a delayed virus infection model with cell-to-cell transmission and CTL immune response is investigated. In the model, time delay is incorporated into the CTL response. By constructing Lyapunov functionals, global dynamical properties of the two boundary equilibria are established. Our results show that time delay in the CTL response process may lead to sustained oscillation. To further investigate the nature of the oscillation, we apply the method of multiple time scales to calculate the normal form on the center manifold of the model. At the end of the paper, numerical simulations are carried out, which support our theoretical results.

  2. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  3. Nitric Oxide And Hypoxia Response In Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Estefanía Caballano Infantes

    2015-08-01

    Full Text Available The expansion of pluripotent cells (ESCs and iPSCs under conditions that maintain their pluripotency is necessary to implement a cell therapy program. Previously, we have described that low nitric oxide (NO donor diethylenetriamine/nitric oxide adduct (DETA-NO added to the culture medium, promote the expansion of these cell types. The molecular mechanisms are not yet known. We present evidences that ESC and iPSCs in normoxia in presence of low NO triggers a similar response to hypoxia, thus maintaining the pluripotency. We have studied the stability of HIF-1α (Hypoxia Inducible Factor in presence of low NO. Because of the close relationship between hypoxia, metabolism, mitochondrial function and pluripotency we have analyzed by q RT-PCR the expression of genes involved in the glucose metabolism such as: HK2, LDHA and PDK1; besides other HIF-1α target gene. We further analyzed the expression of genes involved in mitochondrial biogenesis such as PGC1α, TFAM and NRF1 and we have observed that low NO maintains the same pattern of expression that in hypoxia. The study of the mitochondrial membrane potential using Mito-Tracker dye showed that NO decrease the mitochondrial function. We will analyze other metabolic parameters, to determinate if low NO regulates mitochondrial function and mimics Hypoxia Response. The knowledge of the role of NO in the Hypoxia Response and the mechanism that helps to maintain self-renewal in pluripotent cells in normoxia, can help to the design of culture media where NO could be optimal for stem cell expansion in the performance of future cell therapies.

  4. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    Science.gov (United States)

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  5. Effect of melanin on radiation response of CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, L.E. (Medical Coll. of Wisconsin, Milwaukee (USA). Dept. of Radiation Oncology); Swartz, H.M. (Illinois Univ., Urbana (USA). Coll. of Medicine); Pajak, S. (Uniwersytet Jagiellonski, Krakow (Poland))

    1985-05-01

    The effect of the presence of melanin on the response of mammalian cells to ionizing radiation was investigated in a model system utilizing the ability of Chinese hamster ovary cells to incorporate melanin by endocytosis. Cells were incubated in monolayer cultures from 2 to 20 hours with melanin prepared from 'beef eye' or synthesized by air oxidation of 3,4-dihydroxyphenylalanine. For asynchronous cultures, the survival curve parameters for cells incubated with both types of melanin were indistinguishable from those of the same cells without added melanin. The radiation response to fractionated doses of 6 Gy separated by various periods did not indicate any effect of melanin on the extent or kinetics of repair of sublethal damage. Likewise, the repair of potentially lethal damage in plateau phase cultures was unaffected by the presence of melanin. Thus the explanation for the clinical radiation resistance of melanomas in the absence of a direct radiation effect might more likely be found in consideration of other factors such as the role of melanin in oxygen consumption or in differentiation.

  6. Responses of cells in the midbrain near-response area in monkeys with strabismus.

    Science.gov (United States)

    Das, Vallabh E

    2012-06-22

    To investigate whether neuronal activity within the supraoculomotor area (SOA-monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus. Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing. Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals. SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different.

  7. An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses.

    Science.gov (United States)

    Thomas, Paul G; Brown, Scott A; Yue, Wen; So, Jenny; Webby, Richard J; Doherty, Peter C

    2006-02-21

    The ovalbumin(323-339) peptide that binds H2I-A(b) was engineered into the globular heads of hemagglutinin (H) molecules from serologically non-cross-reactive H1N1 and H3N2 influenza A viruses, the aim being to analyze recall CD4+ T cell responses in a virus-induced respiratory disease. Prime/challenge experiments with these H1ova and H3ova viruses in H2(b) mice gave the predicted, ovalbumin-specific CD4+ T cell response but showed an unexpectedly enhanced, early expansion of viral epitope-specific CD8+ T cells in spleen and a greatly diminished inflammatory process in the virus-infected respiratory tract. At the same time, the primary antibody response to the H3N2 challenge virus was significantly reduced, an effect that has been associated with preexisting neutralizing antibody in other experimental systems. Analysis of serum from the H1ova-primed mice showed low-level binding to H3ova but not to the wild-type H3N2 virus. Experiments with CD4+ T cell-depleted and Ig-/- mice indicated that this cross-reactive Ig is indeed responsible for the modified pathogenesis after respiratory challenge. Furthermore, the effect does not seem to be virus-dose related, although it does require infection. These findings suggest intriguing possibilities for vaccination and, at the same time, emphasize that engineered modifications in viruses may have unintended immunological consequences.

  8. Phenotypic and functional profiling of CD4 T cell compartment in distinct populations of healthy adults with different antigenic exposure.

    Directory of Open Access Journals (Sweden)

    Sophie Roetynck

    Full Text Available Multiparameter flow cytometry has revealed extensive phenotypic and functional heterogeneity of CD4 T cell responses in mice and humans, emphasizing the importance of assessing multiple aspects of the immune response in correlation with infection or vaccination outcome. The aim of this study was to establish and validate reliable and feasible flow cytometry assays, which will allow us to characterize CD4 T cell population in humans in field studies more fully.We developed polychromatic flow cytometry antibody panels for immunophenotyping the major CD4 T cell subsets as well as broadly characterizing the functional profiles of the CD4 T cells in peripheral blood. We then validated these assays by conducting a pilot study comparing CD4 T cell responses in distinct populations of healthy adults living in either rural or urban Kenya. This study revealed that the expression profile of CD4 T cell activation and memory markers differed significantly between African and European donors but was similar amongst African individuals from either rural or urban areas. Adults from rural Kenya had, however, higher frequencies and greater polyfunctionality among cytokine producing CD4 T cells compared to both urban populations, particularly for "Th1" type of response. Finally, endemic exposure to malaria in rural Kenya may have influenced the expansion of few discrete CD4 T cell populations with specific functional signatures.These findings suggest that environmentally driven T cell activation does not drive the dysfunction of CD4 T cells but is rather associated with greater magnitude and quality of CD4 T cell response, indicating that the level or type of microbial exposure and antigenic experience may influence and shape the functionality of CD4 T cell compartment. Our data confirm that it is possible and mandatory to assess multiple functional attributes of CD4 T cell response in the context of infection.

  9. Extracellular Alkalinization as a Defense Response in Potato Cells.

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  10. A Myc-dependent division timer complements a cell-death timer to regulate T cell and B cell responses.

    Science.gov (United States)

    Heinzel, Susanne; Binh Giang, Tran; Kan, Andrey; Marchingo, Julia M; Lye, Bryan K; Corcoran, Lynn M; Hodgkin, Philip D

    2017-01-01

    T lymphocytes and B lymphocytes integrate activating signals to control the size of their proliferative response. Here we report that such control was achieved by timed changes in the production rate of cell-cycle-regulating proto-oncoprotein Myc, with division cessation occurring when Myc levels fell below a critical threshold. The changing pattern of the level of Myc was not affected by cell division, which identified the regulating mechanism as a cell-intrinsic, heritable temporal controller. Overexpression of Myc in stimulated T cells and B cells did not sustain cell proliferation indefinitely, as a separate 'time-to-die' mechanism, also heritable, was programmed after lymphocyte activation and led to eventual cell loss. Together the two competing cell-intrinsic timed fates created the canonical T cell and B cell immune-response pattern of rapid growth followed by loss of most cells. Furthermore, small changes in these timed processes by regulatory signals, or by oncogenic transformation, acted in synergy to greatly enhance cell numbers over time.

  11. Single-cell Western blotting after whole-cell imaging to assess cancer chemotherapeutic response.

    Science.gov (United States)

    Kang, Chi-Chih; Lin, Jung-Ming G; Xu, Zhuchen; Kumar, Sanjay; Herr, Amy E

    2014-10-21

    Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors.

  12. Respiratory epithelial cell responses to cigarette smoke: the unfolded protein response.

    Science.gov (United States)

    Kelsen, Steven G

    2012-12-01

    Cigarette smoking exposes the respiratory epithelium to highly toxic, reactive oxygen nitrogen species which damage lung proteins in the endoplasmic reticulum (ER), the cell organelle in which all secreted and membrane proteins are processed. Accumulation of damaged or misfolded proteins in the ER, a condition termed ER stress, activates a complex cellular process termed the unfolded protein responses (UPR). The UPR acts to restore cellular protein homeostasis by regulating all aspects of protein metabolism including: protein translation and syntheses; protein folding; and protein degradation. However, activation of the UPR may also induce signaling pathways which induce inflammation and cell apoptosis. This review discusses the role of UPR in the respiratory epithelial cell response to cigarette smoke and the pathogenesis of lung diseases like COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Enhancement of radiation response in human hepatocarcinoma cells by Metformin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ho; Kim, Won Woo; Kim, Joon; Jung, Won Gyun [Division of heavy ion clinical research, Korea University, Seoul (Korea, Republic of); Jeong, Jae Hoon; Jeong, Youn Kyoung; Kim, Mi Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2012-11-15

    Metformin (1, 1-dimethylbiguanide hydrochloride), the most widely used drug to treat type 2 diabetic patients under benefit good tolerability profile and low cost, has sparked keen interest as potential anticancer agent. Preclinical studies showed that the primary mechanism of action of metformin is through its ability to activate AMP-activated protein kinase (AMPK). Metformin inhibits complex 1 in the mitochondrial electron transport chain, leading to an increase in the AMP-to-ATP ratio, then, phospholylated AMPK increase energy generation or suppress energy consumption and then, inhibits cell growth. However, important caveat in direct action theory of metformin is that millimorlar range, effective dose for inhibition tumor cell growth in vitro, cannot be achieved in patients. This is probably because metformin enter cells through the organic cation transporters OCT1 and OCT2, which is lowly expressed in human cells except liver and adipose cells. dependent pathway rather than through direct effects of the tumor cells. We analyzed combination effect of metformin and radiation focusing to HCC cell lines, which theoretically express high organic cation transporters, producing high centration of metformin in tumor cells. The purpose of this study is to investigate whether metformin had anti-tumor effects when combined with radiation as radiosensitizer in HCC. The results showed that metformin increased radiosensitizing efficacy in HCC cells , as well as in Huh7 xenograft mouse models. Interestingly, metformin effectively sensitizes IR-induced apoptosis in HCC through upregulation of cleaved PARP and caspase3 and increase synergically on DNA damage response with combined treatment.HCC, suggesting potential usefulness of combined therapy of metformin together with radiation for HCC cancer therapy.

  14. T cell response to N-formylated peptides in humans.

    Science.gov (United States)

    Ristori, G; Montesperelli, C; Fiorillo, M T; Battistini, L; Chersi, A; Sorrentino, R; Borsellino, G; Perna, A; Tramonti, D; Cannoni, S; Perrone, M P; Giubilei, F; Riccio, P; Salvetti, M; Buttinelli, C

    2001-09-01

    We present the first evidence of a T lymphocyte response to N-formylated peptides in humans. N-formylated peptide sequences from self (mitochondrial) and foreign (microbial) antigens were used to isolate antigen-specific T cell clones from healthy individuals, including a set of monozygotic twins. The observed response differed from that previously described in mouse (CD4(+) phenotype and MHC class II restriction in humans vs. CD8(+) phenotype and class I restriction in mice). These lymphocytes produce substantial amounts of IFN-gamma. They were isolated in only one of the monozygotic twins, which suggests that their expansion in the healthy immune repertoire is independent of the genetic background. Our result will help in assessing the relevance of N-formylated peptide-specific T cells in protection against infections within the human immune system.

  15. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  16. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    NARCIS (Netherlands)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S. Marieke

    2010-01-01

    Background: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response

  17. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors

    DEFF Research Database (Denmark)

    Lyngaa, Rikke; Pedersen, Natasja Wulff; Schrama, David

    2014-01-01

    Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic...... immune responses to MCC as they are both foreign to the host and necessary to maintain the oncogenic phenotype. However, to date only a single MCPyV-derived CD8 T-cell epitope has been described, thus impeding specific monitoring of T-cell responses to MCC. Method: To overcome this limitation, we scanned...... the MCPyV oncoprotein large T and small T antigens and the virus capsid protein VP1 for potential T-cell epitopes, and tested for MHC class I affinity. We confirmed the relevance of these epitopes using a high-throughput platform for T-cell enrichment and combinatorial encoding of MHC class I multimers...

  18. Global gene expression response to telomerase in bovine adrenocortical cells

    International Nuclear Information System (INIS)

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H.

    2005-01-01

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state

  19. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Histamine receptor 2 modifies dendritic cell responses to microbial ligands.

    Science.gov (United States)

    Frei, Remo; Ferstl, Ruth; Konieczna, Patrycja; Ziegler, Mario; Simon, Tunde; Rugeles, Tulia Mateus; Mailand, Susanne; Watanabe, Takeshi; Lauener, Roger; Akdis, Cezmi A; O'Mahony, Liam

    2013-07-01

    The induction of tolerance and protective immunity to microbes is significantly influenced by host- and microbiota-derived metabolites, such as histamine. We sought to identify the molecular mechanisms for histamine-mediated modulation of pattern recognition receptor signaling. Human monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells, and plasmacytoid dendritic cells were examined. Cytokine secretion, gene expression, and transcription factor activation were measured after stimulation with microbial ligands and histamine. Histamine receptor 2 (H₂R)-deficient mice, histamine receptors, and their signaling pathways were investigated. Histamine suppressed MDDC chemokine and proinflammatory cytokine secretion, nuclear factor κB and activator protein 1 activation, mitogen-activated protein kinase phosphorylation, and T(H)1 polarization of naive lymphocytes, whereas IL-10 secretion was enhanced in response to LPS and Pam3Cys. Histamine also suppressed LPS-induced myeloid dendritic cell TNF-α secretion and suppressed CpG-induced plasmacytoid dendritic cell IFN-α gene expression. H₂R signaling through cyclic AMP and exchange protein directly activated by cyclic AMP was required for the histamine effect on LPS-induced MDDC responses. Lactobacillus rhamnosus, which secretes histamine, significantly suppressed Peyer patch IL-2, IL-4, IL-5, IL-12, TNF-α, and GM-CSF secretion in wild-type but not H₂R-deficient animals. Both host- and microbiota-derived histamine significantly alter the innate immune response to microbes through H₂R. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  2. Monosaccharide-responsive phenylboronate-polyol cell scaffolds for cell sheet and tissue engineering applications.

    Directory of Open Access Journals (Sweden)

    Rachamalla Maheedhar Reddy

    Full Text Available Analyte-responsive smart polymeric materials are of great interest and have been actively investigated in the field of regenerative medicine. Phenylboronate containing copolymers form gels with polyols under alkaline conditions. Monosaccharides, by virtue of their higher affinity towards boronate, can displace polyols and solubilize such gels. In the present study, we investigate the possibility of utilizing phenylboronate-polyol interactions at physiological pH in order to develop monosaccharide-responsive degradable scaffold materials for systems dealing with cells and tissues. Amine assisted phenylboronate-polyol interactions were employed to develop novel hydrogel and cryogel scaffolds at neutral pH. The scaffolds displayed monosaccharide inducible gel-sol phase transformability. In vitro cell culture studies demonstrated the ability of scaffolds to support cell adhesion, viability and proliferation. Fructose induced gel degradation is used to recover cells cultured on the hydrogels. The cryogels displayed open macroporous structure and superior mechanical properties. These novel phase transformable phenylboronate-polyol based scaffolds displayed a great potential for various cell sheet and tissue engineering applications. Their monosaccharide responsiveness at physiological pH is very useful and can be utilized in the fields of cell immobilization, spheroid culture, saccharide recognition and analyte-responsive drug delivery.

  3. The Unfolded Protein Response and Cell Fate Control.

    Science.gov (United States)

    Hetz, Claudio; Papa, Feroz R

    2018-01-18

    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Binding of formyl peptides to Walker 256 carcinosarcoma cells and the chemotactic response of these cells

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, D.C.; Orr, F.W.; Shiu, R.P.

    1985-05-01

    N-Formylmethionylleucylphenylalanine (fMLP) induces chemotaxis in leukocytes, the response being mediated by peptide binding to a receptor on the plasma membrane. In tumor cells, this peptide has been reported to induce cellular swelling and chemotaxis in vitro and to enhance the localization of circulating tumor cells in vivo. In the Boyden chamber, the authors evaluated the migratory responses of Walker carcinosarcoma 256 cells to varying concentrations of fMLP. Sigmoidal dose-response curves were obtained with the dose of chemotactic factor that elicits a half-maximal chemotactic response of 5.0 +/- 2.5 X 10(-8) M. Checkerboard analysis indicated that these responses were dependent upon a concentration gradient of fMLP with increases in migration of circa 2 to 2.5 times that of random movement. To examine the binding of fMLP, the tumor cells were incubated with 5 X 10(-9) M fML-(/sup 3/H)P in Hanks balanced salt solution. Specific binding (0.5 to 1% of total radioligand, to whole cells inhibited by 5 X 10(-6) M fMLP) approached equilibrium after 4 to 6 h at 4 degrees C and after 6 to 10 h at 22 degrees C. Autoradiographic studies demonstrated heterogeneous binding of the peptide by tumor cells and also showed its intracellular localization. In homogenates of Walker cells prepared in 0.1 M Tris HCl, pH 7.4, with 10 mM MgCl2 and bovine serum albumin (1 mg/ml), specific binding of approximately 0.5% of total fML-(/sup 3/H)P reached equilibrium after 60 min at 4 degrees C. In whole cells and homogenates, binding was reversible by addition of unlabeled fMLP.

  5. Cell geometry dictates TNFα-induced genome response.

    Science.gov (United States)

    Mitra, Aninda; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Shivashankar, G V

    2017-05-16

    Cells in physiology integrate local soluble and mechanical signals to regulate genomic programs. Whereas the individual roles of these signals are well studied, the cellular responses to the combined chemical and physical signals are less explored. Here, we investigated the cross-talk between cellular geometry and TNFα signaling. We stabilized NIH 3T3 fibroblasts into rectangular anisotropic or circular isotropic geometries and stimulated them with TNFα and analyzed nuclear translocation of transcription regulators -NFκB (p65) and MKL and downstream gene-expression patterns. We found that TNFα induces geometry-dependent actin depolymerization, which enhances IκB degradation, p65 nuclear translocation, nuclear exit of MKL, and sequestration of p65 at the RNA-polymerase-II foci. Further, global transcription profile of cells under matrix-TNFα interplay reveals a geometry-dependent gene-expression pattern. At a functional level, we find cell geometry affects TNFα-induced cell proliferation. Our results provide compelling evidence that fibroblasts, depending on their geometries, elicit distinct cellular responses for the same cytokine.

  6. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  7. Technical-and-economic analysis and optimization of the full flow charts of processing of radioactive wastes on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of fast reactors

    Science.gov (United States)

    Gupalo, V. S.; Chistyakov, V. N.; Kormilitsyn, M. V.; Kormilitsyna, L. A.; Osipenko, A. G.

    2015-12-01

    When considering the full flow charts of processing of radioactive wastes (RAW) on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of NIIAR fast reactors, we corroborate optimum technical solutions for the preparation of RAW for burial from a standpoint of heat release, dose formation, and technological storage time with allowance for technical-and-economic and ecological indices during the implementation of the analyzed technologies and equipment for processing of all RAW fluxes.

  8. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance

    Directory of Open Access Journals (Sweden)

    Alessandra Zingoni

    2017-09-01

    Full Text Available Natural killer (NK cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy. However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.

  9. Polyplex exposure inhibits cell cycle, increases inflammatory response, and can cause protein expression without cell division.

    Science.gov (United States)

    Matz, Rebecca L; Erickson, Blake; Vaidyanathan, Sriram; Kukowska-Latallo, Jolanta F; Baker, James R; Orr, Bradford G; Banaszak Holl, Mark M

    2013-04-01

    We sought to evaluate the relationship between cell division and protein expression when using commercial poly(ethylenimine) (PEI)-based polyplexes. The membrane dye PKH26 was used to assess cell division, and cyan fluorescent protein (CFP) was used to monitor protein expression. When analyzed at the whole population level, a greater number of cells divided than expressed protein, regardless of the level of protein expression observed, giving apparent consistency with the hypothesis that protein expression requires cells to pass through mitosis in order for the transgene to overcome the nuclear membrane. However, when the polyplex-exposed population was evaluated for the amount of division in the protein-expressing subpopulation, it was observed that substantial amounts of expression had occurred in the absence of division. Indeed, in HeLa S3 cells, this represented the majority of expressing cells. Of interest, the doubling time for both cell lines was slowed by ~2-fold upon exposure to polyplexes. This change was not altered by the origin of the plasmid DNA (pDNA) transgene promoter (cytomegalovirus (CMV) or elongation factor-1 alpha (EF1α)). Gene expression arrays in polyplex-exposed HeLa S3 cells showed upregulation of cell cycle arrest genes and downregulation of genes related to mitosis. Chemokine, interleukin, and toll-like receptor genes were also upregulated, suggesting activation of proinflammatory pathways. In summary, we find evidence that a cell division-independent expression pathway exists, and that polyplex exposure slows cell division and increases inflammatory response.

  10. Tracking the elusive cytotoxic T cell response in pigs

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Nielsen, Morten; Overgaard, Nana Haahr

    Quantitative and qualitative assessment of antigen-specific cytotoxic T cell (CTL) responses in pigs is not a straightforward process. Through the years we have developed a series of reagents, tools and protocols to characterize peptide-specific CTL responses in pigs. The most common recombinant...... SLA heavy chains were produced and peptide binding motifs were determined by assays measuring the affinity and stability of the peptide-SLA complex (pSLA) interaction. These results have been used to train neural networks to predict the binding of any pSLA (http...... developed a protocol for intraperitoneal delivery of peptides formulated in poly(I:C)/MMG-decorated liposomes (CAF09) to investigate the influence of peptide dose on the generation of CTL vs. antibody responses. Finally, the induced CTL killing was assessed by an in vivo cytotoxicity assay, where purified...

  11. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  12. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  13. Influence of Dendritic Cells on B-Cell Responses during HIV Infection

    Directory of Open Access Journals (Sweden)

    Johanne Poudrier

    2012-01-01

    Full Text Available Dendritic cells (DCs modulate B-cell differentiation, activation, and survival mainly through production of growth factors such as B lymphocyte stimulator (BLyS/BAFF. DC populations have been reported to be affected in number, phenotype and function during HIV infection and such alterations may contribute to the dysregulation of the B-cell compartment. Herein, we reflect on the potential impact of DC on the pathogenesis of HIV-related B cell disorders, and how DC status may modulate the outcome of mucosal B cell responses against HIV, which are pivotal to the control of disease. A concept that could be extrapolated to the overall outcome of HIV disease, whereby control versus progression may reside in the host’s capacity to maintain DC homeostasis at mucosal sites, where DC populations present an inherent capacity of modulating the balance between tolerance and protection, and are amongst the earliest cell types to be exposed to the virus.

  14. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara.

    Science.gov (United States)

    Quinan, Bárbara R; Flesch, Inge E A; Pinho, Tânia M G; Coelho, Fabiana M; Tscharke, David C; da Fonseca, Flávio G

    2014-05-23

    Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8(+) T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8(+) T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8(+) T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8(+) T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8(+) T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Airway epithelial cell response to human metapneumovirus infection

    International Nuclear Information System (INIS)

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators

  16. Hemopoietic cell precursor responses to erythropoietin in plasma clot cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.L.

    1979-01-01

    The time dependence of the response of mouse bone marrow cells to erythropoietin (Ep) in vitro was studied. Experiments include studies on the Ep response of marrow cells from normal, plethoric, or bled mice. Results with normal marrow reveal: (1) Not all erythroid precursors (CFU-E) are alike in their response to Ep. A significant number of the precursors develop to a mature erythroid colony after very short Ep exposures, but they account for only approx. 13% of the total colonies generated when Ep is active for 48 hrs. If Ep is active more than 6 hrs, a second population of erythroid colonies emerges at a nearly constant rate until the end of the culture. Full erythroid colony production requires prolonged exposure to erythropoietin. (2) The longer erythropoietin is actively present, the larger the number of erythroid colonies that reach 17 cells or more. Two distinct populations of immediate erythroid precursors are also present in marrow from plethoric mice. In these mice, total colony numbers are equal to or below those obtained from normal mice. However, the population of fast-responding CFU-E is consistently decreased to 10 to 20% of that found in normal marrow. The remaining colonies are formed from plethoric marrow at a rate equal to normal marrow. With increasing Ep exposures, the number of large colonies produced increases. From the marrow of bled mice, total erythroid colony production is equal to or above that of normal marrow. Two populations of colony-forming cells are again evident, with the fast-responding CFU-E being below normal levels. The lack of colonies from this group was compensated in bled mice by rapid colony production in the second population. A real increase in numbers of precursors present in this pool increased the rate of colony production in culture to twice that of normal marrow. The number of large colonies obtained from bled mice was again increased as the Ep exposure was lengthened. (ERB)

  17. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jochen Behrends

    Full Text Available Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB. Besides interleukin (IL-17A, IL-22 represents a classical T helper (TH17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.

  18. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine.

    Science.gov (United States)

    Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I

    2013-11-15

    Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.

  19. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  20. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  1. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress.

    Science.gov (United States)

    Kraft, David Christian Evar; Bindslev, Dorth Arenholt; Melsen, Birte; Klein-Nulend, Jenneke

    2011-02-01

    For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.

  2. The Importance of the Nurse Cells and Regulatory Cells in the Control of T Lymphocyte Responses

    Directory of Open Access Journals (Sweden)

    María Guadalupe Reyes García

    2013-01-01

    Full Text Available T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95% are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.

  3. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  4. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  5. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  6. Micronutrient supplementation and T-cell mediated immune responses in patients with tuberculosis in Tanzania

    Science.gov (United States)

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examine the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T cell mitogens in a randomize...

  7. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity.

    Science.gov (United States)

    Smaill, Fiona; Jeyanathan, Mangalakumari; Smieja, Marek; Medina, Maria Fe; Thanthrige-Don, Niroshan; Zganiacz, Anna; Yin, Cindy; Heriazon, Armando; Damjanovic, Daniela; Puri, Laura; Hamid, Jemila; Xie, Feng; Foley, Ronan; Bramson, Jonathan; Gauldie, Jack; Xing, Zhou

    2013-10-02

    There is an urgent need to develop new tuberculosis (TB) vaccines to safely and effectively boost Bacille Calmette-Guérin (BCG)-triggered T cell immunity in humans. AdHu5Ag85A is a recombinant human type 5 adenovirus (AdHu5)-based TB vaccine with demonstrated efficacy in a number of animal species, yet it remains to be translated to human applications. In this phase 1 study, we evaluated the safety and immunogenicity of AdHu5Ag85A in both BCG-naïve and previously BCG-immunized healthy adults. Intramuscular immunization of AdHu5Ag85A was safe and well tolerated in both trial volunteer groups. Moreover, although AdHu5Ag85A was immunogenic in both trial volunteer groups, it much more potently boosted polyfunctional CD4(+) and CD8(+) T cell immunity in previously BCG-vaccinated volunteers. Furthermore, despite prevalent preexisting anti-AdHu5 humoral immunity in most of the trial volunteers, we found little evidence that such preexisting anti-AdHu5 immunity significantly dampened the potency of AdHu5Ag85A vaccine. This study supports further clinical investigations of the AdHu5Ag85A vaccine for human applications. It also suggests that the widely perceived negative effect of preexisting anti-AdHu5 immunity may not be universally applied to all AdHu5-based vaccines against different types of human pathogens.

  8. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses

    Czech Academy of Sciences Publication Activity Database

    Beck, Inken; Ruckert, R.; Brandt, K.; Mueller, M.S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedláček, Radislav

    2008-01-01

    Roč. 3, č. 6 (2008), e2343-e2343 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : matrix metalloproteinase * T cell * immune response Subject RIV: EB - Genetics ; Molecular Biology

  9. B cells and functional antibody responses to combat influenza

    Directory of Open Access Journals (Sweden)

    Giuseppe eLofano

    2015-06-01

    Full Text Available Vaccination against influenza (Flu is the most effective way to protect the population. Current vaccines provide protection by stimulating functional B- and T-cell responses, however, they are poorly immunogenic in particular segments of the population and need to be reformulated almost every year due to the genetic instability of the virus. Next generation Flu vaccines should be designed to induce cross-reactivity, confer protection against pandemic outbreaks, and promote long-lasting immune responses among individuals at higher risk of infection. Multiple strategies are being developed for the induction of broad functional humoral immunity, including the use of adjuvants, heterologous prime-boost strategies, and epitope-based antigen design. The basic approach is to mimic natural responses to influenza virus infection by promoting cross-reactive neutralizing antibodies that directly prevent the infection. This review provides an overview of the mechanisms underlying humoral responses to influenza vaccination or natural infection, and discusses promising strategies to control influenza virus.

  10. Response of hematopoietic stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Simonnet, A.

    2008-12-01

    experiment that a single TPO administration rescued the IR-impaired reconstitution capacity of HSCs early after exposure. In addition, the use of marrow cells from transgenic ubiquitous luciferase-expressing donors combined with bioluminescence imaging technology provided a valuable strategy that allowed visualizing HSC homing of TPO-treated compared to untreated irradiated donors, and enabled the identification of a preferential cellular expansion sites which were inaccessible to investigation in most studies. Finally, we observed that TPO injection right after irradiation considerably attenuates IR-induced long-term injury to the stem/progenitor compartment. Altogether, these data provide novel insights in the cellular response of HSC to IR and the beneficial effects of TPO administration to these cells. (author)

  11. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive

  12. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    Science.gov (United States)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  13. Induction of non-responsiveness in human allergen-specific type 2 T helper cells.

    Science.gov (United States)

    Yssel, H; Fasler, S; Lamb, J; de Vries, J E

    1994-12-01

    Activation of allergen-reactive human T helper (Th)2 cells in the absence of professional antigen-presenting cells, induces non-responsiveness or anergy in these cells in vitro. This induction of anergy is accompanied by phenotypic modulation and altered cytokine production. Furthermore, peptide-treated Th2 cells fail to provide B-cell help for IgE synthesis. Recent studies indicate that impaired signal transduction via the T-cell receptor may account for the lack of responsiveness to antigenic stimulation. Here, we review present knowledge on the cell biology of non-responsive or anergic Th2 cells.

  14. FoxO1 Controls Effector to Memory Transition and Maintenance of Functional CD8 T-Cell Memory

    Science.gov (United States)

    Tejera, Melba Marie; Kim, Eui Ho; Sullivan, Jeremy A.; Plisch, Erin H.; Suresh, M.

    2013-01-01

    During a T cell response, naïve CD8 T cells differentiate into effector cells. Subsequently, a subset of effector cells termed memory precursor effector cells (MPECs) further differentiates into functionally mature memory CD8 T cells. The transcriptional network underlying this carefully scripted process is not well understood. Here, we report that the transcription factor FoxO1 plays an integral role in facilitating effector to memory transition and functional maturation of memory CD4 and CD8 T cells. We find that FoxO1 is not required for differentiation of effector cells, but in the absence of FoxO1, memory CD8 T cells displayed features of senescence and progressive attrition in polyfunctionality, which in turn led to impaired recall responses and poor protective immunity. These data suggest that FoxO1 is essential for maintenance of functional CD8 T cell memory and protective immunity. Under competing conditions in bone marrow chimeric mice, FoxO1-deficiency did not perturb clonal expansion or effector differentiation. Instead, FoxO1-deficient MPECs failed to survive and form memory CD8 T cells. Mechanistically, FoxO1 deficiency perturbed the memory CD8 T-cell transcriptome, characterized by pronounced alterations in the expression of genes that encode transcription factors (including Tcf7), effector molecules, cell cycle regulators and proteins that regulate fatty acid, purine and pyramidine metabolism and mitochondrial functions. We propose that FoxO1 is a key regulator that reprograms and steers the differentiation of effector cells to functionally competent memory cells. These findings have provided fundamental insights into the mechanisms that regulate the quality of CD8 T-cell memory to intracellular pathogens. PMID:23733882

  15. Inflammatory cell response to calcium phosphate biomaterial particles: an overview.

    Science.gov (United States)

    Velard, Frédéric; Braux, Julien; Amedee, Joëlle; Laquerriere, Patrice

    2013-02-01

    Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  17. Cell wide responses to low oxygen exposure in Desulfovibriovulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.; Redding, A.; Joachimiak, M.; Arkin, A.; Borglin, S.; Dehal, P.; Chakraborty, R.; Geller, J.; Hazen, T.; He, Q.; Joyner, D.; Martin, V.; Wall, J.; Yang, Z.; Zhou, J.; Keasling, J.

    2007-03-11

    The responses of the anaerobic, sulfate-reducing Desulfovibrio vulgaris Hildenborough to low oxygen exposure (0.1% O{sub 2}) were monitored via transcriptomics and proteomics. Exposure to 0.1% O{sub 2} caused a decrease in growth rate without affecting viability. A concerted up regulation in the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O{sub 2} exposure. Several of these candidates also showed increases in protein abundance. Among the remaining small number of transcript changes was the up regulation of the predicted transmembrane tetraheme cytochrome c3 complex. Other known oxidative stress response candidates remained unchanged during this low O{sub 2} exposure. To fully understand the results of the 0.1% O{sub 2} exposure, transcriptomics and proteomics data were collected for exposure to air using a similar experimental protocol. In contrast to the 0.1% O{sub 2} exposure, air exposure was detrimental to both the growth rate and viability and caused dramatic changes at both the transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon genes were down regulated during air exposure. Our results highlight the differences in the cell wide response to low and high O{sub 2} levels of in D. vulgaris and suggest that while exposure to air is highly detrimental to D. vulgaris, this bacterium can successfully cope with periodic exposure to low O{sub 2} levels in its environment.

  18. Cytotoxic T cell responses to Streptococcus are associated with improved prognosis of oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Jie; Sun, Feng; Lin, Xiaoyu; Li, Zaiye; Mao, Xiaohe; Jiang, Canhua

    2018-01-01

    Several species of Streptococcus, such as S. salivarius, S. mitis, and S. anginosus, are found to extensively colonize the oral cavity and the upper respiratory tract, and have been shown to increase in patients with oral squamous cell carcinoma (OSCC). Accumulating evidence have revealed that commensal bacteria are involved in antitumor immunity via T cell-mediated mechanisms, but the role of Streptococcus enrichment in OSCC is yet unclear. In this study, we stimulated peripheral blood mononuclear cells from non-cancer controls (NCs) and OSCC patients with S. salivarius, S. mitis, and S. anginosus. We observed that compared to NC subjects, OSCC patients at earlier stages had higher frequencies of granzyme B-expressing CD8 T cells for all Streptococcus species tested, while OSCC patients at more advanced stages had higher frequencies of granzyme B-expressing CD8 T cells for S. anginosus but not other Streptococcus species. In OSCC patients, the Streptococcus-reactive CD8 T cells presented significantly lower levels of PD-1 and TIM-3 expression than Streptococcus-nonreactive CD8 T cells. The clinical outcomes of OSCC patients in our cohort were tracked for 24 months after the resection of the primary tumor. In patients that did not present tumor recurrence, the frequencies of S. salivarius-reactive and S. mitis-reactive CD8 T cells were significantly higher than that in patients that developed recurrent tumor. Furthermore, in patients with tumor recurrence, the duration between primary tumor resection and tumor recurrence was positively associated with the frequencies of S. salivarius-reactive and S. anginosus-reactive CD8 T cells. Together, we demonstrated that Streptococcus-reactive CD8 T cell responses might contribute to antitumor immunity in OSCC patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses

    Science.gov (United States)

    Clausen, Björn E.; Stoitzner, Patrizia

    2015-01-01

    Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease. PMID:26557117

  20. Cells that mediate NK like cytotoxicity are present in the human delayed type hypersensitivity response.

    Science.gov (United States)

    Tartof, D; Yung, C W; Curran, J J; Livingston, C; Thalji, Z

    1984-11-01

    By inducing delayed type hypersensitivity (DTH) responses under previously formed skin blisters we determined that cells which mediate natural killer (NK) like cytotoxicity are present in the DTH response in man. Similar levels of killing were not present in cells obtained from skin blisters not associated with positive DTH responses. The DTH response associated killer cell was found to be a mononuclear cell that had presumably undergone stimulation since it not only killed NK sensitive K-562 cells, but also NK resistant Daudi target cells.

  1. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    Directory of Open Access Journals (Sweden)

    Andoh Y

    2013-01-01

    Full Text Available Yoshiaki Andoh,1,2 Naohiko Makino,2 Mitsunori Yamakawa11Department of Pathological Diagnostics, 2Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, JapanBackground: It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL and CD4+CD25high regulatory T-cells (Tregs among dendritic cells (DCs fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines.Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs, were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated.Results: The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1 was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines.Conclusion: The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs

  2. Phenotypic differences of CD4(+) T cells in response to red blood cell immunization in transfused sickle cell disease patients.

    Science.gov (United States)

    Vingert, Benoît; Tamagne, Marie; Habibi, Anoosha; Pakdaman, Sadaf; Ripa, Julie; Elayeb, Rahma; Galacteros, Frédéric; Bierling, Philippe; Ansart-Pirenne, Hélène; Bartolucci, Pablo; Noizat-Pirenne, France

    2015-06-01

    Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50-70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4(+) T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4(+) T-cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4(+) T-cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4(+) T cells were associated with the nonresponder status, whereas spontaneous expression of IL-10 by CD4(+) T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jb(k) . These findings implicate CD4(+) T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mycoplasma Suppression of THP-1 Cell TLR Responses Is Corrected with Antibiotics

    OpenAIRE

    Zakharova, Ekaterina; Grandhi, Jaykumar; Wewers, Mark D.; Gavrilin, Mikhail A.

    2010-01-01

    Mycoplasma contamination of cultured cell lines is a serious problem in research, altering cellular response to different stimuli thus compromising experimental results. We found that chronic mycoplasma contamination of THP-1 cells suppresses responses of THP-1 cells to TLR stimuli. For example, E. coli LPS induced IL-1 beta was suppressed by 6 fold and IL-8 by 10 fold in mycoplasma positive THP-1 cells. Responses to live F. novicida challenge were suppressed by 50-fold and 40-fold respective...

  4. [Conjunctival squamous cell carcinoma: paradoxical response to interferon eyedrops].

    Science.gov (United States)

    Mata, E; Conesa, E; Castro, M; Martínez, L; de Pablo, C; González, M L

    2014-07-01

    A 67 year-old male seen for a longstanding corneal-conjunctival tumor. topical interferon α2b (IFN-α2b) 10 U/ml. A significant increase in lesion size was observed after 8 weeks. A surgical excision with cryotherapy was then performed. Pathological examination confirmed the diagnosis of squamous cell carcinoma. At this time the patient was found to have a positive HIV serology. Conjunctival intraepithelial neoplasia (CIN) is a pre-cancerous lesion of the ocular surface. Medical treatment of CIN is essentially with IFN-α2b due to its antiviral/antitumor properties. In patients with HIV, treatment response could be paradoxical. We recommend serology for HIV before treatment with topical IFN-α2b. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    Directory of Open Access Journals (Sweden)

    Ana-Belén eBlázquez

    2014-06-01

    Full Text Available The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR, which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  6. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.

    1993-01-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  7. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.

    1993-06-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  8. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rafik Terra

    Full Text Available Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6 was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1 in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2 STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3 STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.

  9. Acrolein in cigarette smoke inhibits T-cell responses.

    Science.gov (United States)

    Lambert, Cherie; McCue, Jesica; Portas, Mary; Ouyang, Yanli; Li, JiMei; Rosano, Thomas G; Lazis, Alexander; Freed, Brian M

    2005-10-01

    Cigarette smoking inhibits T-cell responses in the lungs, but the immunosuppressive compounds have not been fully identified. Cigarette smoke extracts inhibit IL-2, IFN-gamma, and TNF-alpha production in stimulated lymphocytes obtained from peripheral blood, even when the extracts were diluted 100-fold to 1000-fold. The objective of these studies was to identify the immunosuppressive compounds found in cigarette smoke. Gas chromatography/mass spectroscopy and HPLC were used to identify and quantitate volatile compounds found in cigarette smoke extracts. Bioactivity was measured by viability and production of cytokine mRNA and protein levels in treated human lymphocytes. The vapor phase of the cigarette smoke extract inhibited cytokine production, indicating that the immunosuppressive compounds were volatile. Among the volatile compounds identified in cigarette smoke extracts, only the alpha,beta-unsaturated aldehydes, acrolein (inhibitory concentration of 50% [IC50] = 3 micromol/L) and crotonaldehyde (IC50 = 6 micromol/L), exhibited significant inhibition of cytokine production. Although the levels of aldehydes varied 10-fold between high-tar (Camel) and ultralow-tar (Carlton) extracts, even ultralow-tar cigarettes produced sufficient levels of acrolein (34 micromol/L) to suppress cytokine production by >95%. We determined that the cigarette smoke extract inhibited transcription of cytokine genes. The inhibitory effects of acrolein could be blocked with the thiol compound N-acetylcysteine. The vapor phase from cigarette smoke extracts potently suppresses cytokine production. The compound responsible for this inhibition appears to be acrolein.

  10. Chronic lymphocytic leukemia cells acquire regulatory B-cell properties in response to TLR9 and CD40 activation.

    Science.gov (United States)

    Ringelstein-Harlev, Shimrit; Avivi, Irit; Fanadka, Mona; Horowitz, Netanel A; Katz, Tami

    2018-02-15

    Circulating chronic lymphocytic leukemia (CLL) cells share phenotypic features with certain subsets of regulatory B-cells (Bregs). The latter cells have been reported to negatively regulate immune cell responses, mostly by provision of IL-10. The purpose of the current study was to identify and delineate Breg properties of CLL cells. B-cells and T-cells were obtained from the peripheral blood of untreated CLL patients diagnosed according to the 2008 Guidelines of the International Workshop on Chronic Lymphocytic Leukemia. Co-culture assays were used to examine the ability of CLL cells to suppress autologous T-cell immune responses. IL-10 potency of CLL cells was assessed following stimulation with activators of the toll-like receptor 9 (TLR9) or CD40 and was correlated with the inhibitory activity of the cells. TLR9-activated CLL cells were found to increase the frequency of CD4 + CD25 hi FOXp3 + regulatory T-cells (Tregs) and to inhibit autologous CD4 + T-cell proliferation. This signaling cascade proved to control IL-10 generation in CLL cells, which in turn promoted the inhibition of T-cell proliferation by CLL cells. However, CD40 activation of CLL cells, while exhibiting a similar ability to augment Treg frequency, did not either affect IL-10 generation or T-cell proliferation. In conclusion, CLL cells demonstrate a unique clonal quality of adopting Breg properties which promote modulation of T-cell characteristics. TLR9 appears to be a potent activator of regulatory abilities in CLL cells, possibly contributing to preferential immune escape of TLR9-responsive cells.

  11. Response of the ABCG2 promoter in T47D cells and BeWo cells to sex hormone treatment.

    Science.gov (United States)

    Yasuda, Satoru; Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2009-09-01

    The aim of this study was to elucidate the effects of sex hormones on activity of the ABCG2 promoter in different cell lines. T47D cells and BeWo cells were used as models for ABCG2-expressing cell lines, and luciferase assays using ABCG2 promoter-luciferase constructs were performed. It was shown that progesterone increased the response of the ABCG2 promoter in T47D cells but not in BeWo cells. On the other hand, estradiol had no effect on response of the ABCG2 promoter in either cell line. However, response of the ABCG2 promoter was enhanced by overexpression of ERalpha in both T47D cells and BeWo cells. T47D cells had higher sensitivity to ERalpha than did BeWo cells. Furthermore, it was shown that the inductive effect of progesterone on the ABCG2 promoter was inhibited by addition of RU486 or mithramycin A. Therefore, it was thought that the ABCG2 promoter responded to stimulation of the progesterone receptor (PR)-Sp1 pathway in T47D cells. Furthermore, progesterone suppressed the response of the ABCG2 promoter by changing the expression levels of PR-A and PR-B in BeWo cells. These findings suggested that there are differences between cell lines in the regulation mechanism of ABCG2 expression by sex hormone treatment.

  12. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Wu Gang; Gu Hongguang; Han Benli; Pei Xuetao

    2002-01-01

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  13. Identifying Regulators of the Immune Response to Dying Cells | Center for Cancer Research

    Science.gov (United States)

    Cytotoxic T cells are responsible for carrying out antigen-mediated immune responses against virally-infected and malignant cells. In both cases, cytotoxic T cells are stimulated by interacting with antigen presenting cells, such as dendritic cells (DCs). Infected cells produce virus-specific antigens and pathogen associated molecular patterns, which are recognized by DCs and lead to robust T cell activation. Dead or dying uninfected cells, on the other hand, release damage associated molecular patterns, but their release does not always appear to be sufficient to induce cytotoxic T cell activity. Tim Greten, M.D., of CCR’s Medical Oncology Branch, and a group of international collaborators set out to understand how immune responses against dying cancer cells are regulated. These processes are likely to be important for improving the efficacy of cancer treatment vaccines, which induce an immune reaction against a patient’s cancer cells.

  14. PD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice

    Science.gov (United States)

    Zhou, Jingying; Cheung, Allen K.L.; Tan, Zhiwu; Wang, Haibo; Yu, Wenbo; Du, Yanhua; Kang, Yuanxi; Lu, Xiaofan; Liu, Li; Yuen, Kwok-Yung; Chen, Zhiwei

    2013-01-01

    Viral vector–based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non–DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1–based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12–producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1–based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens. PMID:23635778

  15. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  16. Infection Programs Sustained Lymphoid Stromal Cell Responses and Shapes Lymph Node Remodeling upon Secondary Challenge

    Directory of Open Access Journals (Sweden)

    Julia L. Gregory

    2017-01-01

    Full Text Available Lymph nodes (LNs are constructed of intricate networks of endothelial and mesenchymal stromal cells. How these lymphoid stromal cells (LSCs regulate lymphoid tissue remodeling and contribute to immune responses remains poorly understood. We performed a comprehensive functional and transcriptional analysis of LSC responses to skin viral infection and found that LSC subsets responded robustly, with different kinetics for distinct pathogens. Recruitment of cells to inflamed LNs induced LSC expansion, while B cells sustained stromal responses in an antigen-independent manner. Infection induced rapid transcriptional responses in LSCs. This transcriptional program was transient, returning to homeostasis within 1 month of infection, yet expanded fibroblastic reticular cell networks persisted for more than 3 months after infection, and this altered LN composition reduced the magnitude of LSC responses to subsequent heterologous infection. Our results reveal the complexity of LSC responses during infection and suggest that amplified networks of LN stromal cells support successive immune responses.

  17. Deficient repair regulatory response to injury in keratoconic stromal cells.

    Science.gov (United States)

    Cheung, Isabella My; McGhee, Charles Nj; Sherwin, Trevor

    2014-05-01

    Keratoconus manifests as a conical protrusion of the cornea and is characterised by stromal thinning. This causes debilitating visual impairment, which may necessitate corneal transplantation. Hypothetically, many of the pathological features in keratoconus may be manifestations of defects in wound healing; however, as the pathobiology remains unclear, therapeutic targets related to disease mechanisms are currently lacking. This study investigated the protein expression of cytokines which may control stromal wound healing and the effect of an induced secondary injury (SI) on stromal cells from ex vivo human keratoconus and control corneas. Total protein was extracted from stromal cells from human keratoconic and non-keratoconic central corneas (n = 12) with (+SI) and without (-SI) an ex vivo corneal incision wound. The levels of interleukin 1 alpha (IL-1α), fibroblast growth factor 2 (FGF-2), nerve growth factor beta (β-NGF), insulin-like growth factor 1 (IGF-1), tumour necrosis factor alpha (TNF-α), epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-β1), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) were quantified using chemiluminescence-based immunoarrays. In stromal cells from -SI keratoconic corneas (compared with -SI normal corneas), the levels of IL-1α, IGF-1, TNF-α and TGF-β1 were increased and the levels of HGF and β-NGF were reduced. These alterations were also observed in +SI non-keratoconic corneas (compared with -SI non-keratoconic corneas). In stromal cells from +SI keratoconic corneas (compared with -SI keratoconic corneas), the quantities of IL-1α, FGF-2, TNF-a, EGF, TGF-a1 and PDGF were decreased. The repair-modulating milieu in keratoconic corneas appears comparable to that in wounded normal corneas. Moreover, wounded keratoconic corneas may be less capable of orchestrating a normal reparative response. These novel findings may improve our understanding of the pathobiology and may facilitate

  18. Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex.

    Science.gov (United States)

    Tamura, H; Tanaka, K

    2001-05-01

    We recorded from cells in the anterio-ventral (TEav) and anterio- dorsal (TEad) parts of area TE of the inferotemporal cortex and examined their responses to a set of 100 visual stimuli in awake, fixating monkeys. In both TEav and TEad we found that, depending on the stimulus, the time course of responses varied considerably within individual cells and that there were three main factors in the variation. One factor is variance in the balance between the initial transient part of responses around 130 ms after stimulus onset and the later part after 240 ms from stimulus onset. The later parts of responses were more stimulus selective. The second factor is variance in the latency of response onset and peak and the third is variance in the speed of decay from the peak within the initial part of the responses. Stronger responses had shorter onset and peak latencies and longer decay times. The results suggest that stimulus images can be discriminated very rapidly in TEav and TEad by detecting differences in response onset. TEav cells differed from TEad cells in that they were more difficult to activate than TEad cells: the proportion of responsive TEav cells was smaller, the maximal responses of individual cells were smaller than in TEad and the number of stimuli that evoked significant responses in individual responsive cells was also smaller than in TEad. Moreover, TEav cells, overall, responded more strongly to more colorful object images than less colorful ones, while TEad cells did not show such a tendency. However, the minimum onset latency of individual cells and the sharpness of stimulus selectivity did not differ significantly between TEav and TEad. Responses of TEav cells are as selective as those of TEad cells, although there remains a possibility that the domain of selectivity differs between the two areas. These results support an earlier anatomical finding that TEav and TEad are located at the same hierarchical level of separate serial pathways rather than

  19. [T cell-mediated immune responses and the recognition of tuberculosis antigens].

    Science.gov (United States)

    Tsujimura, Kunio; Koide, Yukio

    2010-06-01

    T cell-mediated immune responses profoundly contribute to the protection against the re-activation of latently infected Mycobacterium tuberculosis. Th1 cells produce IFN-gamma to activate infected macrophages and promote the formation of granulomas around infected macrophages. CD8+, gamma delta and CD1-restricted T cells also produce IFN-gamma and participate the protective responses against bacterial growth. Th17 cells produce IL-17 to promote the mobilization of immunocompetent cells and contribute to the granuloma formation. On the contrary, Th2 cells and Tregs interfere these protective immune responses.

  20. Distinct Responses of Stem Cells to Telomere Uncapping-A Potential Strategy to Improve the Safety of Cell Therapy.

    Science.gov (United States)

    Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang

    2016-10-01

    In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.

  1. The expansion ability but not the quality of HIV-specific CD8(+) T cells is associated with protective human leucocyte antigen class I alleles in long-term non-progressors.

    Science.gov (United States)

    López, Mariola; Peris, Alejandra; Soriano, Vincent; Lozano, Sara; Vicario, José Luis; Rallón, Norma I; Restrepo, Clara; Benito, José M

    2011-11-01

    Studies in long-term non-progressors (LTNP) have suggested that the quality of the CD8(+) response may involve protective human leucocyte antigen (HLA) class I alleles. However, studies examining the expansion ability of different functional CD8(+) T cells and their association with HLA class I alleles are lacking. LTNP, untreated typical progressors (TP) and patients successfully on highly active retroviral therapy (HAART) during 1 year (HP) were included. HLA class I typing was performed using a sequence-specific primer assay. Functional subsets of Gag- and Nef-specific CD8(+) cells were analysed based on the production of macrophage inflammatory protein (MIP)-1β, tumour necrosis factor (TNF)-α and interleukin (IL)-2. Their expansion abilities were evaluated after 10-day culture in the presence of Gag and Nef human immunodeficiency virus (HIV) peptides. No differences were seen when comparing quantitative and qualitative HIV-specific CD8(+) T cell responses according to the presence/absence of protective HLA alleles (B*58 and B*27 supertypes) in each group. However, LTNP with protective HLA alleles showed a higher expansion ability of Gag-specific MIP(+) TNF(+) IL-2(+) T cells and Nef-specific MIP(+) TNF(+) IL-2(+) . HLA-B*5701+LTNP displayed a higher expansion ability of Gag and Nef-specific MIP(+) TNF(-) IL-2(+) T cells than HLA-B*5701-LTNP. This was not so for HLA-B*2705. No differences were seen in the expansion ability according to the presence/absence of protective HLA alleles in TP and HP. The expansion ability of polyfunctional CD8(+) T cells is modulated by HLA class I alleles and targeted protein. LTNP with HLA class I protective alleles (mainly B*5701) display better expansion ability of polyfunctional HIV-specific CD8(+) T cells than the rest, suggesting that factors other than HLA-B*5701 must contribute to the control of viral replication in other LTNP. Furthermore, these attributes of HIV-specific CD8(+) T are not restored by HAART; thus, adjuvant

  2. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Science.gov (United States)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S Marieke

    2010-09-27

    The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+) T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+) T cells is dependent on CD4(+) T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  3. CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection.

    Science.gov (United States)

    Linterman, Michelle A; Denton, Alice E; Divekar, Devina P; Zvetkova, Ilona; Kane, Leanne; Ferreira, Cristina; Veldhoen, Marc; Clare, Simon; Dougan, Gordon; Espéli, Marion; Smith, Kenneth G C

    2014-10-27

    The co-stimulatory molecule CD28 is essential for activation of helper T cells. Despite this critical role, it is not known whether CD28 has functions in maintaining T cell responses following activation. To determine the role for CD28 after T cell priming, we generated a strain of mice where CD28 is removed from CD4(+) T cells after priming. We show that continued CD28 expression is important for effector CD4(+) T cells following infection; maintained CD28 is required for the expansion of T helper type 1 cells, and for the differentiation and maintenance of T follicular helper cells during viral infection. Persistent CD28 is also required for clearance of the bacterium Citrobacter rodentium from the gastrointestinal tract. Together, this study demonstrates that CD28 persistence is required for helper T cell polarization in response to infection, describing a novel function for CD28 that is distinct from its role in T cell priming.

  4. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Liao, Y.P.; Wang, C.-C.; McBride, W.H.

    2003-01-01

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  5. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  6. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  7. T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration.

    Science.gov (United States)

    Colombo, Matthew J; Sun, Guizhi; Alugupalli, Kishore R

    2010-09-01

    The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells. In this study, we examined the role of Cxcl13-dependent B cell migration using Borrelia hermsii infection or intraperitoneal immunization with pneumococcal polysaccharide or 4-hydroxy-3-nitrophenyl-acetyl (NP)-Ficoll, all of which induce robust antibody responses from B1b cells. Surprisingly, we found that antibody responses to B. hermsii or to FhbA, an antigenic target of B1b cells, and the resolution of bacteremia were indistinguishable between wild-type and Cxcl13-/- mice. Importantly, we did not observe an expansion of peritoneal B1b cell numbers in Cxcl13-/- mice. Nonetheless, mice that had resolved infection were resistant to reinfection, indicating that the peritoneal B1b cell reservoir is not required for controlling B. hermsii. Furthermore, despite a reduced peritoneal B1b compartment, immunization with pneumococcal polysaccharide vaccine yielded comparable antigen-specific antibody responses in wild-type and Cxcl13-/- mice and conferred protection against Streptococcus pneumoniae. Likewise, immunization with NP-Ficoll elicited similar antibody responses in wild-type and Cxcl13-/- mice. These data demonstrate that homing of B1 cells into the coelomic cavity is not a requirement for generating protective TI antibody responses, even when antigen is initially localized to this anatomical compartment.

  8. Evaluation of cell responses toward adhesives with different photoinitiating systems.

    Science.gov (United States)

    Van Landuyt, Kirsten L; Krifka, Stephanie; Hiller, Karl-Anton; Bolay, Carola; Waha, Claudia; Van Meerbeek, Bart; Schmalz, Gottfried; Schweikl, Helmut

    2015-08-01

    The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. The Reticular Cell Network : A Robust Backbone for Immune Responses

    NARCIS (Netherlands)

    Textor, Johannes; Mandl, Judith N; de Boer, Rob J

    2016-01-01

    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During

  10. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming.

    Science.gov (United States)

    Wagner, Julia A; Rosario, Maximillian; Romee, Rizwan; Berrien-Elliott, Melissa M; Schneider, Stephanie E; Leong, Jeffrey W; Sullivan, Ryan P; Jewell, Brea A; Becker-Hapak, Michelle; Schappe, Timothy; Abdel-Latif, Sara; Ireland, Aaron R; Jaishankar, Devika; King, Justin A; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C; Fehniger, Todd A

    2017-11-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.

  11. Mycoplasma suppression of THP-1 Cell TLR responses is corrected with antibiotics.

    Science.gov (United States)

    Zakharova, Ekaterina; Grandhi, Jaykumar; Wewers, Mark D; Gavrilin, Mikhail A

    2010-03-25

    Mycoplasma contamination of cultured cell lines is a serious problem in research, altering cellular response to different stimuli thus compromising experimental results. We found that chronic mycoplasma contamination of THP-1 cells suppresses responses of THP-1 cells to TLR stimuli. For example, E. coli LPS induced IL-1 beta was suppressed by 6 fold and IL-8 by 10 fold in mycoplasma positive THP-1 cells. Responses to live F. novicida challenge were suppressed by 50-fold and 40-fold respectively for IL-1beta and IL-8. Basal TLR4 expression level in THP-1 cells was decreased by mycoplasma by 2.4-fold (p = 0.0003). Importantly, cell responses to pathogen associated molecular patterns are completely restored by mycoplasma clearance with Plasmocin. Thus, routine screening of cell lines for mycoplasma is important for the maintenance of reliable experimental data and contaminated cell lines can be restored to their baseline function with antibiotic clearance of mycoplasma.

  12. Mycoplasma suppression of THP-1 Cell TLR responses is corrected with antibiotics.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zakharova

    2010-03-01

    Full Text Available Mycoplasma contamination of cultured cell lines is a serious problem in research, altering cellular response to different stimuli thus compromising experimental results. We found that chronic mycoplasma contamination of THP-1 cells suppresses responses of THP-1 cells to TLR stimuli. For example, E. coli LPS induced IL-1 beta was suppressed by 6 fold and IL-8 by 10 fold in mycoplasma positive THP-1 cells. Responses to live F. novicida challenge were suppressed by 50-fold and 40-fold respectively for IL-1beta and IL-8. Basal TLR4 expression level in THP-1 cells was decreased by mycoplasma by 2.4-fold (p = 0.0003. Importantly, cell responses to pathogen associated molecular patterns are completely restored by mycoplasma clearance with Plasmocin. Thus, routine screening of cell lines for mycoplasma is important for the maintenance of reliable experimental data and contaminated cell lines can be restored to their baseline function with antibiotic clearance of mycoplasma.

  13. Antibody and B cell responses to Plasmodium sporozoites

    Directory of Open Access Journals (Sweden)

    Johanna N Dups

    2014-11-01

    Full Text Available Antibodies are capable of blocking infection of the liver by Plasmodium sporozoites. Accordingly the induction of anti-sporozoite antibodies is a major aim of various vaccine approaches to malaria. In recent years our knowledge of the specificity and quantities of antibodies required for protection has been greatly expanded by clinical trials of various whole sporozoite and subunit vaccines. Moreover, the development of humanized mouse models and transgenic parasites have also aided our ability to assess the specificity of antibodies and their ability to block infection. Nonetheless, considerable gaps remain in our knowledge - in particular in understanding what antigens are recognized by infection blocking antibodies and in knowing how we can induce robust, long-lived antibody responses. Maintaining high levels of circulating antibodies is likely to be of primary importance, as antibodies must block infection in the short time it takes for sporozoites to reach the liver from the skin. It is clear that a better understanding of the development of protective B cell-mediated immunity will aid the development and refinement of malaria vaccines.

  14. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  15. Follicular Helper T (Tfh) Cells Mediate IgE Antibody Response to Airborne Allergens

    Science.gov (United States)

    Kobayashi, Takao; Iijima, Koji; Dent, Alexander L.; Kita, Hirohito

    2016-01-01

    Background Type 2 helper T (Th2) cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T cell subset, T follicular helper cells (Tfh) cells, is specialized in supporting B cell maturation and antibody production. Objective To investigate the roles of Tfh cells in allergic immune responses. Methods Naïve mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes (LNs) and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. Results We observed the development of IL-4-producing Tfh cells and Th2 cells in draining LNs following airway exposure to IL-1 family cytokines or natural allergens. Tfh cells and Th2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. Tfh cells supported the sustained production of IgE antibody in vivo in the absence of other T cell subsets or even when Th2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4+ T cells resulted in a marked reduction in Tfh cells and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. Conclusion Tfh cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve two distinct subsets of IL-4-producing CD4+ T cells, namely Tfh cells and Th2 cells. PMID:27325434

  16. The influence of Listeria monocytogenes cells on the primary immunologic response in irradiated mice

    International Nuclear Information System (INIS)

    Borowski, J.; Jokoniuk, P.

    1977-01-01

    The influence of killed Listeria monocytogenes cells on the primary immunologic response in mice irradiated with 300 or 500 R was studied. The immunologic response of the mice to sheep red blood cells used as antigen was assessed at the cellular level (by counting PFC) and humoral level. Injection of killed Listeria monocytogenes cells before irradiation of the mice diminished the immunosuppressive effect of roentgen radiation. Injection of the cells after irradiation accelerated regeneration of immunologic reactivity in the irradiated mice. (author)

  17. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses.

    Science.gov (United States)

    Detre, Cynthia; Keszei, Marton; Garrido-Mesa, Natividad; Kis-Toth, Katalin; Castro, Wilson; Agyemang, Amma F; Veerapen, Natacha; Besra, Gurdyal S; Carroll, Michael C; Tsokos, George C; Wang, Ninghai; Leadbetter, Elizabeth A; Terhorst, Cox

    2012-07-05

    One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.

  18. [Prediction of the molecular response to pertubations from single cell measurements].

    Science.gov (United States)

    Remacle, Françoise; Levine, Raphael D

    2014-12-01

    The response of protein signalization networks to perturbations is analysed from single cell measurements. This experimental approach allows characterizing the fluctuations in protein expression levels from cell to cell. The analysis is based on an information theoretic approach grounded in thermodynamics leading to a quantitative version of Le Chatelier principle which allows to predict the molecular response. Two systems are investigated: human macrophages subjected to lipopolysaccharide challenge, analogous to the immune response against Gram-negative bacteria and the response of the proteins involved in the mTOR signalizing network of GBM cancer cells to changes in partial oxygen pressure. © 2014 médecine/sciences – Inserm.

  19. Lowering T Cell Activation Thresholds and Deregulating Homeostasis to Facilitate Immunotherapeutic Responses to Treat Prostate Cancer

    National Research Council Canada - National Science Library

    Kwon, Eugene D

    2006-01-01

    ... to develop immune-based therapies for prostate cancer Hence, relatively straightforward manipulations that induce specific T cell responses against prostate tumors or epithelial tissues, especially...

  20. T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections.

    Science.gov (United States)

    Utzschneider, Daniel T; Charmoy, Mélanie; Chennupati, Vijaykumar; Pousse, Laurène; Ferreira, Daniela Pais; Calderon-Copete, Sandra; Danilo, Maxime; Alfei, Francesca; Hofmann, Maike; Wieland, Dominik; Pradervand, Sylvain; Thimme, Robert; Zehn, Dietmar; Held, Werner

    2016-08-16

    Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memory T cells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC.

    Science.gov (United States)

    Han, Qiuju; Wang, Yaqun; Pang, Min; Zhang, Jian

    2017-11-07

    Whole-cell tumor vaccines have shown much promise; however, only limited success has been achieved for the goal of eliciting robust tumor-specific T-cell responses. Hepatocellular carcinoma (HCC) cells, H22 and Hepa1-6, were modified by blocking the STAT3 signaling pathway with a STAT3 decoy oligodeoxynucleotide, and the immunogenicity and possibility of using these cell lysates as a vaccine were evaluated. STAT3-blocked whole HCC cell lysates inhibited tumor growth and tumorigenesis, and prolonged the survival of tumor-bearing mice. In addition, STAT3-blocked whole HCC cell lysates stimulated the activation of T cells and natural killer (NK) cells, and enhanced the infiltration of cytotoxic CD8 + T cells in the tumor tissues. In addition, the maturation of dendritic cells (DCs) was enhanced, which promoted the generation of immunological memory against HCC. Furthermore, secondary immune responses could be primed as soon as these immunized mice were challenged with HCC cells, accompanied by T cell and NK cell activation and infiltration. Additionally, immunization with this vaccine decreased the generation of Tregs and the production of TGF-β and IL-10. Importantly, STAT3-blocked whole HCC cell lysates prevented HCC-mediated exhaustion of T cells and NK cells, showing low expression of checkpoint molecules such as PD-1 and TIGIT on T cells and NK cells in the immunized mice. The newly generated STAT3-blocked whole-cell HCC vaccine has potential for cancer cell vaccination.

  2. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  3. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane

    2014-01-01

    (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...... for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. RESULTS: The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD...

  4. Kinetics of memory B cell and plasma cell responses in the mice immunized with plague vaccines.

    Science.gov (United States)

    Zhang, X; Wang, Q; Bi, Y; Kou, Z; Zhou, J; Cui, Y; Yan, Y; Zhou, L; Tan, Y; Yang, H; Du, Z; Han, Y; Song, Y; Zhang, P; Zhou, D; Yang, R; Wang, X

    2014-03-01

    In our previous studies, we found that plague vaccines can induce long-term antibody response, but no significant antibody boost was observed when the immunized mice were challenged with virulent Yersinia pestis. However, a booster vaccination of subunit vaccine on week 3 after primary immunization elicited a significantly higher antibody titre than a single dose, whereas no significant antibody titre difference was observed between a single dose and two doses of EV76 vaccination. To address these issues, in this study, we first investigated the kinetics of memory B cells and plasma cells in the mice immunized with EV76 or F1 protein by flow cytometry and then determined antibody titre in five groups of mice immunized with various vaccination strategy. The results showed that memory B cells dropped to a low level at day 56 after primary immunization. In contrast, plasma cells were maintained for more than 98 days. The group with primary immunization of EV76 and booster of F1 antigen developed a higher antibody titre than the group with immunization of F1 antigen and booster of EV76. This result supports a hypothesis that an excess of antigens can neutralize pre-existing antibodies, and then the redundant antigen induces antibody boost. Taken together, a boost of antibody titre after revaccination may be dependent on the existence of memory B cells and an excess of antigen vaccination. In addition, this study showed an ideal immunization strategy that involves first immunization with a live attenuated vaccine, such as EV76, and then with a subunit vaccine. © 2014 John Wiley & Sons Ltd.

  5. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines.

    Science.gov (United States)

    Hillger, Julia M; Schoop, Jeffison; Boomsma, Dorret I; Slagboom, P Eline; IJzerman, Adriaan P; Heitman, Laura H

    2015-12-15

    Deciphering how genetic variation in drug targets such as G protein-coupled receptors (GPCRs) affects drug response is essential for precision medicine. GPCR signaling is traditionally investigated in artificial cell lines which do not provide sufficient physiological context. Patient-derived cell lines such as lymphoblastoid cell lines (LCLs) could represent the ideal cellular model system. Here we describe a novel label-free, whole-cell biosensor method for characterizing GPCR-mediated drug responses in LCLs. Generally, such biosensor technology is deemed only compatible with adherent cell lines. We optimized and applied the methodology to study cellular adhesion properties as well as GPCR drug responses in LCLs, which are suspension cells. Coating the detector surface with the extracellular matrix protein fibronectin resulted in cell adherence and allowed detection of cellular responses. A prototypical GPCR present on these cells, i.e. the cannabinoid receptor 2 (CB2), was selected for pharmacological characterization. Receptor activation with the agonist JWH133, blockade by antagonist AM630 as well as downstream signaling inhibition by PTX could be monitored sensitively and receptor-specifically. Potencies and effects were comparable between LCLs of two genetically unrelated individuals, providing the proof-of-principle that this biosensor technology can be applied to LCLs, despite their suspension cell nature, in order to serve as an in vitro model system for the evaluation of individual genetic influences on GPCR-mediated drug responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  7. The controversial impact of B cells subsets on immune response to pneumococcal vaccine in HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Olga Tsachouridou

    2015-09-01

    Conclusions: Low concentrations of total B cells and exhausted memory B cells was the strongest independent predictor of poor pneumococcal vaccine responsiveness, emphasizing that B cell subset disturbances are associated with a poor vaccine response among HIV-infected patients.

  8. Artifactual voltage response recorded from hair cells with patch-clamp amplifiers.

    Science.gov (United States)

    Masetto, S; Weng, T; Valli, P; Correia, M J

    1999-06-23

    Patch-clamp amplifiers (PCAs) are commonly used to characterize voltage- and current-clamp responses in the same cell. However, the cell membrane voltage response can be severely distorted by PCAs working in the current-clamp mode. Here we compare the voltage response of pigeon semicircular canal hair cells in situ, recorded with two different PCAs, and with a classic microelectrode bridge amplifier (BA). We found that the voltage response of hair cells recorded with PCAs differed significantly from that recorded with the BA. The true hair cell membrane voltage response to positive current steps was characterized by a strongly damped oscillation, whose frequency and duration depended on hair cell location in the sensory crista ampullaris.

  9. Design and Response of a Structural Multifunctional Fuel Cell

    National Research Council Canada - National Science Library

    South, Joseph; Baechle, Daniel; Hilton, Corydon; DeSchepper, Daniel; Wetzel, Eric

    2008-01-01

    .... In this study, structural fuel cells are proposed and evaluated. A structural multifunctional fuel cell system is designed so that material elements participating in power and energy processes are also carrying significant structural loads...

  10. Tumor cell dormancy as an adaptive cell stress response mechanism [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Laura Vera-Ramirez

    2017-12-01

    Full Text Available Metastases are responsible for most cancer-related deaths. The kinetics of tumor relapse is highly heterogeneous, ranging from recurrences shortly after diagnosis to years or even decades after the initial treatment. This subclinical period is known as tumor dormancy, in which residual disease remains in an undetectable state before finally appearing as an overtly proliferative metastasis. Despite recent advances in our understanding of the molecular mechanisms leading to tumor dormancy, it is still a poorly understood phase of cancer progression, which limits opportunities for the design of successful therapeutic interventions. The influence of the tumor microenvironment at the metastatic site and anti-metastatic immune responses have been shown to play a crucial role in the onset and maintenance of metastatic dormancy. However, there is still a significant gap in our understanding of how dormant cells remain viable in a quiescent state for long periods of time. Here, we review the latest experimental evidence shedding light on the biological processes that enable dormant tumor cells to endure the multiple stresses encountered at the metastatic site.

  11. Synergy among rat T cells in the proliferative response to alloantigen

    International Nuclear Information System (INIS)

    Wright, P.W.; Loop, S.M.; Bernstein, I.D.

    1979-01-01

    A synergistic interaction in the proliferative response to alloantigen is described for mixtures of rat thymus and lymph node cells. The optimal conditions for synergy are quantitatively defined. Regression analysis of the slope of the dose-response curve has been utilized to estimate the degree of interaction in thymus--lymph node cell mixtures. The slope of the response of cell mixtures was noted to be significantly greater than the slope for the response of lympth node cells alone. Irradiation was shown to have a differential effect on the response of thymus and lymph node cells in mixtures. Irradiated thymus cells retained the capacity for synergy in mixtures, whereas irradiated lymph node cells did not. Additional studies have demonstrated that both de novo protein synthesis and specific antigen recognition by both responding cell populations in mixtures was required for maximal synergy. These studies demonstrate that synergy cannot be explained as an artifact of altered cell density in vitro. They establish that thymus cells and lymph node cells represent distinct subsets which manifest qualitatively different functions in the proliferative response to alloantigen. Thymus cells can respond directly to alloantigen by proliferation but also have the capacity to amplify the proliferative response of lymph node cells, a capacity which is resistant to X irradiation but requires recognition of alloantigen and de novo protein synthesis. Lymph node cells may similarly respond by proliferation to alloantigen but lack the amplifier activity of thymus cells. Synergy for rat lymphoidcells, like mouse lymphoid cells, has been shown to involve an interaction of thymus-derived lymphocytes

  12. Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Directory of Open Access Journals (Sweden)

    Huber Sally A

    2011-01-01

    Full Text Available Abstract CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3 myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection.

  13. Self-assembled nanofiber coatings for controlling cell responses

    NARCIS (Netherlands)

    Barros, Raquel C.; Gelens, Edith; Bulten, Erna; Tuin, Annemarie; de Jong, Menno R; Kuijer, Roel; van Kooten, Theo G

    Nanofibers are thought to enhance cell adhesion, growth, and function. We demonstrate that the choice of building blocks in self-assembling nanofiber systems can be used to control cell behavior. The use of 2 D-coated, self-assembled nanofibers in controlling lens epithelial cells, fibroblasts, and

  14. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  15. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    International Nuclear Information System (INIS)

    Clark, Gregory O.; Yochem, Robert L.; Axelman, Joyce; Sheets, Timothy P.; Kaczorowski, David J.; Shamblott, Michael J.

    2007-01-01

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and β-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes

  16. Bone marrow function. I. Peripheral T cells are responsible for the increased auto-antiidiotype response of older mice

    International Nuclear Information System (INIS)

    Kim, Y.T.; Goidl, E.A.; Samarut, C.; Weksler, M.E.; Thorbecke, G.J.; Siskind, G.W.

    1985-01-01

    After immunization with trinitrophenyl (TNP)-Ficoll, mice produced both anti-TNP antibodies and auto-anti-idiotype (auto-anti-Id) antibodies specific for the anti-TNP antibody. Older animals produced more auto-anti-Id than did young animals. When mice were exposed to a normally lethal dose of irradiation while their bone marrow (BM) was partially shielded, they survived and slowly (6 wk) regained immune function, as indicated by the number of nucleated cells in their spleen and the in vitro primary plaque-forming cell (PFC) response of their spleen cells to TNP-treated aminoethylated polyacrylamide beads. Recovery is presumably the result of repopulation of the peripheral lymphoid system by cells originating in the BM. By enzyme-linked immunosorbent assay (ELISA), and by hapten-augmentable PFC assay, the authors show that, after recovery from irradiation with their BM shielded, old animals produce low auto-anti-Id responses, like those of young animals. The transfer of splenic T cells into mice irradiated with their BM shielded provided evidence that the magnitude of the auto-anti-Id response is controlled by the peripheral T cells. Thus, mice that received splenic T cells from aged donors produced high levels of auto-anti-Id while those that received splenic T cells from young donors produce low levels of auto-anti-Id

  17. Lactobacilli Modulate Natural Killer Cell Responses In Vitro

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... monocytes present, probably because cytokines, secreted by monocytes having engulfed bacteria, stimulated the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have...

  18. EFFECT OF TRIIODOTHYRONINE ON CELLS AND ON THEIR RESPONSE TO INFECTION BY POLIOVIRUSES1

    Science.gov (United States)

    Murphy, William H.; Bullis, Cora

    1962-01-01

    Murphy, W. H. (The University of Michigan, Ann Arbor) and Cora Bullis. Effect of triiodothyronine on cells and on their response to infection by polioviruses. J. Bacteriol. 83:641–648. 1962.—An analysis was made of the effect of triiodothyronine (T3) at physiological (1 μg/ml) and maximal subliminal toxic levels (35 μg/ml) on HeLa-S3, HeLa-Gey, Chang-liver, and Maben cells, and on their response to infection by cytopathic and submoderate (noncytopathic) mutants of type 2 poliovirus. Assays of cell response to T3 alone, or in combination with the mutants of poliovirus, were made by conventional monolayer cell culture techniques, by study of the effect of T3 on plating efficiency of cells, and by study of its influence on colonies of cell variants. Cellular response to liminal doses of T3 was characterized by agglutination of cells and thickening of the cell membrane. Compact colonies of Chang-liver and Maben cells were the most sensitive to maximal subliminal amounts of T3. T3 in combination with cytopathic or submoderate (noncytopathic) mutants of poliovirus slightly increased the rate of destruction of cells susceptible to virus, but did not influence yield of virus from cell cultures. T3 at physiological or subliminal concentrations did not induce cytopathic response of cell cultures latently infected by submoderate poliovirus. Images PMID:14477441

  19. Baseline levels of influenza-specific CD4 memory T-cells affect T-cell responses to influenza vaccines.

    Science.gov (United States)

    He, Xiao-Song; Holmes, Tyson H; Sasaki, Sanae; Jaimes, Maria C; Kemble, George W; Dekker, Cornelia L; Arvin, Ann M; Greenberg, Harry B

    2008-07-02

    Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens. During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-gamma(+) cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-gamma(+) CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56(dim) NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56(dim) NK and DC. These results demonstrate that assessment of baseline biomarkers may

  20. Baseline levels of influenza-specific CD4 memory T-cells affect T-cell responses to influenza vaccines.

    Directory of Open Access Journals (Sweden)

    Xiao-Song He

    Full Text Available BACKGROUND: Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens. METHODOLOGY/PRINCIPAL FINDINGS: During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-gamma(+ cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-gamma(+ CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56(dim NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56(dim NK and DC

  1. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  2. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    International Nuclear Information System (INIS)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  3. B7h-expressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T cell-dependent antibody responses

    Directory of Open Access Journals (Sweden)

    Larimore Kevin

    2012-06-01

    Full Text Available Abstract Background The ICOS-B7h costimulatory receptor-ligand pair is required for germinal center formation, the production of isotype-switched antibodies, and antibody affinity maturation in response to T cell-dependent antigens. However, the potentially distinct roles of regulated B7h expression on B cells and dendritic cells in T cell-dependent antibody responses have not been defined. Results We generated transgenic mice with lineage-restricted B7h expression to assess the cell-type specific roles of B7h expression on B cells and dendritic cells in regulating T cell-dependent antibody responses. Our results show that endogenous B7h expression is reduced on B cells after activation in vitro and is also reduced in vivo on antibody-secreting plasma B cells in comparison to both naïve and germinal center B cells from which they are derived. Increasing the level of B7h expression on activated and plasma B cells in B-B7hTg mice led to an increase in the number of antibody-secreting plasma cells generated after immunization and a corresponding increase in the concentration of antigen-specific high affinity serum IgG antibodies of all isotypes, without affecting the number of responding germinal center B cells. In contrast, ICOS costimulation mediated by dendritic cells in DC-B7hTg mice contributed to germinal center formation and selectively increased IgG2a production without affecting the overall magnitude of antibody responses. Conclusions Using transgenic mice with lineage-restricted B7h expression, we have revealed distinct roles of ICOS costimulation mediated by dendritic cells and B cells in the regulation of T cell-dependent antibody responses.

  4. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Allison S Thomas

    2017-09-01

    Full Text Available HIV-specific CD8+ T-cell responses limit viral replication in untreated infection. After the initiation of antiretroviral therapy (ART, these responses decay and the infected cell population that remains is commonly considered to be invisible to T-cells. We hypothesized that HIV antigen recognition may persist in ART-treated individuals due to low-level or episodic protein expression. We posited that if persistent recognition were occurring it would be preferentially directed against the early HIV gene products Nef, Tat, and Rev as compared to late gene products, such as Gag, Pol, and Env, which have higher barriers to expression. Using a primary cell model of latency, we observed that a Nef-specific CD8+ T-cell clone exhibited low-level recognition of infected cells prior to reactivation and robust recognition shortly thereafter. A Gag-specific CD8+ T-cell clone failed to recognized infected cells under these conditions, corresponding with a lack of detectable Gag expression. We measured HIV-specific T-cell responses in 96 individuals who had been suppressed on ART for a median of 7 years, and observed a significant, direct correlation between cell-associated HIV DNA levels and magnitudes of IFN-γ-producing Nef/Tat/Rev-specific T-cell responses. This correlation was confirmed in an independent cohort (n = 18. Correlations were not detected between measures of HIV persistence and T-cell responses to other HIV antigens. The correlation with Nef/Tat/Rev-specific T-cells was attributable to Nef-specific responses, the breadth of which also correlated with HIV DNA levels. These results suggest that ongoing Nef expression in ART-treated individuals drives preferential maintenance and/or expansion of T-cells reactive to this protein, implying sensing of infected cells by the immune system. The direct correlation, however, suggests that recognition does not result in efficient elimination of infected cells. These results raise the possibility that

  5. Follicular helper T cells mediate IgE antibody response to airborne allergens.

    Science.gov (United States)

    Kobayashi, Takao; Iijima, Koji; Dent, Alexander L; Kita, Hirohito

    2017-01-01

    T H 2 cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T-cell subset, follicular helper T (T FH ) cells, is specialized in supporting B-cell maturation and antibody production. We sought to investigate the roles of T FH cells in allergic immune responses. Naive mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. We observed the development of IL-4-producing T FH cells and T H 2 cells in draining lymph nodes after airway exposure to IL-1 family cytokines or natural allergens. T FH and T H 2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. T FH cells supported the sustained production of IgE antibody in vivo in the absence of other T-cell subsets or even when T H 2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4 + T cells resulted in a marked reduction in T FH cell numbers and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. T FH cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve 2 distinct subsets of IL-4-producing CD4 + T cells, namely T FH and Th2 cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. CD8+T Cell Immune Response in Immunocompetent Mice during Zika Virus Infection.

    Science.gov (United States)

    Huang, Huarong; Li, Shihua; Zhang, Yongli; Han, Xiaojuan; Jia, Baoqian; Liu, Hongtao; Liu, Dandan; Tan, Shuguang; Wang, Qihui; Bi, Yuhai; Liu, William J; Hou, Baidong; Gao, George Fu; Zhang, Fuping

    2017-11-15

    Zika virus (ZIKV) infection causees neurologic complications, including Guillain-Barré syndrome in adults and central nervous system (CNS) abnormalities in fetuses. We investigated the immune response, especially the CD8 + T cell response in C57BL/6 (B6) wild-type (WT) mice, during ZIKV infection. We found that a robust CD8 + T cell response was elicited, major histocompatibility complex class I-restricted CD8 + T cell epitopes were identified, a tetramer that recognizes ZIKV-specific CD8 + T cells was developed, and virus-specific memory CD8 + T cells were generated in these mice. The CD8 + T cells from these infected mice were functional, as evidenced by the fact that the adoptive transfer of ZIKV-specific CD8 + T cells could prevent ZIKV infection in the CNS and was cross protective against dengue virus infection. Our findings provide comprehensive insight into immune responses against ZIKV and further demonstrate that WT mice could be a natural and easy-access model for evaluating immune responses to ZIKV infection. IMPORTANCE ZIKV infection has severe clinical consequences, including Guillain-Barré syndrome in adults, microcephaly, and congenital malformations in fetuses and newborn infants. Therefore, study of the immune response, especially the adaptive immune response to ZIKV infection, is important for understanding diseases caused by ZIKV infection. Here, we characterized the CD8 + T cell immune response to ZIKV in a comprehensive manner and identified ZIKV epitopes. Using the identified immunodominant epitopes, we developed a tetramer that recognizes ZIKV-specific CD8 + T cells in vivo , which simplified the detection and evaluation of ZIKV-specific immune responses. In addition, the finding that tetramer-positive memory CD8 + T cell responses were generated and that CD8 + T cells can traffic to a ZIKV-infected brain greatly enhances our understanding of ZIKV infection and provides important insights for ZIKV vaccine design. Copyright © 2017 American

  7. The response of high and low polyamine producing cell lines to aluminum and calcium stress

    Science.gov (United States)

    Sridev Mohapatra; Smita Cherry; Rakesh Minocha; Rajtilak Majumdar; Palaniswamy Thangavel; Stephanie Long; Subhash C. Minocha

    2010-01-01

    The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra...

  8. The dance of the perivascular and endothelial cells: mechanisms of brain response to immune signaling.

    Science.gov (United States)

    Saper, Clifford B

    2010-01-14

    The mechanisms underlying the brain response to systemic inflammation remain unclear. In this issue of Neuron, Serrats and colleagues demonstrate that two cell types that produce prostaglandins that act on the brain, perivascular and endothelial cells, have an unexpectedly complex interaction in regulating the timing and types of brain responses that occur.

  9. In situ tumor destruction: towards in vivo modulation of immune responses by dendritic cells.

    NARCIS (Netherlands)

    Brok, M.H.M.G.M. den

    2006-01-01

    Dendritic cells (DC's) are professional antigen presenting cells that play a critical role in initiation of immune responses. In recent years, it has become evident that tumor antigens presented by ex vivo generated DC can evoke tumor-specific responses in cancer patients. Although promising results

  10. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  11. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  12. Attrition of T-Cell Functions and Simultaneous Upregulation of Inhibitory Markers Correspond with the Waning of BCG-Induced Protection against Tuberculosis in Mice

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Posey, James E.; Amara, Rama Rao; Sable, Suraj B.

    2014-01-01

    Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4+ and CD8+ T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4+ and CD8+ T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4+ T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4+ and CD8+ T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis. PMID:25419982

  13. Flow cytometric quantification of radiation responses of murine peritoneal cells

    International Nuclear Information System (INIS)

    Tokita, N.; Raju, M.R.

    1982-01-01

    Methods have been developed to distinguish subpopulations of murine peritoneal cells, and these were applied to the measurement of early changes in peritoneal cells after irradiation. The ratio of the two major subpopulations in the peritoneal fluid, lymphocytes and macrophages, was measured rapidly by means of cell volume distribution analysis as well as by hypotonic propidium iodide (PI) staining. After irradiation, dose and time dependent changes were noted in the cell volume distributions: a rapid loss of peritoneal lymphocytes, and an increase in the mean cell volume of macrophages. The hypotonic PI staining characteristics of the peritoneal cells showed two or three distinctive G 1 peaks. The ratio of the areas of these peaks was also found to be dependent of the radiation dose and the time after irradiation. These results demonstrate that these two parameters may be used to monitor changes induced by irradiation (biological dosimetry), and to sort different peritoneal subpopulations

  14. Complete response of metastatic renal cancer with dendritic cell vaccine

    Directory of Open Access Journals (Sweden)

    Dall'Oglio Marcos

    2003-01-01

    Full Text Available INTRODUCTION: We report a case of metastatic renal cell carcinoma that presented involution following therapy with dendritic cells. CASE REPORT: Male, 51-year old patient underwent left radical nephrectomy in September 1999 due to renal cell carcinoma, evolved with recurrence of the neoplasia in January 2002, confirmed by resection of the lesion. A vaccine therapy based on dendritic cells was then performed during 5 months (4 applications. After this period, there was occurrence of new lesions, whose resection revealed areas of necrosis and inflammatory infiltrate. DISCUSSION: The outcome of renal cell carcinoma is influenced by prognostic factors that confer more aggressive tumor characteristics. However, in cases of recurrence, the systemic therapy with dendritic cells-based vaccine can be associated with a better outcome with regression of disease.

  15. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.

    Science.gov (United States)

    Weitzel, Erik K; Tasker, Ron; Brownell, William E

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  16. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  17. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  18. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  19. Direct-to-consumer stem cell marketing and regulatory responses.

    Science.gov (United States)

    Sipp, Douglas

    2013-09-01

    There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets.

  20. Loss of BCG Viability Adversely Affects the Direct Response of Urothelial Carcinoma Cells to BCG Exposure

    Science.gov (United States)

    Shah, Gopitkumar; Zhang, Guangjian; Chen, Fanghong; Cao, YanLi; Kalyanaraman, Balaraman; See, William

    2018-01-01

    INTRODUCTION The attenuated mycobacterium Bacille Calmette Guerin (BCG) is widely utilized as intravesical “immunotherapy” for the treatment of non-muscle invasive urothelial carcinoma. Previous studies have demonstrated that in both the laboratory and clinical setting, BCG viability is a variable that correlates with anti-tumor efficacy. This study evaluated how loss of BCG viability impacted a number of molecular and phenotypic intermediate endpoints that characterize, and/or contribute to, the direct effect of BCG on Urothelial carcinoma (UC) cells. MATERIALS AND METHODS Two human UC cell lines were used to study the effect of loss of BCG viability on the tumor cell response to BCG. The cellular response to BCG rendered non-viable by heat killing (hk) was compared to the response to viable BCG. The response endpoints evaluated included the induction of oxidative stress, activation of intracellular signaling pathways, gene transactivation, and phenotypic changes. RESULTS Loss of viability resulted in a quantitative decrease in the tumor cell response, relative to viable BCG, for all of the measured endpoints. The decrease in response varied by cell line, ranging from 15% to 100% of the response to viable BCG. While quantitatively different, non-viable BCG continued to induce responses that were qualitatively similar to BCG relative to untreated controls. CONCLUSIONS BCG viability is an important variable influencing the direct tumor cell response to BCG. Although the magnitude of it effects are attenuated, hkBCG remains active for the induction of BCG responsive biologic endpoints. PMID:24035882

  1. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection.

    Directory of Open Access Journals (Sweden)

    Darin L Wiesner

    2015-03-01

    Full Text Available Pulmonary mycoses are often associated with type-2 helper T (Th2 cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.

  2. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection

    Science.gov (United States)

    Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten

    2015-01-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512

  3. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  4. Progenitor cells of erythroblasts: an in vitro investigation of erythropoietin-responsive cells of guinea pig bone marrow

    International Nuclear Information System (INIS)

    Rosse, C.; Beaufait, D.W.

    1978-01-01

    The experiments were designed to therst whether erythroblast progenitor cell function could be demonstrated in a morphological cell type designated as transitional cells. Two cell fractions were obtained from the bone marrow of normal and polycythemic guinea pigs. One fraction (F1) was enriched in transitional cells and contained few other cell types which could be considered as candidates for erythropoietin responsive cells (ERC). The other fraction (F2) contained undifferentiated blast cells as well as transitional cells. The effect of human urinary erythropoiesis stimulating factors (ESF) on heme synthesis was compared in these two fractions by measuring 59 Fe incorporation into heme. ESF was more effective in stimulating heme synthesis in guinea pig bone marrow cells than homologous sera obtained from anemic or hypoxic animals. The majority of ERC sedimented in F2, but the stimulation index was comparable in the two fractions. It was confirmed by radioautography that the ESF response in F1 was due to the generation of proerythroblasts and basophilic erythroblasts that incorporated 55 Fe. The generation of these cells in F1 was dependent on the addition of ESF to the cultures, whereas 55 Fe-labeled erythroblasts were recovered from cultures of F2 not supplemented with ESF. ESF induced a proportion of transitional cells to incorporate 55 Fe in both F1 and F2. Transitional cells were the only cell type in which heme synthesis was dependent on ESF. Radioautography with 55 Fe identified a proportion of these cells as ERC in both F1 and F2 fractions of bone marrow obtained from normal and polycythemic guinea pigs. The present studies show that some transitional cells function as progenitors of erythroblasts because they respond to ESF by initiation of heme synthesis and by transformation into the earliest recognizable erythroid cells

  5. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors

    DEFF Research Database (Denmark)

    Ameri, Jacqueline; Borup, Rehannah; Prawiro, Christy

    2017-01-01

    Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β...... cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin...

  6. Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus.

    Science.gov (United States)

    Gies, Vincent; Schickel, Jean-Nicolas; Jung, Sophie; Joublin, Aurélie; Glauzy, Salomé; Knapp, Anne-Marie; Soley, Anne; Poindron, Vincent; Guffroy, Aurélien; Choi, Jin-Young; Gottenberg, Jacques-Eric; Anolik, Jennifer H; Martin, Thierry; Soulas-Sprauel, Pauline; Meffre, Eric; Korganow, Anne-Sophie

    2018-03-08

    B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.

  7. Endocannabinoids and inflammatory response in periodontal ligament cells.

    Science.gov (United States)

    Özdemir, Burcu; Shi, Bin; Bantleon, Hans Peter; Moritz, Andreas; Rausch-Fan, Xiaohui; Andrukhov, Oleh

    2014-01-01

    Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2

  8. Endocannabinoids and inflammatory response in periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Burcu Özdemir

    Full Text Available Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA and 2-arachidonylglycerol (2-AG, have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS. The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT-assay. Interleukin-6 (IL-6, interleukin-8 (IL-8, and monocyte chemotactic protein-1 (MCP-1 levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml. In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05 as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion

  9. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  10. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  11. Shaping Successful and Unsuccessful CD8 T Cell Responses Following Infection

    OpenAIRE

    Cox, Maureen A.; Zajac, Allan J.

    2010-01-01

    CD8 T cells play a vital role in the immunological protection against intracellular pathogens. Ideally, robust effector responses are induced, which eradicate the pathogen, and durable memory CD8 T cells are also established, which help confer protection against subsequent reinfection. The quality and magnitude of these responses is dictated by multiple factors, including their initial interactions with professional antigen-presenting cells, as well as the cytokine milieu and availability of ...

  12. Direct longitudinal comparison over 12 month of T-cell responses to prophylactic HPV vaccines

    OpenAIRE

    Pacher, Sina Kristin

    2011-01-01

    Background: L1-specific T helper cell responses induced by prophylactic HPV vaccines Gardasil and Cervarix were compared. The quadrivalent vaccine Gardasil contains virus-like particles (VLP) of HPV types 6, 11, 16, and 18 adjuvanted with aluminium salts. Cervarix contains VLP of types 16 and 18 together with the TLR 4 stimulating adjuvant AS04. T helper cells are important for B cell differentiation, sustained memory, activation of recall reactions, and thus anamnestic responses. Only few re...

  13. Pancreatic beta cells from db/db mice show cell-specific [Ca2+]i and NADH responses to glucose but not to alpha-ketoisocaproic acid

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Larsson-Nyrén, Gerd; Lindström, Per

    2005-01-01

    induced cell-specific NADH responses in all 3 models, but KIC did so only in lean mouse [beta] cells. CONCLUSIONS: A cell-specific response may be induced at several steps of beta-cell stimulus-secretion coupling. Mitochondrial metabolism generates a cell-specific response in normal beta cells......OBJECTIVE: We recently showed that timing and magnitude of the glucose-induced cytoplasmic calcium [Ca2+]i response are reproducible and specific for the individual beta cell. We now wanted to identify which step(s) of stimulus-secretion coupling determine the cell specificity of the [Ca2+]i...

  14. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-07-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.

  15. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization

    Science.gov (United States)

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...

  16. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie

    2012-01-01

    live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction...

  17. CD4 + CELL RESPONSE TO ANTI-RETROVIRAL THERAPY (ARTs ...

    African Journals Online (AJOL)

    enhances immunity by sustained HIV- viral suppression, increase in CD4+ cell count and immune restoration. ... Seventy three (70.9%) of patients still had immune depletion with low CD4+ cell counts at one year of receiving HAART. ..... homeostasis and function in advanced HIV disease. Science 1997; 277: 112- 116. 7.

  18. The comparison of radiation responses in MCF-7 and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong-Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    Activation of this pathway temporarily arrests cells at the G1 or G2 checkpoints of cell cycle, or terminates DNA replication and cell division. The present study was carried out to identify the fate of cells to cope with DNA damage stress. Cellular responses following IR treatment were different depending on the characteristics (origin, organism and genes expressed etc.) of cell line used and extent of genomic injury. p53 expression level was increased in a dose-dependent manner in both cells. IR induced a drastic increase in expression of p21 in MCF-7 compared to that in HeLa cells. Cell cycle analysis using flow cytometry showed a significant accumulation in G2/M phase after treatment of MCF-7 with IR. This study identified that IR-induced cell fates were determined through p53-dependent activation of p21, which resulted in senescence of MCF-7 cells and autophagy of HeLa cells.

  19. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines

    NARCIS (Netherlands)

    Hillger, J.M.; Schoop, J.; Boomsma, D.I.; Slagboom, P.E.; IJzerman, A.P.; Heitman, L.H.

    2015-01-01

    Deciphering how genetic variation in drug targets such as G protein-coupled receptors (GPCRs) affects drug response is essential for precision medicine. GPCR signaling is traditionally investigated in artificial cell lines which do not provide sufficient physiological context. Patient-derived cell

  20. Targeting CD4(+) T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell-Based Vaccination

    NARCIS (Netherlands)

    Aarntzen, Erik H. J. G.; de Vries, I. Jolanda M.; Lesterhuis, W. Joost; Schuurhuis, Danita; Jacobs, Joannes F. M.; Bol, Kalijn; Schreibelt, Gerty; Mus, Roel; de Wilt, Johannes H. W.; Haanen, John B. A. G.; Schadendorf, Dirk; Croockewit, Alexandra; Blokx, Willeke A. M.; van Rossum, Michelle M.; Kwok, William W.; Adema, Gosse J.; Punt, Cornelis J. A.; Figdor, Carl G.

    2013-01-01

    To evaluate the relevance of directing antigen-specific CD4(+) T helper cells as part of effective anticancer immunotherapy, we investigated the immunologic and clinical responses to vaccination with dendritic cells (DC) pulsed with either MHC class I (MHC-I)-restricted epitopes alone or both MHC

  1. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Semeins, C.M.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced

  2. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro

    DEFF Research Database (Denmark)

    Papazian, Dick; Wagtmann, Valery R; Hansen, Soren

    2015-01-01

    Background: Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms....... Objective: We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses toward allergens to uphold homeostasis. Methods: Using an in vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells...... cell recall responses towards Bet v 1, Phl p 5 and Der p 1 in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis. This article is protected by copyright. All rights reserved....

  3. Dysregulated cytokine production by dendritic cells modulates B cell responses in the NZM2410 mouse model of lupus.

    Directory of Open Access Journals (Sweden)

    Allison Sang

    Full Text Available The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC mice results in the secretion of autoantibodies. TC dendritic cells (DCs enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6 control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1(+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1(+ cells in the marginal zone correlated with a Type I Interferon (IFN signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC.

  4. Dysregulated Cytokine Production by Dendritic Cells Modulates B Cell Responses in the NZM2410 Mouse Model of Lupus

    Science.gov (United States)

    Sang, Allison; Zheng, Ying-Yi; Yin, Yiming; Dozmorov, Igor; Li, Hao; Hsu, Hui-Chen; Mountz, John D.; Morel, Laurence

    2014-01-01

    The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1+ cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC. PMID:25093822

  5. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  6. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  7. Empirical evaluation of cell critical volume dose vs. cell response function for pink mutations in tradescantia

    International Nuclear Information System (INIS)

    Varma, M.N.; Bond, V.P.

    1982-01-01

    Microdosimetric spectra for 0.43, 1.8, and 14.7 MeV neutrons, and for 215 kVp x rays and 1250 keV gammas were used in conjunction with relative biological effectiveness (RBE) values for pink mutations in Tradescantia to obtain an effectiveness function (i.e., a cell critical volume dose vs. cell response function). This effectiveness function (or hit size weighting function) provides the probability of inducing a biological effect of interest (in the present study, pink mutations in Tradescantia) as a function of lineal energy density y. In a preliminary analysis the critical value of y above which pink mutations are seen was 4.5 keV/μm, and the value of y at which the probability reaches unity was 115 keV/μm. Idealized but approximate event size distributions for mono-LET particles ranging from 10 to 5000 keV/μm were generated, and these distributions were weighted by the effectiveness function to determine the pink mutation frequencies. Results are compared with measured pink mutation frequencies for 11 keV/μm ( 12 C) and 31 keV/μm ( 20 Ne) ions

  8. In Vitro Use of Autologous Dendritic Cells Improves Detection of T Cell Responses to Hepatitis B Virus (HBV) Antigens

    NARCIS (Netherlands)

    Carotenuto, Patrizia; Artsen, Andre; Niesters, Hubert G.; Osterhaus, Albert D.; Pontesilli, Oscar

    T lymphocyte responses to hepatitis B virus (HBV) core antigen (HBcAg) are vigorous and easily detectable in vitro during recovery from acute hepatitis B but significantly weaker in patients with chronic HBV infection. In contrast, T cell responses to hepatitis B surface antigen (HBsAg) are almost

  9. Noise enhances the rapid nitric oxide production by bone cells in response to fluid shear stress.

    Science.gov (United States)

    Bacabac, Rommel G; Van Loon, Jack J W A; Smit, Theo H; Klein-Nulend, Jenneke

    2009-01-01

    Stochastic resonance is exhibited by many biological systems, where the response to a small stimulus is enhanced with the aid of noise. This intriguing possibility provides a novel paradigm for understanding previously reported osteogenic benefits of low amplitude dynamic loading. However, it is unknown whether bone cell mechanosensitivity is enhanced by noise as an alternative mechanism for an amplified response to small stresses. We studied whether noise of varying intensities enhanced the mechanosensitivity of MC3T3-E1 cells. Nitric oxide (NO) production was measured as the parameter for bone cell activation. Dynamic fluid shear stress stimulated bone cells provided an initial-stress kick was implemented. Without the initial stress-kick bone cells did not release a significant amount of NO demonstrating an essential non-linearity to bone cell responses to stress and the possibility of stochastic resonance in bone cell mechanosensitivity. The rapid NO response of MC3T3-E1 cells to a small periodic fluid shear stress was increased with the addition of noise compared to the response to stress with only noise. This confirms the possibility of stochastic resonance enhancement of NO production by bone cells. Since NO regulate bone formation as well as resorption, our results suggest that noise enhances the activity of bone cells in driving the mechanical adaptation of bone.

  10. Increased sequence diversity coverage improves detection of HIV-Specific T cell responses

    DEFF Research Database (Denmark)

    Frahm, N.; Kaufmann, D.E.; Yusim, K.

    2007-01-01

    The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss res...

  11. CD8α− Dendritic Cells Induce Antigen-Specific T Follicular Helper Cells Generating Efficient Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Changsik Shin

    2015-06-01

    Full Text Available Recent studies on T follicular helper (Tfh cells have significantly advanced our understanding of T cell-dependent B cell responses. However, little is known about the early stage of Tfh cell commitment by dendritic cells (DCs, particularly by the conventional CD8α+ and CD8α− DC subsets. We show that CD8α− DCs localized at the interfollicular zone play a pivotal role in the induction of antigen-specific Tfh cells by upregulating the expression of Icosl and Ox40l through the non-canonical NF-κB signaling pathway. Tfh cells induced by CD8α− DCs function as true B cell helpers, resulting in significantly increased humoral immune responses against various human pathogenic antigens, including Yersinia pestis LcrV, HIV Gag, and hepatitis B surface antigen. Our findings uncover a mechanistic role of CD8α− DCs in the initiation of Tfh cell differentiation and thereby provide a rationale for investigating CD8α− DCs in enhancing antigen-specific humoral immune responses for improving vaccines and therapeutics.

  12. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae.

    Science.gov (United States)

    Yoshida, Ryusuke; Takai, Shingo; Sanematsu, Keisuke; Margolskee, Robert F; Shigemura, Noriatsu; Ninomiya, Yuzo

    2018-01-15

    Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds. However, there has been no systematic characterization of their response properties to multiple bitter compounds and the role of transduction molecules in these cells. In this study, we investigated bitter taste responses of gustducin-positive taste cells in situ in mouse fungiform (anterior tongue) and circumvallate (posterior tongue) papillae using transgenic mice expressing green fluorescent protein in gustducin-positive cells. The overall response profile of gustducin-positive taste cells to multiple bitter compounds (quinine, denatonium, cyclohexamide, caffeine, sucrose octaacetate, tetraethylammonium, phenylthiourea, L-phenylalanine, MgSO 4 , and high concentration of saccharin) was not significantly different between fungiform and circumvallate papillae. These bitter-sensitive taste cells were classified into several groups according to their responsiveness to multiple bitter compounds. Bitter responses of gustducin-positive taste cells were significantly suppressed by inhibitors of TRPM5 or PLCβ2. In contrast, several bitter inhibitors did not show any effect on bitter responses of taste cells. These results indicate that bitter-sensitive taste cells display heterogeneous responses and that TRPM5 and PLCβ2 are indispensable for eliciting bitter taste responses of gustducin-positive taste cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles.

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    Full Text Available The newly discovered Merkel Cell Polyomavirus (MCPyV resides in approximately 80% of Merkel cell carcinomas (MCC. Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL, suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs, using human bocavirus (HBoV VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.

  15. Comparison of tumour age response to radiation for cells derived from tissue culture or solid tumours

    International Nuclear Information System (INIS)

    Keng, P.C.; Siemann, D.W.; Rochester Univ., NY; Rochester Univ., NY; Wheeler, K.T.

    1984-01-01

    Direct comparison of the cell age response of 9L and KHT tumour cells derived either from tissue culture or solid tumours was achieved. Cells from dissociated KHT and 9L tumours (the latter implanted either subcutaneously or intracerebrally) and cells from tissue culture were separated into homogenous sized populations by centrifugal elutriation. In both tumour models these homogeneous sized populations correspond to populations enriched at different stages of the cell cycle. The survival of these elutriated cell populations was measured after a single dose of Cs-137 gamma rays. For cells isolated from 9L solid tumours, there was little variation in radiosensitivity throughout the cell cycle; however, a very small but significant increase in resistance was found in late G 1 cells. This lack of a large variation in radiosensitivity through the cell cycle for 9L cells from solid tumours also was seen in 9L cells growing in monolayer tissue culture. When similar experiments were performed using the KHT sarcoma tumour model, the results showed that KHT cells in vitro exhibited a fairly conventional increase in radioresistance in both mid G 1 and late S. However, the cell age response of KHT cells from solid tumours was different; particularly in the late S and G 2 + M phases. (author)

  16. Human dental pulp cell responses to new calcium silicate-based endodontic materials.

    Science.gov (United States)

    Chen, C C; Shie, M Y; Ding, S J

    2011-09-01

    To evaluate human dental pulp cell responses to radiopaque dicalcium silicate cement and white-coloured mineral trioxide aggregate (WMTA). Flow cytometry was employed to quantify the phase percentage of pulp cell cycle. Alamar Blue was used for real-time and repeated monitoring of cell proliferation. Reverse transcription-polymerase chain reaction was performed to determine gene expression in pulp cells cultured on the cements. The cells cultured on the radiopaque dicalcium silicate cement had similar S and G2 phases in the cell cycle and proliferation to WMTA at all culture times. In addition, the two materials presented the same evolution with similar values in interleukin-1, inducible nitric oxide synthase, alkaline phosphatase, osteocalcin and bone sialoprotein gene expression at all culture times. The dental pulp cell responses to radiopaque dicalcium silicate cement were similar to those reported for WMTA in terms of cell cycle, proliferation, immunocompatibility and osteogenic differentiation. © 2011 International Endodontic Journal.

  17. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Stéphane Rodriguez

    2017-10-01

    Full Text Available During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.

  18. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  19. Heterogeneity in cancer cells: variation in drug response in different primary and secondary colorectal cancer cell lines in vitro.

    Science.gov (United States)

    Arul, Melanie; Roslani, April Camilla; Cheah, Swee Hung

    2017-05-01

    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC 50 values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC 50 ) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC 50 . There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.

  20. Renal response assayed by survival of tubule epithelial cells

    International Nuclear Information System (INIS)

    Withers, H.R.; Mason, K.A.

    1985-01-01

    The epithelium of the renal tubules is essentially non-proliferative and hence is slow to be depleted after irradiation. Ultimately, however, depletion occurs. If cells survive within a tubule they regenerate the epithelial lining. After higher doses, e.g. greater than 12 Gy, some tubules are completely depopulated of epithelium giving rise to a histological picture of empty tubules interspersed with regenerated tubules. It is assumed that nephrons are all essentially the same size, that cell survival is a random probability and that, therefore, when a proportion of tubules are completely devoid of epithelium, those that aren't have regenerated from one or a few cells, the distribution of numbers of survivors per tubule following Poisson statistics. Based on these assumptions it is possible to determine a dose-survival relationship for renal tubule cells

  1. Innate immune cell response upon Candida albicans infection

    Science.gov (United States)

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-ying; Cao, Yongbing; Yan, Tianhua

    2016-01-01

    abstract Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  2. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    OpenAIRE

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-01-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance o...

  3. Cellular response after irradiation: Cell cycle control and apoptosis

    International Nuclear Information System (INIS)

    Siles, E.; Valenzuela, M.T.; Nunez, M.I.; Guerrero, R.; Villalobos, M.; Ruiz de Almodovar, J.M.

    1997-01-01

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  4. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Mikheev, A.N.; Gushcha, N.I.; Malinovskij, Yu.Yu.

    1999-01-01

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism [ru

  5. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses

    DEFF Research Database (Denmark)

    Schaeffer, E B; Sette, A; Johnson, D L

    1989-01-01

    -cell responses. Ia binding and Ia-restricted T-cell immunogenicity could be determined for a total of 54 peptide-MHC combinations. Only 30% of the 54 instances examined involved detectable Ia binding, but they represented almost all (12 of 13) of the immune responses found. However, binding to Ia......Using BALB/c and CBA/J mice, the I-region associated (Ia) binding capacity and T-cell immunogenicity of a panel of 14 overlapping peptides that span the entire sequence of the protein staphylococcal nuclease (Nase) was examined to evaluate major histocompatibility gene complex (MHC) control of T...... was not sufficient to ensure T-cell immunogenicity, since only 70% of the binding events were productive--i.e., were associated with an immune response. Thus, Ia molecules have the expected characteristics of a highly permissive capacity for antigen interaction that allows them to function as restriction elements...

  6. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  7. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  8. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.

  9. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    International Nuclear Information System (INIS)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 μm to over 900 μm in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables

  10. The contribution of age structure to cell population responses to targeted therapeutics.

    Science.gov (United States)

    Gabriel, Pierre; Garbett, Shawn P; Quaranta, Vito; Tyson, Darren R; Webb, Glenn F

    2012-10-21

    Cells grown in culture act as a model system for analyzing the effects of anticancer compounds, which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization techniques have been generally employed to minimize the variation in cell cycle position. However, synchronization techniques are cumbersome and imprecise and the agents used to synchronize the cells potentially have other unknown effects on the cells. An alternative approach is to determine the age structure in the population and account for the cell cycle positional effects post hoc. Here we provide a formalism to use quantifiable lifespans from live cell microscopy experiments to parameterize an age-structured model of cell population response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes.

    Science.gov (United States)

    Reinicke, Anna T; Omilusik, Kyla D; Basha, Genc; Jefferies, Wilfred A

    2009-10-06

    Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.

  12. Thymus cell population exerting a regulatory function in the immune response of mice of polyvinyl pyrrolidone

    International Nuclear Information System (INIS)

    Rotter, V.; Trainin, N.

    1974-01-01

    An increased response to PVP was observed after adult mouse thymectomy and was partially reversed either by thymus implantation or by a single injection of thymic cells. In addition, an injection of thymic cells was found to reduce the response to PVP in normal recipients. An enhanced response to PVP was measured in B mice compared to that of normals. In such mice reduction of the response to PVP was observed when repeated doses of thymus cells were administered. Lower doses of HC resistant thymus cells strongly inhibited the response to PVP. The cells involved in the thymus regulatory function appear to be radiosensitive, since it was shown that radiation by itself resulted in an increased response to PVP. This inhibitory function of the thymus seems to disappear relatively early in progression of life, as seen by an increased response to PVP in elder mice. These results indicate that a T cell population exerts a regulatory function in the immunological response to PVP that was previously considered to be thymus independent

  13. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  14. Responses of starburst amacrine cells to prosthetic stimulation of the retina.

    Science.gov (United States)

    Tsai, D; Morley, J W; Suaning, G J; Lovell, N H

    2011-01-01

    Recent advances in the design and development of retinal implants have made these devices a promising therapeutic strategy for restoring sight to the blind. Over the last decade a plethora of studies have investigated the responses of the retinal ganglion cells (RGCs) to electrical stimulation under a variety of stimulus configurations. Similar to the RGCs, the amacrine cells also survive in large numbers following retinal neural degeneration. However, with the exception of two previous reports, where the responses of the amacrine cells were measured indirectly, these cells have thus far received little attention in the context of prosthetic stimulation. In this study we focused on the starburst amacrine cells (SACs), a particularly well-characterized amacrine cell among the approximately two-dozen types known to exist in the retina. Using whole-cell patch clamp recordings in the whole-mount rabbit retina, we investigated the temporal responses of the SACs following subretinal biphasic pulse stimulation. These cells responded to the stimuli with oscillatory membrane potentials that lasted for tens to hundreds of milliseconds, with the response amplitude increasing as a function of stimulus strength. Furthermore, the SAC responses originated primarily from the presynaptic inputs they receive, rather than through direct activation of these cells by the electrical stimuli.

  15. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  16. RAGE Expression in Human T Cells: A Link between Environmental Factors and Adaptive Immune Responses

    Science.gov (United States)

    Akirav, Eitan M.; Preston-Hurlburt, Paula; Garyu, Justin; Henegariu, Octavian; Clynes, Raphael; Schmidt, Ann Marie; Herold, Kevan C.

    2012-01-01

    The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it may participate in activation of innate immune responses but its role in adaptive human immune responses has not been described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher levels of IL-17A, CD107a, and IL-5 than RAGE− cells from the same individual with T1D. Our studies have identified the expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune responses. PMID:22509345

  17. Time and Antigen-Stimulation History Influence Memory CD8 T Cell Bystander Responses.

    Science.gov (United States)

    Martin, Matthew D; Shan, Qiang; Xue, Hai-Hui; Badovinac, Vladimir P

    2017-01-01

    Memory CD8 T cells can be activated and induced to produce cytokines and increase stores of cytolytic proteins not only in response to cognate antigen (Ag) but also in response to inflammatory cytokines (bystander responses). Importantly, bystander memory CD8 T cell functions have been shown to be dependent upon memory CD8 T cell fitness, since exhausted CD8 T cells have diminished capacity to respond to inflammatory cues. While it is known that memory CD8 T cell functional abilities, including ability to produce cytokines in response to cognate Ag, change with time after initial Ag encounter and upon multiple Ag stimulations (e.g., primary vs. tertiary CD8 T cell responses), it is unknown if bystander memory CD8 T cell responses are influenced by time or by Ag-exposure history. Here, we examined time and Ag-stimulation history-dependent alterations in virus-specific memory CD8 T cell bystander functions in response to inflammatory cytokines and unrelated bacterial infection. We found that expression of cytokine receptors and ability to produce IFN-γ following heterologous infection or incubation with inflammatory cytokines decreases with time following initial Ag encounter and increases with additional Ag encounters, suggesting that the ability to sense inflammation and respond with bystander cytokine production is dependent on age and Ag-stimulation history of memory CD8 T cells. These data shed further light on the regulation of memory CD8 T cell effector functions and have important implications for the development of vaccines designed to elicit protective memory CD8 T cells.

  18. Identifying a compound modifying a cellular response, comprises attaching cells having a reporter system onto solid supports, releasing a library member, screening and identifying target cells

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for identifying compounds capable of modulating a cellular response. The methods involve attaching living cells to solid supports comprising a library of test compounds. Test compounds modulating a cellular response, for example via a cell surface molecule...... may be identified by selecting solid supports comprising cells, wherein the cellular response of interest has been modulated. The cellular response may for example be changes in signal transduction pathways modulated by a cell surface molecule....

  19. Low-strength T-cell activation promotes Th17 responses.

    Science.gov (United States)

    Purvis, Harriet A; Stoop, Jeroen N; Mann, Jelena; Woods, Steven; Kozijn, Anne E; Hambleton, Sophie; Robinson, John H; Isaacs, John D; Anderson, Amy E; Hilkens, Catharien M U

    2010-12-02

    We show that the strength of T-cell stimulation determines the capability of human CD4(+) T cells to become interleukin-17 (IL-17) producers. CD4(+) T cells received either high- (THi) or low (TLo)-strength stimulation via anti-CD3/CD28 beads or dendritic cells pulsed with superantigen in the presence of pro-Th17 cytokines IL-1β, transforming growth factor β, and IL-23. We found that TLo, but not THi, stimulation profoundly promoted Th17 responses by enhancing both the relative proportion and total number of Th17 cells. Titration of anti-CD3 revealed that low TCR signaling promoted Th17 cells, but only in the presence of anti-CD28. Impaired IL-17 production in THi cells could not be explained by high levels of Foxp3 or transforming growth factor β-latency-associated peptide expressed by THi cells. Nuclear factor of activated T cells was translocated to the nucleus in both THi and TLo cells, but only bound to the proximal region of the IL-17 promoter in TLo cells. The addition of a Ca(2+) ionophore under TLo conditions reversed the pro-Th17 effect, suggesting that high Ca(2+) signaling impairs Th17 development. Although our data do not distinguish between priming of naive T cells versus expansion/differentiation of memory T cells, our results clearly establish an important role for the strength of T-cell activation in regulating Th17 responses.

  20. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8+ T-Cell Repertoire in Older People

    Science.gov (United States)

    Hosie, Louise; Pachnio, Annette; Zuo, Jianmin; Pearce, Hayden; Riddell, Stanley; Moss, Paul

    2017-01-01

    Cytomegalovirus (CMV) infection elicits a strong T-cell immune response, which increases further during aging in a process termed “memory inflation.” CMV downregulates the expression of HLA-A and HLA-B on the surface of infected cells to limit presentation of viral peptides to T-cells although HLA-C is relatively spared as it also engages with inhibitory killer immunoglobulin receptor receptors and therefore reduces lysis by natural killer cells. We investigated the magnitude and functional properties of CMV-specific CD8+ T-cells specific for 10 peptides restricted by HLA-C in a cohort of 53 donors between the age of 23 and 91 years. This was achieved via peptide stimulation of PBMCs followed by multicolor flow cytometry. Three peptides, derived from proteins generated in the immediate-early period of viral replication and restricted by HLA-Cw*0702, elicited strong immune responses, which increased substantially with age such that the average aggregate response represented 37% of the CD8+ T-cell pool within donors above 70 years of age. Remarkably, a single response represented 70% of the total CD8+ T-cell pool within a 91-year-old donor. HLA-Cw*0702-restricted CD8+ T-cell responses were immunodominant over HLA-A and HLA-B-restricted CMV-specific responses and did not show features of exhaustion such as PD-1 or CD39 expression. Indeed, such CTL exhibit a polyfunctional cytokine profile with co-expression of IFN-γ and TNF-α and a strong cytotoxic phenotype with intracellular expression of perforin and granzymeB. Functionally, HLA-Cw*0702-restricted CTL show exceptionally high avidity for cognate peptide-HLA and demonstrate very early and efficient recognition of virally infected cells. These observations indicate that CD8+ T-cells restricted by HLA-C play an important role in the control of persistent CMV infection and could represent a novel opportunity for CD8+ T-cell therapy of viral infection within immunosuppressed patients. In addition, the findings

  1. Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection.

    Directory of Open Access Journals (Sweden)

    Alan C-Y Hsu

    Full Text Available Innate antiviral responses in bronchial epithelial cells (BECs provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs. However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.

  2. The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses

    Science.gov (United States)

    Khan, Shaniya H.; Martin, Matthew D.; Starbeck-Miller, Gabriel R.; Xue, Hai-Hui; Harty, John T.; Badovinac, Vladimir P.

    2015-01-01

    Abstract Memory CD8 T cells provide protection to immune hosts by eliminating pathogen-infected cells during re-infection. While parameters influencing the generation of primary (1°) CD8 T cells are well established, the factors controlling the development of secondary (2°) CD8 T cell responses remain largely unknown. Here, we address the mechanisms involved in the generation and development of 2° memory (M) CD8 T cells. We observed that the time at which 1° M CD8 T cells enter into immune response impacts their fate and differentiation into 2° M CD8 T cells. Late-entry of 1° M CD8 T cells into an immune response (relative to the onset of infection) not only facilitated the expression of transcription factors associated with memory formation in 2° effector CD8 T cells, but also influenced the ability of 2° M CD8 T cells to localize within the lymph nodes, produce IL-2, and undergo Ag-driven proliferation. The timing of stimulation of 1° M CD8 T cells also impacted the duration of expression of the high-affinity IL-2 receptor (CD25) on 2° effector CD8 T cells and their sensitivity to IL-2 signaling. Importantly, by blocking or enhancing IL-2 signaling in developing 2° CD8 T cells, we provide direct evidence for the role of IL-2 in controlling the differentiation of Ag-driven 2° CD8 T cell responses. Thus, our data suggest that the process of 1° M to 2° M CD8 T cell differentiation is not fixed and can be manipulated, a notion with relevance for the design of future prime-boost vaccination approaches. PMID:26431533

  3. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    -cell–derived cytokines by upregulating expression of multiple chemokines related to microglial, T-cell, and monocyte chemotaxis and activation. This inflammatory stress response may have implications for immune homeostasis in the retina, and for the further understanding of inflammatory ocular diseases such as uveitis......Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression...

  4. Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System

    Science.gov (United States)

    Deniger, Drew C; Pasetto, Anna; Tran, Eric; Parkhurst, Maria R; Cohen, Cyrille J; Robbins, Paul F; Cooper, Laurence JN; Rosenberg, Steven A

    2016-01-01

    Neoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system. Patient-specific TCRs reactive against HLA-A*0201-restriced neoantigens AHNAKS2580F or ERBB2H473Y or the HLA-DQB*0601-restricted neoantigen ERBB2IPE805G were assembled with murine constant chains and cloned into Sleeping Beauty transposons. Patient peripheral blood lymphocytes were coelectroporated with SB11 transposase and Sleeping Beauty transposon, and transposed T cells were enriched by sorting on murine TCRβ (mTCRβ) expression. Rapid expansion of mTCRβ+ T cells with irradiated allogeneic peripheral blood lymphocytes feeders, OKT3, interleukin-2 (IL-2), IL-15, and IL-21 resulted in a preponderance of effector (CD27−CD45RA−) and less-differentiated (CD27+CD45RA+) T cells. Transposed T cells specifically mounted a polyfunctional response against cognate mutated neoantigens and tumor cell lines. Thus, Sleeping Beauty transposition of mutation-specific TCRs can facilitate the use of personalized T-cell therapy targeting unique neoantigens. PMID:26945006

  5. CELL RESPONSE TO INTRAPERITONEAL PDMS/HAP COMPOSITE IMPLANT

    Directory of Open Access Journals (Sweden)

    Perica Vasiljević

    2005-07-01

    Full Text Available Siloxane polimers have been widely used in biomedicine and pharmacy due to their biocompatibility. Hydroxyapatite (HAp is a natural constituent of bones, and therefore widely used in maxillofacial and orthopedic surgery. HAp itself is amorphous and without elasticity, so its characteristics can be improved when combined with organic polymers. We evaluated the interaction of cells and composites made of polydimethylsiloxane (PDMS and HAp by scanning electron microscopy (SEM 10 days after their intraperitoneal implantation into Balb/c mice. Two composites which were different in the quantity of HAp were analyzed. Both of them showed high adhesive characteristics for different cell types. The erythrocytes in cell clusters could be seen on the surface of the composite with higher quantity of HAp.

  6. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  7. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  8. CD4(+ cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis.

    Directory of Open Access Journals (Sweden)

    Jamie C Zampell

    Full Text Available Lymphedema is a chronic disorder that occurs commonly after lymph node removal for cancer treatment and is characterized by swelling, fibrosis, inflammation, and adipose deposition. Although previous histological studies have investigated inflammatory changes that occur in lymphedema, the precise cellular make up of the inflammatory infiltrate remains unknown. It is also unclear if this inflammatory response plays a causal role in the pathology of lymphedema. The purpose of this study was therefore to characterize the inflammatory response to lymphatic stasis and determine if these responses are necessary for the pathological changes that occur in lymphedema.We used mouse-tail lymphedema and axillary lymph node dissection (ANLD models in order to study tissue inflammatory changes. Single cell suspensions were created and analyzed using multi-color flow cytometry to identify individual cell types. We utilized antibody depletion techniques to analyze the causal role of CD4+, CD8+, and CD25+ cells in the regulation of inflammation, fibrosis, adipose deposition, and lymphangiogenesis.Lymphedema in the mouse-tail resulted in a mixed inflammatory cell response with significant increases in T-helper, T-regulatory, neutrophils, macrophages, and dendritic cell populations. Interestingly, we found that ALND resulted in significant increases in T-helper cells suggesting that these adaptive immune responses precede changes in macrophage and dendritic cell infiltration. In support of this we found that depletion of CD4+, but not CD8 or CD25+ cells, significantly decreased tail lymphedema, inflammation, fibrosis, and adipose deposition. In addition, depletion of CD4+ cells significantly increased lymphangiogenesis both in our tail model and also in an inflammatory lymphangiogenesis model.Lymphedema and lymphatic stasis result in CD4+ cell inflammation and infiltration of mature T-helper cells. Loss of CD4+ but not CD8+ or CD25+ cell inflammation markedly

  9. Inflammatory response of disc cells against Propionibacterium acnes depends on the presence of lumbar Modic changes.

    Science.gov (United States)

    Dudli, Stefan; Miller, S; Demir-Deviren, S; Lotz, J C

    2017-09-07

    Intervertebral disc with Propionibacterium acnes (P. acnes) is suggested to be an etiology of Modic type I changes in the adjacent bone marrow. However it is unknown if disc cells can respond to P. acnes and if bone marrow cells respond to bacterial and disc metabolites draining from infected discs. Human disc cells (n = 10) were co-cultured with 10- and 100-fold excess of P. acnes over disc cells for 3 h and 24 h. Lipopolysaccharide was used as positive control. Expression of IL1, IL6, IL8, and CCL2 by disc cells was quantified by quantitative PCR. Lipase activity was measured in culture supernatants (n = 6). Human vertebral bone marrow mononuclear cells (BMNCs) (n = 2) were cultured in conditioned media from disc cell/P. acnes co-cultures and expression of IL1, IL6, IL8, and CCL2 was measured after 24 h. All disc cells responded to lipopolysaccharide but only 6/10 responded to P. acnes with increased cytokine expression. Cytokine increase was time- but not P. acnes concentration-dependent. Disc cell responsiveness was associated with the presence of lumbar Modic changes in the donor. Lipase activity was increased independent of disc cell responsiveness. BMNCs responded with inflammatory activity only when cultured in supernatants from responsive disc cell lines. Disc cell responsiveness to P. acnes associates with the presence of lumbar Modic changes. Furthermore, bone marrow cells had an inflammatory response to the cocktail of disc cytokines and P. acnes metabolites. These data indicate that low virulent P. acnes infection of the disc is a potential exacerbating factor to Modic changes.

  10. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Jelnes, Peter; Thorgeirsson, Snorri S

    2005-01-01

    created in the liver by a certain insult. This review will focus on molecular responses controlling activation and expansion of the hepatic progenitor cell niche, emphasizing similarities and differences in the microenvironments orchestrating regeneration by recruitment of progenitor cell populations...... cells, and recruited inflammatory cells as well as the variety of growth-modulating molecules produced and/or harboured by these elements. The cellular and molecular responses to different regenerative stimuli seem to depend on the injury inflicted and consequently on the molecular microenvironment...

  11. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  12. The transcription factor BATF modulates cytokine-mediated responses in T cells.

    Science.gov (United States)

    Sopel, Nina; Graser, Anna; Mousset, Stephanie; Finotto, Susetta

    2016-08-01

    The transcription factor BATF (basic leucine zipper transcription factor, ATF-like), belongs to the AP-1 family of transcription factors and has been shown to be predominantly expressed in cells of haematopoietic origin, especially in B and T cells. In studies using Batf-deficient mice, a profound defect in the differentiation of T helper cells type 17 (Th17) and follicular T helper cells (Tfh) was described, as well as an impairment of antibody production with switched isotypes. More recently BATF has been described to influence also Th2 and Th9 responses in models of murine experimental asthma. In CD8(+) T cells BATF has been found associated with anti-viral responses. This review summarizes the role of BATF in CD4(+) T cell subsets and in CD8(+) T cells, with particular focus on this transcription factor in the setting of allergic asthma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. B cell responses to influenza infection and vaccination.

    Science.gov (United States)

    Chiu, Christopher; Ellebedy, Ali H; Wrammert, Jens; Ahmed, Rafi

    2015-01-01

    Although vaccines against influenza are widely available, control of the disease remains elusive. In part, this is due to the inability of current vaccines to induce durable, broadly protective immune responses. Prevention of influenza depends primarily on effective antibody responses that block virus entry. Following infection, high-affinity IgA antibodies are generated in the respiratory tract that lead to immune exclusion, while IgG prevents systemic spread. These are effective and long-lasting but also exert immune pressure. Mutation of the antigenic determinants of influenza therefore rapidly leads to emergence of novel variants that evade previously generated protective responses. Not only do vaccines suffer from this strain-specific limitation, but also they are suboptimal in their ability to induce durable immunity. However, recent evidence has demonstrated the possibility of inducing broadly cross-reactive antibody responses. Further understanding of the ways in which high-titer, long-lived antibody responses directed against such cross-reactive epitopes can be induced would lead to the development of novel vaccines that may remove the requirement for recurrent vaccination.

  14. Human Naive and Memory T Cells Display Opposite Migratory Responses to Sphingosine-1 Phosphate.

    Science.gov (United States)

    Drouillard, Annabelle; Neyra, Antoinette; Mathieu, Anne-Laure; Marçais, Antoine; Wencker, Mélanie; Marvel, Jacqueline; Belot, Alexandre; Walzer, Thierry

    2018-01-15

    The role of sphingosine-1 phosphate (S1P) in leukocyte trafficking has been well deciphered in mice but remains largely unaddressed in humans. In this study, we assessed the ex vivo response to S1P of primary human T cell subsets. We found that tonsil but not blood leukocytes were responsive to S1P gradients, suggesting that T cell responsiveness is regulated during their recirculation in vivo. Tonsil naive T cells were readily chemoattracted by S1P in an FTY720-sensitive, S1PR1-dependent manner. Surprisingly, S1P had the opposite effect on effector memory T cells, resident memory T cells, and recently activated T cells, inhibiting their spontaneous or chemokine-induced migration. This inhibition was also more pronounced for CD4 T cells than for CD8 T cell subsets, and was dependent on S1PR2, as shown using the S1PR2 antagonist JTE-013. S1PR1 was progressively downregulated during T cell differentiation whereas S1PR2 expression remained stable. Our results suggest that the ratio between S1PR1 and S1PR2 governs the migratory behavior of T cell subsets. They also challenge previous models of the role of S1P in lymphocyte recirculation and suggest that S1P promotes retention of memory T cell subsets in secondary lymphoid organs, via S1PR2. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. CD1d expression and invariant NKT cell responses in herpesvirus infections

    Directory of Open Access Journals (Sweden)

    Rusung eTan

    2015-06-01

    Full Text Available Invariant natural killer T (iNKT cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor (TCR and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.

  16. Electrospun poly(ε-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Di Federico, Erica; Moscatelli, Ilana; Camaioni, Antonella; Armentano, Ilaria; Campagnolo, Luisa; Dottori, Mariaserena; Kenny, Jose Maria; Siracusa, Gregorio; Gusmano, Gualtiero

    2009-01-01

    Nanohybrid scaffolds mimicking extracellular matrix are promising experimental models to study stem cell behaviour, in terms of adhesion and proliferation. In the present study, the structural characterization of a novel electrospun nanohybrid and the analysis of cell response by a highly sensitive cell type, embryonic stem (ES) cells, are investigated. Ca-deficient hydroxyapatite nanocrystals (d-HAp) were synthesized by precipitation. Fibrous PCL/d-HAp nanohybrids were obtained by electrospinning, d-HAp content ranging between 2 and 55 wt.%. Electrospun mats showed a non-woven architecture, average fiber size was 1.5 ±0.5 μm, porosity 80-90%, and specific surface area 16 m 2 g -1 . Up to 6.4 wt.% d-HAp content, the nanohybrids displayed comparable microstructural, mechanical and dynamo-mechanical properties. Murine ES cell response to neat PCL and to nanohybrid PCL/d-HAp (6.4 wt.%) mats was evaluated by analyzing morphological, metabolic and functional markers. Cells growing on either scaffold proliferated and maintained pluripotency markers at essentially the same rate as cells growing on standard tissue culture plates with no detectable signs of cytotoxicity, despite a lower cell adhesion at the beginning of culture. These results indicate that electrospun PCL scaffolds may provide adequate supports for murine ES cell proliferation in a pluripotent state, and that the presence of d-HAp within the mat does not interfere with their growth.

  17. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Hesse, D; Limborg, S

    2012-01-01

    , monocytes and dendritic cells (DC) in relation to disease activity in MS patients treated with GA. Methods: Flow cytometry was used to study the activation of CD4+ T cells and T cell subsets (CD25high and CD26high cells), monocytes and DCs in a cross-sectional study of 39 untreated and 29 GA-treated MS...

  18. Enhancement of T cell responses as a result of synergy between lower doses of radiation and T cell stimulation.

    Science.gov (United States)

    Spary, Lisa K; Al-Taei, Saly; Salimu, Josephine; Cook, Alexander D; Ager, Ann; Watson, H Angharad; Clayton, Aled; Staffurth, John; Mason, Malcolm D; Tabi, Zsuzsanna

    2014-04-01

    As a side effect of cancer radiotherapy, immune cells receive varying doses of radiation. Whereas high doses of radiation (>10 Gy) can lead to lymphopenia, lower radiation doses (2-4 Gy) represent a valid treatment option in some hematological cancers, triggering clinically relevant immunological changes. Based on our earlier observations, we hypothesized that lower radiation doses have a direct positive effect on T cells. In this study, we show that 0.6-2.4 Gy radiation enhances proliferation and IFN-γ production of PBMC or purified T cells induced by stimulation via the TCR. Radiation with 1.2 Gy also lowered T cell activation threshold and broadened the Th1 cytokine profile. Although radiation alone did not activate T cells, when followed by TCR stimulation, ERK1/2 and Akt phosphorylation increased above that induced by stimulation alone. These changes were followed by an early increase in glucose uptake. Naive (CD45RA(+)) or memory (CD45RA(-)) T cell responses to stimulation were boosted at similar rates by radiation. Whereas increased Ag-specific cytotoxic activity of a CD8(+) T cell line manifested in a 4-h assay (10-20% increase), highly significant (5- to 10-fold) differences in cytokine production were detected in 6-d Ag-stimulation assays of PBMC, probably as a net outcome of death of nonstimulated and enhanced response of Ag-stimulated T cells. T cells from patients receiving pelvic radiation (2.2-2.75 Gy) also displayed increased cytokine production when stimulated in vitro. We report in this study enhanced T cell function induced by synergistic radiation treatment, with potential physiological significance in a wide range of T cell responses.

  19. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  20. Innate immune response of human pluripotent stem cell-derived airway epithelium.

    Science.gov (United States)

    McIntyre, Brendan A S; Kushwah, Rahul; Mechael, Rami; Shapovalova, Zoya; Alev, Cantas; Bhatia, Mickie

    2015-07-01

    The acquisition of innate immune response is requisite to having bona fide differentiation of airway epithelium. Procedures developed to differentiate lung airway from human pluripotent stem cells (hPSCs) have demonstrated anecdotal evidence for innate immune response, but an in-depth exploration of response levels is lacking. Herein, using an established method of airway epithelial generation from hPSCs, we show that hPSC-derived epithelial cells are able to up-regulate expression of TNFα, IL8 and IL1β in response to challenge with bacterial endotoxin LPS, but lack response from genes associated with innate immune response in other cell types. Further, stimulation of cells with TNF-α resulted in auto-induction of TNFα transcript, as well as cytokine responses of IL8 and IL1β. The demonstration of innate immune induction in hPSC-derived airway epithelia gives further strength to the functionality of in vitro protocols aimed at generating differentiated airway cells that can potentially be used in a translational setting. Finally, we propose that innate immune challenge of airway epithelium from human pluripotent stem cell sources be used as a robust validation of functional in vitro differentiation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Bovine NK cells can produce gamma interferon in response to the secreted mycobacterial proteins ESAT-6 and MPP14 but not in response to MPB70

    DEFF Research Database (Denmark)

    Olsen, Ingrid; Boysen, P.; Kulberg, S.

    2005-01-01

    Bovine NK cells have recently been characterized and the present study describes the interaction between NK cells, antigen-presenting cells, and secreted mycobacteriall proteins. Gamma interferon (IFN-gamma) production by NK cells was seen in approximately 30% of noninfected calves in response......-gamma by NK cells in whole blood in response to ESAT-6 and MPP14 was demonstrated using intracellular staining together with surface labeling for the NK cell-specific receptor, NKp46, or CD3. Furthermore, the depletion of NK cells from peripheral blood mommuclear cells completely abolished the IFN......-gamma production. The response was mediated through stimulation of adherent cells and was largely independent of contact between adherent cells and the NK cells. Neutralization of interleukin-12 only partly inhibited IFN-gamma production, showing that other cytokines were also involved. The demonstration of NK...

  2. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    Science.gov (United States)

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  3. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  4. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  5. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers.

    Directory of Open Access Journals (Sweden)

    Enrique Martin-Gayo

    2015-06-01

    Full Text Available The majority of HIV-1 elite controllers (EC restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes.

  6. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  7. The acquisition of cytokine responsiveness by murine B cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    The mechanism whereby small resting (high buoyant density) murine B cells are induced to express interleukin-2 receptors (IL-2R) and to respond to IL-2 was addressed by staining with anti-IL-2R alpha and -IL-2R beta monoclonal antibodies (mAb), and using receptor-specific cDNA probes. Resting B...... cells expressed undetectable levels of both IL-2R alpha and beta chains on their surface and did not respond to IL-2, even at supra-physiological concentrations. Sepharose-coupled, but not streptavidin-cross-linked, plastic-adsorbed or soluble, anti-mu up-regulated the expression of IL-2R alpha and beta...... chains and mRNA to levels comparable to those seen in activated T cells. Anti-mu-stimulated B cells responded to IL-2 by incorporation of [3H]thymidine and high rate immunoglobulin (Ig) secretion. Both IL-5 (at optimal concentration) and suboptimal lipopolysaccharide (LPS; 20 ng/ml) induced surface...

  8. Responses of human colon cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Nakazawa, Masanori

    1983-01-01

    Artificial capillary culture (ACC), in which human colon cancer cells were grown well, was considered to be a three-dimensional in vitro analog of a solid tumor. Lactic dehydrogenase and glutamic oxaloacetic transaminase in the extracapillary space (ECS) and glucose consumption in perfusing media were monitored. After supra-lethal irradiation (90 Grays) of ACC, the levels of enzymes increased to reach maximum at 10-13 days postirradiation and then declined. There appeared apparent correlation in a dose-dependent manner between the levels of enzymes and the number of dead cells collected from the ECS. On the contrary, glucose consumption, showed little correlation with the above parameters. Irradiation of ACC with the doses 5, 10 and 15 Grays demonstrated very little changes in the levels of enzymes or glucose consumption. Clonogenic survival from capillaries obtained by discontinuous trypsinization after graded doses of X-irradiation indicates that these cells showed a marked decrease in the ability to accumulate sublethal radiation injury. ACC is a potentially useful model to study effects of cytotoxic agents on tumor cells. (author)

  9. Substrate compliance versus ligand density in cell on gel responses

    Czech Academy of Sciences Publication Activity Database

    Engler, A.; Bačáková, Lucie; Newman, C.; Hategan, A.; Griffin, M.; Discher, D.

    2004-01-01

    Roč. 86, č. 1 (2004), s. 617-628 ISSN 0006-3495 Grant - others:GA-(US) National Science Foundation; GA-(US) National Institutes of Health; GA-(US) Muscular Dystrophy Association Institutional research plan: CEZ:AV0Z5011922 Keywords : material stiffness * cell spreading * focal adhesions Subject RIV: BO - Biophysics Impact factor: 4.585, year: 2004

  10. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways

  11. Magnetically responsive yeast cells: methods of preparation and applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Pospišková, K.; Horská, Kateřina; Šafaříková, Miroslava

    2015-01-01

    Roč. 32, č. 1 (2015), s. 227-237 ISSN 0749-503X R&D Projects: GA MŠk(CZ) LD13023; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : yeast cells * Saccharomyces * Kluyveromyces * Rhodotorula * Yarrowia * magnetic modification Subject RIV: CE - Biochemistry Impact factor: 2.259, year: 2015

  12. X-ray-induced bystander response reduce spontaneous mutations in V79 cells

    International Nuclear Information System (INIS)

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomiya, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm 2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10 -5 (background level), and the frequency decreased to 5.3 × 10 -6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. (author)

  13. Donor leukocyte infusions in relapsed Hodgkin's lymphoma following allogeneic stem cell transplantation: CD3+ cell dose, GVHD and disease response.

    Science.gov (United States)

    Anderlini, P; Acholonu, S A; Okoroji, G-J; Andersson, B S; Couriel, D R; De Lima, M J; Donato, M L; Khouri, I F; Giralt, S A; Ueno, N T; Champlin, R E

    2004-09-01

    Nine patients with advanced Hodgkin's lymphoma (HL) who had undergone allogeneic stem cell transplantation (allo-SCT) received donor leukocyte infusions (DLIs) for treatment of persistent or progressive disease (PD). A total of 15 DLIs were performed, with four patients receiving more than one DLI. In four patients, prior salvage chemotherapy was administered. The median CD3+ cell dose administered was 77.5 x 10(6)/kg (range 5-285). GVHD developed in all but one patient. The response rate was 4/9 (44%). Three of these four responders developed GVHD and 3/4 had received chemotherapy. No correlation was observed between CD3+ cell dose infused and disease response. At the latest follow-up, three patients are alive and six have expired (PD n=3, nonrelapse mortality n=3). The median response duration was 7 months (range 4-9), with one response currently ongoing. These data suggest that DLIs for immunotherapy of recurrent HL have significant activity, although they frequently leads to GVHD. The small sample size does not allow any conclusion as to whether chemotherapy administration increases the chance of response. The CD3 cell dose infused does not seem to correlate with disease response.

  14. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  15. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......, stem cell mobilization with the CXCR4 antagonist AMD3100 did not alter the donor T cell's ability to induce acute GVHD. These studies provide an explanation for the effects of G-CSF on T cell function and demonstrate that IL-10 is required to license regulatory function but T cell production of IL-10...

  16. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...... a protein with an apparent molecular mass of 70 kDa and an isoelectric pH of 7.0 as early as 3 h after the initial hyperthermal treatment....

  17. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  18. Dengue virus specific dual HLA binding T cell epitopes induce CD8+ T cell responses in seropositive individuals

    Science.gov (United States)

    Comber, Joseph D; Karabudak, Aykan; Huang, Xiaofang; Piazza, Paolo A; Marques, Ernesto T A; Philip, Ramila

    2015-01-01

    Dengue virus infects an estimated 300 million people each year and even more are at risk of becoming infected as the virus continues to spread into new areas. Despite the increase in viral prevalence, no anti-viral medications or vaccines are approved for treating or preventing infection. CD8+ T cell responses play a major role in viral clearance. Therefore, effective vaccines that induce a broad, multi-functional T cell response with substantial cross-reactivity between all virus serotypes can have major impacts on reducing infection rates and infection related complications. Here, we took an immunoproteomic approach to identify novel MHC class I restricted T cell epitopes presented by dengue virus infected cells, representing the natural and authentic targets of the T cell response. Using this approach we identified 4 novel MHC-I restricted epitopes: 2 with the binding motif for HLA-A24 molecules and 2 with both HLA-A2 and HLA-A24 binding motifs. These peptides were able to activate CD8+ T cell responses in both healthy, seronegative individuals and in seropositive individuals who have previously been infected with dengue virus. Importantly, the dual binding epitopes activated pre-existing T cell precursors in PBMCs obtained from both HLA-A2+ and HLA-A24+ seropositive individuals. Together, the data indicate that these epitopes are immunologically relevant T cell activating peptides presented on infected cells during a natural infection and therefore may serve as candidate antigens for the development of effective multi-serotype specific dengue virus vaccines. PMID:25668665

  19. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosiano, J. J. (John J.); Gupta, G. (Goutam); Gray, P. C. (Perry C.); Hush, D. R. (Donald R.); Fugate, M. L. (Michael L.); Cleland, T. J. (Timothy J.); Roberts, R. M. (Randy M.); Hlavacek, W. S. (William S.); Smith, J. L. (Jessica L.)

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  20. Cell fasting: Cellular response and application of serum starvation (ahead of publication

    Directory of Open Access Journals (Sweden)

    Masoomeh Aghababazadeh

    2014-12-01

    Full Text Available Humans suffer transient or persistent starvation due to a lack of food intake, either because of fasting, voluntary dieting, or due to the scarcity of available food. At the cellular level it is possible to possess pathological starvation during ischemia and solid tumors. Blood provides many nutrients to our cells, and researchers provide these nutrients to cells in culture in the form of enriched culture medium plus serum from animal sources. In response to starvation, animals use hormonal cues to mobilize stored resources to provide nutrients to individual cells. Besides whole-body responses to nutrient deprivation, individual cells sense and react to lack of nutrients. At the cellular level, starvation triggers different responses such as cell cycle arrest and apoptosis. Stop cycling for proliferating cells is the primary response to nutrient deprivation. Under certain conditions, the cell reacts to nutrient deprivation by engaging the mitochondrial pathway of apoptosis. Thus, serum starvation is regarded as a procedure to prepare cells for an experiment in serum-free conditions such as induction cell cycle synchronization. Several researchers have used serum starvation as a tool to study molecular mechanisms involved in different cellular process, metabolic researches and evaluation of a drug effect.

  1. Ptch2 mediates the Shh response in Ptch1(-/-) cells

    NARCIS (Netherlands)

    Alfaro, Astrid C.; Roberts, Brock; Kwong, Lina; Bijlsma, Maarten F.; Roelink, Henk

    2014-01-01

    The Hedgehog (Hh) signaling response is regulated by the interaction of three key components that include the sonic hedgehog (Shh) ligand, its receptor patched 1 (Ptch1) and the pathway activator smoothened (Smo). Under the prevailing model of Shh pathway activation, the binding of Shh to Ptch1 (the

  2. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  3. Radiation-induced bystander effect and adaptive response in mammalian cells

    Science.gov (United States)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  5. Identification of miRNAs involved in cell response to ionising radiation and modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis...

  6. On the hunt for helminths: innate immune cells in the recognition and response to helminth parasites.

    Science.gov (United States)

    Perrigoue, Jacqueline G; Marshall, Fraser A; Artis, David

    2008-09-01

    The generation of protective immunity to helminth parasites is critically dependent upon the development of a CD4(+) T helper type 2 cytokine response. However, the host-parasite interactions responsible for initiating this response are poorly understood. This review will discuss recent advances in our understanding of how helminth-derived products are recognized by innate immune cells. Specifically, interactions between helminth excretory/secretory products and host Toll-like receptors and lectins will be discussed as well as the putative functions of helminth proteases and chitin in activating and recruiting innate immune cells. In addition, the functional significance of pattern recognition by epithelial cells, granulocytes, dendritic cells and macrophages including expression of alarmins, thymic stromal lymphopoetin, interleukin (IL)-25, IL-33 and Notch l