WorldWideScience

Sample records for cell polarization reproduces

  1. Spatial stochastic dynamics enable robust cell polarization.

    Directory of Open Access Journals (Sweden)

    Michael J Lawson

    Full Text Available Although cell polarity is an essential feature of living cells, it is far from being well-understood. Using a combination of computational modeling and biological experiments we closely examine an important prototype of cell polarity: the pheromone-induced formation of the yeast polarisome. Focusing on the role of noise and spatial heterogeneity, we develop and investigate two mechanistic spatial models of polarisome formation, one deterministic and the other stochastic, and compare the contrasting predictions of these two models against experimental phenotypes of wild-type and mutant cells. We find that the stochastic model can more robustly reproduce two fundamental characteristics observed in wild-type cells: a highly polarized phenotype via a mechanism that we refer to as spatial stochastic amplification, and the ability of the polarisome to track a moving pheromone input. Moreover, we find that only the stochastic model can simultaneously reproduce these characteristics of the wild-type phenotype and the multi-polarisome phenotype of a deletion mutant of the scaffolding protein Spa2. Significantly, our analysis also demonstrates that higher levels of stochastic noise results in increased robustness of polarization to parameter variation. Furthermore, our work suggests a novel role for a polarisome protein in the stabilization of actin cables. These findings elucidate the intricate role of spatial stochastic effects in cell polarity, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function.

  2. Effect of surface state of type 18-10 stainless steel on the authenticity and reproducibility of potentiodynamic polarization curves

    International Nuclear Information System (INIS)

    The effect of mechanic and electrochemical methods of finishing the surface of the 18-10 stainless steel (polishing, electropolishing) and its oxidation in air at room temperature on the authenticity and reproducibility of anode polarization curves is investigated. It is established that the behaviour of anode potentiodynamic polarization curves, both in active and passive range of potentials, depends on microgeometry and on the oxidation degree of initial electrode surface as well. An optimal method of preparing surfaces of the 18-10 steel for polarization measurements is suggested

  3. A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    CERN Document Server

    Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B

    2016-01-01

    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.

  4. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  5. Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation

    Science.gov (United States)

    Long, Jing; Yi, Hui; Li, Hongquan; Lei, Zeyu; Yang, Tian

    2016-09-01

    Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 109~10 at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 100.08 between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner.

  6. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  7. Electrochemical control of cell and tissue polarity.

    Science.gov (United States)

    Chang, Fred; Minc, Nicolas

    2014-01-01

    Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts. PMID:25062359

  8. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells

    Directory of Open Access Journals (Sweden)

    Anne L Fletcher

    2011-09-01

    Full Text Available Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  9. Membrane Organization and Dynamics in Cell Polarity

    OpenAIRE

    Orlando, Kelly; Guo, Wei

    2009-01-01

    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  10. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    Science.gov (United States)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  11. Profiling Signaling Polarity in Chemotactic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingchun; Ding, Shi-Jian; Wang, Wei; Jacobs, Jon M.; Qian, Weijun; Moore, Ronald J.; Yang, Feng; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2007-05-15

    While directional movement requires morphological polarization characterized by formation of a leading pseudopodium at the front and a trailing rear at the back, little is known about how protein networks are spatially integrated to regulate this process. Here, we utilize a unique pseudopodial purification system and quantitative proteomics and phosphoproteomics to map the spatial relationship of 3509 proteins and 228 distinct sites of phosphorylation in polarized cells. Networks of signaling proteins, metabolic pathways, actin regulatory proteins, and kinase-substrate cascades were found to partition to different poles of the cell including components of the Ras/ERK pathway. Also, several novel proteins were found to be differentially phosphorylated at the front or rear of polarized cells and to localize to distinct subcellular structures. Our findings provide insight into the spatial organization of signaling networks that control cell movement and provide a comprehensive profile of proteins and their sites of phosphorylation that control cell polarization.

  12. Polarized sorting and trafficking in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Xinwang Cao; Michal A Surma; Kai Simons

    2012-01-01

    The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain,which are separated by tight junctions.The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules.This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers.Here we review the recent advances in the field of polarized sorting in epithelial cells.We especially highlight the role of lipid rafts in apical sorting.

  13. Validation and reproducibility of computerised cell-viability analysis of tissue slices

    Directory of Open Access Journals (Sweden)

    Elliott Janet AW

    2003-03-01

    Full Text Available Abstract Background The identification of live cells using membrane integrity dyes has become a frequently used technique, especially with articular cartilage and chondrocytes in situ where tissue slices are used to assess cell recovery as a function of location. The development of a reproducible computerised method of cell evaluation would eliminate many variables associated with manual counting and significantly reduce the amount of time required to evaluate experimental results. Methods To validate a custom computerised counting program, intra-person and inter-person cell counts of nine human evaluators (three groups – unskilled, novice, and experienced were compared with repeated pixel counts of the custom program on 15 digitised images (in triplicate of chondrocytes in situ stained with fluorescent dyes. Results Results indicated increased reproducibility with increased experience within evaluators [Intraclass Correlation Coefficient (ICC range = 0.67 (unskilled to 0.99 (experienced] and between evaluators [ICC = 0.47 (unskilled, 0.85 (novice, 0.93 (experienced]. The computer program had perfect reproducibility (ICC = 1.0. There was a significant relationship between the average of the experienced evaluators results and the custom program results (ICC = 0.77. Conclusions This study demonstrated that increased experience in cell counting resulted in increased reproducibility both within and between human evaluators but confirmed that the computer program was the most reproducible. There was a good correlation between the intact cell recovery determined by the computer program and the experienced human evaluators. The results of this study showed that the computer counting program was a reproducible tool to evaluate intact cell recovery after use of membrane integrity dyes on chondrocytes in situ. This and the significant decrease in the time used to count the cells by the computer program advocate its use in future studies because it has

  14. Polarized Cell Division of Chlamydia trachomatis.

    Science.gov (United States)

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  15. Polarized Cell Division of Chlamydia trachomatis.

    Science.gov (United States)

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  16. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-04-01

    Full Text Available In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.

  17. Organic photovoltaic cells with controlled polarization sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Awartani, Omar; O' Connor, Brendan T., E-mail: btoconno@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kudenov, Michael W. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-03-03

    In this study, we demonstrate linearly polarized organic photovoltaic cells with a well-controlled level of polarization sensitivity. The polarized devices were created through the application of a large uniaxial strain to the bulk heterojunction poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) film and printing the plastically deformed active layer onto a PEDOT:PSS and indium tin oxide coated glass substrate. The P3HT:PCBM layer is processed such that it is able to accommodate high strains (over 100%) without fracture. After printing the strained films, thermal annealing is used to optimize solar cell performance while maintaining polarization sensitivity. A dichroic ratio and short circuit current ratio of ≈6.1 and ≈1.6 were achieved, respectively.

  18. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  19. T-cell assays for tuberculosis infection: deriving cut-offs for conversions using reproducibility data.

    Directory of Open Access Journals (Sweden)

    Anandharaman Veerapathran

    Full Text Available BACKGROUND: Although interferon-gamma release assays (IGRA are promising alternatives to the tuberculin skin test, interpretation of repeated testing results is hampered by lack of evidence on optimal cut-offs for conversions and reversions. A logical start is to determine the within-person variability of T-cell responses during serial testing. METHODOLOGY/PRINCIPAL FINDINGS: We performed a pilot study in India, to evaluate the short-term reproducibility of QuantiFERON-TB Gold In Tube assay (QFT among 14 healthcare workers (HCWs who underwent 4 serial QFT tests on day 0, 3, 9 and 12. QFT ELISA was repeated twice on the same sets of specimens. We assessed two types of reproducibility: 1 test-retest reproducibility (between-test variability, and 2 within-person reproducibility over time. Test-retest reproducibility: with dichotomous test results, extremely high concordance was noticed between two tests performed on the same sets of specimens: of the 56 samples, the test and re-test results agreed for all but 2 individuals (kappa = 0.94. Discordance was noted in subjects who had IFN-gamma values around the cut-off point, with both increases and decreases noted. With continuous IFN-gamma results, re-test results tended to produce higher estimates of IFN-gamma than the original test. Within-person reproducibility: when continuous IFN-gamma data were analyzed, the within-person reproducibility was moderate to high. While persons with negative QFT results generally stayed negative, positive results tended to vary over time. Our data showed that increases of more than 16% in the IFN-gamma levels are statistically improbable in the short-term. CONCLUSIONS: Conservatively assuming that long-term variability might be at least twice higher than short-term, we hypothesize that a QFT conversion requires two conditions to be met: 1 change from negative to positive result, and 2 at least 30% increase in the baseline IFN-gamma response. Larger studies are needed

  20. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    Science.gov (United States)

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiologic concentrations of estrogen (proliferative phase) and of estrogen plus progesterone (secretory phase), despite the finding that association of chlamydiae with secretory-phase HEGEC is significantly reduced (P = 0.025; A.S. Maslow, C.H. Davis, J. Choong, and P.B. Wyrick, Am. J. Obstet. Gynecol. 159:1006-1014, 1988). In contrast, chlamydiae were rarely observed in the clathrin-associated structures if the HEGEC were cultured on plastic surfaces. The same pattern of coated pit versus noncoated pit entry was reproducible in HeLa cells. The quantity of coated pits associated with isolated membrane sheets derived from HeLa cells, grown on poly-L-lysine-coated cover slips in medium containing the female hormones, was not significantly different as monitored by radiolabeling studies and by laser scanning microscopy. These data suggest that culture conditions which mimic in vivo cellular organization may enhance entry into coated pits for some obligate intracellular pathogens. Images PMID:2744852

  1. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nekolla, S.G.; Miethaner, C.; Nguyen, N.; Ziegler, S.I.; Schwaiger, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    1998-09-01

    The purpose of this study was to determine the reliability of new software developed for the analysis of cardiac tomographic data. The algorithm delineates the long axis and defines the basal plane and subsequently generates polar maps to quantitatively and reproducibly assess the size and severity of perfusion defects. The developed technique requires an initial manual estimate of the left ventricular long axis and calculates the volumetric maximum myocardial activity distribution. This surface is used to map three-dimensional tracer accumulation onto a two-dimensional representation (polar map), which is the basis for further processing. The spatial information is used to compute geometrical and mechanical properties of a solid model of the left ventricle including the left heart chamber. A new estimate of the axis is determined from this model, and the previously outlined procedure is repeated together with an automated definition of the valve plane until differences between the polar maps can be neglected. This quantitative analysis software was validated in phantom studies with defects of known masses and in ten data sets from normals and patients with coronary artery disease of various severity. We investigated the reproducibility of the maps with the introduction of a similarity criterion where the ratio of two corresponding polar map elements lies within a 10% interval. The maps were also used to measure intra-and interobserver variability in respect of defect size and severity. In the phantom studies, it was possible to reliably assess mass information over a wide range of defects from 5 to 60 g (slope: 1.02, offset -0.68, r = 0.972). Patient studies revealed a statistically significant increase in the reproducibility of the automatic technique compared with the manual approach: 54%{+-}19% (manual) compared with 88%{+-}9% (automatic) for observer 1 and 61%{+-}20% vs 82%{+-}5% for observer 2, respectively. The intervariability analysis showed a significant

  2. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography.

    Science.gov (United States)

    Nekolla, S G; Miethaner, C; Nguyen, N; Ziegler, S I; Schwaiger, M

    1998-09-01

    The purpose of this study was to determine the reliability of new software developed for the analysis of cardiac tomographic data. The algorithm delineates the long axis and defines the basal plane and subsequently generates polar maps to quantitatively and reproducibly assess the size and severity of perfusion defects. The developed technique requires an initial manual estimate of the left ventricular long axis and calculates the volumetric maximum myocardial activity distribution. This surface is used to map three-dimensional tracer accumulation onto a two-dimensional representation (polar map), which is the basis for further processing. The spatial information is used to compute geometrical and mechanical properties of a solid model of the left ventricle including the left heart chamber. A new estimate of the axis is determined from this model, and the previously outlined procedure is repeated together with an automated definition of the valve plane until differences between the polar maps can be neglected. This quantitative analysis software was validated in phantom studies with defects of known masses and in ten data sets from normals and patients with coronary artery disease of various severity. We investigated the reproducibility of the maps with the introduction of a similarity criterion where the ratio of two corresponding polar map elements lies within a 10% interval. The maps were also used to measure intra-and interobserver variability in respect of defect size and severity. In the phantom studies, it was possible to reliably assess mass information over a wide range of defects from 5 to 60 g (slope: 1.02, offset -0.68, r = 0.972). Patient studies revealed a statistically significant increase in the reproducibility of the automatic technique compared with the manual approach: 54%+/-19% (manual) compared with 88%+/-9% (automatic) for observer 1 and 61%+/-20% vs 82%+/-5% for observer 2, respectively. The intervariability analysis showed a significant

  3. An uncombed inversion of multi-wavelength observations reproducing the Net Circular Polarization in a sunspots' penumbra

    CERN Document Server

    Beck, C

    2010-01-01

    I derived a geometrical model of the penumbral magnetic field topology from an uncombed inversion setup that aimed at reproducing the NCP of simultaneous spectra in near-IR (1.56 mu) and VIS (630 nm) spectral lines. I inverted the spectra of five photospheric lines with a model that mimicked vertically interlaced magnetic fields with two components, labeled background field and flow channels. The flow channels were modeled as a perturbation of the background field with a Gaussian shape using the SIRGAUS code. The location and extension of the Gaussian perturbation in the optical depth scale was then converted to a geometrical height scale. I investigated the relative amount of magnetic flux in the flow channels and the background field atmosphere. The uncombed model is able to reproduce the NCP well on the limb side of the spot and worse on the center side; the VIS lines are better reproduced than the near-IR lines. The Evershed flow happens along nearly horizontal field lines close to the solar surface. The ...

  4. A gas cell for stopping, storing and polarizing radioactive particles

    NARCIS (Netherlands)

    Sytema, Auke; van den Berg, Joost; Böll, Oliver; Chernowitz, Daniel; Dijck, Elwin; Grasdijk, Jan; Hoekstra, Steven; Jungmann, Klaus-Peter; Chirayath Mathavan, Sreekanth; Meinema, Jacoba Roelien; Mueller, Stefan E.; Portela, M. N.; Onderwater, Cornelis; Pijpker, Coen; Willmann, Lorenz; Wilschut, H. W.

    2016-01-01

    A radioactive beam of Na-20 is stopped in a gas cell filled with Ne gas. The stopped particles are polarized by optical pumping. The degree of polarization that can be achieved is studied. A maximum polarization of 50% was found. The dynamic processes in the cell are described with a phenomenologica

  5. Auxin regulation of cell polarity in plants.

    Science.gov (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants. PMID:26599954

  6. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  7. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development.

  8. Measuring receptor recycling in polarized MDCK cells.

    Science.gov (United States)

    Gallo, Luciana; Apodaca, Gerard

    2015-01-01

    Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.

  9. Mechanics and polarity in cell motility

    Science.gov (United States)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  10. Reproducibility blues.

    Science.gov (United States)

    Pulverer, Bernd

    2015-11-12

    Research findings advance science only if they are significant, reliable and reproducible. Scientists and journals must publish robust data in a way that renders it optimally reproducible. Reproducibility has to be incentivized and supported by the research infrastructure but without dampening innovation.

  11. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  12. Single-cell protein dynamics reproduce universal fluctuations in cell populations

    CERN Document Server

    Brenner, Naama; Rotella, James S; Salman, Hanna

    2015-01-01

    Protein fluctuations in cell populations have recently been shown to exhibit a universal distribution shape under a broad range of biological realizations. Here, measuring protein content in individual bacteria continuously over ~70 generations, we show that single-cell trajectories fluctuate around their average with the same distribution shape as the population, i.e. their relative fluctuations are ergodic. Analysis of these temporal trajectories reveals that one effective random variable, sampled once each cell cycle, suffices to reconstruct the distribution from the trajectory. This in turn implies that cellular microscopic processes are strongly buffered and population-level protein distributions are insensitive to details of the intracellular dynamics. Probing them thus requires searching for novel universality-breaking experimental perturbations.

  13. Polarized sphingolipid transport from the subapical compartment changes during cell polarity development

    NARCIS (Netherlands)

    van Ijzendoorn, SCD; Hoekstra, D

    2000-01-01

    The subapical compartment (SAC) plays an important role in the polarized transport of proteins and lipids. In hepatoma-derived HepG2 cells, fluorescent analogues of sphingomyelin and glucosylceramide are sorted in the SAG. Here, evidence is provided that shows that polarity development is regulated

  14. Qualitative and quantitative histopathology in transitional cell carcinomas of the urinary bladder. An international investigation of intra- and interobserver reproducibility

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Sasaki, M; Fukuzawa, S;

    1994-01-01

    BACKGROUND: Histopathologic, prognosis-related grading of malignancy by means of morphologic examination in transitional cell carcinomas of the urinary bladder (TCC) may be subject to observer variation, resulting in a reduced level of reproducibility. This may confound comparisons of treatment...... agreement on the Bergkvist scheme was poor (kappa = 0.43). On the other hand was the interobserver agreement on invasion high (kappa = 0.75). The intraobserver reproducibility of the quantitative histopathologic variables was excellent in both Japan and Denmark for estimates of nuclear mean volume (r = 0...... density index also showed acceptable intraobserver reproducibility (Kendall's tau > 0.53). CONCLUSIONS: The international, interobserver reproducibility of the quantitative estimators yielded similar results for all histopathologic variables investigated, except for nuclear volume fraction (r = 0...

  15. Mathematical analysis of spontaneous emergence of cell polarity.

    Science.gov (United States)

    Lo, Wing-Cheong; Park, Hay-Oak; Chou, Ching-Shan

    2014-08-01

    Cell polarization, in which intracellular substances are asymmetrically distributed, enables cells to carry out specialized functions. While cell polarity is often induced by intracellular or extracellular spatial cues, spontaneous polarization (the so-called symmetry breaking) may also occur in the absence of spatial cues. Many computational models have been used to investigate the mechanisms of symmetry breaking, and it was proved that spontaneous polarization occurs when the lateral diffusion of inactive signaling molecules is much faster than that of active signaling molecules. This conclusion leaves an important question of how, as observed in many biological systems, cell polarity emerges when active and inactive membrane-bound molecules diffuse at similar rates while cycling between cytoplasm and membrane takes place. The recent studies of Rätz and Röger showed that, when the cytosolic and membrane diffusion are very different, spontaneous polarization is possible even if the membrane-bound species diffuse at the same rate. In this paper, we formulate a two-equation non-local reaction-diffusion model with general forms of positive feedback. We apply Turing stability analysis to identify parameter conditions for achieving cell polarization. Our results show that spontaneous polarization can be achieved within some parameter ranges even when active and inactive signaling molecules diffuse at similar rates. In addition, different forms of positive feedback are explored to show that a non-local molecule-mediated feedback is important for sharping the localization as well as giving rise to fast dynamics to achieve robust polarization.

  16. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover

    NARCIS (Netherlands)

    van Ijzendoorn, SCD; van der Wouden, JM; Liebisch, G; Schmitz, G; Hoekstra, D

    2004-01-01

    Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differe

  17. Reproducibility and prognostic value of pattern of invasion scoring in low-stage oral squamous cell carcinoma

    NARCIS (Netherlands)

    Heerema, Marjolein G. J.; Melchers, Lieuwe J.; Roodenburg, Jan L. N.; Schuuring, Ed; de Bock, Geertruida H.; van der Vegt, Bert

    2016-01-01

    AimsTo evaluate and compare the prognostic value and reproducibility of different methods of pattern of invasion scoring in oral squamous cell carcinomas. The additional prognostic value to established histopathological prognostic factors was also analysed. Methods and resultsThe study group was con

  18. Reproducibility of beta-cell function estimates in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Gjessing, H J; Damsgaard, E M; Matzen, L E;

    1988-01-01

    We evaluated the reproducibility of different estimates of endogenous insulin secretion in 30 patients with non-insulin-dependent diabetes mellitus (NIDDM). Fasting blood glucose concentration was similar on the 2 days of study. The coefficients of variation of fasting plasma C-peptide, plasma C...

  19. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    Science.gov (United States)

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  20. Polarity in Stem Cell Division: Asymmetric Stem Cell Division in Tissue Homeostasis

    OpenAIRE

    Yamashita, Yukiko M; Yuan, Hebao; Cheng, Jun; Hunt, Alan J.

    2010-01-01

    Many adult stem cells divide asymmetrically to balance self-renewal and differentiation, thereby maintaining tissue homeostasis. Asymmetric stem cell divisions depend on asymmetric cell architecture (i.e., cell polarity) within the cell and/or the cellular environment. In particular, as residents of the tissues they sustain, stem cells are inevitably placed in the context of the tissue architecture. Indeed, many stem cells are polarized within their microenvironment, or the stem cell niche, a...

  1. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Tezuka, H.; Sakoda, H.; Konno, M.; Nagata, K.; Uchiyama, T.; Uchino, H.; Mori, K.J.

    1989-02-01

    Stromal cell lines, designated MS-1, -2, -3, -4, -5, -6, and -7 were established by irradiating the adherent cells in long-term bone marrow cultures with 900-rad x-rays. Two of the cell lines, MS-1 and MS-5, have the capacity to support the growth of hemopoietic stem cells (spleen colony-forming cells and granulocyte-macrophage colony-forming cells) for greater than 2 months in vitro. These two cell lines were alkaline phosphatase-, peroxidase-, and factor VIII-negative and positive for periodic acid-Schiff and nonspecific esterase. Extracellular matrix proteins such as fibronectin, laminin, and collagen type I were produced by these two cell lines. Neither MS-1 cell- nor MS-5 cell-conditioned medium supported the growth of hemopoietic stem cells, and hemopoietic stem cells were found preferentially to be under and on MS-1 and MS-5 layers rather than in suspension. Close contact with the MS-1 cell layer or the MS-5 cell layer appears to be essential in maintaining hemopoiesis in vitro. Conditioned media from MS-1 cells and MS-5 cells stimulated granulocyte colony formation from murine bone marrow cells in semisolid culture.

  2. Characterization of PEM fuel cell degradation by polarization change curves

    Science.gov (United States)

    Bezmalinovic, Dario; Simic, Boris; Barbir, Frano

    2015-10-01

    Polarization change curves, defined as a difference between the polarization curve at the beginning of life and the actual polarization curve after the cell has been operational for some time, were used to analyze degradation of a PEM fuel cell exposed to voltage cycling as an accelerated stress test for electrocatalyst degradation. Degradation, i.e., loss of voltage was due to increase of activation losses and increase of resistance in the catalyst layer, both most likely due to the loss of catalyst electrochemically active area. The results of the polarization change curves analysis correspond to the findings of the periodic individual tests performed during the accelerated stress test, such as electrochemical impedance spectroscopy, cyclic voltammetry and linear sweep voltammetry. Therefore, this method has potential to be used as a relatively quick and simple, yet effective, degradation diagnostic tool.

  3. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    OpenAIRE

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiol...

  4. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  5. Determining the interobserver reproducibility of Pap smears in the diagnosis of epithelial cell abnormalities

    Directory of Open Access Journals (Sweden)

    Izadi-Mood N

    2011-07-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Cancer of uterine cervix is the second cause of death in women in the world and the most common cause in developing countries. Because the majority of women with invasive cervical cancer of the uterine have not previously undergone screening, many clinicians assume that Pap smear has a high degree of accuracy; but problems such as false positive and false negative interpretations, as well as interobserver variability have questioned its validity."n"nMethods : We retrieved 162 positive cervical smears that had been originally interpreted as ASC-US, ASC-H, LSIL, HSIL, SCC, AGC and adenocarcinoma from the cytology archives of Women's Hospital in Tehran, Iran. The slides were rescreened by an experienced pathologist and reclassified in the mentioned categories. All the 162 slides were reviewed by three more pathologists in a blind study using interpretative criteria utilized in their daily routine to evaluate interobserver reproducibility. To increase the level of interobserver agreement, the diagnostic categories were reduced to squamous Vs. glandular abnormalities and invasive (SCC and adenocarcinoma Vs. non-invasive abnormalities."n"nResults : The results obtained in this study indicated slight interobserver agreement (k=0.26. The most reproducible category was the invasive category (SCC in addition to adenocarcinoma and the least agreement was seen for HSIL (k=0.19. "n"nConclusion: This study showed that reproducibility of cytological interpretation of conventional Pap smears

  6. Role of polarized cell divisions in zebrafish neural tube formation.

    Science.gov (United States)

    Clarke, Jon

    2009-04-01

    Development of epithelial cell polarity and morphogenesis of a central lumen are essential prerequisites for the formation of the vertebrate neural tube. In teleost fish embryos this first involves the formation of a solid neural rod structure that then undergoes a process of cavitation to form a lumen. This process is initiated from a neural plate that has a distinct organization compared to other vertebrates, and involves complex cell intercalations and rearrangements. A key element is a mode of polarized cell division that generates daughters with mirror-image apico-basal polarity. These mirror-symmetric divisions have powerful morphogenetic influence because when they occur in ectopic locations they orchestrate the development of ectopic apical and basal specializations and the development of ectopic neural tubes.

  7. Matrix rigidity optimizes the polarization of stem cells

    Science.gov (United States)

    Zemel, Assaf; Rehfeldt, Florian; Brown, Andre; Discher, Dennis; Safran, Samuel

    2009-03-01

    We present a theoretical model and experiments to explain the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. The theory generalizes the treatment of elastic inclusions to ``living'' inclusions (cells) whose active polarizability, unlike non-living matter, depends on the feedback of cellular forces that develop in response to matrix stresses. We demonstrate experimentally that the stress fibers in adult mesenchymal stem cells, generally orient parallel to the long axis of the cells, with an anisotropy that depends non-monotonically on substrate stiffness. Consistent with these experiments, our theory predicts that the magnitude of the cellular force increases monotonically with the matrix rigidity while the polarization anisotropy shows a maximum that depends on the cell shape and the elastic modulus of the medium. These findings offer a mechanical correlate for the observation that stem cell differentiation optimizes in a range of matrix rigidities that depends on the tissue type.

  8. Elusive reproducibility.

    Science.gov (United States)

    Gori, Gio Batta

    2014-08-01

    Reproducibility remains a mirage for many biomedical studies because inherent experimental uncertainties generate idiosyncratic outcomes. The authentication and error rates of primary empirical data are often elusive, while multifactorial confounders beset experimental setups. Substantive methodological remedies are difficult to conceive, signifying that many biomedical studies yield more or less plausible results, depending on the attending uncertainties. Real life applications of those results remain problematic, with important exceptions for counterfactual field validations of strong experimental signals, notably for some vaccines and drugs, and for certain safety and occupational measures. It is argued that industrial, commercial and public policies and regulations could not ethically rely on unreliable biomedical results; rather, they should be rationally grounded on transparent cost-benefit tradeoffs.

  9. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.

    NARCIS (Netherlands)

    Beltman, J.B.; Urbanus, J.; Velds, A.; Rooij, van N.; Rohr, J.C.; Naik, S.H.; Schumacher, T.N.

    2016-01-01

    BACKGROUND Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and

  10. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fried, David V. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhou, Shouhao [Division of Quantitative Sciences, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mawlawi, Osama [Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Ibbott, Geoffrey [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Court, Laurence E., E-mail: LECourt@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States)

    2014-11-15

    Purpose: To determine whether pretreatment CT texture features can improve patient risk stratification beyond conventional prognostic factors (CPFs) in stage III non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively reviewed 91 cases with stage III NSCLC treated with definitive chemoradiation therapy. All patients underwent pretreatment diagnostic contrast enhanced computed tomography (CE-CT) followed by 4-dimensional CT (4D-CT) for treatment simulation. We used the average-CT and expiratory (T50-CT) images from the 4D-CT along with the CE-CT for texture extraction. Histogram, gradient, co-occurrence, gray tone difference, and filtration-based techniques were used for texture feature extraction. Penalized Cox regression implementing cross-validation was used for covariate selection and modeling. Models incorporating texture features from the 33 image types and CPFs were compared to those with models incorporating CPFs alone for overall survival (OS), local-regional control (LRC), and freedom from distant metastases (FFDM). Predictive Kaplan-Meier curves were generated using leave-one-out cross-validation. Patients were stratified based on whether their predicted outcome was above or below the median. Reproducibility of texture features was evaluated using test-retest scans from independent patients and quantified using concordance correlation coefficients (CCC). We compared models incorporating the reproducibility seen on test-retest scans to our original models and determined the classification reproducibility. Results: Models incorporating both texture features and CPFs demonstrated a significant improvement in risk stratification compared to models using CPFs alone for OS (P=.046), LRC (P=.01), and FFDM (P=.005). The average CCCs were 0.89, 0.91, and 0.67 for texture features extracted from the average-CT, T50-CT, and CE-CT, respectively. Incorporating reproducibility within our models yielded 80.4% (±3.7% SD), 78.3% (±4.0% SD), and 78

  11. High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Susan J. Marriott

    2011-11-01

    Full Text Available The virologic synapse (VS, which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells.

  12. p27Kip1 in cell-cell adhesion and cell polarity

    NARCIS (Netherlands)

    Theard, Delphine Francine

    2006-01-01

    Hepatocellular carcinoma is one of the more spread cancer in developed countries. This cancer affects hepatocytes, the liver cells acting as a filter between blood and bile. To accomplish this duty, the cells are polarized, which means they present a non-symmetrical morphology with the apical surfac

  13. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.

    OpenAIRE

    Beltman, J.B.; J. Urbanus; Velds, A.; de, Rooij, R.; Rohr, J.C.; S.H. Naik; T.N. Schumacher.

    2016-01-01

    BACKGROUND Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and rare sequences are biologically relevant, the relatively high error rate of NGS techniques complicates data analysis, as it is difficult to distinguish rare true sequences from spurious sequences t...

  14. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. PMID:26388210

  15. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.

  16. Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle.

    Directory of Open Access Journals (Sweden)

    Nathalie Burch

    Full Text Available Adequate levels of physical activity are at the center of a healthy lifestyle. However, the molecular mechanisms that mediate the beneficial effects of exercise remain enigmatic. This gap in knowledge is caused by the lack of an amenable experimental model system. Therefore, we optimized electric pulse stimulation of muscle cells to closely recapitulate the plastic changes in gene expression observed in a trained skeletal muscle. The exact experimental conditions were established using the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha as a marker for an endurance-trained muscle fiber. We subsequently compared the changes in the relative expression of metabolic and myofibrillar genes in the muscle cell system with those observed in mouse muscle in vivo following either an acute or repeated bouts of treadmill exercise. Importantly, in electrically stimulated C2C12 mouse muscle cells, the qualitative transcriptional adaptations were almost identical to those in trained muscle, but differ from the acute effects of exercise on muscle gene expression. In addition, significant alterations in the expression of myofibrillar proteins indicate that this stimulation could be used to modulate the fiber-type of muscle cells in culture. Our data thus describe an experimental cell culture model for the study of at least some of the transcriptional aspects of skeletal muscle adaptation to physical activity. This system will be useful for the study of the molecular mechanisms that regulate exercise adaptation in muscle.

  17. Lipid polarity and sorting in epithelial cells

    NARCIS (Netherlands)

    van Meer, G.; Simons, K.

    1988-01-01

    Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier appar

  18. Subtyping of nonsmall cell lung cancer on cytology specimens: Reproducibility of cytopathologic diagnoses on sparse material

    DEFF Research Database (Denmark)

    Haukali, O. S.; Henrik, H.; Olsen, Karen Ege;

    2014-01-01

    Cytologic examination of fine-needle aspiration (material is increasingly used in diagnosing lung cancer. High interobserver agreement in distinguishing small-cell lung cancer from nonsmall-cell lung cancer (NSCLC) on cytologic material has been demonstrated. Because of new treatment......-modalities, subclassification of NSCLC into squamous cell carcinoma (SQC) and non-SQC has clinical impact. Subclassification based on morphology alone may be difficult, but applying immunohistochemistry (IHC) to clot-material has proved helpful. When insufficient material is available to make a clot from the aspirate......-Grunwald-Giemsa (MGG) stained smears and CS with IHC on material from 79 patients suspected of having lung cancer was included. The material was circulated twice to four pathologists. The diagnoses were categorized in five groups: SQC, adenocarcinoma of the lung, non-SQC, benign lesion and other forms of malignancy...

  19. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  20. Self-Polarization of Cells in Elastic Gels

    Science.gov (United States)

    Zemel, Assaf; Safran, Samuel

    2008-03-01

    The shape of a cell as well as the rigidity and geometry of its surroundings play an important role in vital cellular processes. The contractile activity of cells provides a generic means by which cells may sense and respond to mechanical features. The matrix stresses, that depend on the elasticity and geometry of cells, feedback on the cells and influence their activity. This suggests a mechanical mechanism by which cells control their shape and forces. We present a quantitative, mechanical model that predicts that cells in an elastic medium can self-polarize to form well ordered stress fibers. We focus on both single cells in a gel, as well as on an ensemble of cells that is confined to some region within the gel. While the magnitude of the cellular forces is found to increase monotonically with the matrix rigidity the anisotropy of the forces, and thus the ability of the cells to polarize, is predicted to depend non-monotonically on the medium's rigidity. We discuss these results with experimental findings and with the observation of an optimal medium elasticity for cell function and differentiation.

  1. The Signaling Mechanisms Underlying Cell Polarity and Chemotaxis

    OpenAIRE

    Wang, Fei

    2009-01-01

    Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) use...

  2. Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells

    OpenAIRE

    1988-01-01

    We have studied proteoglycan secretion using a recently developed system for the preparing of polarized primary cultures of rat uterine epithelial cells. To mimic their native environment better and provide a system for discriminating apical from basolateral compartments, we cultured cells on semipermeable supports impregnated with biomatrix. Keratan sulfate proteoglycans (KSPG) as well as heparan sulfate- containing molecules (HS[PG]) were the major sulfated products synthesized and secreted...

  3. Protein-protein interactions and genome engineering : novel strategies to study cell polarity

    NARCIS (Netherlands)

    Waaijers, S.

    2014-01-01

    Cell polarity is a fundamental property of cells. The identification of conserved polarity regulators that control polarity in a variety of distinct tissues raises a number of questions. How are the same components used and integrated in tissue-specific ways to give rise to the wide variety of polar

  4. Lis1 mediates planar polarity of auditory hair cells through regulation of microtubule organization

    OpenAIRE

    Sipe, Conor W.; Liu, Lixia; Lee, Jianyi; Grimsley-Myers, Cynthia; Lu, Xiaowei

    2013-01-01

    The V-shaped hair bundles atop auditory hair cells and their uniform orientation are manifestations of epithelial planar cell polarity (PCP) required for proper perception of sound. PCP is regulated at the tissue level by a conserved core Wnt/PCP pathway. However, the hair cell-intrinsic polarity machinery is poorly understood. Recent findings implicate hair cell microtubules in planar polarization of hair cells. To elucidate the microtubule-mediated polarity pathway, we analyzed Lis1 functio...

  5. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel;

    2012-01-01

    Planar cell polarity (PCP) refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...... glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal...

  6. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells.

    Science.gov (United States)

    Staszewski, Ori; Baker, Richard E; Ucher, Anna J; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E J

    2011-01-21

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.

  7. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    Science.gov (United States)

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD. PMID:27161598

  8. Effects of Thermochemical Treatment on CuSbS 2 Photovoltaic Absorber Quality and Solar Cell Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Hempel, Hannes; Unold, Thomas; Eichberger, Rainer; Blank, Beatrix; Rau, Uwe; Mascaro, Lucia H.; Zakutayev, Andriy

    2016-08-25

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Overall, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.

  9. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Fave, Xenia, E-mail: xjfave@mdanderson.org; Fried, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Mackin, Dennis; Yang, Jinzhong; Zhang, Joy; Balter, Peter; Followill, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Gomez, Daniel [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Stingo, Francesco [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Fontenot, Jonas [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 (United States); Court, Laurence [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2015-12-15

    Purpose: Increasing evidence suggests radiomics features extracted from computed tomography (CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer (NSCLC). This study was designed to determine whether such features can be reproducibly obtained from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to track them through treatment. Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for 68 different texture features. The volume dependence of each feature was also measured using the Spearman rank correlation coefficient. Features with a high reproducibility (CCC > 0.9) that were not due to volume dependence in the patient test-retest set were further examined for their sensitivity to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms. The first phantom was a texture phantom composed of rectangular cartridges to represent different textures. Features were measured from two cartridges, shredded rubber and dense cork, in this study. The texture phantom was scanned with 19 different CBCT imagers to establish the features’ interscanner variability. The effect of scatter on these features was studied by surrounding the same texture phantom with scattering material (rice and solid water). The effect of respiratory motion on these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor texture insert of the shredded rubber material. The differences between scans acquired with different Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared to the mean intrapatient difference from the test-retest image set. Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence. When the Linac manufacturer and imaging protocol

  10. Laser-Based Propagation of Human iPS and ES Cells Generates Reproducible Cultures with Enhanced Differentiation Potential

    Directory of Open Access Journals (Sweden)

    Kristi A. Hohenstein Elliott

    2012-01-01

    Full Text Available Proper maintenance of stem cells is essential for successful utilization of ESCs/iPSCs as tools in developmental and drug discovery studies and in regenerative medicine. Standardization is critical for all future applications of stem cells and necessary to fully understand their potential. This study reports a novel approach for the efficient, consistent expansion of human ESCs and iPSCs using laser sectioning, instead of mechanical devices or enzymes, to divide cultures into defined size clumps for propagation. Laser-mediated propagation maintained the pluripotency, quality, and genetic stability of ESCs/iPSCs and led to enhanced differentiation potential. This approach removes the variability associated with ESC/iPSC propagation, significantly reduces the expertise, labor, and time associated with manual passaging techniques and provides the basis for scalable delivery of standardized ESC/iPSC lines. Adoption of standardized protocols would allow researchers to understand the role of genetics, environment, and/or procedural effects on stem cells and would ensure reproducible production of stem cell cultures for use in clinical/therapeutic applications.

  11. Optimal matrix rigidity for stress fiber polarization in stem cells

    Science.gov (United States)

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  12. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies.

    Science.gov (United States)

    Lord, Phillip; Spiering, Rachel; Aguillon, Juan C; Anderson, Amy E; Appel, Silke; Benitez-Ribas, Daniel; Ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K; Giannoukakis, Nick; Gregori, Silvia; van Ham, S Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A; Hutchinson, James A; Isaacs, John D; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M; Hilkens, Catharien M U

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application. PMID:27635311

  13. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    Science.gov (United States)

    Spiering, Rachel; Aguillon, Juan C.; Anderson, Amy E.; Appel, Silke; Benitez-Ribas, Daniel; ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K.; Giannoukakis, Nick; Gregori, Silvia; van Ham, S. Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A.; Hutchinson, James A.; Isaacs, John D.; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W.; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M.

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application. PMID:27635311

  14. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  15. [Polar coordinates representation based leukocyte segmentation of microscopic cell images].

    Science.gov (United States)

    Gu, Guanghua; Cui, Dong; Hao, Lianwang

    2010-12-01

    We propose an algorithm for segmentation of the overlapped leukocyte in the microscopic cell image. The histogram of the saturation channel in the cell image is smoothed to obtain the meaningful global valley point by the fingerprint smoothing method, and then the nucleus can be segmented. A circular region, containing the entire regions of the leukocyte, is marked off according to the equivalent sectional radius of the nucleus. Then, the edge of the overlapped leukocyte is represented by polar coordinates. The overlapped region by the change of the polar angle of the edge pixels is determined, and the closed edge of the leukocyte integrating the gradient information of the overlapped region is reconstructed. Finally, the leukocyte is exactly extracted. The experimental results show that our method has good performance in terms of recall ratio, precision ratio and pixel error ratio. PMID:21374971

  16. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  17. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  18. Dual polarization of microglia isolated from mixed glial cell cultures.

    Science.gov (United States)

    Ju, Lili; Zeng, Hui; Chen, Yun; Wu, Yanhong; Wang, Beibei; Xu, Qunyuan

    2015-09-01

    Microglia are versatile immune effector cells of the CNS and are sensitive to various stimuli. The different methods used to isolate microglia may affect some of their characteristics, such as their polarization state. The influence of cell sorting methods on the polarization state of microglia has never been studied. Mixed glial culture system (MGCS) and magnetic activated cell sorting (MACS) are two methods that are commonly used to purify microglia. This study compares the immunological states between microglia isolated by MGCS and microglia isolated by MACS. We show that microglia isolated by MGCS exhibit a stronger immune-activated state than microglia isolated by MACS. They present an elevated phagocytic ability and high levels of markers associated with classical activation (M1) and alternative activation (M2). In addition, high levels of M1-type and M2-type chemokine (C-C motif) ligand 2 and transforming growth factor-β1 were detected in the culture medium of mixed glial cells. Our results show that microglia isolated by MGCS are in an immune-activated state, whereas microglia isolated by MACS appear to be closer to their primary in vivo state. Therefore, the immune status of microglia, depending on the protocol used to purify them, should be carefully considered in neuropathology research.

  19. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    Science.gov (United States)

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  20. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    Science.gov (United States)

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

  1. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    Science.gov (United States)

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  2. Mechanochemical Pattern Formation in the Polarization of the One-Cell C. Elegans Embryo

    Science.gov (United States)

    Bois, Justin S.; Grill, Stephan W.

    2013-12-01

    Cellular polarity refers to the uneven distribution of certain proteins and nucleic acids on one half of a cell versus the other. Polarity establishment is often an essential process in the development, being responsible for cell differentiation upon division of the polarized cell. The one cell embryo of the nematode Caenorhabditis elegans is a classic model system for the study of polarity. Interestingly, distribution of polarity proteins is accompanied by directional movements of the cell cytoskeleton in this system. In addition to undergoing diffusion, the polarity proteins are transported by these movements. Thus, polarization is achieved by both mechanical and chemical means. We discuss our current understanding of this process in the C. elegans model system. We also discuss more general consequences of mechanochemical coupling in morphogenesis.

  3. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Science.gov (United States)

    Yonemura, Shigenobu

    2014-01-01

    Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  4. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  5. Planar cell polarity signalling couples cell division and morphogenesis during neurulation.

    Science.gov (United States)

    Ciruna, Brian; Jenny, Andreas; Lee, Diana; Mlodzik, Marek; Schier, Alexander F

    2006-01-12

    Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs.

  6. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  7. Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment

    Institute of Scientific and Technical Information of China (English)

    Danila CORADINI; Claudia CASARSA; Saro ORIANA

    2011-01-01

    Loss of cell-cell adhesion and cell polarity is commonly observed in tumors of epithelial origin and correlates with their invasion into adjacent tissues and formation of metastases. Growing evidence indicates that loss of cell polarity and cell-cell adhesion may also be important in early stage of cancer. In first part of this review, we delineate the current understanding of the mechanisms that establish and maintain the polarity of epithelial tissues and discuss the involvement of cell polarity and apical junctional complex components in tumor pathogenesis. In the second part we address the clinical significance of cell polarity and junctional complex components in can- cer diagnosis and prognosis. Finally, we explore their potential use as therapeutic targets in the treatment of cancer.

  8. Establishing and maintaining cell polarity with mRNA localization in Drosophila.

    Science.gov (United States)

    Barr, Justinn; Yakovlev, Konstantin V; Shidlovskii, Yulii; Schedl, Paul

    2016-03-01

    How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.

  9. Polarized Trafficking of the Sorting Receptor SorLA in Neurons and MDCK Cells

    DEFF Research Database (Denmark)

    Klinger, Stine C; Højland, Anne; Jain, Shweta;

    2016-01-01

    The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB and lipoprotein lipase...... (LpL). Despite this, only the trafficking in non-polarized cells has been described so far. Due to the many differences between polarized and non-polarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We...

  10. Acquisition of cell polarity during cell cycle and oral replacement in Tetrahymena.

    Science.gov (United States)

    Kaczanowska, Janina; Kaczanowski, Szymon; Kiersnowska, Mauryla; Fabczak, Hanna; Tulodziecka, Karolina; Kaczanowski, Andrzej

    2008-01-01

    The aim of this study was to search for a mechanism responsible for the acquisition of cell polarity in a ciliate Tetrahymena. Homologs of the mammalian genes coding for CDC42-GSK3beta- MARK/PAR1-MAPs proteins were found in the Tetrahymena genome (Eisen et al., 2006, and this study). These proteins belong to a pathway which controls assembly and disassembly of microtubule bundles and cell polarity in neural cells. In Tetrahymena, there are two types of morphogenesis: divisional and oral replacement (OR). In divisional morphogenesis, an elongation of longitudinal microtubule bundles (LMs) takes place during cell division. In contrast, in OR type morphogenesis, which occurs in starved non-dividing cells, a polar retraction of LMs occurs. In T. pyriformis, the frequency of developmental switch to OR morphogenesis increases in the presence of wortmannin, an inhibitor of the CDC42-GSK3beta-MARK pathway. In contrast, wortmannin when applied to dividing cells does not affect divisional morphogenesis. Using immunostaining with the antibody against mammalian mitotic phosphoproteins (MPM-2) we show that these proteins co-localize with the LMs and are distributed along the anterior-posterior gradient. In addition, we show that during OR type morphogenesis, the fate of LMs correlates with the anterior-posterior gradient of instability of the cortical structures. We used the conditional mouth-less mutant of T. thermophila (Tiedtke et al., 1988) to test if the presence of the oral apparatus is required for the maintenance of cell polarity. We discuss our results in relation to the hypothesis of GSK3-beta-MARK pathway involvement in the acquisition of cell polarity in Tetrahymena.

  11. Transient Tissue-Scale Deformation Coordinates Alignment of Planar Cell Polarity Junctions in the Mammalian Skin.

    Science.gov (United States)

    Aw, Wen Yih; Heck, Bryan W; Joyce, Bradley; Devenport, Danelle

    2016-08-22

    Planar cell polarity (PCP) refers to the collective alignment of polarity along the tissue plane. In skin, the largest mammalian organ, PCP aligns over extremely long distances, but the global cues that orient tissue polarity are unknown. Here, we show that Celsr1 asymmetry arises concomitant with a gradient of tissue deformation oriented along the medial-lateral axis. This uniaxial tissue tension, whose origin remains unknown, transiently transforms basal epithelial cells from initially isotropic and disordered states into highly elongated and aligned morphologies. Reorienting tissue deformation is sufficient to shift the global axis of polarity, suggesting that uniaxial tissue strain can act as a long-range polarizing cue. Observations both in vivo and in vitro suggest that the effect of tissue anisotropy on Celsr1 polarity is not a direct consequence of cell shape but rather reflects the restructuring of cell-cell interfaces during oriented cell divisions and cell rearrangements that serve to relax tissue strain. We demonstrate that cell intercalations remodel intercellular junctions predominantly between the mediolateral interfaces of neighboring cells. This restructuring of the cell surface polarizes Celsr1, which is slow to accumulate at nascent junctions yet stably associates with persistent junctions. We propose that tissue anisotropy globally aligns Celsr1 polarity by creating a directional bias in the formation of new cell interfaces while simultaneously aligning the persistent interfaces at which Celsr1 prefers to accumulate. PMID:27451904

  12. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    Science.gov (United States)

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  13. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  14. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

    OpenAIRE

    Sipe, Conor W.; Lu, Xiaowei

    2011-01-01

    Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the ...

  15. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  16. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    Science.gov (United States)

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration.

  17. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration.

    Science.gov (United States)

    Rodrigo Albors, Aida; Tazaki, Akira; Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-11-14

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue.

  18. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  19. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization

    Science.gov (United States)

    Lomakin, Alexis J.; Lee, Kun-Chun; Han, Sangyoon J.; Bui, D A.; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-01-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient. PMID:26414403

  20. Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation.

    Science.gov (United States)

    Mah, In Kyoung; Soloff, Rachel; Izuhara, Audrey K; Lakeland, Daniel L; Wang, Charles; Mariani, Francesca V

    2016-08-01

    Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization. PMID:27312576

  1. A polarized cell model for Chikungunya virus infection: entry and egress of virus occurs at the apical domain of polarized cells.

    Directory of Open Access Journals (Sweden)

    Pei Jin Lim

    2014-02-01

    Full Text Available Chikungunya virus (CHIKV has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals.

  2. Positioning of polarity formation by extracellular signaling during asymmetric cell division.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-07-01

    Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns. PMID:27086039

  3. EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells.

    Science.gov (United States)

    Castanieto, Angela; Johnston, Michael J; Nystul, Todd G

    2014-01-01

    Epithelial stem cells divide asymmetrically, such that one daughter replenishes the stem cell pool and the other differentiates. We found that, in the epithelial follicle stem cell (FSC) lineage of the Drosophila ovary, epidermal growth factor receptor (EGFR) signaling functions specifically in the FSCs to promote the unique partially polarized state of the FSC, establish apical-basal polarity throughout the lineage, and promote FSC maintenance in the niche. In addition, we identified a novel connection between EGFR signaling and the cell-polarity regulator liver kinase B1 (LKB1), which indicates that EGFR signals through both the Ras-Raf-MEK-Erk pathway and through the LKB1-AMPK pathway to suppress apical identity. The development of apical-basal polarity is the earliest visible difference between FSCs and their daughters, and our findings demonstrate that the EGFR-mediated regulation of apical-basal polarity is essential for the segregation of stem cell and daughter cell fates. PMID:25437306

  4. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  5. Kidney Specific Protein-Positive Cells Derived from Embryonic Stem Cells Reproduce Tubular Structures In Vitro and Differentiate into Renal Tubular Cells

    OpenAIRE

    Ryuji Morizane; Toshiaki Monkawa; Shizuka Fujii; Shintaro Yamaguchi; Koichiro Homma; Yumi Matsuzaki; Hideyuki Okano; Hiroshi Itoh

    2013-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be...

  6. The Need for Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-27

    The purpose of this presentation is to consider issues of reproducibility, specifically it determines whether bitwise reproducible computation is possible, if computational research in DOE improves its publication process, and if reproducible results can be achieved apart from the peer review process?

  7. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Ryuji Morizane

    Full Text Available Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  8. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Science.gov (United States)

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  9. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    OpenAIRE

    Anna Kirjavainen; Maarja Laos; Tommi Anttonen; Ulla Pirvola

    2015-01-01

    Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubul...

  10. Construction of rat glioma cell line C6-Luc for reproducing an animal model with stable expression of luciferase

    Directory of Open Access Journals (Sweden)

    Wei HUANG

    2011-01-01

    Full Text Available Objective To construct the rat glioma cell line C6-Luc to stably express the firefly luciferase.Methods The optimal concentration of hygromycin for screening C6 rat glioma cells was determined by concentration gradient method.The eukaryotic plasmid pGL4.50 expressing luciferase was transfected into C6 cells by using FuGENE HD transfection reagent,followed by screening the polyclonal cell lines with hygromycin,subsequently screening the monoclonal cell line by limited dilution.The positive monoclonal cell lines were identified with reporter gene assay,thereafter the expression stability of luciferase was investigated in the positive cell lines.The bioluminescence detection in vitro in the positive monoclonal cell line was performed to determine the minimum detection amount of cells,and the correlation between bioluminescence intensity and cell amount was analyzed by linear regression analysis.The positive monoclonal cells were implanted into the brain of Wistar rats,and the tumor growth in rats’ brain was detected in vivo using the bioluminescence imaging detection system.Results The optimal concentration of hygromycin used in screening C6 cells was 250 μg/ml.The eukaryotic plasmids pGL4.50 was successfully transfected into C6 cells,and 12 monoclonal cell lines were obtained by anti-hygromycin screening.A positive clone with the highest activity of luciferase,designated as C6-Luc,was successfully identified by using luciferase reporter gene assay,which showed a stable activity of expressing luciferase after 3 continuous passages of cultivation.The bioluminescence detection in vitro showed that the minimum detection amount of C6-Luc cells was 78.A good linear correlation existed between bioluminescence intensity and the amount of C6-Luc cells,with an equation of y=81.348x-2143.1 and correlation coefficient(r of 0.997.The in vivo bioluminescence imaging detection showed tumorigenesis could be detected after implantation of C6-Luc cells into

  11. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity.

    Science.gov (United States)

    Cantara, Shraddha I; Soscia, David A; Sequeira, Sharon J; Jean-Gilles, Riffard P; Castracane, James; Larsen, Melinda

    2012-11-01

    Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin, but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types.

  12. Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection

    Directory of Open Access Journals (Sweden)

    Kewes Helmut

    2008-02-01

    Full Text Available Abstract Background Human cell lines are the most innovative choice of host cell for production of biopharmaceuticals since they allow for authentic posttranslational modification of therapeutic proteins. We present a new method for generating high and stable protein expressing cell lines based on human amniocytes without the requirement of antibiotic selection. Results Primary amniocytes from routine amniocentesis samples can be efficiently transformed with adenoviral functions resulting in stable human cell lines. Cotransfection of the primary human amniocytes with a plasmid expressing adenoviral E1 functions plus a second plasmid containing a gene of interest resulted in permanent cell lines expressing up to 30 pg/cell/day of a fully glycosylated and sialylated protein. Expression of the gene of interest is very stable for more than 90 passages and, importantly, was achieved in the absence of any antibiotic selection. Conclusion We describe an improved method for developing high protein expressing stable human cell lines. These cell lines are of non-tumor origin, they are immortalized by a function not oncogenic in human and they are from an ethically accepted and easily accessible cell source. Since the cell can be easily adapted to growth in serum-free and chemically defined medium they fulfill the requirements of biopharmaceutical production processes.

  13. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    Science.gov (United States)

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  14. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells.

    Science.gov (United States)

    Chan, Eddie; Saito, Akira; Honda, Tadashi; Di Guglielmo, Gianni M

    2016-04-01

    Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells.

  15. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-04-01

    Full Text Available Polarization, a primary step in the response of an individual eukaryotic cell to a spatial stimulus, has attracted numerous theoretical treatments complementing experimental studies in a variety of cell types. While the phenomenon itself is universal, details differ across cell types, and across classes of models that have been proposed. Most models address how symmetry breaking leads to polarization, some in abstract settings, others based on specific biochemistry. Here, we compare polarization in response to a stimulus (e.g., a chemoattractant in cells typically used in experiments (yeast, amoebae, leukocytes, keratocytes, fibroblasts, and neurons, and, in parallel, responses of several prototypical models to typical stimulation protocols. We find that the diversity of cell behaviors is reflected by a diversity of models, and that some, but not all models, can account for amplification of stimulus, maintenance of polarity, adaptation, sensitivity to new signals, and robustness.

  16. AmotL2 disrupts apical-basal cell polarity and promotes tumour invasion.

    Science.gov (United States)

    Mojallal, Mahdi; Zheng, Yujuan; Hultin, Sara; Audebert, Stéphane; van Harn, Tanja; Johnsson, Per; Lenander, Claes; Fritz, Nicolas; Mieth, Christin; Corcoran, Martin; Lembo, Frédérique; Hallström, Marja; Hartman, Johan; Mazure, Nathalie M; Weide, Thomas; Grandér, Dan; Borg, Jean-Paul; Uhlén, Per; Holmgren, Lars

    2014-01-01

    The establishment and maintenance of apical-basal cell polarity is essential for the functionality of glandular epithelia. Cell polarity is often lost in advanced tumours correlating with acquisition of invasive and malignant properties. Despite extensive knowledge regarding the formation and maintenance of polarity, the mechanisms that deregulate polarity in metastasizing cells remain to be fully characterized. Here we show that AmotL2 expression correlates with loss of tissue architecture in tumours from human breast and colon cancer patients. We further show that hypoxic stress results in activation of c-Fos-dependent expression of AmotL2 leading to loss of polarity. c-Fos/hypoxia-induced p60 AmotL2 interacts with the Crb3 and Par3 polarity complexes retaining them in large vesicles and preventing them from reaching the apical membrane. The resulting loss of polarity potentiates the response to invasive cues in vitro and in vivo in mice. These data provide a molecular mechanism how hypoxic stress deregulates cell polarity during tumour progression. PMID:25080976

  17. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  18. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Science.gov (United States)

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-05-01

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  19. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, A [Institute of Dental Sciences, Faculty of Dental Medicine, and the Fritz Haber Center for Molecular Dynamics, Hebrew University-Hadassah Medical Center, Jerusalem, 91120 (Israel); Rehfeldt, F [III. Physikalisches Institut, Georg-August-Universitaet, 37077 Goettingen (Germany); Brown, A E X [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Discher, D E [Graduate Group of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  20. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  1. Induced differentiation of cancer cells: second generation potent hybrid polar compounds target cell cycle regulators

    International Nuclear Information System (INIS)

    Hybrid polar compounds are potent inducers of differentiation of a wide variety of cancer transformed cells. Hexamethylene bisacetamide (HMBA) has been used as a prototype of these compounds to investigate their mechanism of action. Employing murine erythroleukemia (MEL) cells as a model, three characteristics of inducer-mediated commitment to terminal differentiation were demonstrated: (I) induced commitment was stochastic, requiring up to 5 cell cycles to recruit essentially all cells to commit to growth arrest in G1; (II) inducers caused a prolongation of the initial G1; and (III) the hybrid polar compounds induced a wide variety of transformed cells to terminal differentiation. These findings suggested that the rate limiting factor or factors for induction by these agents may be at the level of protein(s) regulating G1-to-S progression, which are common to most eukaryotic cells. It was found that HMBA induced a profound suppression of cyclin dependent kinase, cdk4, which reflected a marked decrease in stability of the protein, and is a critical change in the pathway of induced differentiation. HMBA also induced an increase in pRB and in the active, underphosphorylated form of this protein, an increase in the pRB related protein, p107, and an increase in the cyclin dependent kinase inhibitor, p21. Further, the free form of the transcription factor, E2F, was markedly decreased within hours of exposure of transformed cells to HMBA and found to complex with p107 and cdk 2. A phase II clinical trial was conducted using HMBA to treat patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. Of 28 patients, 9 patients achieved a complete or partial remission lasting from 1 to 16 months. These clinical studies also provided direct evidence that HMBA induces differentiation of transformed cells in patients. In four separate courses of treatment with HMBA, a patient with MDS and the monosomy 7 karyotype marking the malignant clone of bone marrow blast

  2. The young and happy marriage of membrane traffic and cell polarity

    OpenAIRE

    Thompson, Barry J; Perez, Franck; Vaccari, Thomas

    2012-01-01

    The ESF–EMBO Meeting on ‘Cell polarity and Membrane Traffic' took place in April 2012. It brought together scientists from two once very separate fields and highlighted the emerging interdependence between them.

  3. Active self-polarization of contractile cells in asymmetrically shaped domains

    Science.gov (United States)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  4. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  5. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  6. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; de Beer, R; Godeke, G J; Raamsman, M J; Horzinek, M C; Vennema, H; Rottier, P J

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to th

  7. Polarization of cells and soft objects driven by mechanical interactions: Consequences for migration and chemotaxis

    Science.gov (United States)

    Leoni, M.; Sens, P.

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  8. Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating.

    Science.gov (United States)

    Merlini, Laura; Khalili, Bita; Bendezú, Felipe O; Hurwitz, Daniel; Vincenzetti, Vincent; Vavylonis, Dimitrios; Martin, Sophie G

    2016-04-25

    Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation. PMID:27020743

  9. Within-person reproducibility of red blood cell mercury over a 10- to 15-year period among women in the Nurses' Health Study II.

    Science.gov (United States)

    Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L; Nielsen, Flemming; Tworoger, Shelley S; Grandjean, Philippe; Weisskopf, Marc G

    2016-01-01

    Most epidemiologic studies of methylmercury (MeHg) health effects rely on a single measurement of a MeHg biomarker to assess long-term exposures. Long-term reproducibility data are, therefore, needed to assess the reliability of a single measure to reflect long-term exposures. In this study, we assessed within-person reproducibility of red blood cell (RBC) mercury (Hg), a marker of methyl-mercury, over 10-15 years in a sample of 57 women. Fifty-seven women from the Nurses' Health Study II provided two blood samples 10-15-years apart (median: 12 years), which were analyzed for mercury levels in the red blood cells (B-Hg*). To characterize within-person reproducibility, we estimated correlation and intraclass correlation coefficients (r and ICC) across the two samples. Further, we compared different prediction models, including variables on fish and seafood consumption, for B-Hg* at the first sample, using leave-one-out cross-validation to assess predictive ability. Overall, we observed strong correlations over 10-15 years (r=0.69), as well as a high ICC (0.67; 95% CI: 0.49, 0.79). Fish and seafood consumption reported concurrently with the first B-Hg* sample accounted for 26.8% of the variability in that B-Hg*, giving a correlation of r=0.52. Despite decreasing B-Hg* levels over time, we observed strong correlations and high ICC estimates across B-Hg* measured 10-15 years apart, suggesting good relative within-person stability over time. Our results indicate that a single measurement of B-Hg* likely is adequate to represent long-term exposures. PMID:25492240

  10. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells.

    Science.gov (United States)

    Lucas, Eliana P; Khanal, Ichha; Gaspar, Pedro; Fletcher, Georgina C; Polesello, Cedric; Tapon, Nicolas; Thompson, Barry J

    2013-06-10

    Collective migration of Drosophila border cells depends on a dynamic actin cytoskeleton that is highly polarized such that it concentrates around the outer rim of the migrating cluster of cells. How the actin cytoskeleton becomes polarized in these cells to enable collective movement remains unknown. Here we show that the Hippo signaling pathway links determinants of cell polarity to polarization of the actin cytoskeleton in border cells. Upstream Hippo pathway components localize to contacts between border cells inside the cluster and signal through the Hippo and Warts kinases to polarize actin and promote border cell migration. Phosphorylation of the transcriptional coactivator Yorkie (Yki)/YAP by Warts does not mediate the function of this pathway in promoting border cell migration, but rather provides negative feedback to limit the speed of migration. Instead, Warts phosphorylates and inhibits the actin regulator Ena to activate F-actin Capping protein activity on inner membranes and thereby restricts F-actin polymerization mainly to the outer rim of the migrating cluster.

  11. Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein.

    Science.gov (United States)

    Payankaulam, Sandhya; Yeung, Kelvin; McNeill, Helen; Henry, R William; Arnosti, David N

    2016-01-01

    In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical-basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang, pk, and fmi are upregulated, and an aPKC mutation suppresses the Rbf1-induced phenotypes. RB control of cell polarity may be an evolutionarily conserved function, with important implications in cancer metastasis. PMID:26971715

  12. Within-person reproducibility of red blood cell mercury over a 10- to 15-year period among women in the Nurses' Health Study II

    DEFF Research Database (Denmark)

    Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L; Nielsen, Flemming;

    2016-01-01

    in the red blood cells (B-Hg*). To characterize within-person reproducibility, we estimated correlation and intraclass correlation coefficients (r and ICC) across the two samples. Further, we compared different prediction models, including variables on fish and seafood consumption, for B-Hg* at the first...... assessed within-person reproducibility of red blood cell (RBC) mercury (Hg), a marker of methyl-mercury, over 10-15 years in a sample of 57 women. Fifty-seven women from the Nurses' Health Study II provided two blood samples 10-15-years apart (median: 12 years), which were analyzed for mercury levels.......8% of the variability in that B-Hg*, giving a correlation of r=0.52. Despite decreasing B-Hg* levels over time, we observed strong correlations and high ICC estimates across B-Hg* measured 10-15 years apart, suggesting good relative within-person stability over time. Our results indicate that a single measurement of B...

  13. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  14. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.

    Science.gov (United States)

    Juanes, Maria Angeles; Piatti, Simonetta

    2016-08-01

    Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division. PMID:27085703

  15. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  16. A modeling approach to study the effect of cell polarization on keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Matthias Jörg Fuhr

    Full Text Available The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2--an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents.

  17. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  18. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.

    Science.gov (United States)

    Amanullah, Ashraf; Otero, Jose Manuel; Mikola, Mark; Hsu, Amy; Zhang, Jinyou; Aunins, John; Schreyer, H Brett; Hope, James A; Russo, A Peter

    2010-05-01

    With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench-top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high-throughput (HT) technology for process development. One such high-throughput system is the SimCell platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell micro-bioreactor technology for fed-batch cultivation of a GS-CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas-permeable chambers based on a micro-fluidic design, with six micro-bioreactors (MBs) per micro-bioreactor array (MBA). Online, non-invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3- and 100-L bioreactor scales. The results of the study demonstrate that the SimCell platform operated under fed-batch conditions could support viable cell concentrations up to least 12 x 10(6) cells/mL. In addition, both intra-MB (MB to MB) as well as intra-MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra-MB and -MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) x 100. The % CV values for most intra-MB and intra-MBA measurements were generally under 10% and the intra-MBA values were slightly lower than those for intra-MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench-top, and pilot scale bioreactor cultivations and found to be within +/-20% of the historical averages.

  19. Human eccrine sweat gland cells reconstitute polarized spheroids when subcutaneously implanted with Matrigel in nude mice.

    Science.gov (United States)

    Li, Haihong; Zhang, Mingjun; Chen, Liyun; Li, Xuexue; Zhang, Bingna

    2016-10-01

    Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral β-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, β-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, β-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional. PMID:27492422

  20. Intra- and inter-laboratory reproducibility and accuracy of the LuSens assay: A reporter gene-cell line to detect keratinocyte activation by skin sensitizers.

    Science.gov (United States)

    Ramirez, Tzutzuy; Stein, Nadine; Aumann, Alexandra; Remus, Tina; Edwards, Amber; Norman, Kimberly G; Ryan, Cindy; Bader, Jackie E; Fehr, Markus; Burleson, Florence; Foertsch, Leslie; Wang, Xiaohong; Gerberick, Frank; Beilstein, Paul; Hoffmann, Sebastian; Mehling, Annette; van Ravenzwaay, Bennard; Landsiedel, Robert

    2016-04-01

    Several non-animal methods are now available to address the key events leading to skin sensitization as defined by the adverse outcome pathway. The KeratinoSens assay addresses the cellular event of keratinocyte activation and is a method accepted under OECD TG 442D. In this study, the results of an inter-laboratory evaluation of the "me-too" LuSens assay, a bioassay that uses a human keratinocyte cell line harboring a reporter gene construct composed of the rat antioxidant response element (ARE) of the NADPH:quinone oxidoreductase 1 gene and the luciferase gene, are described. Earlier in-house validation with 74 substances showed an accuracy of 82% in comparison to human data. When used in a battery of non-animal methods, even higher predictivity is achieved. To meet European validation criteria, a multicenter study was conducted in 5 laboratories. The study was divided into two phases, to assess 1) transferability of the method, and 2) reproducibility and accuracy. Phase I was performed by testing 8 non-coded test substances; the results showed a good transferability to naïve laboratories even without on-site training. Phase II was performed with 20 coded test substances (performance standards recommended by OECD, 2015). In this phase, the intra- and inter-laboratory reproducibility as well as accuracy of the method was evaluated. The data demonstrate a remarkable reproducibility of 100% and an accuracy of over 80% in identifying skin sensitizers, indicating a good concordance with in vivo data. These results demonstrate good transferability, reliability and accuracy of the method thereby achieving the standards necessary for use in a regulatory setting to detect skin sensitizers. PMID:26796489

  1. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration

    Directory of Open Access Journals (Sweden)

    Marina Venero Galanternik

    2015-01-01

    Full Text Available Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2 revealed that loss of heparan sulfate (HS chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.

  2. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization

    OpenAIRE

    Moeller, Marcus J.; Soofi, Abdulsalam; Braun, Gerald S; Li, Xiaodong; Watzl, Carsten; Kriz, Wilhelm; Holzman, Lawrence B.

    2004-01-01

    Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leadi...

  3. Reproducibility in Seismic Imaging

    Directory of Open Access Journals (Sweden)

    González-Verdejo O.

    2012-04-01

    Full Text Available Within the field of exploration seismology, there is interest at national level of integrating reproducibility in applied, educational and research activities related to seismic processing and imaging. This reproducibility implies the description and organization of the elements involved in numerical experiments. Thus, a researcher, teacher or student can study, verify, repeat, and modify them independently. In this work, we document and adapt reproducibility in seismic processing and imaging to spread this concept and its benefits, and to encourage the use of open source software in this area within our academic and professional environment. We present an enhanced seismic imaging example, of interest in both academic and professional environments, using Mexican seismic data. As a result of this research, we prove that it is possible to assimilate, adapt and transfer technology at low cost, using open source software and following a reproducible research scheme.

  4. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    Science.gov (United States)

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. PMID:24996848

  5. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis

    OpenAIRE

    Bellis, Julien; Duluc, Isabelle; Romagnolo, Béatrice; Perret, Christine; Faux, Maree C.; Dujardin, Denis; Formstone, Caroline; Lightowler, Sally; Ramsay, Robert G.; Freund, Jean-Noël; De Mey, Jan R.

    2012-01-01

    The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit t...

  6. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    Science.gov (United States)

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  7. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates.

    Science.gov (United States)

    Ross, Alison J; May-Simera, Helen; Eichers, Erica R; Kai, Masatake; Hill, Josephine; Jagger, Daniel J; Leitch, Carmen C; Chapple, J Paul; Munro, Peter M; Fisher, Shannon; Tan, Perciliz L; Phillips, Helen M; Leroux, Michel R; Henderson, Deborah J; Murdoch, Jennifer N; Copp, Andrew J; Eliot, Marie-Madeleine; Lupski, James R; Kemp, David T; Dollfus, Hélène; Tada, Masazumi; Katsanis, Nicholas; Forge, Andrew; Beales, Philip L

    2005-10-01

    The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.

  8. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria;

    2015-01-01

    were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs....... In conclusion, we determined that AEC conditioning favoring cellular integrity leads to a tolerogenic MDDC phenotype, which is likely to be important in regulating immune responses against commonly inhaled allergens....

  9. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Daniel C Stein

    Full Text Available Neisseria gonorrhoeae (GC establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa, this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

  10. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  11. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Nazanin Navabi

    Full Text Available Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12 and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6 origins using Ussing chamber methodology and (immunohistology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces

  12. Kruppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  13. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes

    Science.gov (United States)

    Huang, Hai; Kornberg, Thomas B

    2016-01-01

    Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM. DOI: http://dx.doi.org/10.7554/eLife.18979.001 PMID:27591355

  14. Itinerant exosomes: emerging roles in cell and tissue polarity

    OpenAIRE

    Lakkaraju, Aparna; Rodriguez-Boulan, Enrique

    2008-01-01

    Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30–100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen p...

  15. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard;

    2003-01-01

    , and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell...... localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells......, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics....

  16. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization

    OpenAIRE

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W.; Qi, Y-F; Han, J-H; Lin, X.; J. Du

    2014-01-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adapto...

  17. A Catalytic Role for Mod5 in the Formation of the Tea1 Cell Polarity Landmark

    OpenAIRE

    Bicho, Claudia C.; Kelly, David A.; Snaith, Hilary A.; Goryachev, Andrew B.; Sawin, Kenneth E.

    2010-01-01

    Summary Many systems regulating cell polarity involve stable landmarks defined by internal cues [1–5]. In the rod-shaped fission yeast Schizosaccharomyces pombe, microtubules regulate polarized vegetative growth via a landmark involving the protein Tea1 [6–9]. Tea1 is delivered to cell tips as packets of molecules associated with growing microtubule ends [10] and anchored at the plasma membrane via a mechanism involving interaction with the membrane protein Mod5 [11, 12]. Tea1 and Mod5 are hi...

  18. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  19. Pressure Dependent Wall Relaxation in Polarized $^3$He Gaseous Cells

    CERN Document Server

    Peng, C; Chu, P -H; Gao, H; Zhang, Y

    2013-01-01

    Pressure dependence of longitudinal relaxation time (T$_1$) due to the cell wall was observed previously at both room temperature and low temperature in valved Rb-coated refillable $^3$He gaseous cells in \\cite{Zheng2}. The diffusion of $^3$He from measurement cell through a capillary tube to the valve and the subsequent depolarization on the surface of the valve was proposed to possibly explain such a pressure dependence at room temperature \\cite{Saam}. In this paper, we investigate this diffusion effect through measurements of T$_1$ with newly designed Rb-coated Pyrex glass cells at 295 K as well as finite element analysis (FEA) studies. Both the experimental results and FEA studies show that the diffusion effect is insufficient to explain the observed linear pressure-dependent behavior of T$_1$.

  20. Bazooka/PAR3 is dispensable for polarity in Drosophila follicular epithelial cells

    Directory of Open Access Journals (Sweden)

    Jaffer Shahab

    2015-03-01

    Full Text Available Apico-basal polarity is the defining characteristic of epithelial cells. In Drosophila, apical membrane identity is established and regulated through interactions between the highly conserved Par complex (Bazooka/Par3, atypical protein kinase C and Par6, and the Crumbs complex (Crumbs, Stardust and PATJ. It has been proposed that Bazooka operates at the top of a genetic hierarchy in the establishment and maintenance of apico-basal polarity. However, there is still ambiguity over the correct sequence of events and cross-talk with other pathways during this process. In this study, we reassess this issue by comparing the phenotypes of the commonly used baz4 and baz815-8 alleles with those of the so far uncharacterized bazXR11 and bazEH747 null alleles in different Drosophila epithelia. While all these baz alleles display identical phenotypes during embryonic epithelial development, we observe strong discrepancies in the severity and penetrance of polarity defects in the follicular epithelium: polarity is mostly normal in bazEH747 and bazXR11 while baz4 and baz815-8 show loss of polarity, severe multilayering and loss of epithelial integrity throughout the clones. Further analysis reveals that the chromosomes carrying the baz4 and baz815-8 alleles may contain additional mutations that enhance the true baz loss-of-function phenotype in the follicular epithelium. This study clearly shows that Baz is dispensable for the regulation of polarity in the follicular epithelium, and that the requirement for key regulators of cell polarity is highly dependent on developmental context and cell type.

  1. Analyzing the role of AP-1B in polarized sorting from recycling endosomes in epithelial cells.

    Science.gov (United States)

    Fölsch, Heike

    2015-01-01

    Epithelial cells polarize their plasma membrane into apical and basolateral domains where the apical membrane faces the luminal side of an organ and the basolateral membrane is in contact with neighboring cells and the basement membrane. To maintain this polarity, newly synthesized and internalized cargos must be sorted to their correct target domain. Over the last ten years, recycling endosomes have emerged as an important sorting station at which proteins destined for the apical membrane are segregated from those destined for the basolateral membrane. Essential for basolateral sorting from recycling endosomes is the tissue-specific adaptor complex AP-1B. This chapter describes experimental protocols to analyze the AP-1B function in epithelial cells including the analysis of protein sorting in LLC-PK1 cells lines, immunoprecipitation of cargo proteins after chemical crosslinking to AP-1B, and radioactive pulse-chase experiments in MDCK cells depleted of the AP-1B subunit μ1B.

  2. Polarity and cell division orientation in the cleavage embryo: from worm to human

    Science.gov (United States)

    Ajduk, Anna; Zernicka-Goetz, Magdalena

    2016-01-01

    Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos. PMID:26660321

  3. Multisite phosphorylation of the guanine nucleotide exchange factor Cdc24 during yeast cell polarization.

    Directory of Open Access Journals (Sweden)

    Stephanie C Wai

    Full Text Available BACKGROUND: Cell polarization is essential for processes such as cell migration and asymmetric cell division. A common regulator of cell polarization in most eukaryotic cells is the conserved Rho GTPase, Cdc42. In budding yeast, Cdc42 is activated by a single guanine nucleotide exchange factor, Cdc24. The mechanistic details of Cdc24 activation at the onset of yeast cell polarization are unclear. Previous studies have suggested an important role for phosphorylation of Cdc24, which may regulate activity or function of the protein, representing a key step in the symmetry breaking process. METHODOLOGY/PRINCIPAL FINDINGS: Here, we directly ask whether multisite phosphorylation of Cdc24 plays a role in its regulation. We identify through mass spectrometry analysis over thirty putative in vivo phosphorylation sites. We first focus on sites matching consensus sequences for cyclin-dependent and p21-activated kinases, two kinase families that have been previously shown to phosphorylate Cdc24. Through site-directed mutagenesis, yeast genetics, and light and fluorescence microscopy, we show that nonphosphorylatable mutations of these consensus sites do not lead to any detectable consequences on growth rate, morphology, kinetics of polarization, or localization of the mutant protein. We do, however, observe a change in the mobility shift of mutant Cdc24 proteins on SDS-PAGE, suggesting that we have indeed perturbed its phosphorylation. Finally, we show that mutation of all identified phosphorylation sites does not cause observable defects in growth rate or morphology. CONCLUSIONS/SIGNIFICANCE: We conclude that lack of phosphorylation on Cdc24 has no overt functional consequences in budding yeast. Yeast cell polarization may be more tightly regulated by inactivation of Cdc42 by GTPase activating proteins or by alternative methods of Cdc24 regulation, such as conformational changes or oligomerization.

  4. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  5. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs.

  6. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  7. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  8. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    Science.gov (United States)

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  9. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  10. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.

    Science.gov (United States)

    Armenti, Stephen T; Chan, Emily; Nance, Jeremy

    2014-10-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the Caenorhabditis elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens. PMID:25102190

  11. The young and happy marriage of membrane traffic and cell polarity.

    Science.gov (United States)

    Thompson, Barry J; Perez, Franck; Vaccari, Thomas

    2012-08-01

    The ESF-EMBO meeting on 'Cell Polarity and Membrane Traffic' took place in Poland in April 2012. It brought together scientists from two once separate fields and highlighted their emerging interdependence. The wealth of scientific insights and discoveries presented laid a path for future research.

  12. On temperature variations during 3He Polarization experiments in Pomeranchuk cells

    DEFF Research Database (Denmark)

    Geng, Q.; Rasmussen, Finn Berg

    1984-01-01

    Simple model calculations have been performed in relation to temperature changes in decompression experiments with Pomeranchuk cells, aiming at the production of spin polarized liquid **3He. Comparison with reported experiments indicates that thermal contact with the surroundings is too strong...

  13. Kv7.1 surface expression is regulated by epithelial cell polarization

    DEFF Research Database (Denmark)

    Andersen, Martin N; Olesen, Søren-Peter; Rasmussen, Hanne Borger

    2011-01-01

    and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate K(V)7.1 surface expression, we have investigated the trafficking of K(V)7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using...

  14. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro

    Science.gov (United States)

    Baillie-Johnson, Peter; van den Brink, Susanne Carina; Balayo, Tina; Turner, David Andrew; Martinez Arias, Alfonso

    2015-01-01

    We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones. PMID:26650833

  15. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  16. Hybrid T-helper cells: stabilizing the moderate center in a polarized system.

    Directory of Open Access Journals (Sweden)

    Sui Huang

    Full Text Available Polarization of cell phenotypes, a common strategy to achieve cell type diversity in metazoa, results from binary cell-fate decisions in the branching pedigree of development. Such "either-or" fate decisions are controlled by two opposing cell fate-determining transcription factors. Each of the two distinct "master regulators" promotes differentiation of its respective sister lineage. But they also suppress one other, leading to their mutually exclusive expression in the two ensuing lineages. Thus, promiscuous coexistence of the antagonist regulators in the same cell, the hallmark of the common "undecided" progenitor of two sister lineages, is considered unstable. This antagonism ensures robust polarization into two discretely distinct cell types. But now the immune system's T-helper (Th cells and their two canonical subtypes, Th1 and Th2 cells, tell a different story, as revealed in three papers recently published in PLOS Biology. The intermediate state that co-expresses the two opposing master regulators of the Th1 and Th2 subtypes, T-bet and Gata3, is highly stable and is not necessarily an undecided precursor. Instead, the Th1/Th2 hybrid cell is a robust new type with properties of both Th1 and Th2 cells. These hybrid cells are functionally active and possess the benefit of moderation: self-limitation of effector T cell function to prevent excessive inflammation, a permanent risk in host defense that can cause tissue damage or autoimmunity. Gene regulatory network analysis suggests that stabilization of the intermediate center in a polarizing system can be achieved by minor tweaking of the architecture of the mutual suppression gene circuit, and thus is a design option readily available to evolution.

  17. Hybrid T-helper cells: stabilizing the moderate center in a polarized system.

    Science.gov (United States)

    Huang, Sui

    2013-01-01

    Polarization of cell phenotypes, a common strategy to achieve cell type diversity in metazoa, results from binary cell-fate decisions in the branching pedigree of development. Such "either-or" fate decisions are controlled by two opposing cell fate-determining transcription factors. Each of the two distinct "master regulators" promotes differentiation of its respective sister lineage. But they also suppress one other, leading to their mutually exclusive expression in the two ensuing lineages. Thus, promiscuous coexistence of the antagonist regulators in the same cell, the hallmark of the common "undecided" progenitor of two sister lineages, is considered unstable. This antagonism ensures robust polarization into two discretely distinct cell types. But now the immune system's T-helper (Th) cells and their two canonical subtypes, Th1 and Th2 cells, tell a different story, as revealed in three papers recently published in PLOS Biology. The intermediate state that co-expresses the two opposing master regulators of the Th1 and Th2 subtypes, T-bet and Gata3, is highly stable and is not necessarily an undecided precursor. Instead, the Th1/Th2 hybrid cell is a robust new type with properties of both Th1 and Th2 cells. These hybrid cells are functionally active and possess the benefit of moderation: self-limitation of effector T cell function to prevent excessive inflammation, a permanent risk in host defense that can cause tissue damage or autoimmunity. Gene regulatory network analysis suggests that stabilization of the intermediate center in a polarizing system can be achieved by minor tweaking of the architecture of the mutual suppression gene circuit, and thus is a design option readily available to evolution. PMID:23976879

  18. Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b

    NARCIS (Netherlands)

    Wansleeben, C.; Feitsma, H.; Montcouquiol, M.; Kroon, C.; Cuppen, E.; Meijlink, F.

    2010-01-01

    Among the cellular properties that are essential for the organization of tissues during animal development, the importance of cell polarity in the plane of epithelial sheets has become increasingly clear in the past decades. Planar cell polarity (PCP) signaling in vertebrates has indispensable roles

  19. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  20. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    OpenAIRE

    Sherkar, Tejas; Koster, L Jan Anton

    2016-01-01

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower charge recombination in the device. Here, we investigate and quantify the influence of mesoscale ferroelectric polarization on the device performance of perovskite solar cells. We implement a 3D dri...

  1. Dchs1–Fat4 regulation of polarized cell behaviours during skeletal morphogenesis

    OpenAIRE

    Mao, Yaopan; Kuta, Anna; Crespo-Enriquez, Ivan; Whiting, Danielle; Martin, Tina; Mulvaney, Joanna; Irvine, Kenneth D.; Francis-West, Philippa

    2016-01-01

    Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1-Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes...

  2. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    Science.gov (United States)

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  3. Concentration of bone marrow mononuclear cells for in vitro treatment and AB0-incompatible transplantation: a rapid and reproducible procedure using the haemonetics V50 cell separator.

    Science.gov (United States)

    Wiesneth, M; Hertenstein, B; Koerner, K; Heimpel, H; Heit, W

    1988-01-01

    Forty-nine allogeneic and 14 autologous bone marrow grafts were processed with the Haemonetics V50 cell separator (Haemonetics Corp., Braintree, USA) for in vitro treatment with antibodies and cryopreservation respectively. The concentration of hemopoietic progenitor cells was performed without any sedimentation or density gradient agents. The recovery is given in percent (mean +/- sd) of the original marrow values: mononuclear cells (MNC) 74 +/- 10%, polymorphonuclear cells (PMC) 48 +/- 17%, red blood cells (RBC) 12 +/- 5%, granulocyte/monocyte progenitors (CFU-GM) 83 +/- 36%, and erythroid progenitors (BFU-E) 78 +/- 38%. The recovery of nucleated cells (NC) was 90 +/- 13% and the viability 82 +/- 11% after cryopreservation. The technique described provides a simple, rapid and efficient preparation of large bone marrow volumes for in vitro treatment and AB0-incompatible transplantation.

  4. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  5. Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells.

    Science.gov (United States)

    Klinger, Stine C; Højland, Anne; Jain, Shweta; Kjolby, Mads; Madsen, Peder; Svendsen, Anna Dorst; Olivecrona, Gunilla; Bonifacino, Juan S; Nielsen, Morten S

    2016-07-01

    The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB, and Lipoprotein Lipase (LpL). Despite this, only the trafficking in nonpolarized cells has been described so far. Due to the many differences between polarized and nonpolarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We show that SorLA is mainly found in sorting endosomes and on the basolateral surface of MDCK cells and in the somatodendritic domain of neurons. This polarized distribution of SorLA respectively depends on an acidic cluster and an extended version of this cluster and involves the cellular adaptor complex AP-1. Furthermore, we show that SorLA can mediate transcytosis across a tight cell layer. PMID:27192064

  6. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  7. Dual roles of Notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells.

    Science.gov (United States)

    Ohata, Shinya; Aoki, Ryo; Kinoshita, Shigeharu; Yamaguchi, Masahiro; Tsuruoka-Kinoshita, Sachiko; Tanaka, Hideomi; Wada, Hironori; Watabe, Shugo; Tsuboi, Takashi; Masai, Ichiro; Okamoto, Hitoshi

    2011-01-27

    How the mitosis of neuroepithelial stem cells is restricted to the apical ventricular area remains unclear. In zebrafish, the mosaic eyes(rw306) (moe/epb41l5(rw306)) mutation disrupts the interaction between the putative adaptor protein Moe and the apicobasal polarity regulator Crumbs (Crb), and impairs the maintenance of neuroepithelial apicobasal polarity. While Crb interacts directly with Notch and inhibits its activity, Moe reverses this inhibition. In the moe(rw306) hindbrain, Notch activity is significantly reduced, and the number of cells that proliferate basally away from the apical area is increased. Surprisingly, activation of Notch in the moe(rw306) mutant rescues not only the basally localized proliferation but also the aberrant neuroepithelial apicobasal polarity. We present evidence that the Crb⋅Moe complex and Notch play key roles in a positive feedback loop to maintain the apicobasal polarity and the apical-high basal-low gradient of Notch activity in neuroepithelial cells, both of which are essential for their apically restricted mitosis. PMID:21262462

  8. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  9. Reproducible research in palaeomagnetism

    Science.gov (United States)

    Lurcock, Pontus; Florindo, Fabio

    2015-04-01

    The reproducibility of research findings is attracting increasing attention across all scientific disciplines. In palaeomagnetism as elsewhere, computer-based analysis techniques are becoming more commonplace, complex, and diverse. Analyses can often be difficult to reproduce from scratch, both for the original researchers and for others seeking to build on the work. We present a palaeomagnetic plotting and analysis program designed to make reproducibility easier. Part of the problem is the divide between interactive and scripted (batch) analysis programs. An interactive desktop program with a graphical interface is a powerful tool for exploring data and iteratively refining analyses, but usually cannot operate without human interaction. This makes it impossible to re-run an analysis automatically, or to integrate it into a larger automated scientific workflow - for example, a script to generate figures and tables for a paper. In some cases the parameters of the analysis process itself are not saved explicitly, making it hard to repeat or improve the analysis even with human interaction. Conversely, non-interactive batch tools can be controlled by pre-written scripts and configuration files, allowing an analysis to be 'replayed' automatically from the raw data. However, this advantage comes at the expense of exploratory capability: iteratively improving an analysis entails a time-consuming cycle of editing scripts, running them, and viewing the output. Batch tools also tend to require more computer expertise from their users. PuffinPlot is a palaeomagnetic plotting and analysis program which aims to bridge this gap. First released in 2012, it offers both an interactive, user-friendly desktop interface and a batch scripting interface, both making use of the same core library of palaeomagnetic functions. We present new improvements to the program that help to integrate the interactive and batch approaches, allowing an analysis to be interactively explored and refined

  10. Magnetogastrography (MGG) Reproducibility Assessments

    Science.gov (United States)

    de la Roca-Chiapas, J. M.; Córdova, T.; Hernández, E.; Solorio, S.; Solís Ortiz, S.; Sosa, M.

    2006-09-01

    Seven healthy subjects underwent a magnetic pulse of 32 mT for 17 ms, seven times in 90 minutes. The procedure was repeated one and two weeks later. Assessments of the gastric emptying were carried out for each one of the measurements and a statistical analysis of ANOVA was performed for every group of data. The gastric emptying time was 19.22 ± 5 min. Reproducibility estimation was above 85%. Therefore, magnetogastrography seems to be an excellent technique to be implemented in routine clinical trials.

  11. Relaxation of atomic polarization in paraffin-coated cesium vapor cells

    CERN Document Server

    Graf, M T; Rochester, S M; Kerner, K; Wong, C; Budker, D; Alexandrov, E B; Balabas, M V

    2005-01-01

    The relaxation of atomic polarization in buffer-gas-free, paraffin-coated cesium vapor cells is studied using a variation on Franzen's technique of ``relaxation in the dark'' [Franzen, Phys. Rev. {\\bf 115}, 850 (1959)]. In the present experiment, narrow-band, circularly polarized pump light, resonant with the Cs D2 transition, orients atoms along a longitudinal magnetic field, and time-dependent optical rotation of linearly polarized probe light is measured to determine the relaxation rates of the atomic orientation of a particular hyperfine level. The change in relaxation rates during light-induced atomic desorption (LIAD) is studied. No significant change in the spin relaxation rate during LIAD is found beyond that expected from the faster rate of spin-exchange collisions due to the increase in Cs density.

  12. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  13. Recording of polarization holograms in a liquid crystal cell with a photosensitive chalcogenide orientation layer [Invited].

    Science.gov (United States)

    Sheremet, Nina; Kurioz, Yuriy; Slyusarenko, Kostyantyn; Trunov, Michael; Reznikov, Yuriy

    2013-08-01

    Polarization gratings have been recorded in a combined liquid crystal (LC) cell made of a substrate covered with a photosensitive chalcogenide orientation layer and a reference substrate covered with a rubbed polyimide film. The gratings are formed due to the spatially modulated light-induced easy orientation axis on the chalcogenide surface recorded by two beams with opposite circular polarizations. The gratings are permanent, but they can be erased by one of the recording beams and re-recorded. The diffraction intensity of the circularly polarized light is achromatic and does not depend on the birefringence of the LC. The diffraction efficiency of the grating is of the order of a few percents. Application of an ac field causes a strong increase of the diffraction efficiency up to 45%. PMID:23913086

  14. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis

    Science.gov (United States)

    Gharib, Sina A.; Johnston, Laura K.; Huizar, Isham; Birkland, Timothy P.; Hanson, Josiah; Wang, Ying; Parks, William C.; Manicone, Anne M.

    2014-01-01

    Members of the MMP family function in various processes of innate immunity, particularly in controlling important steps in leukocyte trafficking and activation. MMP28 (epilysin) is a member of this family of proteinases, and we have found that MMP28 is expressed by macrophages and regulates their recruitment to the lung. We hypothesized that MMP28 regulates other key macrophage responses, such as macrophage polarization. Furthermore, we hypothesized that these MMP28-dependent changes in macrophage polarization would alter fibrotic responses in the lung. We examined the gene expression changes in WT and Mmp28−/− BMDMs, stimulated with LPS or IL-4/IL-13 to promote M1 and M2 cells, respectively. We also collected macrophages from the lungs of Pseudomonas aeruginosa-exposed WT and Mmp28−/− mice to evaluate changes in macrophage polarization. Lastly, we evaluated the macrophage polarization phenotypes during bleomycin-induced pulmonary fibrosis in WT and Mmp28−/− mice and assessed mice for differences in weight loss and total collagen levels. We found that MMP28 dampens proinflammatory macrophage function and promots M2 programming. In both in vivo models, we found deficits in M2 polarization in Mmp28−/− mice. In bleomycin-induced lung injury, these changes were associated with reduced fibrosis. MMP28 is an important regulator of macrophage polarization, promoting M2 function. Loss of MMP28 results in reduced M2 polarization and protection from bleomycin-induced fibrosis. These findings highlight a novel role for MMP28 in macrophage biology and pulmonary disease. PMID:23964118

  15. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity.

    Science.gov (United States)

    Bachmann, A; Schneider, M; Theilenberg, E; Grawe, F; Knust, E

    2001-12-01

    The polarized architecture of epithelial cells depends on the highly stereotypic distribution of cellular junctions and other membrane-associated protein complexes. In epithelial cells of the Drosophila embryo, three distinct domains subdivide the lateral plasma membrane. The most apical one comprises the subapical complex (SAC). It is followed by the zonula adherens (ZA) and, further basally, by the septate junction. A core component of the SAC is the transmembrane protein Crumbs, the cytoplasmic domain of which recruits the PDZ-protein Discs Lost into the complex. Cells lacking crumbs or the functionally related gene stardust fail to organize a continuous ZA and to maintain cell polarity. Here we show that stardust provides an essential component of the SAC. Stardust proteins colocalize with Crumbs and bind to the carboxy-terminal amino acids of its cytoplasmic tail. We introduce two different Stardust proteins here: one MAGUK protein, characterized by a PDZ domain, an SH3 domain and a guanylate kinase domain; and a second isoform comprising only the guanylate kinase domain. The Stardust proteins represent versatile candidates as structural and possibly regulatory constituents of the SAC, a crucial element in the control of epithelial cell polarity.

  16. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    Full Text Available BACKGROUND: The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  17. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  18. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia

    OpenAIRE

    Dai, D.; Li, L.; Huebner, A; H. Zeng; Guevara, E; Claypool, D J; Liu, A.; Chen, J.

    2012-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP...

  19. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages.

    Science.gov (United States)

    Song, Xiaolian; Xie, Shuanshuan; Lu, Kun; Wang, Changhui

    2015-04-01

    The reparative and immunoregulatory properties of mesenchymal stromal cells (MSCs) have made them attractive candidates for cellular therapy. However, the underlying mechanism of the effects of transplanted MSCs on allergic asthma remains elusive. Here, we show that administration of MSCs isolated from human bone marrow provoked a pronounced polarization in alveolar macrophages to M2 subtypes, rather than induced an increase in the total macrophage number, and efficiently inhibited hallmark features of asthma, including airway hyperresponsiveness and eosinophilic accumulation. Moreover, transforming growth factor beta (TGF-β) signaling pathway appeared to mediate the effects of MSCs on macrophage polarization and subsequently the inhibition of hallmark features of asthma. Inhibition of TGF-β signaling was sufficient to inhibit the macrophage polarization in response to MSCs and consequently reserved the inhibitory effects of macrophage polarization on hallmark features of asthma. Collectively, our data demonstrate that human MSCs have immunosuppressive activity on asthma, which is mediated by TGF-β-signaling-dependent alveolar macrophage polarization. PMID:24958014

  20. Restoration of cell polarity and bile excretion function of hepatocytes in sandwich-culture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-jie; WANG Ying; SUN Jia-bang; SONG Mao-min; QIAO Xin

    2007-01-01

    Objective:To investigate the nature of the restoration of cell polarity and bile excretion function in Sandwich-cultured hepatocytes.Methods:Freshly isolated hepatocytes from male Sprague-Dawley rats were cultured in a double layer collagen gel Sandwich configuration.Morphological changes were observed under a inverted microscope.The domain specific membrane associated protein DPP Ⅳ was tested by immunofluorescenee,and the bile excretion function was determined by using fluorescein diacetate.Hepatocytes cultured on a single layer of collagen gel were taken as control.Results:Adult rat hepatocytes cultured in a double layer collagen gel sandwich configuration regained its morphological and functional polarity and maintained polygonal morphology for at least 4 weeks.Immunofluorescence studies USing antibodies against DPP Ⅳ showed polarity restoration as early as 48 h.After cultured in the double layer collagen gel Sandwich configuration for 96 h the hepatocytes began to excrete bile;while hepatocytes cultured on a single layer collagen gel had no bile excretion.Conclusion:Hepatocytes cultured in a double layer collagen gel Sandwich configuration are able to regain their morphological and functional polarity givan certain conditions.Hepaotcyte culture is a useful tool for the study of polarity restoration.

  1. Opening Reproducible Research

    Science.gov (United States)

    Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk

    2016-04-01

    Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to

  2. N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish.

    Science.gov (United States)

    Hong, Elim; Brewster, Rachel

    2006-10-01

    Through the direct analysis of cell behaviors, we address the mechanisms underlying anterior neural tube morphogenesis in the zebrafish and the role of the cell adhesion molecule N-cadherin (N-cad) in this process. We demonstrate that although the mode of neurulation differs at the morphological level between amphibians and teleosts, the underlying cellular mechanisms are conserved. Contrary to previous reports, the zebrafish neural plate is a multi-layered structure, composed of deep and superficial cells that converge medially while undergoing radial intercalation, to form a single cell-layered neural tube. Time-lapse recording of individual cell behaviors reveals that cells are polarized along the mediolateral axis and exhibit protrusive activity. In N-cad mutants, both convergence and intercalation are blocked. Moreover, although N-cad-depleted cells are not defective in their ability to form protrusions, they are unable to maintain them stably. Taken together, these studies uncover key cellular mechanisms underlying neural tube morphogenesis in teleosts, and reveal a role for cadherins in promoting the polarized cell behaviors that underlie cellular rearrangements and shape the vertebrate embryo.

  3. Highly reproducible, efficient hysteresis-less CH3NH3PbI(3-x)Cl(x) planar hybrid solar cells without requiring heat-treatment.

    Science.gov (United States)

    Heo, Jin Hyuck; Im, Sang Hyuk

    2016-02-01

    CH3NH3PbI(3-x)Cl(x)(MAPbI(3-x)Cl(x)) mixed halide perovskite powder with uniform composition was synthesized via simple solution chemistry, which demonstrates highly reproducible, efficient planar type MAPbI(3-x)Cl(x) mixed halide perovskite solar cells. Pure MAPbI(3-x)Cl(x) mixed halide perovskite powder was synthesized by reacting a 3 : 1 molar ratio of MAI : PbCl2 powder mixture in isopropanol (IPA) solution for 30 min at 60 °C with subsequent repeated centrifugation and washing in IPA. IPA functions as both the reaction medium for the formation of MAPbI(3-x)Cl(x) mixed halide and a selective remover of unreacted MAI and MACl byproducts. Accordingly, we could deposit a pinhole-free dense MAPbI(3-x)Cl(x) mixed halide perovskite film on a TiO2/FTO substrate through a simple one step spin-coating of pure MAPbI(3-x)Cl(x) mixed halide perovskite powder in DMF solution with HI additive, without further long heat-treatment processes. The deposited MAPbI(3-x)Cl(x) mixed halide perovskite film revealed uniform composition throughout the entire area, and the ratio of Cl to I + Cl and I + Cl to Pb was constant at ∼0.03 and ∼1/3, respectively. On the other hand, the conventional MAPbI(3-x)Cl(x) mixed halide perovskite film prepared by the long heat-treatment process had non-uniform composition because the ratio of Cl to I + Cl fluctuated greatly from 0 to 7.2. The average efficiency of planar type MAPbI(3-x)Cl(x) mixed halide perovskite solar cells was 18.65% ± 0.30% and the champion cell had 1.11 V V(oc), 22.1 mA cm(-2) J(sc), 77% F.F., and 18.9% η for forward scan conditions and 1.11 V V(oc), 22.1 mA cm(-2) J(sc), 78% F.F., and 19.1% η for reverse scan conditions. Although the thickness of the MAPbI(3-x)Cl(x) mixed halide perovskite layer varied from ∼500 nm to ∼900 nm, the efficiency was within the range of 18.3%-19.0%. PMID:26781644

  4. Polarization independent beam fanning using a multi-domain liquid crystal cell.

    Science.gov (United States)

    Ren, Hongwen; Wu, Shin-Tson

    2009-07-01

    Polarization independent beam fanning using a multi-domain liquid crystal (LC) cell is demonstrated experimentally. In the neighboring domains, the LC directors are aligned in orthogonal directions. To prove concepts, two hybrid-aligned LC cells with four and six domains were fabricated. Applying a voltage across the LC layer will change the phase difference between the neighboring domains. When the phase difference is 2mpi (m is an integer), the LC cell will not disturb the incident beam. However, if the phase shift is (2m + 1)pi, the outgoing beam will fan out into several beams; the number of fanout beams is equal to the domain number. PMID:19582068

  5. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs.

    Science.gov (United States)

    Pocha, Shirin Meher; Wassmer, Thomas; Niehage, Christian; Hoflack, Bernard; Knust, Elisabeth

    2011-07-12

    The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity. PMID:21700461

  6. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells.

    Science.gov (United States)

    Singh, Bhuminder; Coffey, Robert J

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  7. Reproducing in cities.

    Science.gov (United States)

    Mace, Ruth

    2008-02-01

    Reproducing in cities has always been costly, leading to lower fertility (that is, lower birth rates) in urban than in rural areas. Historically, although cities provided job opportunities, initially residents incurred the penalty of higher infant mortality, but as mortality rates fell at the end of the 19th century, European birth rates began to plummet. Fertility decline in Africa only started recently and has been dramatic in some cities. Here it is argued that both historical and evolutionary demographers are interpreting fertility declines across the globe in terms of the relative costs of child rearing, which increase to allow children to outcompete their peers. Now largely free from the fear of early death, postindustrial societies may create an environment that generates runaway parental investment, which will continue to drive fertility ever lower. PMID:18258904

  8. Reproducible Experiment Platform

    CERN Document Server

    Likhomanenko, Tatiana; Baranov, Alexander; Khairullin, Egor; Ustyuzhanin, Andrey

    2015-01-01

    Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a)~enormous volumes of datasets being analyzed, b)~variety of techniques and algorithms one have to check inside a single analysis, c)~distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present s...

  9. Randomised reproducing graphs

    CERN Document Server

    Jordan, Jonathan

    2011-01-01

    We introduce a model for a growing random graph based on simultaneous reproduction of the vertices. The model can be thought of as a generalisation of the reproducing graphs of Southwell and Cannings and Bonato et al to allow for a random element, and there are three parameters, $\\alpha$, $\\beta$ and $\\gamma$, which are the probabilities of edges appearing between different types of vertices. We show that as the probabilities associated with the model vary there are a number of phase transitions, in particular concerning the degree sequence. If $(1+\\alpha)(1+\\gamma)1$ then the degree of a typical vertex grows to infinity, and the proportion of vertices having any fixed degree $d$ tends to zero. We also give some results on the number of edges and on the spectral gap.

  10. Polar Location of the Chemoreceptor Complex in the Escherichia coli Cell

    Science.gov (United States)

    Maddock, Janine R.; Shapiro, Lucille

    1993-03-01

    The eukaryotic cell exhibits compartmentalization of functions to various membrane-bound organelles and to specific domains within each membrane. The spatial distribution of the membrane chemoreceptors and associated cytoplasmic chemotaxis proteins in Escherichia coli were examined as a prototypic functional aggregate in bacterial cells. Bacterial chemotaxis involves a phospho-relay system brought about by ligand association with a membrane receptor, culminating in a switch in the direction of flagellar rotation. The transduction of the chemotaxis signal is initiated by a chemoreceptor-CheW-CheA ternary complex at the inner membrane. These ternary complexes aggregate predominantly at the cell poles. Polar localization of the cytoplasmic CheA and CheW proteins is dependent on membrane-bound chemoreceptor. Chemoreceptors are not confined to the cell poles in strains lacking both CheA and CheW. The chemoreceptor-CheW binary complex is polarly localized in the absence of CheA, whereas the chemoreceptor-CheA binary complex is not confined to the cell poles in strains lacking CheW. The subcellular localization of the chemotaxis proteins may reflect a general mechanism by which the bacterial cell sequesters different regions of the cell for specialized functions.

  11. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells.

    Science.gov (United States)

    Toya, Mika; Kobayashi, Saeko; Kawasaki, Miwa; Shioi, Go; Kaneko, Mari; Ishiuchi, Takashi; Misaki, Kazuyo; Meng, Wenxiang; Takeichi, Masatoshi

    2016-01-12

    Polarized epithelial cells exhibit a characteristic array of microtubules that are oriented along the apicobasal axis of the cells. The minus-ends of these microtubules face apically, and the plus-ends face toward the basal side. The mechanisms underlying this epithelial-specific microtubule assembly remain unresolved, however. Here, using mouse intestinal cells and human Caco-2 cells, we show that the microtubule minus-end binding protein CAMSAP3 (calmodulin-regulated-spectrin-associated protein 3) plays a pivotal role in orienting the apical-to-basal polarity of microtubules in epithelial cells. In these cells, CAMSAP3 accumulated at the apical cortices, and tethered the longitudinal microtubules to these sites. Camsap3 mutation or depletion resulted in a random orientation of these microtubules; concomitantly, the stereotypic positioning of the nucleus and Golgi apparatus was perturbed. In contrast, the integrity of the plasma membrane was hardly affected, although its structural stability was decreased. Further analysis revealed that the CC1 domain of CAMSAP3 is crucial for its apical localization, and that forced mislocalization of CAMSAP3 disturbs the epithelial architecture. These findings demonstrate that apically localized CAMSAP3 determines the proper orientation of microtubules, and in turn that of organelles, in mature mammalian epithelial cells. PMID:26715742

  12. Highly reproducible, efficient hysteresis-less CH3NH3PbI3-xClx planar hybrid solar cells without requiring heat-treatment

    Science.gov (United States)

    Heo, Jin Hyuck; Im, Sang Hyuk

    2016-01-01

    CH3NH3PbI3-xClx(MAPbI3-xClx) mixed halide perovskite powder with uniform composition was synthesized via simple solution chemistry, which demonstrates highly reproducible, efficient planar type MAPbI3-xClx mixed halide perovskite solar cells. Pure MAPbI3-xClx mixed halide perovskite powder was synthesized by reacting a 3 : 1 molar ratio of MAI : PbCl2 powder mixture in isopropanol (IPA) solution for 30 min at 60 °C with subsequent repeated centrifugation and washing in IPA. IPA functions as both the reaction medium for the formation of MAPbI3-xClx mixed halide and a selective remover of unreacted MAI and MACl byproducts. Accordingly, we could deposit a pinhole-free dense MAPbI3-xClx mixed halide perovskite film on a TiO2/FTO substrate through a simple one step spin-coating of pure MAPbI3-xClx mixed halide perovskite powder in DMF solution with HI additive, without further long heat-treatment processes. The deposited MAPbI3-xClx mixed halide perovskite film revealed uniform composition throughout the entire area, and the ratio of Cl to I + Cl and I + Cl to Pb was constant at ~0.03 and ~1/3, respectively. On the other hand, the conventional MAPbI3-xClx mixed halide perovskite film prepared by the long heat-treatment process had non-uniform composition because the ratio of Cl to I + Cl fluctuated greatly from 0 to 7.2. The average efficiency of planar type MAPbI3-xClx mixed halide perovskite solar cells was 18.65% +/- 0.30% and the champion cell had 1.11 V Voc, 22.1 mA cm-2Jsc, 77% F.F., and 18.9% η for forward scan conditions and 1.11 V Voc, 22.1 mA cm-2Jsc, 78% F.F., and 19.1% η for reverse scan conditions. Although the thickness of the MAPbI3-xClx mixed halide perovskite layer varied from ~500 nm to ~900 nm, the efficiency was within the range of 18.3%-19.0%.CH3NH3PbI3-xClx(MAPbI3-xClx) mixed halide perovskite powder with uniform composition was synthesized via simple solution chemistry, which demonstrates highly reproducible, efficient planar type MAPbI3-x

  13. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo.

    Science.gov (United States)

    Sato, Mahito; Yoshimura, Shinichiro; Hirai, Rika; Goto, Ayako; Kunii, Masataka; Atik, Nur; Sato, Takashi; Sato, Ken; Harada, Reiko; Shimada, Junko; Hatabu, Toshimitsu; Yorifuji, Hiroshi; Harada, Akihiro

    2011-10-01

    VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.

  14. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells

    OpenAIRE

    1989-01-01

    Glycosyl-phosphatidylinositol- (GPI) anchored proteins contain a large extracellular protein domain that is linked to the membrane via a glycosylated form of phosphatidylinositol. We recently reported the polarized apical distribution of all endogenous GPI-anchored proteins in the MDCK cell line (Lisanti, M. P., M. Sargiacomo, L. Graeve, A. R. Saltiel, and E. Rodriguez-Boulan. 1988. Proc. Natl. Acad. Sci. USA. 85:9557-9561). To study the role of this mechanism of membrane anchoring in targeti...

  15. Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CH(R)) in the diagnosis of iron deficiency

    NARCIS (Netherlands)

    Prins, M.; van Leeuwen, M.W.; Teske, E.

    2009-01-01

    Tijdschr Diergeneeskd. 2009 Apr 1;134(7):272-8. Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CH(R)) in the diagnosis of iron deficiency. Prins M, van Leeuwen MW, Teske E. Departm

  16. Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation.

    Science.gov (United States)

    Cameron, Jenifer M; Gabrielsen, Mads; Chim, Ya Hua; Munro, June; McGhee, Ewan J; Sumpton, David; Eaton, Philip; Anderson, Kurt I; Yin, Huabing; Olson, Michael F

    2015-06-01

    Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles.

  17. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    Science.gov (United States)

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. PMID:25273481

  18. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    Science.gov (United States)

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies. PMID:24722209

  19. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, G. van; Keesman, K.J.

    2012-01-01

    Polarization curves are of paramount importance for the detection of toxic components in microbial fuel cell (MFC) based biosensors. In this study, polarization curves were made under non-toxic conditions and under toxic conditions after the addition of various concentrations of nickel, bentazon, so

  20. Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Michelle M Hill

    Full Text Available Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.

  1. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    Manas Khan; Samarendra K Mohanty; A K Sood

    2005-11-01

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and become twisted in hypertonic phosphate buffer saline and when trapped, experience an unbalanced radiation pressure force. The torque generated from the unbalanced force causes the trapped RBC to rotate. Addition of Ca++ ions in the solution, keeping the osmolarity same, makes the cell membranes stiffer and the cells deform less. Thus the speed of rotation of the red blood cells can be controlled, as less deformation and in turn less asymmetry in shape produces less torque under the radiation pressure resulting in slower rotation at the same laser power.

  2. Reproducible Experiment Platform

    Science.gov (United States)

    Likhomanenko, Tatiana; Rogozhnikov, Alex; Baranov, Alexander; Khairullin, Egor; Ustyuzhanin, Andrey

    2015-12-01

    Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a) enormous volumes of datasets being analyzed, b) variety of techniques and algorithms one have to check inside a single analysis, c) distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present some key features of REP based on case studies which include trigger optimization and physics analysis studies at the LHCb experiment.

  3. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  4. Hypoxic pretreatment of human umbilical cord mesenchymal stem cells regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Chuan TONG

    2016-08-01

    Full Text Available Objective  To investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs on macrophage polarization under hypoxia. Methods  hUC-MSCs were obtained by explants adherent culture and cultured under normoxia (21% O2 and hypoxia (5% O2. The multi-directional differentiation of hUC-MSCs was observed by osteogenic and adipogenic differentiation induction. Live/death staining was performed to detect the cell viability, and ELISA was executed to detect the protein content in supernatant of hUC-MSCs. Transwell chamber was employed to co-culture the hUC-MSCs cultured under normoxia and hypoxia and macrophage (THP-1 stimulated by lipopolysaccharide (IPS, then the polarization of THP-1 was detected by immunofluorescence, and the secretions of inflammatory factor and anti-inflammatory factor of THP-1 were detected by ELISA. Results  hUC-MSCs cultured under hypoxia showed the ability of osteogenic and adipogenic multi-directional differentiation. Live/death staining showed the high cell viability of hUC-MSCs cultured under normoxia and hypoxia. The expression levels of prostaglandin E2 (PGE2 and indoleamine 2,3-dioxygenase (IDO were significantly higher in the hUC-MSCs cultured under hypoxia than in those cultured under normoxia. hUCMSCs cultured under hypoxia promoted the polarization of THP-1 to M2, obviously reduced the expression of TNF-α and IL-1β, and increased the expression of IL-10 significantly. Conclusion hUC-MSCs cultured under hypoxia may promote the polarization of THP-1 to M2 and improve the viability of anti-inflammatory. DOI: 10.11855/j.issn.0577-7402.2016.07.01

  5. A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes

    Directory of Open Access Journals (Sweden)

    Kushida A.

    2005-08-01

    Full Text Available We used temperature-responsive culture dishes onto which the temperature-responsive polymer, poly(Nisopropylacrylamide, was covalently grafted for tissue engineering. Confluent cells harvested as intact sheets from these surfaces by simple temperature reduction can be transferred to various surfaces including additional culture dishes, other cell sheets, and tissues. In order to examine the maintenance of cell polarity, Madin-Darby canine kidney cells and human primary renal proximal tubule epithelial cells which had developed apical-basal cell polarity in culture, were subjected to cell sheet transfer. This functional and structural cell polarity, which is susceptible to treatment with trypsin, was examined by immunohistochemistry and transmission electron microscopy. Using our cell-sheet method, the noninvasive transfer of these cell sheets retaining typical distributions of Na+/K+-ATPase, GLUT-1, SGLT-1, aquaporin-1, neutral endopeptidase and dipeptidylendopeptidase IV, could be achieved. The transferred cell sheets also developed numerous microvilli and tight junctions at the apical and lateral membranes, respectively. For biochemical analysis, immunoblotting of occludin, a transmembrane protein that composes tight junctions, was conducted and results confirmed that occludin remained intact after cell sheet transfer. This two-dimensional cell sheet manipulation method promises to be useful for tissue engineering as well as in the investigation of epithelial cell polarity.

  6. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  7. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4+ T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4+ and CD8+ T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  8. [Targeting of type IV carbonic anhydrases in Capan-1 human pancreatic duct cells is concomitant of the polarization].

    Science.gov (United States)

    Mairal, A; Fanjul, M; Hollande, E

    1996-01-01

    Carbonic anhydrases II and IV play an essential role in the synthesis and secretion of HCO3- ions in pancreatic duct cells. Secretion of these ions is regulated by the CFTR (cystic fibrosis transmembrane conductance regulator) chloride channel. In the present study, the expression of carbonic anhydrases IV and their targeting to plasma membranes were examined during the growth of human pancreatic duct cells in vitro. Human cancerous pancreatic duct cells of Capan-1 cell line which polarize during their growth were used. We show that: a) these cells express carbonic anhydrases IV continuously during growth in culture, and the expression depends on the stage of growth and the conformation of the cells; b) carbonic anhydrases IV are seen in the cytoplasm in non-polarized cells, but become progressively anchored to plasma membranes as the cells polarize, being targeted to the apical membranes of polarized cells; c) the subcellular distribution of carbonic anhydrases IV indicates that these enzymes are synthetized in rough endoplasmic reticulum and then transported towards the plasma membrane using the classical secretory pathway through the Golgi apparatus. The results indicated that targeting of carbonic anhydrases IV in Capan-1 cells is linked to cellular polarization. PMID:8881572

  9. Sensitivity and reproducibility of urinary C-peptide as estimate of islet B-cell function in insulin-treated diabetes

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Faber, O K;

    1989-01-01

    The aims of the present study were to evaluate the ability of urinary C-peptide determination to demonstrate presence of residual insulin secretion, and to evaluate the reproducibility of urinary C-peptide excretion in 125 insulin-treated diabetic patients. C-peptide was determined in two consecu...

  10. Reproducibility of (18)F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    DEFF Research Database (Denmark)

    Rasmussen, J H; Fischer, B M; Aznar, M C;

    2015-01-01

    . The area under the curve from cumulative SUV-volume histograms were measured and tested for reproducibility of the distribution of (18)F-FDG uptake. RESULTS: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference...

  11. Kermit interacts with Gαo, Vang, and motor proteins in Drosophila planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Chen Lin

    Full Text Available In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue--the phenomenon known as planar cell polarity (PCP. In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.

  12. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  13. Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B

    OpenAIRE

    Marinelli Raúl A; Splinter Patrick L; Tietz Pamela S; Gradilone Sergio A; LaRusso Nicholas F

    2005-01-01

    Abstract Background Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs), a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast ...

  14. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.;

    2006-01-01

    show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains...... atomic noise terms and show that a null result in squeezing is consistent with this theory.......The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...

  15. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    Science.gov (United States)

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  16. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation

    OpenAIRE

    Sugiyama, Yuki; Shelley, Elizabeth J.; Badouel, Caroline; McNeill, Helen; McAvoy, John W.

    2015-01-01

    Using knockout mice, we show that atypical cadherin Fat1 is essential for lens epithelial cells to maintain cell junctions, polarity, and proliferation but not for terminal fiber cell differentiation. We also report that Fat4 does not exhibit functional redundancy with Fat1 during lens development.

  17. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea

    Science.gov (United States)

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  18. Optimal matrix rigidity for stress-fibre polarization in stem cells

    Science.gov (United States)

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-06-01

    The shape and differentiated state of many cell types are highly sensitive to the rigidity of the microenvironment. The physical mechanisms involved, however, are unknown. Here, we present a theoretical model and experiments demonstrating that the alignment of stress fibres within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix, allowing the actomyosin forces to polarize in response to elastic stresses developed in the cell. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress fibres parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress fibres in stem cells. These findings offer physical insight into the sensitivity of stem-cell differentiation to tissue elasticity and, more generally, introduce a cell-type-specific parameter for actomyosin polarizability.

  19. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  20. Soluble CLEC2 Extracellular Domain Improves Glucose and Lipid Homeostasis by Regulating Liver Kupffer Cell Polarization

    Directory of Open Access Journals (Sweden)

    Xinle Wu

    2015-03-01

    Full Text Available The polarization of tissue resident macrophages toward the alternatively activated, anti-inflammatory M2 phenotype is believed to positively impact obesity and insulin resistance. Here we show that the soluble form of the extracellular domain (ECD of C-type lectin-like receptor 2, CLEC2, regulates Kupffer cell polarization in the liver and improves glucose and lipid parameters in diabetic animal models. Over-expression of Fc-CLEC2(ECD in mice via in vivo gene delivery, or injection of recombinant Fc-CLEC2(ECD protein, results in a reduction of blood glucose and liver triglyceride levels and improves glucose tolerance. Furthermore, Fc-CLEC2(ECD treatment improves cytokine profiles and increases both the M2 macrophage population and the genes involved in the oxidation of lipid metabolism in the liver. These data reveal a previously unidentified role for CLEC2 as a regulator of macrophage polarity, and establish CLEC2 as a promising therapeutic target for treatment of diabetes and liver disease.

  1. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    Science.gov (United States)

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia. PMID:21282632

  2. Planar Cell Polarity Protein Localization in the Secretory Ameloblasts of Rat Incisors

    OpenAIRE

    Nishikawa, Sumio; Kawamoto, Tadafumi

    2012-01-01

    The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes’ processes of inner enamel–secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel– and outer enamel–secretory ameloblasts, where N-cadherin and β-...

  3. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file.

    Science.gov (United States)

    Matsui, Taisuke; Seo, Ji-Youn; Domanski, Konrad; Correa-Baena, Juan-Pablo; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik M.; Tress, Wolfgang; Abate, Antonio; Hagfeldt, Anders; Grätzel, Michael

    2016-01-01

    Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. With the addition of inorganic cesium, the resulting triple cation perovskite compositions are thermally more stable, contain less phase impurities and are less sensitive to processing conditions. This enables more reproducible device performances to reach a stabilized power output of 21.1% and ∼18% after 250 hours under operational conditions. These properties are key for the industrialization of perovskite photovoltaics.

  4. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo

    Science.gov (United States)

    Tang, Xingchun; Liu, Yuan; Sun, Meng-xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical–basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical–basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical–basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical–basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical–basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  5. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical-basal axis of the embryo.

    Science.gov (United States)

    Tang, Xingchun; Liu, Yuan; He, Yuqing; Ma, Ligang; Sun, Meng-Xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical-basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical-basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical-basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical-basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical-basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  6. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  7. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  8. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components. PMID:22935613

  9. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics. PMID:27351104

  10. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    OpenAIRE

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B; Parkos, Charles A.; Nusrat, Asma

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating c...

  11. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent‐Mistiaen, Zoé I.

    2016-01-01

    The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity. PMID:27173018

  12. MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally

    NARCIS (Netherlands)

    Rossen, J W; Voorhout, W F; Horzinek, M C; van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. Entry and release of the porcine transmissible gastroenteritis virus (TGEV) is restricted to apical surfaces of polarized epithelial cells, as we have recently shown (J. W. A. Rossen, C. P. J. Bekker, W. F. Voorhout, G. J. A. M. Strous, A. va

  13. Aqueous humor enhances the proliferation of rat retinal precursor cells in culture, and this effect is partially reproduced by ascorbic acid

    DEFF Research Database (Denmark)

    Yang, Jing; Klassen, Henry; Pries, Mette;

    2006-01-01

    Aqueous humor has been shown to influence the proliferation of various ocular cell types, but the effect on immature retinal cells is not known. Here, the effect of pig aqueous humor on the proliferation of rat retinal precursor cells (RPCs) was investigated. RPCs were prepared from embryonic day...

  14. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    Science.gov (United States)

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  15. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Murat Balaban

    2011-12-01

    Full Text Available Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that

  16. Contextual sensitivity in scientific reproducibility.

    Science.gov (United States)

    Van Bavel, Jay J; Mende-Siedlecki, Peter; Brady, William J; Reinero, Diego A

    2016-06-01

    In recent years, scientists have paid increasing attention to reproducibility. For example, the Reproducibility Project, a large-scale replication attempt of 100 studies published in top psychology journals found that only 39% could be unambiguously reproduced. There is a growing consensus among scientists that the lack of reproducibility in psychology and other fields stems from various methodological factors, including low statistical power, researcher's degrees of freedom, and an emphasis on publishing surprising positive results. However, there is a contentious debate about the extent to which failures to reproduce certain results might also reflect contextual differences (often termed "hidden moderators") between the original research and the replication attempt. Although psychologists have found extensive evidence that contextual factors alter behavior, some have argued that context is unlikely to influence the results of direct replications precisely because these studies use the same methods as those used in the original research. To help resolve this debate, we recoded the 100 original studies from the Reproducibility Project on the extent to which the research topic of each study was contextually sensitive. Results suggested that the contextual sensitivity of the research topic was associated with replication success, even after statistically adjusting for several methodological characteristics (e.g., statistical power, effect size). The association between contextual sensitivity and replication success did not differ across psychological subdisciplines. These results suggest that researchers, replicators, and consumers should be mindful of contextual factors that might influence a psychological process. We offer several guidelines for dealing with contextual sensitivity in reproducibility. PMID:27217556

  17. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.

    Science.gov (United States)

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.

  18. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate

    Directory of Open Access Journals (Sweden)

    Fulgenzi Alessandro

    2011-07-01

    Full Text Available Abstract Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc and oxyprolinate (MnOxP. For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration, but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.

  19. Cell growth characteristics from angle- and polarization-resolved light scattering: Prospects for two-dimensional correlation analysis

    Science.gov (United States)

    Herran Cuspinera, Roxana M.; Hore, Dennis K.

    2016-11-01

    We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.

  20. The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells

    Science.gov (United States)

    Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.

    2007-02-01

    Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60

  1. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  2. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    Science.gov (United States)

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance.

  3. The effects of human umbilical cord perivascular cells on rat hepatocyte structure and functional polarity.

    Science.gov (United States)

    Gómez-Aristizábal, Alejandro; Davies, John Edward

    2013-06-01

    Hepatocyte culture is a useful tool for the study of their biology and the development of bioartificial livers. However, many challenges have to be overcome since hepatocytes rapidly lose their normal phenotype in vitro. We have recently demonstrated that human umbilical cord perivascular cells (HUCPVCs) are able to provide support to hepatocytes. In the present study we go further into exploring the effects that HUCPVCs have in the functional polarization, and both the internal and external organization, of hepatocytes. Also, we investigate HUCPVC-hepatocyte crosstalk by tracking both the effects of HUCPVCs on hepatocyte transcription factors and those of hepatocytes on the expression of hepatotrophic factors in HUCPVCs. Our results show that HUCPVCs maintain the functional polarity of hepatocytes ex vivo, as judged by the secretion of fluorescein into bile canaliculi, for at least 40 days. Transmission electron microscopy revealed that hepatocytes in coculture organize in an organoid-like structure embedded in extracellular matrix surrounded by HUCPVCs. In coculture, hepatocytes displayed a higher expression of C/EBPα, implicated in maintenance of the mature hepatocyte phenotype, and HUCPVCs upregulated hepatocyte growth factor and Jagged1 indicating that these genes may play important roles in HUCPVC-hepatocyte interactions.

  4. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  5. High performance single step co-fired solid oxide fuel cells (SOFC): Polarization measurements and analysis

    Science.gov (United States)

    Yoon, Kyung Joong

    At present, one of the major obstacles for the commercialization of solid oxide fuel cell (SOFC) power systems is their high manufacturing costs expressed in terms of SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated by a cost-competitive single step co-firing process. The cells were comprised of a porous Ni + yittria-stabilized zirconia (YSZ) anode support, a porous-fine-grained Ni + YSZ anode active layer for some experiments, a dense YSZ electrolyte, a porous-fine-grained Ca-doped LaMnO3 (LCM) + YSZ cathode active layer, and a porous LCM cathode current collector layer. The fabrication process involved tape casting or high shear compaction (HSC) of the anode support followed by screen printing of the remaining component layers. The cells were then co-fired at 1300˜1340°C for 2 hours. The performance of the cell fabricated with the tape casting anode was improved by minimizing various polarization losses through experimental and theoretical modeling approaches, and the maximum power density of 1.5 W/cm 2 was obtained at 800°C with humidified hydrogen (3% H2O) and air. The cells were also tested with various compositions of humidified hydrogen (3˜70% H2O) to simulate the effect of practical fuel utilization on the cell performance. Based on these measurements, an analytical model describing anodic reactions was developed to understand reaction kinetics and rate limiting steps. The cell performance at high fuel utilization was significantly improved by increasing the number of the reaction sites near the anode-electrolyte interface. For anode substrate fabrication, the HSC process offers many advantages such as low fabrication costs, high production throughput, and good control of shrinkage and thickness over the conventional tape casting process. HSC process was successfully employed in single step co-firing process, and SOFCs fabricated with HSC anodes showed adequate performance both at low and high fuel

  6. Correlation of immunohistochemical staining p63 and TTF-1 with EGFR and K-ras mutational spectrum and diagnostic reproducibility in non small cell lung carcinoma

    NARCIS (Netherlands)

    Thunnissen, Erik; Boers, Evan; Heideman, Danielle A. M.; Grunberg, Katrien; Kuik, Dirk J.; Noorduin, Arnold; van Oosterhout, Matthijs; Pronk, Divera; Seldenrijk, Cees; Sietsma, Hannie; Smit, Egbert F.; van Suylen, Robertjan; von der Thusen, Jan; Vrugt, Bart; Wiersma, Anne; Witte, Birgit I.; den Bakker, Michael

    2012-01-01

    For treatment purposes, distinction between squamous cell carcinoma and adenocarcinoma is important. The aim of this study is to examine the diagnostic accuracy on lung cancer small biopsies for the distinction between adenocarcinoma and squamous cell carcinoma and relate these to immunohistochemica

  7. Open Science and Research Reproducibility

    Science.gov (United States)

    Munafò, Marcus

    2016-01-01

    Many scientists, journals and funders are concerned about the low reproducibility of many scientific findings. One approach that may serve to improve the reliability and robustness of research is open science. Here I argue that the process of pre-registering study protocols, sharing study materials and data, and posting preprints of manuscripts may serve to improve quality control procedures at every stage of the research pipeline, and in turn improve the reproducibility of published work. PMID:27350794

  8. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  9. The Drosophila Cadherin Fat regulates tissue size and planar cell polarity through different domains.

    Directory of Open Access Journals (Sweden)

    Xuesong Zhao

    Full Text Available The Drosophila Cadherin Fat (Ft has been identified as a crucial regulator of tissue size and Planar Cell Polarity (PCP. However, the precise mechanism by which Ft regulates these processes remains unclear. In order to advance our understanding of the action of Ft, we have sought to identify the crucial Ft effector domains. Here we report that a small region of the Ft cytoplasmic domain (H2 region is both necessary and sufficient, when membrane localized, to support viability and prevent tissue overgrowth. Interestingly, the H2 region is dispensable for regulating PCP signaling, whereas the mutant Ft lacking the H2 region is fully capable of directing PCP. This result suggests that Ft's roles in PCP signaling and tissue size control are separable, and each can be carried out independently. Surprisingly, the crucial regions of Ft identified in our structure-function study do not overlap with the previously reported interaction regions with Atrophin, Dco, or Lowfat.

  10. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity.

    Science.gov (United States)

    Goryachev, Andrew B; Pokhilko, Alexandra V

    2008-04-30

    Complex biochemical networks can be understood by identifying their principal regulatory motifs and mode of action. We model the early phase of budding yeast cellular polarization and show that the biochemical processes in the presumptive bud site comprise a Turing-type mechanism. The roles of the prototypical activator and substrate are played by GTPase Cdc42 in its active and inactive states, respectively. We demonstrate that the nucleotide cycling of Cdc42 converts cellular energy into a stable cluster of activated Cdc42. This energy drives a continuous membrane-cytoplasmic exchange of the cluster components to counteract diffusive spread of the cluster. This exchange explains why only one bud forms per cell cycle, because the winner-takes-all competition of candidate sites inevitably selects a single site. PMID:18381072

  11. The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces.

    Science.gov (United States)

    Gilbert, J L; Zarka, L; Chang, E; Thomas, C H

    1998-11-01

    Mechanically assisted corrosion processes can greatly increase the oxidation currents generated in passivating alloy systems like Co-Cr and titanium due to oxide film disruption. When oxide films are abraded, repassivation and ionic dissolution both occur at rates that are orders of magnitude higher than undisrupted surfaces. The excess electrons generated by these anodic processes must be consumed in corresponding reduction reactions that include the reduction of oxygen. If large enough, these reduction reactions may locally deplete the concentration of solution-dissolved oxygen and, in turn, affect cell behavior in the vicinity of the implant surface. To date, this hypothesis has not been tested. In the present study, a scanning electrochemical microscope was used to measure oxygen concentration profiles in vitro near a planar titanium electrode polarized to different voltages representative of those attainable by titanium undergoing mechanically assisted corrosion. The potentials investigated ranged from 0 mV to -1000 mV (AgCl). The oxygen concentration as a function of distance from the titanium surface was measured using a platinum-iridium microelectrode and an amperometric technique. Also, preliminary experiments were performed to assess the response of rat calvarial osteoblast-rich cells cultured for 2 h on titanium samples polarized to two different potentials (0 mV and -1000 mV versus AgCl). The results of this study indicate that oxygen concentrations near titanium surfaces are affected by sample potentials out to probe-sample distances as great as 500 microm. Within 2 microm of the surface, oxygen concentrations decreased by 15 to 25% for sample potentials between -100 and -500 mV. At potentials more negative than -600 mV, the oxygen concentration dropped rapidly to near zero by -900 mV. The cell experiments showed a statistically significant difference in the amount of cell spreading, as measured by projected cell area, between the two groups (p < 0

  12. Absence of transepithelial anion exchange by rabbit OMCD: Evidence against reversal of cell polarity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Matsuhiko; Schuster, V.L.; Stokes, J.B. (Univ. of Iowa College of Medicine, Iowa City (USA))

    1988-08-01

    In the rabbit cortical collecting duct (CCD), Cl tracer crosses the epithelium predominantly via an anion exchange system that operates in either a Cl-Cl or Cl-HCO{sub 3} exchange mode. In the present study, the authors used the {sup 36}Cl lumen-to-bath rate coefficient (K{sub Cl}, nm/s), a sensitive measurement of CCD transepithelial anion transport, to investigate the nature of Cl transport in the medullary collecting duct dissected from inner stripe, outer medulla (OMCD). The K{sub Cl} in OMCD perfused and bathed in HCO{sub 3}-Ringer solution was low and similar to that value observed in the CCD when anion exchange is inhibited and Cl permeates the epithelium by diffusion. To test the hypothesis that metabolic alkalosis could reverse the polarity of intercalated cells and thus induce an apical Cl-HCO{sub 3} exchanger in H{sup +}-secreting OMCD cells, they measured K{sub Cl} in OMCD from rabbits make alkalotic by deoxycorticosterone and furosemide. Although the base-line K{sub Cl} was slightly higher than in OMCD from control rabbits, the value was still far lower than the K{sub Cl} under comparable conditions in CCD. They conclude (1) Cl transport across the MCD by anion exchange is immeasurably low or nonexistent; (2) unlike the CCD, Cl transport in OMCD is not responsive to cAMP; and (3) metabolic alkalosis does not induce an apical anion exchanger in OMCD, i.e., does not cause epithelial polarity reversal.

  13. Polarizing T and B cell responses by APC-targeted subunit vaccines.

    Directory of Open Access Journals (Sweden)

    Gunnveig eGrødeland

    2015-07-01

    Full Text Available Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs. The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin (HA to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8+ T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.

  14. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties.

    Science.gov (United States)

    Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C

    2015-04-28

    Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials.

  15. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure

    Directory of Open Access Journals (Sweden)

    Erica M. McGreevy

    2015-01-01

    Full Text Available Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock, to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP pathway, to direct the polarized cellular behaviors that drive convergent extension (CE movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs.

  16. Towards Reproducibility in Computational Hydrology

    Science.gov (United States)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    The ability to reproduce published scientific findings is a foundational principle of scientific research. Independent observation helps to verify the legitimacy of individual findings; build upon sound observations so that we can evolve hypotheses (and models) of how catchments function; and move them from specific circumstances to more general theory. The rise of computational research has brought increased focus on the issue of reproducibility across the broader scientific literature. This is because publications based on computational research typically do not contain sufficient information to enable the results to be reproduced, and therefore verified. Given the rise of computational analysis in hydrology over the past 30 years, to what extent is reproducibility, or a lack thereof, a problem in hydrology? Whilst much hydrological code is accessible, the actual code and workflow that produced and therefore documents the provenance of published scientific findings, is rarely available. We argue that in order to advance and make more robust the process of hypothesis testing and knowledge creation within the computational hydrological community, we need to build on from existing open data initiatives and adopt common standards and infrastructures to: first make code re-useable and easy to find through consistent use of metadata; second, publish well documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; finally, use unique persistent identifiers (e.g. DOIs) to reference re-useable and reproducible code, thereby clearly showing the provenance of published scientific findings. Whilst extra effort is require to make work reproducible, there are benefits to both the individual and the broader community in doing so, which will improve the credibility of the science in the face of the need for societies to adapt to changing hydrological environments.

  17. Reproducibility of Protein Identification of Selected Cell Types in Barrett's Esophagus Analyzed by Combining Laser-Capture Microdissection and Mass Spectrometry

    NARCIS (Netherlands)

    C. Stingl; F.G.I. van Vilsteren; C. Guzel; F.J.W. ten Kate; M. Visser; K.K. Krishnadath; J.J. Bergman; T.M. Luider

    2011-01-01

    Barrett's esophagus (BE) is associated with increased risk of esophageal adenocarcinoma (EAC) and characterized by replacement of normal esophageal squamous epithelium by columnar epithelium. These alterations are also reflected in changes in the protein-expression profiles of the cell types involve

  18. Reproducible Research in Speech Sciences

    Directory of Open Access Journals (Sweden)

    Kandaacute;lmandaacute;n Abari

    2012-11-01

    Full Text Available Reproducible research is the minimum standard of scientific claims in cases when independent replication proves to be difficult. With the special combination of available software tools, we provide a reproducibility recipe for the experimental research conducted in some fields of speech sciences. We have based our model on the triad of the R environment, the EMU-format speech database, and the executable publication. We present the use of three typesetting systems (LaTeX, Markdown, Org, with the help of a mini research.

  19. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    Science.gov (United States)

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries. PMID:26251121

  20. A reproducible technique combining tritiated thymidine autoradiography with immunodetection of bromodeoxyuridine for double labelling studies of cell proliferation in paraffin sections of tissues.

    Science.gov (United States)

    Hume, W J

    1990-05-01

    A method is described to combine tritiated thymidine autoradiography with immunoperoxidase detection of bromodeoxyuridine on the same paraffin sections. It overcomes the varied technical artefacts we encountered when first attempting to combine these techniques and results in preparations with extremely low peroxidase and autoradiographic backgrounds. In particular, we find it is important to avoid the use of detergents during immunostaining, otherwise grain counts are reduced and autoradiograph exposures need to be greatly increased, and to avoid excessive peroxidase staining which makes it difficult to visualize silver grains in the overlying emulsion. The advantages of a method to remove emulsion films using acid-alcohol, allowing the same sections to be dipped twice with a long and a short autoradiographic exposure, are presented. The routine combination of high quality tritiated thymidine autoradiography with clean immunoperoxidase staining of bromodeoxyuridine-positive nuclei provides a new and powerful cell kinetic, double-labelling method to augment existing techniques e.g. by labelling the same cells undergoing DNA synthesis in successive cell cycles.

  1. Applying a highly specific and reproducible cDNA RDA method to clone garlic up-regulated genes in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Li; You-Yong Lu

    2002-01-01

    AIM: To develop and optimize cDNA representationaldifference analysis (cDNA RDA) method and to identify andclone garlic up-regulated genes in human gastric cancer(HGC) cells.METHODS: We performed cDNA RDA method by usingabundant double-stranded cDNA messages provided by twoself-constructed cDNA libraries (Allitridi-trested and paternalHGC cell line BGC823 cells cDNA libraries respectively).BamH Ⅰ and Xho I restriction sites harbored in the libraryvector were used to select representations. Northern andSlot blots analyses were employed to identify the obtaineddifference products.RESJLTS: Fragments released from the cDNA library vectorafter restriction endonuclease digestion acted as goodmarker indicating the appropriate digestion degree for libraryDNA. Two novel expressed sequence tags (ESTs) and arecombinant gene were obtained. Slot blots result showed a8-fold increase of gila-derived nexin/protease nexin 1 (GDN/PN1 ) gene expression level and 4-fold increase of hepatitis Bvirus x-interacting protein (XIP) mRNA level in BGC823 cellsafter Allitridi treatment for 72 h.CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAsinduced by Allitridi provide valuable molecular evidence forelucidating the garlic' s efficacies against neurodegenerativeand inflammatory diseases. Isolation of a recombinant geneand two novel ESTs further show cDNA RDA based on cDNAlibraries to be a powerful method with high specificity andreproducibility in cloning differentially expressed genes.

  2. Cdc42-dependent Modulation of Tight Junctions and Membrane Protein Traffic in Polarized Madin-Darby Canine Kidney Cells

    Science.gov (United States)

    Rojas, Raul; Ruiz, Wily G.; Leung, Som-Ming; Jou, Tzuu-Shuh; Apodaca, Gerard

    2001-01-01

    Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity. PMID:11514615

  3. The influence of non polar and polar molecules in mouse motile cells membranes and pure lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Francisco J Sierra-Valdez

    Full Text Available We report an experimental study of mouse sperm motility that shows chief aspects characteristic of neurons: the anesthetic (produced by tetracaine and excitatory (produced by either caffeine or calcium effects and their antagonic action. While tetracaine inhibits sperm motility and caffeine has an excitatory action, the combination of these two substances balance the effects, producing a motility quite similar to that of control cells. We also study the effects of these agents (anesthetic and excitatory on the melting points of pure lipid liposomes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC and dipalmitoyl phosphatidic acid (DPPA. Tetracaine induces a large fluidization of the membrane, shifting the liposomes melting transition temperature to much lower values. The effect of caffeine is null, but its addition to tetracaine-doped liposomes greatly screen the fluidization effect. A high calcium concentration stiffens pure lipid membranes and strongly reduces the effect of tetracaine. Molecular Dynamics Simulations are performed to further understand our experimental findings at the molecular level. We find a strong correlation between the effect of antagonic molecules that could explain how the mechanical properties suitable for normal cell functioning are affected and recovered.

  4. Reproducible research in computational science.

    Science.gov (United States)

    Peng, Roger D

    2011-12-01

    Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.

  5. Reproducible Bioinformatics Research for Biologists

    Science.gov (United States)

    This book chapter describes the current Big Data problem in Bioinformatics and the resulting issues with performing reproducible computational research. The core of the chapter provides guidelines and summaries of current tools/techniques that a noncomputational researcher would need to learn to pe...

  6. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo

    OpenAIRE

    Tang, Xingchun; Liu, Yuan; He, Yuqing; Ma, Ligang; Sun, Meng-xiang

    2012-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical–basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspen...

  7. Reversible and Reproducible Giant Universal Electroresistance Effect

    Institute of Scientific and Technical Information of China (English)

    SYED Rizwan; ZHANG Sen; YU Tian; ZHAO Yong-Gang; ZHANG Shu-Feng; HAN Xiu-Feng

    2011-01-01

    After the prediction of the giant electroresistance effect, much work has been carried out to find this effect in practical devices. We demonstrate a novel way to obtain a large electroresistance (ER) effect in the multilayer system at room temperature. The current-in-plane (CIP) electric transport measurement is performed on the multilayer structure consisting of (011)-Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)/Ta/Al-O/metal. It is found that the resistance of the top metallic layer shows a hysteretic behavior as a function electric field, which corresponds well with the substrate polarization versus electric Reid (P-E) loop. This reversible hysteretic R-E behavior is independent of the applied magnetic field as well as the magnetic structure of the top metallic layer and keeps its memory state. This novel memory effect is attributed to the polarization reversal induced electrostatic potential, which is felt throughout the multilayer stack and is enhanced by the dielectric Al-O layer producing unique hysteretic, reversible, and reproducible resistance switching behavior. This novel universal electroresistance effect will open a new gateway to the development of future multiferroic memory devices operating at room temperature.%After the prediction of the giant electroresistance effect,much work has been carried out to find this effect in practical devices.We demonstrate a novel way to obtain a large electroresistance (ER) effect in the multilayer system at room temperature.The current-in-plane (CIP) electric transport measurement is performed on the multilayer structure consisting of (011)-Pb(Mg1/3 Nb2/3) O3-PbTiO3 (PMN-PT)/Ta/Al-O/metal.It is found that the resistance of the top metallic layer shows a hysteretic behavior as a function electric field,which corresponds well with the substrate polarization versus electric field (P-E) loop.This reversible hysteretic R-E behavior is independent of the applied magnetic field as well as the magnetic structure of the top metallic

  8. Autofocus Correction of Azimuth Phase Error and Residual Range Cell Migration in Spotlight SAR Polar Format Imagery

    CERN Document Server

    Mao, Xinhua; Zhu, Zhaoda

    2012-01-01

    Synthetic aperture radar (SAR) images are often blurred by phase perturbations induced by uncompensated sensor motion and /or unknown propagation effects caused by turbulent media. To get refocused images, autofocus proves to be useful post-processing technique applied to estimate and compensate the unknown phase errors. However, a severe drawback of the conventional autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors (APE). As the resolution becomes finer, residual range cell migration (RCM), which makes the defocus inherently two-dimensional, becomes a new challenge. In this paper, correction of APE and residual RCM are presented in the framework of polar format algorithm (PFA). First, an insight into the underlying mathematical mechanism of polar reformatting is presented. Then based on this new formulation, the effect of polar reformatting on the uncompensated APE and residual RCM is investigated in detail. By using the derived analytical relationship betwee...

  9. Modulation of Endocytic Traffic in Polarized Madin-Darby Canine Kidney Cells by the Small GTPase RhoA

    Science.gov (United States)

    Leung, Som-Ming; Rojas, Raul; Maples, Christopher; Flynn, Christopher; Ruiz, Wily G.; Jou, Tzuu-Shuh; Apodaca, Gerard

    1999-01-01

    Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell. PMID:10588664

  10. Synchrotron radiation X-ray microfluorescence reveals polarized distribution of atomic elements during differentiation of pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Simone C Cardoso

    Full Text Available The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB derived from embryonic and induced pluripotent stem (ES and iPS cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated.

  11. Cu₂ZnSnS(4x)Se(4(1-x)) solar cells from polar nanocrystal inks.

    Science.gov (United States)

    van Embden, Joel; Chesman, Anthony S R; Della Gaspera, Enrico; Duffy, Noel W; Watkins, Scott E; Jasieniak, Jacek J

    2014-04-01

    A facile ligand exchange method for dispersing Cu2ZnSnS4 (CZTS) nanocrystals (NCs) in environmentally benign polar solvents, such as ethanol or n-propanol, at high concentrations (up to 200 mg/mL) is demonstrated. This approach has been applied to CZTS nanocrystals synthesized via scalable, noninjection methods to formulate colloidally stable inks that are suitable for the solution processing of solar cell devices. Unlike other inks currently used to fabricate NC solar cells, the CZTS nanocrystal ink developed here circumvents the need for hydrazine, pyridine, or thiol coordinating solvents. By combining our polar CZTS inks with optimized selenization procedures, substrate CZTSSe solar cells have been successfully fabricated with device efficiencies of 7.7%. PMID:24690032

  12. The adhesion GPCR latrophilin - a novel signaling cascade in oriented cell division and anterior-posterior polarity.

    Science.gov (United States)

    Winkler, Jana; Prömel, Simone

    2016-01-01

    Although several signaling pathways in oriented cell division have been well characterized such as delta/notch inductions or wnt/frizzled-based anterior-posterior polarity, there is strong evidence for additional signal pathways controlling early anterior-posterior polarity decisions. The homolog of the adhesion G protein-coupled receptor latrophilin, LAT-1 has been identified as a receptor essential for oriented cell division in an anterior-posterior direction of specific blastomeres in the early C. elegans embryo. We recently conducted a study aiming at clarifying the signals involved in LAT-1 function. We identified a Gs protein/adenylyl cyclase/cAMP pathway in vitro and demonstrated its physiological relevance in oriented cell division. By interaction with a Gs protein LAT-1 elevates cAMP levels. These data indicate that G-protein signaling in oriented cell division is not solely GPCR-independent. This commentary will discuss our findings in the context of the current knowledge of mechanisms controlling oriented cell division and anterior-posterior polarity. Further, we identify open questions which need to be addressed in the future.

  13. Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups.

    Science.gov (United States)

    Liu, Huimin; Hu, Lin; Wu, Feiyan; Chen, Lie; Chen, Yiwang

    2016-04-20

    The polar groups in the conjugated polyelectrolytes (CPEs) can create the favorable dipoles at the electrode/active layer interface, which is critical for the CPEs to minimize the interfacial energy barrier in polymer solar cells (PSCs). Herein, a series of CPEs based on poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-co-2,7-(9,9-dioctylfluorene)] derivates (PFNs) (PFN30, PFN50, PFN70, and PFN100) with different mole ratio of polar groups (-N(C2H5)2) were designed and synthesized to investigate the effect of the numbers of polar groups on the interfacial dipoles. Controllably interfacial dipoles could be readily achieved by only tuning the numbers of -N(C2H5)2 in PFNs, as revealed by the work function of the PFNs modified ITO gradually reduced as the loadings of the -N(C2H5)2 increased. In addition, increasing the numbers of -N(C2H5)2 in PFNs were also favorable for developing the smooth and homogeneous morphology of the active layer. As a result, the content of the polar amine in the PFNs exerted great influence on the performance of polymer solar cells. Increasing the numbers of the pendent -N(C2H5)2 could effectively improve the power conversion efficiency (PCE) of the devices. Among these PFNs, PFN100 with the highest content of -N(C2H5)2 polar groups delivered the device with the best PCE of 3.27%. It indicates tailoring the content of the polar groups in the CPEs interlayer is a facial and promising approach for interfacial engineering to developing high performance PSCs. PMID:27028166

  14. Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers

    Science.gov (United States)

    Lu, Lin; Li, Ming-Chao; Lv, Chen; Gao, Wen-Gen; Jiang, Ming; Xu, Fu-Jun; Chen, Qi-Gong

    2016-10-01

    Performances of Ga- and N-polarity solar cells (SCs) adopting gradient-In-composition intrinsic layer (IL) are compared. It is found the gradient ILs can greatly weaken the negative influence from the polarization effects for the Ga- polarity case, and the highest conversion efficiency (η) of 2.18% can be obtained in the structure with a linear increase of In composition in the IL from bottom to top. This is mainly attributed to the adsorptions of more photons caused by the higher In composition in the IL closer to the p-GaN window layer. In contrast, for the N-polarity case, the SC structure with an InGaN IL adopting fixed In composition prevails over the ones adopting the gradient-In-composition IL, where the highest η of 9.28% can be obtained at x of 0.62. N-polarity SC structures are proven to have greater potential preparations in high-efficient InGaN SCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, and 61271377), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 2013693), and the Anhui Polytechnic University Funds for Excellent Young Scientists, China (Grant No. 2014YQQ005).

  15. Reproducibility of NIF hohlraum measurements

    Science.gov (United States)

    Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Casey, D. T.; Albert, F.; Bachmann, B. L.; Doeppner, T.; Divol, L.; Grim, G. P.; Hoover, M.; Landen, O. L.; MacGowan, B. J.; Michel, P. A.; Moore, A. S.; Pino, J. E.; Schneider, M. B.; Tipton, R. E.; Smalyuk, V. A.; Strozzi, D. J.; Widmann, K.; Hohenberger, M.

    2015-11-01

    The strategy of experimentally ``tuning'' the implosion in a NIF hohlraum ignition target towards increasing hot-spot pressure, areal density of compressed fuel, and neutron yield relies on a level of experimental reproducibility. We examine the reproducibility of experimental measurements for a collection of 15 identical NIF hohlraum experiments. The measurements include incident laser power, backscattered optical power, x-ray measurements, hot-electron fraction and energy, and target characteristics. We use exact statistics to set 1-sigma confidence levels on the variations in each of the measurements. Of particular interest is the backscatter and laser-induced hot-spot locations on the hohlraum wall. Hohlraum implosion designs typically include variability specifications [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. We describe our findings and compare with the specifications. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  16. Reproducibility of a reaming test

    DEFF Research Database (Denmark)

    Pilny, Lukas; Müller, Pavel; De Chiffre, Leonardo

    2012-01-01

    The reproducibility of a reaming test was analysed to document its applicability as a performance test for cutting fluids. Reaming tests were carried out on a drilling machine using HSS reamers. Workpiece material was an austenitic stainless steel, machined using 4.75 m∙min-1 cutting speed and 0.......3 mm∙rev-1 feed. A mineral straight oil and a water-based lubricant at two different oil concentrations were compared with respect to hole quality, evaluated in terms of surface finish (conventional average roughness parameter Ra and roughness profiles), and hole geometry (hole diameter and roundness......). Process reproducibility was assessed as the ability of different operators to ensure a consistent rating of individual lubricants. Absolute average values as well as experimental standard deviations of the evaluation parameters were calculated, and uncertainty budgeting was performed. Results document...

  17. Reproducibility of a reaming test

    DEFF Research Database (Denmark)

    Pilny, Lukas; Müller, Pavel; De Chiffre, Leonardo

    2014-01-01

    The reproducibility of a reaming test was analysed to document its applicability as a performance test for cutting fluids. Reaming tests were carried out on a drilling machine using HSS reamers. Workpiece material was an austenitic stainless steel, machined using 4.75 m•min−1 cutting speed and 0.......3 mm•rev−1 feed. A mineral straight oil and a water–based lubricant at two different oil concentrations were compared with respect to hole quality, evaluated in terms of surface finish (conventional arithmetic mean roughness Ra and roughness profiles), and hole geometry (hole diameter and roundness......). Process reproducibility was assessed as the ability of different operators to ensure a consistent rating of individual lubricants. Absolute average values as well as experimental standard deviations of the evaluation parameters were calculated, and uncertainty budgeting was performed. Results document...

  18. Development a new equation of polarization curve for a proton exchange membrane fuel cell at different channel geometry

    Directory of Open Access Journals (Sweden)

    I. Khazaee

    2014-01-01

    Full Text Available The polarization curve of a proton exchange membrane fuel cell is an important parameter that is used to investigate the performance of it that is expressed with the Nernst equation with the equation of losses the voltage such as activation loss, ohmic loss and concentration loss that they are a function of temperature of the cell and the current density. In this study a new correlation for polarization curve is obtained that it is a function of temperature, current density and a new parameter of cross-section geometry of channels. For this purpose three PEM fuel cells with different channels geometry of rectangular, elliptical and triangular have constructed. The active area of each cell is that its weight is 1300gr. The material of the gas diffusion layer is Carbon clothes, the membrane is nafion112 and the catalyst layer is a plane with 0.004 gr/cm2 Platinum. Also a test bench designed and constructed for testing the cell and a series of experiments are carried out to investigate the influence of the geometry of the cell on performance of the cell. The results show that when the geometry of channel is rectangular the performance of the cell is better than the triangular and elliptical channel.

  19. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor (EGFR) gene mutations identify patients with non-small cell lung cancer (NSCLC) who have a high likelihood of benefiting from treatment with anti-EGFR tyrosine kinase inhibitors. Sanger sequencing is widely used for mutation detection but can be technically challenging, resulting in longer turn-around-time, with limited sensitivity for low levels of mutations. This manuscript details the technical performance verification studies and external clinical reproducibility studies of the cobas EGFR Mutation Test, a rapid multiplex real-time PCR assay designed to detect 41 mutations in exons 18, 19, 20 and 21. The assay’s limit of detection was determined using 25 formalin-fixed paraffin-embedded tissue (FFPET)-derived and plasmid DNA blends. Assay performance for a panel of 201 specimens was compared against Sanger sequencing with resolution of discordant specimens by quantitative massively parallel pyrosequencing (MPP). Internal and external reproducibility was assessed using specimens tested in duplicate by different operators, using different reagent lots, instruments and at different sites. The effects on the performance of the cobas EGFR test of endogenous substances and nine therapeutic drugs were evaluated in ten FFPET specimens. Other tests included an evaluation of the effects of necrosis, micro-organisms and homologous DNA sequences on assay performance, and the inclusivity of the assay for less frequent mutations. A >95% hit rate was obtained in blends with >5% mutant alleles, as determined by MPP analysis, at a total DNA input of 150 ng. The overall percent agreement between Sanger sequencing and the cobas test was 96.7% (negative percent agreement 97.5%; positive percent agreement 95.8%). Assay repeatability was 98% when tested with two operators, instruments, and reagent lots. In the external reproducibility study, the agreement was > 99% across all sites, all operators and all reagent lots for 11/12 tumors tested. Test

  20. ASPP2 links the apical lateral polarity complex to the regulation of YAP activity in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christophe Royer

    Full Text Available The Hippo pathway, by tightly controlling the phosphorylation state and activity of the transcription cofactors YAP and TAZ is essential during development and tissue homeostasis whereas its deregulation may lead to cancer. Recent studies have linked the apicobasal polarity machinery in epithelial cells to components of the Hippo pathway and YAP and TAZ themselves. However the molecular mechanism by which the junctional pool of YAP proteins is released and activated in epithelial cells remains unknown. Here we report that the tumour suppressor ASPP2 forms an apical-lateral polarity complex at the level of tight junctions in polarised epithelial cells, acting as a scaffold for protein phosphatase 1 (PP1 and junctional YAP via dedicated binding domains. ASPP2 thereby directly induces the dephosphorylation and activation of junctional YAP. Collectively, this study unearths a novel mechanistic paradigm revealing the critical role of the apical-lateral polarity complex in activating this localised pool of YAP in vitro, in epithelial cells, and in vivo, in the murine colonic epithelium. We propose that this mechanism may commonly control YAP functions in epithelial tissues.

  1. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm2 to 0.95 mA/cm2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  2. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan;

    2008-01-01

    polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC...

  3. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    Science.gov (United States)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  4. A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus.

    Science.gov (United States)

    Tsokos, Christos G; Perchuk, Barrett S; Laub, Michael T

    2011-03-15

    Cellular asymmetry is critical to metazoan development and the life cycle of many microbes. In Caulobacter, cell cycle progression and the formation of asymmetric daughter cells depend on the polarly-localized histidine kinase CckA. How CckA is regulated and why activity depends on localization are unknown. Here, we demonstrate that the unorthodox kinase DivL promotes CckA activity and that the phosphorylated regulator DivK inhibits CckA by binding to DivL. Early in the cell cycle, CckA is activated by the dephosphorylation of DivK throughout the cell. However, in later stages, when phosphorylated DivK levels are high, CckA activation relies on polar localization with a DivK phosphatase. Localization thus creates a protected zone for CckA within the cell, without the use of membrane-enclosed compartments. Our results reveal the mechanisms by which CckA is regulated in a cell-type-dependent manner. More generally, our findings reveal how cells exploit subcellular localization to orchestrate sophisticated regulatory processes.

  5. Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B

    Directory of Open Access Journals (Sweden)

    Marinelli Raúl A

    2005-08-01

    Full Text Available Abstract Background Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs, a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast hybrid, which forms abundant bile canalicular structures. This cell line has been reported to be a good in vitro model for studying hepatocyte polarity. Results Using RT-PCR, immunoblotting and confocal immunofluorescence, we showed that WIF-B cells express the aquaporin water channels that facilitate the osmotically driven water movements in the liver, i.e. AQP8, AQP9, and AQP0; as well as the key solute transporters involved in the generation of canalicular osmotic gradients, i.e., the bile salt export pump Bsep, the organic anion transporter Mrp2 and the chloride bicarbonate exchanger AE2. The subcellular localization of the AQPs and the solute transporters in WIF-B cells was similar to that in freshly isolated rat hepatocytes and in intact liver. Immunofluorescent costaining studies showed intracellular colocalization of AQP8 and AE2, suggesting the possibility that these transporters are expressed in the same population of pericanalicular vesicles. Conclusion The hepatocyte cell line WIF-B retains the expression and subcellular localization of aquaporin water channels as well as key solute transporters for canalicular bile secretion. Thus, these cells can work as a valuable tool for regulatory and mechanistic studies of the biology of bile formation.

  6. Study in static mode of a photovoltaic cell bi facial to crystalline silicon under electric polarization and constant multispectral illumination

    International Nuclear Information System (INIS)

    The theoretical study in static mode of a photovoltaic cell bi facial to silicon under electric polarization and multispectral illumination is presented. Through this study, various expressions of the parameters of recombination have been established as well for an illumination by the face before an illumination by the back face. Curves of variation of the densities of carriers, densities of photocurrent, speeds of recombinations and photo tensions have been traced for the two modes of illumination

  7. Metasurface polarization splitter

    CERN Document Server

    Slovick, Brian A; Yu, Zhi Gang; Kravchenckou, Ivan I; Briggs, Dayrl P; Moitra, Parikshit; Krishnamurthy, Srini; Valentine, Jason

    2016-01-01

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are one of the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here we show that a subwavelength rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the two-fold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss, and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.

  8. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  9. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years there has been an increasing interest in the propagation of polarized light in randomly scattering media. The investigation of backscattered light...

  10. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin.

    Science.gov (United States)

    Papini, E; Satin, B; Norais, N; de Bernard, M; Telford, J L; Rappuoli, R; Montecucco, C

    1998-01-01

    The effects of the vacuolating toxin (VacA) released by pathogenic strains of Helicobacter pylori on several polarized epithelial monolayers were investigated. Trans-epithelial electric resistance (TER) of monolayers formed by canine kidney MDCK I, human gut T84, and murine mammary gland epH4, was lowered by acid-activated VacA. Independent of the cell type and of the starting TER value, VacA reduced it to a minimal value of 1,000-1,300 Omega x cm2. TER decrease was paralleled by a three- to fourfold increase of [14C]-mannitol (molecular weight 182.2) and a twofold increase of [14C]-sucrose (molecular weight 342.3) transmonolayer flux. On the contrary, transmembrane flux of the proinflammatory model tripeptide [14C]-N-formyl-Met-Leu-Phe (molecular weight 437.6), of [3H]-inuline (molecular weight 5,000) and of HRP (molecular weight 47,000) did not change. These data indicate that VacA increases paracellular epithelial permeability to molecules with molecular weight < 350-440. Accordingly, the epithelial permeability of Fe3+ and Ni2+ ions, essential for H. pylori survival in vivo, was also increased by VacA. High-resolution immunofluorescence and SDS-PAGE analysis failed to reveal alterations of junctional proteins ZO-1, occludin, cingulin, and E-cadherin. It is proposed that induction by VacA of a selective permeabilization of the epithelial paracellular route to low molecular weight molecules and ions may serve to supply nutrients, which favor H. pylori growth in vivo. PMID:9710450

  11. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  12. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control

    DEFF Research Database (Denmark)

    Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig;

    2014-01-01

    When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence...

  13. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Wikén Maria

    2010-09-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous inflammatory disease, possibly of infectious aetiology. We aimed to investigate whether the degree of functional polarization of alveolar macrophages (AMs, or Toll-like receptor (TLR expression, is associated with sarcoidosis or with distinct clinical manifestations of this disease. Methods Total BAL cells (cultured four or 24 h in medium, or stimulated 24 h with LPS from 14 patients and six healthy subjects, sorted AMs from 22 patients (Löfgren's syndrome n = 11 and 11 healthy subjects, and sorted CD4+ T cells from 26 patients (Löfgren's syndrome n = 13 and seven healthy subjects, were included. Using real-time PCR, the relative gene expression of IL-10, IL-12p35, IL-12p40, IL-23p19, CCR2, CCR7, iNOS, CXCL10, CXCL11, CXCL16, CCL18, CCL20, CD80, and CD86, and innate immune receptors TLR2, TLR4, and TLR9, was quantified in sorted AMs, and for selected genes in total BAL cells, while IL-17A was quantified in T cells. Results We did not find evidence of a difference with regard to alveolar macrophage M1/M2 polarization between sarcoidosis patients and healthy controls. TLR2 gene expression was significantly lower in sorted AMs from patients, particular in Löfgren's patients. CCL18 gene expression in AMs was significantly higher in patients compared to controls. Additionally, the IL-17A expression was lower in Löfgren's patients' CD4+ T cells. Conclusions Overall, there was no evidence for alveolar macrophage polarization in sarcoidosis. However, there was a reduced TLR2 mRNA expression in patients with Löfgren's syndrome, which may be of relevance for macrophage interactions with a postulated sarcoidosis pathogen, and for the characteristics of the ensuing T cell response.

  14. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth

    Institute of Scientific and Technical Information of China (English)

    Zeng Yinxin; Yu Yong; Chen Bo; Li Huirong

    2004-01-01

    The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase.

  15. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    Science.gov (United States)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  16. Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell

    OpenAIRE

    Geng, L.; Wang, G. M.; Zhang, C. X.; Gao, X. J.; Zong, B. F.

    2013-01-01

    A compact circularly polarized (CP) patch antenna using a composite right/left-handed (CRLH) transmission line (TL) unit-cell is proposed. The CRLH TL unit-cell includes a complementary split ring resonator (CSRR) for shunt inductance and a gap loaded with a circular-shaped slot for series capacitance. The CSRR can decrease the TM10 mode resonance frequency, thus reducing the electrical size of the proposed antenna. In addition, the asymmetry of the CSRR brings about the TM01 mode, which can ...

  17. In vitro Th1 and Th2 cell polarization is severely influenced by the initial ratio of naïve and memory CD4+ T cells

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2013-01-01

    by even small percentages (99% naïve CD4+ T cells resulted in better Th1 and Th2 polarization with significant reduced fractions of IL-4+ and IFN-γ+ CD4+ T cells, respectively. Moreover, the Th2 primed >99% naïve CD4+ T cells showed significantly higher ratio of IL-4+:IFN-γ+ (>4 fold) and GATA-3:+T......-bet+ (>3 fold) CD4+ T cells when compared with the standard purified >90-95% naïve CD4+ T cells primed under the same culture conditions. This suggests immunomagnetic bead separation, a low cost and easy available technique, with few modifications to the manufacturer's protocol as an attractive alternative...... for laboratories not having a cell sorter. Taken together, we report that it is essential to use rigorously purified (>99%) naïve CD4+ T cells for optimal initial in vitro Th1 and Th2 priming....

  18. Localization of Core Planar Cell Polarity Proteins, PRICKLEs, in Ameloblasts of Rat Incisors: Possible Regulation of Enamel Rod Decussation

    International Nuclear Information System (INIS)

    To confirm the possible involvement of planar cell polarity proteins in odontogenesis, one group of core proteins, PRICKLE1, PRICKLE2, PRICKLE3, and PRICKLE4, was examined in enamel epithelial cells and ameloblasts by immunofluorescence microscopy. PRICKLE1 and PRICKLE2 showed similar localization in the proliferation and secretory zones of the incisor. Immunoreactive dots and short rods in ameloblasts and stratum intermedium cells were evident in the proliferation to differentiation zone, but in the secretion zone, cytoplasmic dots decreased and the distal terminal web was positive for PRICKLE1 and PRICKLE2. PRICKLE3 and PRICKLE4 showed cytoplasmic labeling in ameloblasts and other enamel epithelial cells. Double labeling of PRICKLE2 with VANGL1, which is another planar cell polarity protein, showed partial co-localization. To examine the transport route of PRICKLE proteins, PRICKLE1 localization was examined after injection of a microtubule-disrupting reagent, colchicine, and was compared with CX43, which is a membrane protein transported as vesicles via microtubules. The results confirmed the retention of immunoreactive dots for PRICKLE1 in the cytoplasm of secretory ameloblasts of colchicine-injected animals, but fewer dots were observed in control animals. These results suggest that PRICKLE1 and PRICKLE2 are transported as vesicles to the junctional area, and are involved in pattern formation of distal junctional complexes and terminal webs of ameloblasts, further implying a role in the formed enamel rod arrangement

  19. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells.

    Science.gov (United States)

    Rindler, M J; Traber, M G

    1988-08-01

    Caco-2 cells, derived from human colon, have the morphological, functional, and biochemical properties of small intestinal epithelial cells. After infection with enveloped viruses, influenza virions assembled at the apical plasma membrane while vesicular stomatitis virus (VSV) particles appeared exclusively at the basolateral membrane, similar to the pattern observed in virus-infected Madin-Darby canine kidney (MDCK). When grown in Millicell filter chamber devices and labeled with [35S]methionine, Caco-2 monolayers released all of their radiolabeled secretory products preferentially into the basal chamber. Among the proteins identified were apolipoproteins AI and E, transferrin, and alpha-fetoprotein. No proteins were observed to be secreted preferentially from the apical cell surface. The lysosomal enzyme beta-hexosaminidase was also secreted primarily from the basolateral surface of the cells in the presence or absence of lysosomotropic drugs or tunicamycin, which inhibit the targetting of lysosomal enzymes to lysosomes. Neither of these drug treatments significantly affected the polarized secretion of other nonlysosomal proteins. In addition, growth hormone (GH), which is released in a nonpolar fashion from MDCK cells, was secreted exclusively from the basolateral membrane after transfection of Caco-2 cells with GH cDNA in a pSV2-based expression vector. Similar results were obtained in transient expression experiments and after selection of permanently transformed Caco-2 cells expressing GH. Since both beta-hexosaminidase and GH would be expected to lack sorting signals for polarized exocytosis in epithelial cells, these results indicate that in intestinal cells, proteins transported via the basolateral secretory pathway need not have specific sorting signals.

  20. Hybrid cell lines constitute a potential reservoir of polarized cells: isolation and study of highly differentiated hepatoma-derived hybrid cells able to form functional bile canaliculi in vitro

    OpenAIRE

    1991-01-01

    A large number of hepatoma cell lines has been used to study expression and regulation of liver-specific function. However these cells, even the most differentiated, are morphologically far from hepatocytes. In no case is the typical hepatocyte cell polarity well maintained. Cell hybridization has been used as a potential means for turning on specific genes. From hybrids between well differentiated Fao rat hepatoma cells and WI 38 human fibroblasts, we have attempted to isolate segregated cel...

  1. The fenestrin antigen in submembrane skeleton of the ciliate Tetrahymena thermophila is proposed as a marker of cell polarity during cell division and in oral replacement.

    Science.gov (United States)

    Kaczanowska, Janina; Joachimiak, Ewa; Kiersnowska, Mauryla; Krzywicka, Anna; Golinska, Krystyna; Kaczanowski, Andrzej

    2003-07-01

    Tetrahymena thermophila cells have two types of polarized morphogenesis: divisional morphogenesis and oral reorganization (OR). The aim of this research is the analysis of cortical patterns of immunostaining during cell division and in OR using previously characterized antibodies against fenestrin and epiplasm B proteins. During cell division, the anarchic field of basal body proliferation of the new developing oral apparatus (AF) showed concomitant strong binding of the fenestrin antigen and withdrawal of a signal of the epiplasm B antigen. At a specific stage, the fenestrin antigen also appeared as a character of the anterior cortex pole, with a co-localized decrease in the detected epiplasm B antigen. The fenestrin antigen also showed a polarity of duplicating basal bodies in ciliary rows. Indirect immunofluorescence and immunogold labeling experiments were performed in the absence and presence of an inhibitor of activity of serine/threonine kinases, 6-dimethylaminopurine (6-DMAP) as an inducer of the oral replacement process. In the presence of 6-DMAP, one class of cells started OR, and some others were trapped and affected in cell division. Both types of cells showed an instability of oral structures and formed enlarged primordial oral fields. These anarchic fields (AFs) bind the fenestrin antigen, with disappearance of epiplasmic antigen staining. Only one protein (about 64 kDa) is detected in western blots by the anti-fenestrin antibody and it accumulated in 6-DMAP-treated cells that are involved in uncompleted morphogenetic activity. At a defined stage of oral development, both during cell division and in OR, the fenestrin antigen served as a marker of polarity of the cell of the anterior pole character.

  2. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  3. Evaluation of multichannel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2007-01-01

    A study was conducted with the goal of quantifying auditory attributes which underlie listener preference for multichannel reproduced sound. Short musical excerpts were presented in mono, stereo and several multichannel formats to a panel of forty selected listeners. Scaling of auditory attributes...... from the quantified attributes predict overall preference well. The findings allow for some generalizations within musical program genres regarding the perception of and preference for certain spatial reproduction modes, but for limited generalizations across selections from different musical genres......., as well as overall preference, was based on consistency tests of binary paired-comparison judgments and on modeling the choice frequencies using probabilistic choice models. As a result, the preferences of non-expert listeners could be measured reliably at a ratio scale level. Principal components derived...

  4. Reproducibility of sterilized rubber impressions.

    Science.gov (United States)

    Abdelaziz, Khalid M; Hassan, Ahmed M; Hodges, J S

    2004-01-01

    Impressions, dentures and other dental appliances may be contaminated with oral micro-flora or other organisms of varying pathogenicity from patient's saliva and blood. Several approaches have been tried to control the transmission of infectious organisms via dental impressions and because disinfection is less effective and has several drawbacks for impression characterization, several sterilization methods have been suggested. This study evaluated the reproducibility of rubber impressions after sterilization by different methods. Dimensional accuracy and wettability of two rubber impression materials (vinyl polysiloxane and polyether) were evaluated after sterilization by each of three well-known methods (immersion in 2% glutaraldehyde for 10 h, autoclaving and microwave radiation). Non-sterilized impressions served as control. The effect of the tray material on impression accuracy and the effect of topical surfactant on the wettability were also evaluated. One-way ANOVA with Dunnett's method was used for statistical analysis. All sterilizing methods reduced the reproducibility of rubber impressions, although not always significantly. Microwave sterilization had a small effect on both accuracy and wettability. The greater effects of the other methods could usually be overcome by using ceramic trays and by spraying impression surfaces with surfactant before pouring the gypsum mix. There was one exception: glutaraldehyde still degraded dimensional accuracy even with ceramic trays and surfactant. We conclude that a) sterilization of rubber impressions made on acrylic trays was usually associated with a degree of dimensional change; b) microwave energy seems to be a suitable technique for sterilizing rubber impressions; c) topical surfactant application helped restore wettability of sterilized impressions. PMID:15798825

  5. Evaluation of guidewire path reproducibility.

    Science.gov (United States)

    Schafer, Sebastian; Hoffmann, Kenneth R; Noël, Peter B; Ionita, Ciprian N; Dmochowski, Jacek

    2008-05-01

    The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters approximately 4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (512(3), 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17 +/- 0.02 mm (plastic-coated guidewire), 0.73 +/- 0.55 mm (steel guidewire) and 1.15 +/- 0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position.

  6. Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen; Islam, Nazifah; Pan, Xuan; Zhu, Kai; Fan, Zhaoyang

    2016-07-08

    Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C, suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.

  7. Exocytosis and polarity in plant cells: insights by studying cellulose synthase complexes and the exocyst

    NARCIS (Netherlands)

    Ying Zhang, Ying

    2012-01-01

    The work presented in this thesis covers aspects of exocytosis, plant cell growth and cell wall formation. These processes are strongly linked as cell growth and cell wall formation occur simultaneously and exocytosis is the process that delivers cell wall components to the existing cell wall and in

  8. Distribution specificity of polarized populations of T helper cells in patients with chronic hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-long; FENG Xiao-rong; LU Qiao-sheng; LUO Kang-xian; FU Ning

    2001-01-01

    Objective: To investigate the roles of the polarized populations of T helper cells isolated from the peripheral blood mononuclear cells (PBMCs) of individuals with chronic hepatitis B virus (HBV) infection. Methods: PBMCs from patients with chronic HBV infection were separated routinely, stimulated by PMA, ionomycin and monensin, and the production of IL-4, IFN-γ and TGF-β by CD4+ T cells was observed by flow cytometry(FACS). Results: The percentages of the T cells producing IFN-γ, IL-4 or TGF-β ranged from 2.3% to 18.6%, 1.1% to 8.7% and 0.7% to 7.1% respectively among CD4+ cells from non-infected individuals. The majority of CD4+ T cells in PBMCs from individuals with chronic HBV infection were Th0 cells. The proportion of Th1 cells in patients with active chronic hepatitis B was higher than that in patients at inactive stage of the disease (P<0.05), indicating a significant elevation of Thl cells with the hepatic inflammation activity. The percentage of Th2 cells in individuals with HBV infection was higher than that in controls (P<0.05),but showed no difference between different patients (P>0.05). The percentage of Th3 cells was higher in asymptomatic HBV carriers than that in patients with chronic hepatitis B and in healthy controls (P<0.05). Conclusions: Th1-type cytokines are related with hepatic inflammation activity of chronic hepatitis B, and Th2 cells may be associated with the persistence of HBV infection. Th3 cells cooperating with Th2 cells are likely to function as negative immunoregulator, and may be responsible for the immune tolerance state of chronic HBV infection.

  9. Living Cells and Dynamic Molecules Observed with the Polarized Light Microscope: the Legacy of Shinya Inoué.

    Science.gov (United States)

    Tani, Tomomi; Shribak, Michael; Oldenbourg, Rudolf

    2016-08-01

    In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion that there are dynamic, fine structures inside living cells, in which molecular assemblies such as mitotic spindle fibers exist in delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 1980s, Inoué and others at the MBL were instrumental in conceiving video microscopy, a groundbreaking technique which married light microscopy and electronic imaging, ushering in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. Here, we recount some of Inoué's accomplishments and describe how his legacy has shaped current activities in polarized light imaging at the MBL. PMID:27638697

  10. Architectural Analysis of Picrosirius Red Stained Collagen in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma using Polarization Microscopy

    Science.gov (United States)

    Sharma, Rashi; Rehani, Shweta; Mehendiratta, Monica; Kumra, Madhumani; Mathias, Yulia; Yadav, Jyoti; Sahay, Khushboo

    2015-01-01

    Introduction Collagen degradation is important both for carcinogenesis and in its progression. Research regarding the co-relation of collagen with Oral Epithelial Dysplasia (OED) and Oral Squamous Cell Carcinoma (OSCC) is less explored. Aim To elucidate the nature of collagen in Oral Epithelial Dysplasia (OED) and Oral Squamous Cell Carcinoma (OSCC) using Picrosirius Red Stain (PSR) under polarizing microscopy. Materials and Methods The study consisted of a total 40 samples which were divided into three groups. Group I included buccal mucosa as negative and irritation fibroma as positive control, group II consisted of OED and group III consisted of Oral Squamous Cell Carcinoma (OSCC). A histochemical analysis was conducted using PSR-polarization method by two independent observers. Results The control group shows predominantly reddish–orange birefringence. In OED with the advancement of grades, the colour changed from yellowish-orange colour to yellow-greenish with progressive increase in greenish hue. As OSCC regresses from well to poorly differentiated, the colour changed from reddish-orange to yellowish orange to greenish-yellow suggesting a transition from mature to immature collagen. Conclusion An observable gradual change in collagen of both OED and OSCC was noted as they were proceeding from benign to critical step. Thus, PSR is a useful tool for studying stromal changes as supporting collagen shows the transition in the form besides the alterations in epithelial cells. PMID:26816897

  11. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila

    Directory of Open Access Journals (Sweden)

    Pedro Saavedra

    2016-04-01

    Full Text Available The epidermal patterns of all three larval instars (L1–L3 of Drosophila are made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.

  12. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2014-05-01

    Full Text Available Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b, with up-regulation of iNOS (inducible nitric oxide synthase, ARG (arginase and IL (interleukine-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide–IFNγ (interferon γ conditioned media] and C-CM (control-conditioned media induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.

  13. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular, def

  14. Review of Polarized Ion Sources

    Science.gov (United States)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  15. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. PMID:24821726

  16. The Cdc42 Guanine Nucleotide Exchange Factor FGD6 Coordinates Cell Polarity and Endosomal Membrane Recycling in Osteoclasts*

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-01-01

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. PMID:24821726

  17. Assessment of crystal quality and unit cell orientation in epitaxial Cu₂ZnSnSe₄ layers using polarized Raman scattering.

    Science.gov (United States)

    Krämmer, Christoph; Lang, Mario; Redinger, Alex; Sachs, Johannes; Gao, Chao; Kalt, Heinz; Siebentritt, Susanne; Hetterich, Michael

    2014-11-17

    We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu₂ZnSnSe₄ layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general. PMID:25402065

  18. Measurement of Reproducibility for CSRm Dipoles

    Institute of Scientific and Technical Information of China (English)

    SuYalong; HeYuan; YuanPing; MaLizhen; LiuWeijun; HanShaofei; ZhangSiling

    2003-01-01

    The reproducibility of CSRm dipoles is an important factor to be considered in CSR project. There have seventeen dipoles in the cooling storage main ring (CSRm). The reproducibility of seventeen dipoles should be better than 2×10-4 at the optimum magnetic held. The longest in the seventeen dipoles is chosen as the reference magnet;. The reproducibility is derived as

  19. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary

    Directory of Open Access Journals (Sweden)

    Tracy L. Meehan

    2015-12-01

    Full Text Available Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium.

  20. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Directory of Open Access Journals (Sweden)

    Liu Lei

    2008-12-01

    Full Text Available Abstract Background Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites" in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD can utilize directly infused or systemic neurotoxins. Results We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+ and UB-(+ aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. Conclusion Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a

  1. The ex vivo Microenviroments in MLTC of Poorly Immunogenic Tumor Cells Facilitate Polarization of CD4+CD25+ Regulatory T Cells

    Institute of Scientific and Technical Information of China (English)

    Le Zhou; Hongyan Wang; Juxiang Xiao; Lusheng Si; Yili Wang

    2006-01-01

    CD4+CD25+ regulatory T (TR) cells play an important role in maintaining a balanced peripheral immune system.Recent studies have shown that TR cells may also play a key role in suppressing anti-tumor immune response. In order to investigate the tumor immune microenvironment and its influence on TR polarization, poorly immunogenic tumor cell line D5 (C57BL/6, H-2b), immunogenic tumor cell lines FBL3 (C57BL/6, H-2b) and H22 BALB/c, H-2d) were used to establish the syngeneic/allogeneic, poorly immunogenic/immunogenic mixed lymphocytes-tumor cell culture (MLTC). Our results revealed that the proportion of CD4+CD25+ T cells in MLTC of syngeneic primed splenocytes stimulated with D5 tumor cells was higher than that with H22 cells (0.43% vs 0.044%, and the similar results appeared in allogeneic splenocytes stimulated with D5 tumor cells (0.39% vs 0.04%).The splenocytes stimulated with supernatant from syngeneic MLTC of D5 tumor cells demonstrated higher proportion of CD4+CD25+ cells than that from allogeneic MLTC of D5 tumor cells, and the splenocytes stimulated with supernatant from syngeneic or allogeneic MLTC of H22 tumor cells generated lower proportion of CD4+CD25+ T cells than that of D5 tumor cells. The TGF-β1 and Th2-oriented cytokines (IL-4 and IL-10) were dominated in supernatants of syngeneic MLTC of poorly immunogenic tumor cells. Our results provided useful information for studying the mechanisms underlying tumor immune surveillance as well as for the tumor immunotherapy.

  2. IL32 is progressively expressed in mycosis fungoides independent of helper T-cell 2 and helper T-cell 9 polarization.

    Science.gov (United States)

    Ohmatsu, Hanako; Humme, Daniel; Gulati, Nicholas; Gonzalez, Juana; Möbs, Markus; Suárez-Fariñas, Mayte; Cardinale, Irma; Mitsui, Hiroshi; Guttman-Yassky, Emma; Sterry, Wolfram; Krueger, James G

    2014-09-01

    Mycosis fungoides, the most common type of cutaneous T-cell lymphoma (CTCL), is characterized by a helper T-cell 2 (Th2) skewing with a mature CD4(+) memory T-cell phenotype. Using skin samples from patients with mycosis fungoides (n = 21), healthy volunteers (n = 17), and individuals with atopic dermatitis (n = 17) and psoriasis (n = 9), we found IL32 mRNA expression significantly higher in mycosis fungoides samples than in samples from benign inflammatory skin diseases, and its expression increases with disease progression. By IHC and immunofluorescence, we confirmed IL32 protein expression in many CD3(+)CD4(+) T cells and some epidermotropic T cells in mycosis fungoides lesions. MyLa cells (a mycosis fungoides cell line) express IL32, which, in turn, could promote cellular proliferation and viability in a dose-dependent fashion. IL32-treated MyLa and CTCL HH cells upregulated cell proliferation and survival genes. Of the major "polarizing" T-cell cytokines, only IFNγ mRNA increases with mycosis fungoides progression and positively correlates with IL32 mRNA expression. Th2 cytokines do not positively correlate with IL32 mRNA expression or mycosis fungoides progression. Furthermore, by flow cytometry, IL32 production by circulating activated T cells in healthy individuals was found in both IFNγ(+) and IFNγ(-) cells but not in IL4(+) or IL13(+) cells. In conclusion, we have identified IL32(+) cells as the likely tumor cells in mycosis fungoides, and demonstrated that IL32 mRNA expression increases with mycosis fungoides progression and is significantly higher than mRNA expression in other skin diseases, and that some IL32(+) T cells are independent from the defined Th subsets. Thus, IL32 may play a unique role in mycosis fungoides progression as an autocrine cytokine.

  3. CagA+ H pylori infection is associated with polarization of T helper cell immune responses in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Shu-Kui Wang; Hui-Fang Zhu; Bang-Shun He; Zhen-Yu Zhang; Zhi-Tan Chen; Zi-Zheng Wang; Guan-Ling Wu

    2007-01-01

    AIM: To characterize the immune responses including local and systemic immunity induced by infection with H pylori, especially with CagA+ H pylori strains and the underlying immunopathogenesis.METHODS: A total of 711 patients with different gastric lesions were recruited to determine the presence of H pylori infection and cytotoxin associated protein A (CagA), the presence of T helper (Th) cells and regulatory T (Treg)cells in peripheral blood mononuclear cells (PBMCs),expression of plasma cytokines, and RNA and protein expression of IFN-γ and IL-4 in gastric biopsies and PBMCs were determined by rapid urease test, urea [14C]breath test, immunoblotting test, flow cytometry, real time RT-PCR and immunohistochemistry.RESULTS: Of the patients, 629 (88.47%) were infected with H pylori; 506 (71.16%) with CagA+ and 123 (17.30%) with CagA- strains. Among patients infected with CagA+ H pylori strains, Th1-mediated cellular immunity was associated with earlier stages of gastric carcinogenesis, while Th2-mediated humoral immunity dominated the advanced stages and was negatively associated with an abundance of Treg cells. However,there was no such tendency in Th1/Th2 polarization in patients infected with CagA- H pylori strains and those without H pylori infection,CONCLUSION: Polarization of Th cell immune responses occurs in patients with CagA+ H pylori infection, which is associated with the stage and severity of gastric pathology during the progression of gastric carcinogenesis. This finding provides further evidence for a causal role of CagA+ H pylori infection in the immunopathogenesis of gastric cancer.

  4. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

    Science.gov (United States)

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI: http://dx.doi.org/10.7554/eLife.17200.001 PMID:27536874

  5. Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival.

    Directory of Open Access Journals (Sweden)

    Mário H M Barros

    Full Text Available Macrophages have been implicated in the pathogenesis of classical Hodgkin lymphoma (cHL and have been suggested to have a negative impact on outcome. Most studies addressing the role of macrophages in cHL have relied on identification of macrophages by generic macrophage antigens, e.g., CD68. We have therefore conducted an in situ analysis of macrophage polarization in a series of 100 pediatric cHL (pcHL cases using double staining immunohistochemistry, combining CD68 or CD163 with pSTAT1 (M1-like or CMAF (M2-like. M1- or M2-polarised microenvironment was defined by an excess of one population over the other (>1.5. Expression of STAT1 and LYZ genes was also evaluated by RT-qPCR. Patients 1.5 was associated with higher numbers of CD68+pSTAT1+ (P=0.025 and CD163+pSTAT1+ macrophages (P 1.5 was associated with better OS (P= 0.037. In conclusion, macrophage polarization in pcHL correlates with prevalent local T cell response and may be influenced by the EBV-status of neoplastic cells. Besides, M1-like and M2-like macrophages displayed differential effects on outcome in pcHL.

  6. Modifying the NH2 and COOH termini of aquaporin-5: effects on localization in polarized epithelial cells.

    Science.gov (United States)

    Wellner, Robert B; Hong, Sohee; Cotrim, Ana P; Swaim, William D; Baum, Bruce J

    2005-01-01

    To reengineer polarized epithelial cell functions directly in situ, or ex vivo in the fabrication of an artificial organ, it is necessary to understand mechanisms that account for polarized membrane sorting. We have used the aquaporins (AQPs), a family of homotetrameric water channel proteins, as model membrane proteins for this purpose. AQP monomers contain six transmembrane-spanning domains linked by five interconnecting loops, with the NH2 and COOH termini residing in the cytosol. AQP5 is localized in the apical membranes of several different epithelia in vivo, and in stably transfected MDCK-II cells grown as a polarized monolayer. We wished to identify a structural region(s) within rat AQP5 (rAQP5) important for apical localization, and to study the MDCK-II cell localization of rAQP5s modified in either their NH2 or COOH terminus. We show that the NH2- terminal region does not play a major role in apical localization as deletion of the NH2 terminus produced a modified rAQP5 construct (AQP5-NT(del)) that was stably expressed and localized primarily to the apical membranes of MDCK-II cells. Attachment of a FLAG epitope to the NH2 terminus of AQP5 (AQP5(flag) construct) also did not perturb apical localization. In addition, we found that the exchange of NH2-terminal regions between rAQP5 and human AQP1 (hAQP1; a nonpolarized AQP isoform) produced a modified rAQP5 construct (AQP5-1NT) and a modified hAQP1 construct (AQP1-5NT), each of which localized as the parental AQP (apically, and to both apical and basolateral membranes, respectively). In contrast, we found that deletion of the COOH terminus resulted in a modified rAQP5 construct (AQP5-CT(del)) that was unstably expressed and localized to intracellular site(s) in MDCK-II cells. Substitution of the COOH terminus of AQP1 with the COOH terminus of AQP5 also produced a construct (AQP1-5CT) transiently expressed in intracellular compartment(s). However, substitution of the COOH terminus of rAQP5 with the COOH

  7. Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell

    Directory of Open Access Journals (Sweden)

    L. Geng

    2013-04-01

    Full Text Available A compact circularly polarized (CP patch antenna using a composite right/left-handed (CRLH transmission line (TL unit-cell is proposed. The CRLH TL unit-cell includes a complementary split ring resonator (CSRR for shunt inductance and a gap loaded with a circular-shaped slot for series capacitance. The CSRR can decrease the TM10 mode resonance frequency, thus reducing the electrical size of the proposed antenna. In addition, the asymmetry of the CSRR brings about the TM01 mode, which can be combined with the TM10 mode by changing the slot radius. The combination of these two orthogonal modes with 90° phase shift makes the proposed antenna provide a CP property. The experimental results show that the proposed antenna has a wider axial ratio bandwidth and a smaller electrical size than the reported CP antennas. Moreover, the proposed antenna is designed without impedance transformer, 90° phase shift, dual feed and ground via.

  8. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage

    DEFF Research Database (Denmark)

    Li, Shaohua; Bordoy, Randi; Stanchi, Fabio;

    2005-01-01

    integrin or Ilk, loss of PINCH1 arrested development at the peri-implantation stage. In contrast to beta1 integrin or Ilk mutants, however, disruption of the PINCH1 gene produced implantation chambers with visible cell clumps even at embryonic day 9.5. In order to define the phenotype leading to the peri...

  9. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells.

    Science.gov (United States)

    Sun, Jun; Fegan, Pamela E; Desai, Anjali S; Madara, James L; Hobert, Michael E

    2007-03-01

    Salmonella typhimurium is a gram-negative enteric pathogen that invades the mucosal epithelium and is associated with diarrheal illness in humans. Flagellin from S. typhimurium and other gram-negative bacteria has been shown to be the predominant proinflammatory mediator through activation of the basolateral Toll-like receptor 5 (TLR5). Recent evidence has shown that prior exposure can render immune cells tolerant to subsequent challenges by TLR ligands. Accordingly, we examined whether prior exposure to purified flagellin would render human intestinal epithelial cells insensitive to future contact. We found that flagellin-induced tolerance is common to polarized epithelial cells and prevents further activation of proinflammatory signaling cascades by both purified flagellin and Salmonella bacteria but does not affect TNF-alpha stimulation of the same pathways. Flagellin tolerance is a rapid process that does not require protein synthesis, and that occurs within 1 to 2 h of flagellin exposure. Prolonged flagellin exposure blocks activation of the NF-kappaB, MAPK, and phosphoinositol 3-kinase signaling pathways and results in the internalization of a fraction of the basolateral TLR5 without affecting the polarity or total expression of TLR5. After removal of flagellin, cells require more than 24 h to fully recover their ability to mount a normal proinflammatory response. We have found that activation of phosphoinositol 3-kinase and Akt by flagellin has a small damping effect in the early stages of flagellin signaling but is not responsible for tolerance. Our study indicates that inhibition of TLR5-associated IL-1 receptor-associated kinase-4 activity occurs during the development of flagellin tolerance and is likely to be the cause of tolerance. PMID:17138965

  10. Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Strous, G J; van der Ende, A; Rottier, P J

    1994-01-01

    The transmissible gastroenteritis coronavirus (TGEV) infects the epithelial cells of the intestinal tract of pigs, resulting in a high mortality rate in piglets. This study shows the interaction of TGEV with a porcine epithelial cell line. To determine the site of viral entry, LLC-PK1 cells were gro

  11. Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility.

    Science.gov (United States)

    Zhang, Hong; Cheng, Jiaqi; Lin, Francis; He, Hexiang; Mao, Jian; Wong, Kam Sing; Jen, Alex K-Y; Choy, Wallace C H

    2016-01-26

    Recently, researchers have focused on the design of highly efficient flexible perovskite solar cells (PVSCs), which enables the implementation of portable and roll-to-roll fabrication in large scale. While NiOx is a promising material for hole transport layer (HTL) candidate for fabricating efficient PVSCs on a rigid substrate, the reported NiOx HTLs are formed using different multistep treatments (such as 300-500 °C annealing, O2-plasma, UVO, etc.), which hinders the development of flexible PVSCs based on NiOx. Meanwhile, the features of nanostructured morphology and flawless film quality are very important for the film to function as highly effective HTL of PVSCs. However, it is difficult to have the two features coexist natively, particularly in a solution process that flawless film will usually come with smooth morphology. Here, we demonstrate the flawless and surface-nanostructured NiOx film from a simple and controllable room-temperature solution process for achieving high performance flexible PVSCs with good stability and reproducibility. The power conversion efficiency (PCE) can reaches a promising value of 14.53% with no obvious hysteresis (and a high PCE of 17.60% for PVSC on ITO glass). Furthermore, the NiOx-based PVSCs show markedly improved air stability. Regarding the performance improvement, the flawless and surface-nanostructured NiOx film can make the interfacial recombination and monomolecular Shockley-Read-Hall recombination of PVSC reduce. In addition, the formation of an intimate junction of large interfacial area at NiOx film/the perovskite layer improve the hole extraction and thus PVSC performances. This work contributes to the evolution of flexible PVSCs with simple fabrication process and high device performances.

  12. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus.

    Science.gov (United States)

    Kühn, Juliane; Briegel, Ariane; Mörschel, Erhard; Kahnt, Jörg; Leser, Katja; Wick, Stephanie; Jensen, Grant J; Thanbichler, Martin

    2010-01-20

    The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer-forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet-like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin-like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod-shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon- or rod-like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways.

  13. The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells.

    Science.gov (United States)

    Heda, G D; Tanwani, M; Marino, C R

    2001-01-01

    Although the biosynthetic arrest of the DeltaF508 mutant of cystic fibrosis transmembrane conductance regulator (CFTR) can be partially reversed by physical and chemical means, recent evidence suggests that the functional stability of the mutant protein after reaching the cell surface is compromised. To understand the molecular basis for this observation, the current study directly measured the half-life of Delta F508 and wild-type CFTR at the cell surface of transfected LLC-PK(1) cells. Plasma membrane CFTR expression over time was characterized biochemically and functionally in these polarized epithelial cells. Surface biotinylation, streptavidin extraction, and quantitative immunoblot analysis determined the biochemical half-life of plasma membrane DeltaF508 CFTR to be approximately 4 h, whereas the plasma membrane half-life of wild-type CFTR exceeded 48 h. This difference in biochemical stability correlated with CFTR-mediated transport function. These findings indicate that the Delta F508 mutation decreases the biochemical stability of CFTR at the cell surface. We conclude that the Delta F508 mutation triggers more rapid internalization of CFTR and/or its preferential sorting to a pathway of rapid degradation. PMID:11121388

  14. Macrophage polarization in nerve injury:do Schwann cells play a role?

    Institute of Scientific and Technical Information of China (English)

    Jo Anne Stratton; Prajay T Shah

    2016-01-01

    In response to peripheral nerve injury, the inlfammatory response is almost entirely comprised of inifltrat-ing macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efifcient regen-eration. There are several cells within the microenvironment that likely interact with macrophages to support their function –most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  15. Radiation-Induced RhoGDIβ Cleavage Leads to Perturbation of Cell Polarity: A Possible Link to Cancer Spreading.

    Science.gov (United States)

    Fujiwara, Mamoru; Okamoto, Mayumi; Hori, Masato; Suga, Hiroshi; Jikihara, Hiroshi; Sugihara, Yuka; Shimamoto, Fumio; Mori, Toshio; Nakaoji, Koichi; Hamada, Kazuhiko; Ota, Takahide; Wiedemuth, Ralf; Temme, Achim; Tatsuka, Masaaki

    2016-11-01

    The equilibrium between proliferation and apoptosis is tightly balanced to maintain tissue homeostasis in normal tissues and even in tumors. Achieving and maintaining such a balance is important for cancer regrowth and spreading after cytotoxic treatments. Caspase-3 activation and tumor cell death following anticancer therapy as well as accompanying cell death pathways are well characterized, but their association to homeostasis of cancerous tissue and tumor progression remains poorly understood. Here we proposed a novel mechanism of cancer spreading induced by caspase-3. RhoGDIβ, known as a direct cleavage substrate of caspase-3, is overexpressed in many epithelial cancers. The N-terminal-truncated RhoGDIβ (ΔN-RhoGDIβ) is accumulated in caspase-3-activated cells. Stable expression of ΔN-RhoGDIβ in HeLa cells did not induce apoptosis, but impaired directional cell migration in a wound-healing assay accompanied by a perturbed direction of cell division at the wound edge. Subcellular protein fractionation experiments revealed that ΔN-RhoGDIβ but not wild-type RhoGDIβ was present in the detergent-soluble cytoplasmic and nuclear fractions and preferentially associated with Cdc42. Furthermore, Cdc42 activity was constitutively inhibited by stable expression of ΔN-RhoGDIβ, resulting in increased radiation-induced compensatory proliferation linking to RhoA activation. Thus, ΔN-RhoGDIβ dominant-negatively regulates Cdc42 activity and contributes to loss of polarity-related functions. The caspase-3-cleaved RhoGDIβ is a possible determinant to promote cancer spreading due to deregulation of directional organization of tumor cell population and inhibition of default equilibrium between proliferation and apoptosis after cytotoxic damage. J. Cell. Physiol. 231: 2493-2505, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919575

  16. Model for self-polarization and motility of keratocyte fragments

    KAUST Repository

    Ziebert, F.

    2011-10-19

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.

  17. Theory of reproducing kernels and applications

    CERN Document Server

    Saitoh, Saburou

    2016-01-01

    This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...

  18. Signaling through the G-protein-coupled receptor Rickets is important for polarity, detachment, and migration of the border cells in Drosophila.

    Science.gov (United States)

    Anllo, Lauren; Schüpbach, Trudi

    2016-06-15

    Cell migration plays crucial roles during development. An excellent model to study coordinated cell movements is provided by the migration of border cell clusters within a developing Drosophila egg chamber. In a mutagenesis screen, we isolated two alleles of the gene rickets (rk) encoding a G-protein-coupled receptor. The rk alleles result in border cell migration defects in a significant fraction of egg chambers. In rk mutants, border cells are properly specified and express the marker Slbo. Yet, analysis of both fixed as well as live samples revealed that some single border cells lag behind the main border cell cluster during migration, or, in other cases, the entire border cell cluster can remain tethered to the anterior epithelium as it migrates. These defects are observed significantly more often in mosaic border cell clusters, than in full mutant clusters. Reduction of the Rk ligand, Bursicon, in the border cell cluster also resulted in migration defects, strongly suggesting that Rk signaling is utilized for communication within the border cell cluster itself. The mutant border cell clusters show defects in localization of the adhesion protein E-cadherin, and apical polarity proteins during migration. E-cadherin mislocalization occurs in mosaic clusters, but not in full mutant clusters, correlating well with the rk border cell migration phenotype. Our work has identified a receptor with a previously unknown role in border cell migration that appears to regulate detachment and polarity of the border cell cluster coordinating processes within the cells of the cluster themselves.

  19. Effect of LDL concentration polarization on the uptake of LDL by human endothelial cells and smooth muscle cells co-cultured

    Institute of Scientific and Technical Information of China (English)

    Zufeng Ding; Yubo Fan; Xiaoyan Deng

    2009-01-01

    To substantiate our hypothesis that concentration polarization of low-density lipoprotein (LDL) plays an important role in the localization of atherogenesis, we investigated the effects of wall shear stress and water fdtration rate (or perfusion pressure) on the luminal surface LDL concentration (cw) and the LDL uptake by human vascular endothelial cells and smooth muscle cells co-cultured on a permeable membrane using a parallel-plate flow chamber technique and a flow cyto-metry method. The results indicated that the uptake of fluorescent labeled LDL (DiI-LDL) by the co-cultured cells was positively correlated with cw in a non-linear fashion. When cw was low, the uptake increased very sharply with increasing cw. Then the increase became gradual and the uptake was seemingly leveled out when cw reached beyond 160 μg/ml. The present study therefore has provided further experimental evidence that concentration polarization may occur in the arterial system and have a positive correlation with the uptake of LDLs by the arterial wall, which gives support to our hypothesis regarding the localization of atherogenesis.

  20. Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier.

    Science.gov (United States)

    Barrile, Riccardo; Kasendra, Magdalena; Rossi-Paccani, Silvia; Merola, Marcello; Pizza, Mariagrazia; Baldari, Cosima; Soriani, Marco; Aricò, Beatrice

    2015-09-01

    Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity. PMID:25801707

  1. Essential function for PDLIM2 in cell polarization in three-dimensional cultures by feedback regulation of the β1-integrin-RhoA signaling axis.

    Science.gov (United States)

    Deevi, Ravi Kiran; Cox, Orla T; O'Connor, Rosemary

    2014-05-01

    PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB) and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT). PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1) integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R) and Receptor of activated protein kinase C 1 (RACK1), which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK) and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase) activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK) was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium. PMID:24863845

  2. Essential Function for PDLIM2 in Cell Polarization in Three-Dimensional Cultures by Feedback Regulation of the β1-Integrin–RhoA Signaling Axis

    Directory of Open Access Journals (Sweden)

    Ravi Kiran Deevi

    2014-05-01

    Full Text Available PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT. PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1 integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R and Receptor of activated protein kinase C 1 (RACK1, which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.

  3. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production.

    Science.gov (United States)

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; van der Vlist, Michiel; Klaver, Elsenoor J; van Die, Irma; Vriend, Lianne E M; de Jong, Marein A W P; Geijtenbeek, Teunis B H

    2014-10-03

    Dendritic cells (DCs) orchestrate antibody-mediated responses to combat extracellular pathogens including parasites by initiating T helper cell differentiation. Here we demonstrate that carbohydrate-specific signalling by DC-SIGN drives follicular T helper cell (TFH) differentiation via IL-27 expression. Fucose, but not mannose, engagement of DC-SIGN results in activation of IKKε, which collaborates with type I IFNR signalling to induce formation and activation of transcription factor ISGF3. Notably, ISGF3 induces expression of IL-27 subunit p28, and subsequent IL-27 secreted by DC-SIGN-primed DCs is pivotal for the induction of Bcl-6(+)CXCR5(+)PD-1(hi)Foxp1(lo) TFH cells, IL-21 secretion by TFH cells and T-cell-dependent IgG production by B cells. Thus, we have identified an essential role for DC-SIGN-induced ISGF3 by fucose-based PAMPs in driving IL-27 and subsequent TFH polarization, which might be harnessed for vaccination design.

  4. Characterization and remote sensing of biological particles using circular polarization

    CERN Document Server

    Nagdimunov, Lev; Mackowski, Daniel

    2014-01-01

    Biological molecules are characterized by an intrinsic asymmetry known as homochirality. The result is optical activity of biological materials and circular polarization in the light scattered by microorganisms, cells of living organisms, as well as molecules (e.g. amino acids) of biological origin. Lab measurements (Sparks et al. 2009a, b) have found that light scattered by certain biological systems, in particular photosynthetic organisms, is not only circular polarized but contains a characteristic spectral trend, showing a fast change and reversal of sign for circular polarization within absorption bands. Similar behavior can be expected for other biological and prebiological organics, especially amino acids. We begin our study by reproducing the laboratory measurements for photosynthetic organisms through modeling the biological material as aggregated structures and using the Multiple Sphere T-matrix (MSTM) code for light scattering calculations. We further study how the spectral effect described above d...

  5. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    Science.gov (United States)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  6. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects.

    Science.gov (United States)

    Bosoi, Ciprian M; Capra, Valeria; Allache, Redouane; Trinh, Vincent Quoc-Huy; De Marco, Patrizia; Merello, Elisa; Drapeau, Pierre; Bassuk, Alexander G; Kibar, Zoha

    2011-12-01

    The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure, and has been implicated in the pathogenesis of neural tube defects (NTDs) in animal models and human cohorts. In this study, we analyzed the role of one core PCP gene PRICKLE1 in these malformations. We screened this gene in 810 unrelated NTD patients and identified seven rare missense heterozygous mutations that were absent in all controls analyzed and predicted to be functionally deleterious using bioinformatics. Functional validation of five PRICKLE1 variants in a zebrafish model demonstrated that one variant, p.Arg682Cys, antagonized the CE phenotype induced by the wild-type zebrafish prickle1a (zpk1a) in a dominant fashion. Our study demonstrates that PRICKLE1 could act as a predisposing factor to human NTDs and further expands our knowledge of the role of PCP genes in the pathogenesis of these malformations.

  7. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Soares-Silveira Alda

    2002-07-01

    Full Text Available Abstract Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ.

  8. (13)C dynamic nuclear polarization for measuring metabolic flux in endothelial progenitor cells

    DEFF Research Database (Denmark)

    Nielsen, Nathalie; Laustsen, Christoffer; Bertelsen, Lotte Bonde

    2016-01-01

    system with EPCs either adhered to 3D printed scaffolds or kept in cell suspension. The pyruvate-to-lactate conversion was elevated in suspension of EPCs compared to the EPCs adhered to scaffolds. Furthermore in the setup with EPCs in suspension, an increase in lactate production was seen over time...... suspension show a metabolism with higher lactate production consistent with cells senescence processes compared to cells grown first at 2D culture and subsequent in the 3D printed scaffolds method, where metabolism shows no sign of metabolic shifting during the monitored period....

  9. Examination of reproducibility in microbiological degredation experiments

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Spliid, Henrik; Holst, Helle;

    1998-01-01

    Experimental data indicate that certain microbiological degradation experiments have a limited reproducibility. Nine identical batch experiments were carried out on 3 different days to examine reproducibility. A pure culture, isolated from soil, grew with toluene as the only carbon and energy...

  10. Time- and polarization-resolved cellular autofluorescence towards quantitative biochemistry on living cells

    Science.gov (United States)

    Alfveby, John; TImerman, Randi; Soto Velasquez, Monica P.; Wickramasinghe, Dhanushka W. P. M.; Bartusek, Jillian; Heikal, Ahmed A.

    2014-09-01

    Native coenzymes such as the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide play pivotal roles in energy metabolism and a myriad of biochemical reactions in living cells/tissues. These coenzymes are naturally fluorescent and, therefore, have the potential to serve as intrinsic biomarkers for mitochondrial activities, programmed cell death (apoptosis), oxidative stress, aging, and neurodegenerative disease. In this contribution, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) and time-resolved anisotropy imaging of intracellular NADH for quantitative, non-invasive biochemistry on living cells in response to hydrogenperoxide- induced oxidative stress. In contrast with steady-state one-photon, UV-excited autofluorescence, two-photon FLIM is sensitive to both molecular conformation and stimuli-induced changes in the local environment in living cells with minimum photodamage and inherently enhanced spatial resolution. On the other hand, time-resolved, two-photon anisotropy imaging of cellular autofluorescence allows for quantitative assessment of binding state and environmental restrictions on the tumbling mobility of intrinsic NADH. Our measurements reveal that free and enzyme-bound NADH exist at equilibrium, with a dominant autofluorescence contribution of the bound fraction in living cells. Parallel studies on NADH-enzyme binding in controlled environments serve as a point of reference in analyzing autofluorescence in living cells. These autofluorescence-based approaches complement the conventional analytical biochemistry methods that require the destruction of cells/tissues, while serving as an important step towards establishing intracellular NADH as a natural biomarker for monitoring changes in energy metabolism and redox state of living cells in response to environmental hazards.

  11. Reproducibility principles, problems, practices, and prospects

    CERN Document Server

    Maasen, Sabine

    2016-01-01

    Featuring peer-reviewed contributions from noted experts in their fields of research, Reproducibility: Principles, Problems, Practices, and Prospects presents state-of-the-art approaches to reproducibility, the gold standard sound science, from multi- and interdisciplinary perspectives. Including comprehensive coverage for implementing and reflecting the norm of reproducibility in various pertinent fields of research, the book focuses on how the reproducibility of results is applied, how it may be limited, and how such limitations can be understood or even controlled in the natural sciences, computational sciences, life sciences, social sciences, and studies of science and technology. The book presents many chapters devoted to a variety of methods and techniques, as well as their epistemic and ontological underpinnings, which have been developed to safeguard reproducible research and curtail deficits and failures. The book also investigates the political, historical, and social practices that underlie repro...

  12. Explorations in statistics: statistical facets of reproducibility.

    Science.gov (United States)

    Curran-Everett, Douglas

    2016-06-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eleventh installment of Explorations in Statistics explores statistical facets of reproducibility. If we obtain an experimental result that is scientifically meaningful and statistically unusual, we would like to know that our result reflects a general biological phenomenon that another researcher could reproduce if (s)he repeated our experiment. But more often than not, we may learn this researcher cannot replicate our result. The National Institutes of Health and the Federation of American Societies for Experimental Biology have created training modules and outlined strategies to help improve the reproducibility of research. These particular approaches are necessary, but they are not sufficient. The principles of hypothesis testing and estimation are inherent to the notion of reproducibility in science. If we want to improve the reproducibility of our research, then we need to rethink how we apply fundamental concepts of statistics to our science.

  13. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka

    2014-03-01

    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  14. A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data

    Science.gov (United States)

    Doherty, R.; Kulessa, B.; Ferguson, A. S.; Larkin, M. J.; Kulakov, L. A.; Kalin, R. M.

    2010-09-01

    There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

  15. Anti-HMGB1 Neutralizing Antibody Ameliorates Neutrophilic Airway Inflammation by Suppressing Dendritic Cell-Mediated Th17 Polarization

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2014-01-01

    Full Text Available We demonstrate that high mobility group box 1 protein (HMGB1 directs Th17 skewing by regulating dendritic cell (DC function. First, our in vitro studies reveal that recombinant HMGB1 (rHMGB1 activates myeloid DCs to produce IL-23 in vitro, and rHMGB1-activated DCs prime naïve lymphocytes to produce the Th17 cytokine IL-17A. Second, we demonstrate that anti-HMGB1 neutralizing antibody attenuates HMGB1 expression, neutrophilic inflammation, airway hyperresponsiveness, and Th17-related cytokine secretion in vivo by using a murine model of neutrophilic asthma induced by ovalbumin (OVA plus lipopolysaccharide (LPS. Furthermore, anti-HMGB1 neutralizing antibody decreases the number of Th17 cells in lung cells and suppresses the production of IL-23 by lung CD11C+ APCs. Finally, we show that intranasal adoptive transfer of rHMGB1-activated DCs was sufficient to restore lung neutrophilic inflammation and the Th17 response in a DC-driven model of asthma, whereas the transfer of rHMGB1 plus anti-HMGB1-treated mDCs significantly reduced these inflammation phenotypes. These data suggest, for the first time, that HMGB1 drives the DC-polarized Th17-type response in allergic lung inflammation and that blocking HMGB1 may benefit the attenuation of neutrophilic airway inflammation in asthma.

  16. Long Polar Fimbriae participates in the induction of neutrophils transepithelial migration across intestinal cells infected with enterohemorrhagic E. coli O157:H7

    Directory of Open Access Journals (Sweden)

    Alejandra eVergara

    2015-01-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC strains are causative agents of diarrhea and hemorrhagic colitis, both diseases associated with intestinal inflammation and cell damage. Several studies have correlated EHEC virulence factors to high levels of intestinal pro-inflammatory cytokines and we have previously described that the Long polar fimbriae (Lpf is involved in the secretion of interleukin-8 (IL-8 and up-regulation of genes belonging to the NF-κB pathway using non-polarized epithelial intestinal T84 cells. In the current study, we evaluated the two EHEC O157 Lpf fimbriae (Lpf1 and Lpf2 for their ability to induce intestinal secretion of IL-8 and the activation of IL8, CCL20 and ICAM1 genes on polarized T84 cells. We also determined the participation of Lpf1 and Lpf2 in transepithelial migration of polymorphonuclear neutrophils (PMNs. Polarized T84 cells infected with EHEC revealed that both, Lpf1 and Lpf2, were required for the secretion of IL-8 and the induction of IL8, CCL20 and ICAM1 genes. Both fimbriae also played a role in the migration of PMNs trough the intestinal cells monolayer. Overall, the present work further demonstrated that the fimbriae Lpf1 and Lpf2 are important bacterial virulence factors that might be involved in the inflammatory responses associated with EHEC infections.

  17. Long polar fimbriae participates in the induction of neutrophils transepithelial migration across intestinal cells infected with enterohemorrhagic E. coli O157:H7.

    Science.gov (United States)

    Vergara, Alejandra F; Vidal, Roberto M; Torres, Alfredo G; Farfan, Mauricio J

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains are causative agents of diarrhea and hemorrhagic colitis, both diseases associated with intestinal inflammation and cell damage. Several studies have correlated EHEC virulence factors to high levels of intestinal pro-inflammatory cytokines and we have previously described that the Long polar fimbriae (Lpf) is involved in the secretion of interleukin-8 (IL-8) and up-regulation of genes belonging to the NF-κB pathway using non-polarized epithelial intestinal T84 cells. In the current study, we evaluated the two EHEC O157 Lpf fimbriae (Lpf1 and Lpf2) for their ability to induce intestinal secretion of IL-8 and the activation of IL8, CCL20, and ICAM1 genes on polarized T84 cells. We also determined the participation of Lpf1 and Lpf2 in transepithelial migration of polymorphonuclear neutrophils (PMNs). Polarized T84 cells infected with EHEC revealed that both, Lpf1 and Lpf2, were required for the secretion of IL-8 and the induction of IL8, CCL20, and ICAM1 genes. Both fimbriae also played a role in the migration of PMNs trough the intestinal cells monolayer. Overall, the present work further demonstrated that the fimbriae Lpf1 and Lpf2 are important bacterial virulence factors that might be involved in the inflammatory responses associated with EHEC infections.

  18. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore;

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...

  19. APORT: a program for the area-based apportionment of county variables to cells of a polar grid. [Airborne pollutant transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D.E.; Little, C.A.

    1978-11-01

    The APORT computer code was developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summaries of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer, compare favorably to results of manual computations in both speed and accuracy.

  20. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    Directory of Open Access Journals (Sweden)

    G. Peng

    2013-05-01

    Full Text Available A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR is available for climate studies, monitoring, and model validation with an initial operation capability (IOC. The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC polar stereographic grid with nominal 25 × 25 km grid cells in both the Southern and Northern Hemisphere Polar Regions from 9 July 1987 to 31 December 2007 with an update through 2011 underway. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Oceanic and Atmospheric Administration (NOAA's National Climatic Data Center (NCDC under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html. The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The dataset along with detailed data processing steps and error source information can be found at: doi:10.7265/N5B56GN3.

  1. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6-/- shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand.

    Science.gov (United States)

    Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R

    2016-02-15

    The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5-DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal-distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160

  2. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6−/− shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand

    Science.gov (United States)

    Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R.

    2016-01-01

    The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160

  3. Effect of ethanol on pro-apoptotic mechanisms in polarized hepatic cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chronic ethanol consumption is associated with serious and potentially fatal alcohol-related liver injuries such as hepatomegaly, alcoholic hepatitis and cirrhosis. Moreover,it has been documented that the clinical progression of alcohol-induced liver damage may be associated with an increase in hepatocellular death that involves apoptotic mechanisms. Although much information has been learned about the clinical manifestations associated with alcohol-related diseases, the search continues for a better understanding of the molecular and/or cellular mechanisms by which ethanol exerts its deleterious effects such as the induction of pro-apoptotic mechanisms and related cell damaging events. As part of the effort to enhance our understanding of those particular cellular pathways and mechanisms associated with ethanol toxicity, researchers over the years have utilized a variety of model systems. Recently, work has come forth demonstrating the utility of a hybrid cell line (WIF-B) as a cell culture model system for the study of alcohol-associated alterations in hepatocellular mechanisms. Success with such emerging model systems could aid in the development of potential therapeutic treatments for the prevention of alcoholinduced apoptotic cell death that may ultimately serve as a significant target in delaying the onset and/or progression of clinical symptoms of alcohol-mediated liver disease. This review article summarizes the current understanding of ethanol-mediated modifications in cell survival and thus the promotion of pro-apoptotic events with emphasis on analyses made in various experimental model systems, particularly the more recently characterized WIF-B cell system.

  4. Apical localization of PMCA2w/b is enhanced in terminally polarized MDCK cells

    OpenAIRE

    Antalffy, Géza; Caride, Ariel J.; Pászty, Katalin; Hegedus, Luca; Padanyi, Rita; STREHLER, EMANUEL E.; Enyedi, Ágnes

    2011-01-01

    The “w” splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amoun...

  5. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line.

    Science.gov (United States)

    Traber, M G; Kayden, H J; Rindler, M J

    1987-11-01

    Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control

  6. Spin-polarized lithium diffusion in a glass hot-vapor cell

    Science.gov (United States)

    Ishikawa, Kiyoshi

    2016-08-01

    We report diffusion coefficients of optically pumped lithium atoms in helium buffer gas. The free-induction decay and the spin-echo signals of ground-state atoms were optically detected in an external magnetic field with the addition of field gradient. Lithium hot vapor was produced in a borosilicate-glass cell at a temperature between 290 and 360°C. The simple setup using the glass cells enabled lithium atomic spectroscopy in a similar way to other alkali-metal atoms and study of the collisional properties of lithium atoms in a hot-vapor phase.

  7. Generation of IL-8 and IL-9 Producing CD4+ T Cells Is Affected by Th17 Polarizing Conditions and AHR Ligands

    Directory of Open Access Journals (Sweden)

    Michaela Gasch

    2014-01-01

    Full Text Available The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells under in vitro conditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.

  8. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins.

    Science.gov (United States)

    Grosse, Brigitte; Degrouard, Jeril; Jaillard, Danielle; Cassio, Doris

    2013-10-01

    Tight junctions (TJs) of cells expressing simple epithelial polarity have been extensively studied, but less is known about TJs of cells expressing complex polarity. In this paper we analyzed, TJs of four different lines, that form bile canaliculi (BC) and express typical hepatocyte polarity; WIF-B9, 11-3, Can 3-1, Can 10. Striking differences were observed in claudin expression. None of the cell lines produced claudin-1. WIF-B9 and 11-3 expressed only claudin-2 while Can 3-1 and Can 10 expressed claudin-2,-3,-4,-5. TJs of these two classes of lines differed in their ultra-stucture, paracellular permeability, and robustness. Lines expressing a large claudin repertoire, especially Can 10, had complex and efficient TJs, that were maintained when cells were depleted in calcium. Inversely, TJs of WIF-B9 and 11-3 were leaky, permissive and dismantled by calcium depletion. Interestingly, we found that during the polarization process, TJ proteins expressed by all lines were sequentially settled in a specific order: first occludin, ZO-1 and cingulin, then JAM-A and ZO-2, finally claudin-2. Claudins expressed only in Can lines were also sequentially settled: claudin-3 was the first settled. Inhibition of claudin-3 expression delayed BC formation in Can10 and induced the expression of simple epithelial polarity. These results highlight the role of claudins in the settlement and the efficiency of TJs in lines expressing typical hepatocyte polarity. Can 10 seems to be the most promising of these lines because of its claudin repertoire near that of hepatocytes and its capacity to form extended tubular BC sealed by efficient TJs. PMID:24665408

  9. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco;

    2013-01-01

    Monocyte-derived dendritic cells (DCs) used for immunotherapy e.g. against cancer are commonly matured by pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and prostaglandin E2 although the absence of Toll-like receptor mediated activation prevents secretion of IL-12 from DCs and subsequent efficie...

  10. Thou Shalt Be Reproducible! A Technology Perspective

    Directory of Open Access Journals (Sweden)

    Patrick Mair

    2016-07-01

    Full Text Available This article elaborates on reproducibility in psychology from a technological viewpoint. Modernopen source computational environments are shown and explained that foster reproducibilitythroughout the whole research life cycle, and to which emerging psychology researchers shouldbe sensitized, are shown and explained. First, data archiving platforms that make datasets publiclyavailable are presented. Second, R is advocated as the data-analytic lingua franca in psychologyfor achieving reproducible statistical analysis. Third, dynamic report generation environments forwriting reproducible manuscripts that integrate text, data analysis, and statistical outputs such asfigures and tables in a single document are described. Supplementary materials are provided inorder to get the reader started with these technologies.

  11. The Economics of Reproducibility in Preclinical Research.

    Directory of Open Access Journals (Sweden)

    Leonard P Freedman

    2015-06-01

    Full Text Available Low reproducibility rates within life science research undermine cumulative knowledge production and contribute to both delays and costs of therapeutic drug development. An analysis of past studies indicates that the cumulative (total prevalence of irreproducible preclinical research exceeds 50%, resulting in approximately US$28,000,000,000 (US$28B/year spent on preclinical research that is not reproducible-in the United States alone. We outline a framework for solutions and a plan for long-term improvements in reproducibility rates that will help to accelerate the discovery of life-saving therapies and cures.

  12. Feline and canine coronaviruses are released from the basolateral side of polarized epithelial LLC-PK1 cells expressing the recombinant feline aminopeptidase-N cDNA

    NARCIS (Netherlands)

    Rossen, J W; Kouame, J; Goedheer, A J; Vennema, H; Rottier, P J

    2001-01-01

    In this study feline (FECV and FIPV) and canine (CCoV) coronavirus entry into and release from polarized porcine epithelial LLC-PK1 cells, stably expressing the recombinant feline aminopeptidase-N cDNA, were investigated. Virus entry appeared to occur preferentially through the apical membrane, simi

  13. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    Science.gov (United States)

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  14. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell

    OpenAIRE

    Armenti, Stephen T.; Chan, Emily; Nance, Jeremy

    2014-01-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the C. elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of ei...

  15. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    Directory of Open Access Journals (Sweden)

    Benita L. McVicker

    2012-01-01

    Full Text Available Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs. However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38 and Fao rat hepatoma cells. An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P<0.05 in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis.

  16. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    Science.gov (United States)

    McVicker, Benita L.; Rasineni, Karuna; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2012-01-01

    Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs). However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38) and Fao rat hepatoma cells). An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P < 0.05) in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis. PMID:22506128

  17. Thou Shalt Be Reproducible! A Technology Perspective.

    Science.gov (United States)

    Mair, Patrick

    2016-01-01

    This article elaborates on reproducibility in psychology from a technological viewpoint. Modern open source computational environments are shown and explained that foster reproducibility throughout the whole research life cycle, and to which emerging psychology researchers should be sensitized, are shown and explained. First, data archiving platforms that make datasets publicly available are presented. Second, R is advocated as the data-analytic lingua franca in psychology for achieving reproducible statistical analysis. Third, dynamic report generation environments for writing reproducible manuscripts that integrate text, data analysis, and statistical outputs such as figures and tables in a single document are described. Supplementary materials are provided in order to get the reader started with these technologies. PMID:27471486

  18. Reproducibility Experiment of OSL and TL Dosimeter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Reproducibility is an important property of personal dosimeter. It not only can indicate the stability of dosimeter, appraise the precision and accuracy of measured value, but also can evaluate the

  19. Transparent, reproducible and reusable research in pharmacoepidemiology

    NARCIS (Netherlands)

    Gardarsdottir, Helga; Sauer, Brian C.; Liang, Huifang; Ryan, Patrick; Klungel, Olaf; Reynolds, Robert

    2012-01-01

    Background: Epidemiological research has been criticized as being unreliable. Scientific evidence is strengthened when the study procedures of important findings are transparent, open for review, and easily reproduced by different investigators and in various settings. Studies often have common scie

  20. Reproducible statistical analysis with multiple languages

    DEFF Research Database (Denmark)

    Lenth, Russell; Højsgaard, Søren

    2011-01-01

    This paper describes the system for making reproducible statistical analyses. differs from other systems for reproducible analysis in several ways. The two main differences are: (1) Several statistics programs can be in used in the same document. (2) Documents can be prepared using OpenOffice or ......This paper describes the system for making reproducible statistical analyses. differs from other systems for reproducible analysis in several ways. The two main differences are: (1) Several statistics programs can be in used in the same document. (2) Documents can be prepared using Open......Office or \\LaTeX. The main part of this paper is an example showing how to use and together in an OpenOffice text document. The paper also contains some practical considerations on the use of literate programming in statistics....

  1. Thou Shalt Be Reproducible! A Technology Perspective

    Science.gov (United States)

    Mair, Patrick

    2016-01-01

    This article elaborates on reproducibility in psychology from a technological viewpoint. Modern open source computational environments are shown and explained that foster reproducibility throughout the whole research life cycle, and to which emerging psychology researchers should be sensitized, are shown and explained. First, data archiving platforms that make datasets publicly available are presented. Second, R is advocated as the data-analytic lingua franca in psychology for achieving reproducible statistical analysis. Third, dynamic report generation environments for writing reproducible manuscripts that integrate text, data analysis, and statistical outputs such as figures and tables in a single document are described. Supplementary materials are provided in order to get the reader started with these technologies. PMID:27471486

  2. The Balance Between the Novel Protein Target of Wingless and the Drosophila Rho-Associated Kinase Pathway Regulates Planar Cell Polarity in the Drosophila Wing

    OpenAIRE

    Chung, SeYeon; Kim, Sangjoon; Yoon, Jeongsook; Adler, Paul N.; Yim, Jeongbin

    2007-01-01

    Planar cell polarity (PCP) signaling is mediated by the serpentine receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling utilizes Drosophila Frizzled 2 (DFz2) as a receptor and also requires Dsh for transducing signals to regulate cell proliferation and differentiation in many developmental contexts. Distinct pathways are activated downstream of Dsh in Wg- and Fz-signaling pathways. Recently, a number of genes, which have essential roles as downstream components ...

  3. The role for HNF-1beta-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells.

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    Full Text Available Collectrin, a homologue of angiotensin converting enzyme 2 (ACE2, is a type I transmembrane protein, and we originally reported its localization to the cytoplasm and apical membrane of collecting duct cells. Recently, two independent studies of targeted disruption of collectrin in mice resulted in severe and general defects in renal amino acid uptake. Collectrin has been reported to be under the transcriptional regulation by HNF-1alpha, which is exclusively expressed in proximal tubules and localized at the luminal side of brush border membranes. The deficiency of collectrin was associated with reduction of multiple amino acid transporters on luminal membranes. In the current study, we describe that collectrin is a target of HNF-1beta and heavily expressed in the primary cilium of renal collecting duct cells. Collectrin is also localized in the vesicles near the peri-basal body region and binds to gamma-actin-myosin II-A, SNARE, and polycystin-2-polaris complexes, and all of these are involved in intracellular and ciliary movement of vesicles and membrane proteins. Treatment of mIMCD3 cells with collectrin siRNA resulted in defective cilium formation, increased cell proliferation and apoptosis, and disappearance of polycystin-2 in the primary cilium. Suppression of collectrin mRNA in metanephric culture resulted in the formation of multiple longitudinal cysts in ureteric bud branches. Taken together, the cystic change and formation of defective cilium with the interference in the collectrin functions would suggest that it is necessary for recycling of the primary cilia-specific membrane proteins, the maintenance of the primary cilia and cell polarity of collecting duct cells. The transcriptional hierarchy between HNF-1beta and PKD (polycystic kidney disease genes expressed in the primary cilia of collecting duct cells has been suggested, and collectrin is one of such HNF-1beta regulated genes.

  4. The role for HNF-1beta-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells.

    Science.gov (United States)

    Zhang, Yanling; Wada, Jun; Yasuhara, Akihiro; Iseda, Izumi; Eguchi, Jun; Fukui, Kenji; Yang, Qin; Yamagata, Kazuya; Hiesberger, Thomas; Igarashi, Peter; Zhang, Hong; Wang, Haiyan; Akagi, Shigeru; Kanwar, Yashpal S; Makino, Hirofumi

    2007-01-01

    Collectrin, a homologue of angiotensin converting enzyme 2 (ACE2), is a type I transmembrane protein, and we originally reported its localization to the cytoplasm and apical membrane of collecting duct cells. Recently, two independent studies of targeted disruption of collectrin in mice resulted in severe and general defects in renal amino acid uptake. Collectrin has been reported to be under the transcriptional regulation by HNF-1alpha, which is exclusively expressed in proximal tubules and localized at the luminal side of brush border membranes. The deficiency of collectrin was associated with reduction of multiple amino acid transporters on luminal membranes. In the current study, we describe that collectrin is a target of HNF-1beta and heavily expressed in the primary cilium of renal collecting duct cells. Collectrin is also localized in the vesicles near the peri-basal body region and binds to gamma-actin-myosin II-A, SNARE, and polycystin-2-polaris complexes, and all of these are involved in intracellular and ciliary movement of vesicles and membrane proteins. Treatment of mIMCD3 cells with collectrin siRNA resulted in defective cilium formation, increased cell proliferation and apoptosis, and disappearance of polycystin-2 in the primary cilium. Suppression of collectrin mRNA in metanephric culture resulted in the formation of multiple longitudinal cysts in ureteric bud branches. Taken together, the cystic change and formation of defective cilium with the interference in the collectrin functions would suggest that it is necessary for recycling of the primary cilia-specific membrane proteins, the maintenance of the primary cilia and cell polarity of collecting duct cells. The transcriptional hierarchy between HNF-1beta and PKD (polycystic kidney disease) genes expressed in the primary cilia of collecting duct cells has been suggested, and collectrin is one of such HNF-1beta regulated genes. PMID:17476336

  5. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: Molecular correlates for Th1/Th2 polarization

    NARCIS (Netherlands)

    Riet, E. van; Everts, B.; Retra, K.; Phylipsen, M.; Hellemond, J.J. van; Tielens, A.G.M.; Kleij, D. van der; Hartgers, F.C.; Yazdanbakhsh, M.

    2009-01-01

    Background: Recognition of pathogens by dendritic cells (DCs) through interaction with pattern recognition receptors, including Toll like receptors (TLR), is crucial for the initiation of appropriate polarized T helper (Th) cell responses. Yet, the characteristics and differences in molecular profil

  6. Apico-basal polarity complex and cancer

    Indian Academy of Sciences (India)

    Mohammed Khursheed; Murali Dharan Bashyam

    2014-03-01

    Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGF, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.

  7. crumbs and stardust, two genes of Drosophila required for the development of epithelial cell polarity.

    Science.gov (United States)

    Knust, E; Tepass, U; Wodarz, A

    1993-01-01

    Loss-of-function mutations in the Drosophila genes crumbs and stardust are embryonic lethal and cause a breakdown of ectodermally derived epithelia during organogenesis, leading to formation of irregular cell clusters and extensive cell death in some epithelia. The mutant phenotype develops gradually and affects the various epithelia to different extents. crumbs encodes a large transmembrane protein with 30 EGF-like repeats and four laminin A G-domain-like repeats in its extracellular domain, suggesting its participation in protein-protein interactions. The CRUMBS protein is exclusively expressed on the apical membrane of all ectodermally derived epithelia, the tissues affected in crumbs and stardust mutant embryos. The gene function is completely abolished by a crumbs mutation that causes production of a protein with a truncated cytoplasmic domain. Instead of being apically localized as in wild-type, the mutant CRUMBS protein is diffusely distributed in the cytoplasm; this occurs before any morphologically detectable cellular phenotype is visible, suggesting that targeting of proteins is affected in crumbs mutant embryos. Later, the protein can be detected on the apical and basolateral membranes. Mutations in stardust produce a phenotype nearly identical to that associated with crumbs mutations, suggesting that both genes are functionally related. Double mutant combinations and gene dosage studies suggest that both genes are part of a common genetic pathway, in which stardust acts downstream of crumbs.

  8. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

    Science.gov (United States)

    Pham, Cau D; Yu, Zhanyang; Sandrock, Björn; Bölker, Michael; Gold, Scott E; Perlin, Michael H

    2009-07-01

    Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.

  9. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells.

    Science.gov (United States)

    Eaves-Pyles, Tonyia; Allen, Christopher A; Taormina, Joanna; Swidsinski, Alexander; Tutt, Christopher B; Jezek, G Eric; Islas-Islas, Martha; Torres, Alfredo G

    2008-07-01

    Inflammatory diseases of the intestinal tract are a major health concern both in the United States and around the world. Evidence now suggests that a new category of Escherichia coli, designated Adherent Invasive E. coli (AIEC) is highly prevalent in Crohn's Disease (CD) patients. AIEC strains have been shown to colonize and adhere to intestinal epithelial cells (IEC). However, the role AIEC strains play in the induction of an inflammatory response is not known. Therefore, we examined several E. coli strains (designated LF82, O83:H1, 6604 and 6655) that were isolated from CD patients for their ability to induce inflammation in two IEC, Caco-2BBe and T-84 cells. Results showed that each strain had varying abilities to adhere to and invade IEC as well as induced cytokine secretion from polarized IEC. However, E. coli O83:H1 displayed the best characteristics of AIEC strains as compared to the prototype AIEC strain LF82, inducing cytokine secretion from IEC and promoting immune cell migration through IEC. Upon further analysis, E. coli O83:H1 did not harbor virulence genes present in known pathogenic intestinal organisms. Further characterization of E. coli O83:H1 virulence determinants showed that a non-flagellated O83:H1 strain significantly decreased the organism's ability to adhere to and invade both IEC and elicit IEC cytokine secretion compared to the wild type and complemented strains. These findings demonstrate that E. coli O83:H1 possesses the characteristics of the AIEC LF82 strain that may contribute to the low-grade, chronic inflammation observed in Crohn's disease. PMID:17900983

  10. PURIFIED POLAR POLYFLUORENE FOR LIGHT-EMITTING DIODES AND LIGHT-EMITTING ELECTROCHEMICAL CELLS

    Institute of Scientific and Technical Information of China (English)

    Ming-liang Sun; Cheng-mei Zhong; Feng Li; Qi-bing Pei

    2012-01-01

    Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladiumcatalyzed Suzuki coupling reaction.The polymer is purified carefully by a simple chemical procedure.The inductively coupled plasma (ICP) test shows palladium-catalyst in the polymer can be removed by this procedure.The thermal properties,electrochemical properties,UV-Vis absorption properties,photoluminescence properties and electroluminescent properties of the polymer without (EO-PF1) or with purification (EO-PF2) are studied.EO-PF2 shows better PL CIE coordinates in THF solutions as blue light-emitting materials and better photoluminescence stability in thin solid films.Polymer light emitting diodes and electrochemical cells based on EO-PF2 exhibit somewhat improved optoelectronic performance than control devices of EO-PF1.

  11. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet;

    2016-01-01

    Abstract: The working efficiency of dye-sensitized solar cells (DSCs) depends on the long-term stability of the dye itself and on the microscopic structure of the dye-semiconductor interface. Previous experimental studies of DSCs based on ruthenium dye with bipyridine ligands (N719) adsorbed...... of the scattered light is generally different from the polarization of the laser light. When the excitation is chosen within the visible absorption band of N719 only the skeleton ring-modes in N719 are enhanced and are observed as the most intense bands in the RRS spectra. We demonstrate by experimental results...... the adsorption of the dye on TiO2 can be obtained. Furthermore it is found that the polarization fluorescence anisotropy is very different for adsorbed and non-adsorbed dye molecules. This information is automatically obtained when processing the Raman data. The conclusion is that if the polarization properties...

  12. Lethal(2)giant larvae is required in the follicle cells for formation of the initial AP asymmetry and the oocyte polarity during Drosophila oogenesis

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Tianchi Xin; Wenlian Chen; Mingwei Zhu; Mingfa Li

    2008-01-01

    The intricately regulated differentiation of the somatic follicle cell lineages into distinct subpopulations with specific functions plays an essential role in Drosophila egg development. At early oogenesis, induction of the stalk cells generates the first anteroposterior (AP) asymmetry in the egg chamber by inducing the posterior localization of the oocyte. Later, the properly specified posterior follicle cells signal to polarize the oocyte along the AP and dorsoventral (DV) axes at mid-oogenesis. Here, we show that lethal(2)giant larvae (Igt), a Drosophila tumor suppressor gene, is required in the follicle cells for the differentiation of both stalk cells and posterior follicle cells. Loss-of-function mutations in Igl cause oocyte mispositioning in the younger one of the fused chambers, due to lack of the stalk. Removal of Igl function from the posterior follicle cells using the FLP/FRT system results in loss of the oocyte polarity that is elicited by the failure of those posterior cells to differentiate normally. Thus, we provide the first demonstration that Igl is implicated in the formation of the initial AP asymmetry and the patterning of the AP and DV axes in the oocyte by acting in the specification of a subset of somatic follicle cells.

  13. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells

    Science.gov (United States)

    Tonucci, Facundo M.; Hidalgo, Florencia; Ferretti, Anabela; Almada, Evangelina; Favre, Cristián; Goldenring, James R.; Kaverina, Irina; Kierbel, Arlinet; Larocca, M. Cecilia

    2015-01-01

    ABSTRACT The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus–centrosome–Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus–centrosome–Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4–AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality. PMID:26208639

  14. Explorations in statistics: statistical facets of reproducibility.

    Science.gov (United States)

    Curran-Everett, Douglas

    2016-06-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eleventh installment of Explorations in Statistics explores statistical facets of reproducibility. If we obtain an experimental result that is scientifically meaningful and statistically unusual, we would like to know that our result reflects a general biological phenomenon that another researcher could reproduce if (s)he repeated our experiment. But more often than not, we may learn this researcher cannot replicate our result. The National Institutes of Health and the Federation of American Societies for Experimental Biology have created training modules and outlined strategies to help improve the reproducibility of research. These particular approaches are necessary, but they are not sufficient. The principles of hypothesis testing and estimation are inherent to the notion of reproducibility in science. If we want to improve the reproducibility of our research, then we need to rethink how we apply fundamental concepts of statistics to our science. PMID:27231259

  15. Experimental reproducibility analysis in DU hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Park, Jongcheol; Chung, Hongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A storage and delivery system (SDS) is used for storing hydrogen isotopes as a metal hydride form. The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. For the storage, supply, and recovery of hydrogen isotopes, depleted uranium (DU) has been extensively proposed. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. The experimental reproducibility of apparatus was acceptable for all the experiments. The experimental reproducibility of tank pressure on DU hydriding was analyzed. As the hydriding performs, the tank pressure showed decreasing trend. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. As the hydriding performs, the bed temperatures increased up to maximum temperature with exothermic reaction and then they showed decreasing trend. The experimental reproducibility of apparatus was acceptable for all the experiments.

  16. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells.

    Science.gov (United States)

    Zhao, Guangfeng; Miao, Huishuang; Li, Xiujun; Chen, Shiwen; Hu, Yali; Wang, Zhiqun; Hou, Yayi

    2016-06-01

    Abnormal macrophage polarization at the maternal-fetal interface may contribute to the development of Preeclampsia (PE). The reason why macrophage polarization changed in PE is still unclear. Decidual mesenchymal stem cells (dMSCs) could regulate macrophage polarization. However, miRNA in dMSCs of PE were maladjusted. Therefore, we speculated that miRNA may affect dMSC-regulated macrophage polarization. In this study, we found that miR-494-overexpressed dMSCs inhibit M2 macrophage polarization and this inhibitory effect is mediated by miR-494-reduced PGE2 secretion. Furthermore, we proved that miR-494 is induced by TGF-β3. In summary, our findings suggest that the high expression of TGF-β3 in PE decidua stimulates miR-494 in dMSCs and attenuates the regulation of MSC switching the macrophage toward M2 type, contributing to an immune imbalance at maternal-fetal interface. PMID:27149081

  17. The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila.

    Science.gov (United States)

    Gombos, Rita; Migh, Ede; Antal, Otilia; Mukherjee, Anindita; Jenny, Andreas; Mihály, József

    2015-07-15

    Recent studies established that the planar cell polarity (PCP) pathway is critical for various aspects of nervous system development and function, including axonal guidance. Although it seems clear that PCP signaling regulates actin dynamics, the mechanisms through which this occurs remain elusive. Here, we establish a functional link between the PCP system and one specific actin regulator, the formin DAAM, which has previously been shown to be required for embryonic axonal morphogenesis and filopodia formation in the growth cone. We show that dDAAM also plays a pivotal role during axonal growth and guidance in the adult Drosophila mushroom body, a brain center for learning and memory. By using a combination of genetic and biochemical assays, we demonstrate that Wnt5 and the PCP signaling proteins Frizzled, Strabismus, and Dishevelled act in concert with the small GTPase Rac1 to activate the actin assembly functions of dDAAM essential for correct targeting of mushroom body axons. Collectively, these data suggest that dDAAM is used as a major molecular effector of the PCP guidance pathway. By uncovering a signaling system from the Wnt5 guidance cue to an actin assembly factor, we propose that the Wnt5/PCP navigation system is linked by dDAAM to the regulation of the growth cone actin cytoskeleton, and thereby growth cone behavior, in a direct way.

  18. Polar biophenolics in sweet potato greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth.

    Science.gov (United States)

    Gundala, Sushma R; Yang, Chunhua; Lakshminarayana, N; Asif, Ghazia; Gupta, Meenakshi V; Shamsi, Shahab; Aneja, Ritu

    2013-09-01

    Polyphenolic phytochemicals present in fruits and vegetables indisputably confer anticancer benefits upon regular consumption. Recently, we demonstrated the growth-inhibitory and apoptosis-inducing properties of polyphenol-rich sweet potato greens extract (SPGE) in cell culture and in vivo prostate cancer xenograft models. However, the bioactive constituents remain elusive. Here, we report a bioactivity-guided fractionation of SPGE based upon differential solvent polarity using chromatographic techniques that led to the identification of a remarkably active polyphenol-enriched fraction, F5, which was ~100-fold more potent than the parent extract as shown by IC50 measurements in human prostate cancer cells. High-performance liquid chromatography-ultraviolet and mass spectrometric analyses of the seven SPGE fractions suggested varying abundance of the major phenols, quinic acid (QA), caffeic acid, its ester chlorogenic acid, and isochlorogenic acids, 4,5-di-CQA, 3,5-di-CQA and 3,4-di-CQA, with a distinct composition of the most active fraction, F5. Subfractionation of F5 resulted in loss of bioactivity, suggesting synergistic interactions among the constituent phytochemicals. Quantitative analyses revealed a ~2.6- and ~3.6-fold enrichment of QA and chlorogenic acid, respectively, in F5 and a definitive ratiometric relationship between the isochlorogenic acids. Daily oral administration of 400mg/kg body wt of F5 inhibited growth and progression of prostate tumor xenografts by ~75% in nude mice, as evidenced by tumor volume measurements and non-invasive real-time bioluminescence imaging. These data generate compelling grounds to further examine the chemopreventive efficacy of the most active fraction of SPGE and suggest its potential usefulness as a dietary supplement for prostate cancer management.

  19. Experimental modules covering imaging, diffraction, Fourier optics and polarization based on a liquid-crystal cell SLM

    Science.gov (United States)

    Hermerschmidt, Andreas

    2009-06-01

    In close collaboration with four German universities, we have developed tutorials for experiments based on a transmissive liquid-crystal spatial light modulator (SLM). The experimental tutorials are grouped in six project modules, which cover a wide range of phenomena and have different levels of difficulty. At a basic level, students can investigate the SLM in its probably most well-known application as an image-generating element in a simple optical projector setup. At more advanced levels, the application as an adaptive optical element can be investigated in three different projects covering wave-optical phenomena. The fields covered include Fourier Optics using the SLM as a dynamic fan-out beam-splitter or kinoform, Computer-Generated Holography and basic Interferometry. For the support of these projects, software was developed which permits the generation of adaptive optical structures by the student with a user-friendly interface, while the underlying algorithms are explained in the theoretical tutorial. The modulation of the light by the twisted-neumatic liquid crystal cells of the SLM can be investigated in the two most advanced projects. In the first one, the parameters of the cell and the components of its Jones matrix can be derived from transmission measurements with rotatable polarizers at a number of different wavelengths. This project gives insight to the Jones matrix calculus at the level required for the analysis. In the second one, the complex-valued transmission of the SLM is determined by measuring the diffraction efficiency of dynamically addressed Ronchi gratings.

  20. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars

    CERN Document Server

    Cerutti, Benoît; Philippov, Alexander A

    2016-01-01

    Polarization is a powerful diagnostic tool to constrain the site of the high-energy pulsed emission and particle acceleration in gamma-ray pulsars. Recent particle-in-cell simulations of pulsar magnetosphere suggest that high-energy emission results from particles accelerated in the equatorial current sheet emitting synchrotron radiation. In this study, we re-examine the simulation data to compute the phase-resolved polarization properties. We find that the emission is mildly polarized and that there is an anticorrelation between the flux and the degree of linear polarization (on-pulse: ~15%, off-pulse: ~30%). The decrease of polarization during pulses is mainly attributed to the formation of caustics in the current sheet. Each pulse of light is systematically accompanied by a rapid swing of the polarization angle due to the change of the magnetic polarity when the line of sight passes through the current sheet. The optical polarization pattern observed in the Crab can be well-reproduced for a pulsar inclinat...

  1. Archiving Reproducible Research with R and Dataverse

    DEFF Research Database (Denmark)

    Leeper, Thomas

    2014-01-01

    Reproducible research and data archiving are increasingly important issues in research involving statistical analyses of quantitative data. This article introduces the dvn package, which allows R users to publicly archive datasets, analysis files, codebooks, and associated metadata in Dataverse...... Network online repositories, an open-source data archiving project sponsored by Harvard University. In this article I review the importance of data archiving in the context of reproducible research, introduce the Dataverse Network, explain the implementation of the dvn package, and provide example code...

  2. Reproducibility of operator processing for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sui Shen; DeNardo, Gerald L.; DeNardo, Sally J.; Aina, Yuan; DeNardo, Diane A.; Lamborn, Kathleen R

    1997-01-01

    Reproducibility of operator processing for radiation dose and biological half-life was assessed for radioimmunotherapy. Mean coefficient of variation for intra-operator consecutive processing and for inter-operator processing was less than 15% for all tissues. The mean coefficient of variation for intra-operator processing over 2 wk or inter-operator processing comparing an experienced and less experienced operator was generally greater, and particularly so for tumors. Satisfactory reproducibility was achievable using visual determination of regions of interests after 80 h of training.

  3. Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype.

    Science.gov (United States)

    Guo, Hua; Liu, Yanan; Gu, Junlian; Wang, Yue; Liu, Lianqin; Zhang, Ping; Li, Yang

    2016-06-01

    The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80(+)Nos2(+) cells and a decreased proportion of F4/80(+)CD206(+) cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling. PMID:27034233

  4. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  5. Polarization and relaxation of radon

    CERN Document Server

    Tardiff, E R; Chupp, T E; Gulyuz, K; Lefferts, R S; Lorenzon, W; Nuss-Warren, S R; Pearson, M R; Pietralla, N; Rainovski, G; Sell, J F; Sprouse, G D

    2006-01-01

    Investigations of the polarization and relaxation of $^{209}$Rn by spin exchange with laser optically pumped rubidium are reported. On the order of one million atoms per shot were collected in coated and uncoated glass cells. Gamma-ray anisotropies were measured as a signal of the alignment (second order moment of the polarization) resulting from the combination of polarization and quadrupole relaxation at the cell walls. The temperature dependence over the range 130$^\\circ$C to 220$^\\circ$C shows the anisotropies increasing with increasing temperature as the ratio of the spin exchange polarization rate to the wall relaxation rate increases faster than the rubidium polarization decreases. Polarization relaxation rates for coated and uncoated cells are presented. In addition, improved limits on the multipole mixing ratios of some of the main gamma-ray transitions have been extracted. These results are promising for electric dipole moment measurements of octupole-deformed $^{223}$Rn and other isotopes, provided...

  6. Polarization, political

    NARCIS (Netherlands)

    M. Wojcieszak

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass pol

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication and...... characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Hyperbolic L2-modules with Reproducing Kernels

    Institute of Scientific and Technical Information of China (English)

    David EELPODE; Frank SOMMEN

    2006-01-01

    Abstract In this paper, the Dirac operator on the Klein model for the hyperbolic space is considered. A function space containing L2-functions on the sphere Sm-1 in (R)m, which are boundary values of solutions for this operator, is defined, and it is proved that this gives rise to a Hilbert module with a reproducing kernel.

  9. Estimating the reproducibility of psychological science

    NARCIS (Netherlands)

    Aarts, Alexander A.; Anderson, Joanna E.; Anderson, Christopher J.; Attridge, Peter R.; Attwood, Angela; Axt, Jordan; Babel, Molly; Bahnik, Stepan; Baranski, Erica; Barnett-Cowan, Michael; Bartmess, Elizabeth; Beer, Jennifer; Bell, Raoul; Bentley, Heather; Beyan, Leah; Binion, Grace; Borsboom, Denny; Bosch, Annick; Bosco, Frank A.; Bowman, Sara D.; Brandt, Mark J.; Braswell, Erin; Brohmer, Hilmar; Brown, Benjamin T.; Brown, Kristina; Bruening, Jovita; Calhoun-Sauls, Ann; Chagnon, Elizabeth; Callahan, Shannon P.; Chandler, Jesse; Chartier, Christopher R.; Cheung, Felix; Cillessen, Linda; Christopherson, Cody D.; Clay, Russ; Cleary, Hayley; Cloud, Mark D.; Cohn, Michael; Cohoon, Johanna; Columbus, Simon; Cordes, Andreas; Costantini, Giulio; Alvarez, Leslie D. Cramblet; Cremata, Ed; Crusius, Jan; DeCoster, Jamie; DeGaetano, Michelle A.; Della Penna, Nicolas; den Bezemer, Bobby; Deserno, Marie K.; Devitt, Olivia; Dewitte, Laura; Dobolyi, David G.; Dodson, Geneva T.; Donnellan, M. Brent; Donohue, Ryan; Dore, Rebecca A.; Dorrough, Angela; Dreber, Anna; Dugas, Michelle; Dunn, Elizabeth W.; Easey, Kayleigh; Eboigbe, Sylvia; Eggleston, Casey; Embley, Jo; Epskamp, Sacha; Errington, Timothy M.; Estel, Vivien; Farach, Frank J.; Feather, Jenelle; Fedor, Anna; Fernandez-Castilla, Belen; Fiedler, Susann; Field, James G.; Fitneva, Stanka A.; Flagan, Taru; Forest, Amanda L.; Forsell, Eskil; Foster, Joshua D.; Frank, Michael C.; Frazier, Rebecca S.; Fuchs, Heather; Gable, Philip; Galak, Jeff; Galliani, Elisa Maria; Gampa, Anup; Garcia, Sara; Gazarian, Douglas; Gilbert, Elizabeth; Giner-Sorolla, Roger; Gloeckner, Andreas; Goellner, Lars; Goh, Jin X.; Goldberg, Rebecca; Goodbourn, Patrick T.; Gordon-McKeon, Shauna; Gorges, Bryan; Gorges, Jessie; Goss, Justin; Graham, Jesse; Grange, James A.; Gray, Jeremy; Hartgerink, Chris; Hartshorne, Joshua; Hasselman, Fred; Hayes, Timothy; Heikensten, Emma; Henninger, Felix; Hodsoll, John; Holubar, Taylor; Hoogendoorn, Gea; Humphries, Denise J.; Hung, Cathy O. -Y.; Immelman, Nathali; Irsik, Vanessa C.; Jahn, Georg; Jaekel, Frank; Jekel, Marc; Johannesson, Magnus; Johnson, Larissa G.; Johnson, David J.; Johnson, Kate M.; Johnston, William J.; Jonas, Kai; Joy-Gaba, Jennifer A.; Kappes, Heather Barry; Kelso, Kim; Kidwell, Mallory C.; Kim, Seung Kyung; Kirkhart, Matthew; Kleinberg, Bennett; Knezevic, Goran; Kolorz, Franziska Maria; Kossakowski, Jolanda J.; Krause, Robert Wilhelm; Krijnen, Job; Kuhlmann, Tim; Kunkels, Yoram K.; Kyc, Megan M.; Lai, Calvin K.; Laique, Aamir; Lakens, Daniel; Lane, Kristin A.; Lassetter, Bethany; Lazarevic, Ljiljana B.; LeBel, Etienne P.; Lee, Key Jung; Lee, Minha; Lemm, Kristi; Levitan, Carmel A.; Lewis, M.; Lin, Lin; Lin, Stephanie; Lippold, Matthias; Loureiro, Darren; Luteijn, Ilse; Mackinnon, Sean; Mainard, Heather N.; Marigold, Denise C.; Martin, Daniel P.; Martinez, Tylar; Masicampo, E. J.; Matacotta, Josh; Mathur, Maya; May, Michael; Mechin, Nicole; Mehta, Pranjal; Meixner, Johannes; Melinger, Alissa; Miller, Jeremy K.; Miller, Mallorie; Moore, Katherine; Moeschl, Marcus; Motyl, Matt; Mueller, Stephanie M.; Munafo, Marcus; Neijenhuijs, Koen I.; Nervi, Taylor; Nicolas, Gandalf; Nilsonne, Gustav; Nosek, Brian A.; Nuijten, Michele B.; Olsson, Catherine; Osborne, Colleen; Ostkamp, Lutz; Pavel, Misha; Penton-Voak, Ian S.; Perna, Olivia; Pernet, Cyril; Perugini, Marco; Pipitone, R. Nathan; Pitts, Michael; Plessow, Franziska; Prenoveau, Jason M.; Rahal, Rima-Maria; Ratliff, Kate A.; Reinhard, David; Renkewitz, Frank; Ricker, Ashley A.; Rigney, Anastasia; Rivers, Andrew M.; Roebke, Mark; Rutchick, Abraham M.; Ryan, Robert S.; Sahin, Onur; Saide, Anondah; Sandstrom, Gillian M.; Santos, David; Saxe, Rebecca; Schmidt, Kathleen; Schlegelmilch, Rene; Seibel, Larissa; Scholz, Sabine; Selterman, Dylan Faulkner; Shaki, Samuel; Simpson, William B.; Sinclair, H. Colleen; Skorinko, Jeanine L. M.; Slowik, Agnieszka; Snyder, Joel S.; Soderberg, Courtney; Sonnleitner, Carina; Spencer, Nick; Spies, Jeffrey R.; Steegen, Sara; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B.; Talhelm, Thomas; Tapia, Megan; te Dorsthorst, Anniek; Thomae, Manuela; Thomas, Sarah L.; Tio, Pia; Traets, Frits; Tsang, Steve; Tuerlinckx, Francis; Turchan, Paul; Valasek, Milan; van 't Veer, Anna E.; Van Aert, Robbie; van Assen, M.A.L.M.; van Bork, Riet; van de Ven, Mathijs; van den Bergh, Don; van der Hulst, Marije; van Dooren, Roel; van Doorn, Johnny; van Renswoude, Daan R.; van Rijn, Hedderik; Vanpaemel, Wolf; Echeverria, Alejandro Vasquez; Vazquez, Melissa; Velez, Natalia; Vermue, Marieke; Verschoor, Mark; Vianello, Michelangelo; Voracek, Martin; Vuu, Gina; Wagenmakers, Eric-Jan; Weerdmeester, Joanneke; Welsh, Ashlee; Westgate, Erin C.; Wissink, Joeri; Wood, Michael; Woods, Andy; Wright, Emily; Wu, Sining; Zeelenberg, Marcel; Zuni, Kellylynn

    2015-01-01

    INTRODUCTION Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. Scientific claims should not gain credence because of the status or authority of their originator but by the replicability of their supporting evidence. Even research

  10. Estimating the reproducibility of psychological science

    NARCIS (Netherlands)

    Anderson, Joanna E.; Aarts, Alexander A.; Anderson, Christopher J.; Attridge, Peter R.; Attwood, Angela; Axt, Jordan; Babel, Molly; Bahník, Štěpán; Baranski, Erica; Barnett-Cowan, Michael; Bartmess, Elizabeth; Beer, Jennifer; Bell, Raoul; Bentley, Heather; Beyan, Leah; Binion, Grace; Borsboom, Denny; Bosch, Annick; Bosco, Frank A.; Bowman, Sara D.; Brandt, Mark J.; Braswell, Erin; Brohmer, Hilmar; Brown, Benjamin T.; Brown, Kristina; Brüning, Jovita; Calhoun-Sauls, Ann; Callahan, Shannon P.; Chagnon, Elizabeth; Chandler, Jesse; Chartier, Christopher R.; Cheung, Felix; Christopherson, Cody D.; Cillessen, Linda; Clay, Russ; Cleary, Hayley; Cloud, Mark D.; Conn, Michael; Cohoon, Johanna; Columbus, Simon; Cordes, Andreas; Costantini, Giulio; Alvarez, Leslie D Cramblet; Cremata, Ed; Crusius, Jan; DeCoster, Jamie; DeGaetano, Michelle A.; Penna, Nicolás Delia; Den Bezemer, Bobby; Deserno, Marie K.; Devitt, Olivia; Dewitte, Laura; Dobolyi, David G.; Dodson, Geneva T.; Donnellan, M. Brent; Donohue, Ryan; Dore, Rebecca A.; Dorrough, Angela; Dreber, Anna; Dugas, Michelle; Dunn, Elizabeth W.; Easey, Kayleigh; Eboigbe, Sylvia; Eggleston, Casey; Embley, Jo; Epskamp, Sacha; Errington, Timothy M.; Estel, Vivien; Farach, Frank J.; Feather, Jenelle; Fedor, Anna; Fernández-Castilla, Belén; Fiedler, Susann; Field, James G.; Fitneva, Stanka A.; Flagan, Taru; Forest, Amanda L.; Forsell, Eskil; Foster, Joshua D.; Frank, Michael C.; Frazier, Rebecca S.; Fuchs, Heather; Gable, Philip; Galak, Jeff; Galliani, Elisa Maria; Gampa, Anup; Garcia, Sara; Gazarian, Douglas; Gilbert, Elizabeth; Giner-Sorolla, Roger; Glöckner, Andreas; Goellner, Lars; Goh, Jin X.; Goldberg, Rebecca; Goodbourn, Patrick T.; Gordon-McKeon, Shauna; Gorges, Bryan; Gorges, Jessie; Goss, Justin; Graham, Jesse; Grange, James A.; Gray, Jeremy; Hartgerink, Chris; Hartshorne, Joshua; Hasselman, Fred; Hayes, Timothy; Heikensten, Emma; Henninger, Felix; Hodsoll, John; Holubar, Taylor; Hoogendoorn, Gea; Humphries, Denise J.; Hung, Cathy O Y; Immelman, Nathali; Irsik, Vanessa C.; Jahn, Georg; Jäkel, Frank; Jekel, Marc; Johannesson, Magnus; Johnson, Larissa G.; Johnson, David J.; Johnson, Kate M.; Johnston, William J.; Jonas, Kai; Joy-Gaba, Jennifer A.; Kappes, Heather Barry; Kelso, Kim; Kidwell, Mallory C.; Kim, Seung Kyung; Kirkhart, Matthew; Kleinberg, Bennett; Knežević, Goran; Kolorz, Franziska Maria; Kossakowski, Jolanda J.; Krause, Robert Wilhelm; Krijnen, Job; Kuhlmann, Tim; Kunkels, Yoram K.; Kyc, Megan M.; Lai, Calvin K.; Laique, Aamir; Lakens, Daniël; Lane, Kristin A.; Lassetter, Bethany; Lazarević, Ljiljana B.; Le Bel, Etienne P.; Lee, Key Jung; Lee, Minha; Lemm, Kristi; Levitan, Carmel A.; Lewis, Melissa; Lin, Lin; Lin, Stephanie; Lippold, Matthias; Loureiro, Darren; Luteijn, Ilse; MacKinnon, Sean; Mainard, Heather N.; Marigold, Denise C.; Martin, Daniel P.; Martinez, Tylar; Masicampo, E. J.; Matacotta, Josh; Mathur, Maya; May, Michael; Mechin, Nicole; Mehta, Pranjal; Meixner, Johannes; Melinger, Alissa; Miller, Jeremy K.; Miller, Mallorie; Moore, Katherine; Möschl, Marcus; Motyl, Matt; Müller, Stephanie M.; Munafo, Marcus; Neijenhuijs, Koen I.; Nervi, Taylor; Nicolas, Gandalf; Nilsonne, Gustav; Nosek, Brian A.; Nuijten, Michèle B.; Olsson, Catherine; Osborne, Colleen; Ostkamp, Lutz; Pavel, Misha; Penton-Voak, Ian S.; Perna, Olivia; Pernet, Cyril; Perugini, Marco; Pipitone, R. Nathan; Pitts, Michael; Plessow, Franziska; Prenoveau, Jason M.; Rahal, Rima Maria; Ratliff, Kate A.; Reinhard, David; Renkewitz, Frank; Ricker, Ashley A.; Rigney, Anastasia; Rivers, Andrew M.; Roebke, Mark; Rutchick, Abraham M.; Ryan, Robert S.; Sahin, Onur; Saide, Anondah; Sandstrom, Gillian M.; Santos, David; Saxe, Rebecca; Schlegelmilch, René; Schmidt, Kathleen; Scholz, Sabine; Seibel, Larissa; Selterman, Dylan Faulkner; Shaki, Samuel; Simpson, William B.; Sinclair, H. Colleen; Skorinko, Jeanine L M; Slowik, Agnieszka; Snyder, Joel S.; Soderberg, Courtney; Sonnleitner, Carina; Spencer, Nick; Spies, Jeffrey R.; Steegen, Sara; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B.; Talhelm, Thomas; Tapia, Megan; Te Dorsthorst, Anniek; Thomae, Manuela; Thomas, Sarah L.; Tio, Pia; Traets, Frits; Tsang, Steve; Tuerlinckx, Francis; Turchan, Paul; Valášek, Milan; Van't Veer, Anna E.; Van Aert, Robbie; Van Assen, Marcel; Van Bork, Riet; Van De Ven, Mathijs; Van Den Bergh, Don; Van Der Hulst, Marije; Van Dooren, Roel; Van Doorn, Johnny; Van Renswoude, Daan R.; Van Rijn, Hedderik; Vanpaemel, Wolf; Echeverría, Alejandro Vásquez; Vazquez, Melissa; Velez, Natalia; Vermue, Marieke; Verschoor, Mark; Vianello, Michelangelo; Voracek, Martin; Vuu, Gina; Wagenmakers, Eric Jan; Weerdmeester, Joanneke; Welsh, Ashlee; Westgate, Erin C.; Wissink, Joeri; Wood, Michael; Woods, Andy; Wright, Emily; Wu, Sining; Zeelenberg, Marcel; Zuni, Kellylynn

    2015-01-01

    Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Rep

  11. Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well solar cells

    International Nuclear Information System (INIS)

    Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well (MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization and the enhancement of tunneling transport of photo-generated carriers in MQWs, the external quantum efficiency (EQE) of the solar cells increases in a low energy spectral range (λ > 370 nm) when the barrier thickness value decreases from 15 nm to 7.5 nm. But the EQE decreases abruptly when the barrier thickness value decreases down to 3.75 nm. The reasons for these experimental results are analyzed. We are aware that the reduction of depletion width in MQW region, caused by the high resistivity of the p-type GaN layer may be the main reason for the abnormally low EQE value at long wavelengths (λ > 370 nm)

  12. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  13. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  14. Mechanostructure and composition of highly reproducible decellularized liver matrices.

    Science.gov (United States)

    Mattei, G; Di Patria, V; Tirella, A; Alaimo, A; Elia, G; Corti, A; Paolicchi, A; Ahluwalia, A

    2014-02-01

    Despite the increasing number of papers on decellularized scaffolds, there is little consensus on the optimum method of decellularizing biological tissue such that the micro-architecture and protein content of the matrix are conserved as far as possible. Focusing on the liver, the aim of this study was therefore to develop a method for the production of well-characterized and reproducible matrices that best preserves the structure and composition of the native extra cellular matrix (ECM). Given the importance of matrix stiffness in regulating cell response, the mechanical properties of the decellularized tissue were also considered. The testing and analysis framework is based on the characterization of decellularized and untreated samples in the same reproducible initial state (i.e., the equilibrium swollen state). Decellularized ECM (dECM) were characterized using biochemical, histological, mechanical and structural analyses to identify the best procedure to ensure complete cell removal while preserving most of the native ECM structure and composition. Using this method, sterile decellularized porcine ECM with highly conserved intra-lobular micro-structure and protein content were obtained in a consistent and reproducible manner using the equilibrium swollen state of tissue or matrix as a reference. A significant reduction in the compressive elastic modulus was observed for liver dECM with respect to native tissue, suggesting a re-examination of design parameters for ECM-mimicking scaffolds for engineering tissues in vitro.

  15. ITK: Enabling Reproducible Research and Open Science

    Directory of Open Access Journals (Sweden)

    Matthew Michael McCormick

    2014-02-01

    Full Text Available Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature.Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification.This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46.

  16. A 3D-printed high power nuclear spin polarizer.

    Science.gov (United States)

    Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-01-29

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications.

  17. Activation of JNK signaling links IgI mutations to disruption of the cell polarity and epithelial organization in Drosophila imaginal discs

    Institute of Scientific and Technical Information of China (English)

    Ming-wei Zhu; Tian-chi Xin; Shun-yan Weng; Yin Gao; Ying-jie Zhang; Qi Li; Ming-fa Li

    2010-01-01

    Dear Editor, Identification of Drosophila melanogaster as a model organism for cancer research has facilitated the exploration of human tumor malignancy. In Drosophila, lossof-function mutations in the neoplastic tumor suppressor genes (nTSGs) lethal(2)giant larvae (lgl), discs large (dlg) or scribble (scrib) cause a malignant tumor-like phenotype characteristic of disrupted cell polarity and overgrowth in epithelial tissues such as imaginal discs [1].

  18. Intracellular Trafficking of Bile Salt Export Pump (ABCB11) in Polarized Hepatic Cells: Constitutive Cycling between the Canalicular Membrane and rab11-positive EndosomesV⃞

    OpenAIRE

    Wakabayashi, Yoshiyuki; Lippincott-Schwartz, Jennifer; Arias, Irwin M.

    2004-01-01

    The bile salt export pump (BSEP, ABCB11) couples ATP hydrolysis with transport of bile acids into the bile canaliculus of hepatocytes. Its localization in the apical canalicular membrane is physiologically regulated by the demand to secrete biliary components. To gain insight into how such localization is regulated, we studied the intracellular trafficking of BSEP tagged with yellow fluorescent protein (YFP) in polarized WIF-B9 cells. Confocal imaging revealed that BSEP-YFP was localized at t...

  19. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells.

    Directory of Open Access Journals (Sweden)

    Naomi Levy-Strumpf

    2015-08-01

    Full Text Available Wnt and Netrin signaling regulate diverse essential functions. Using a genetic approach combined with temporal gene expression analysis, we found a regulatory link between the Wnt receptor MOM-5/Frizzled and the UNC-6/Netrin receptor UNC-5. These two receptors play key roles in guiding cell and axon migrations, including the migration of the C. elegans Distal Tip Cells (DTCs. DTCs migrate post-embryonically in three sequential phases: in the first phase along the Antero-Posterior (A/P axis, in the second, along the Dorso-Ventral (D/V axis, and in the third, along the A/P axis. Loss of MOM-5/Frizzled function causes third phase A/P polarity reversals of the migrating DTCs. We show that an over-expression of UNC-5 causes similar DTC A/P polarity reversals and that unc-5 deficits markedly suppress the A/P polarity reversals caused by mutations in mom-5/frizzled. This implicates MOM-5/Frizzled as a negative regulator of unc-5. We provide further evidence that small GTPases mediate MOM-5's regulation of unc-5 such that one outcome of impaired function of small GTPases like CED-10/Rac and MIG-2/RhoG is an increase in unc-5 function. The work presented here demonstrates the existence of cross talk between components of the Netrin and Wnt signaling pathways and provides further insights into the way guidance signaling mechanisms are integrated to orchestrate directed cell migration.

  20. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  1. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord.

    Science.gov (United States)

    Zhang, Kun; Zheng, Jingjing; Bian, Ganlan; Liu, Ling; Xue, Qian; Liu, Fangfang; Yu, Caiyong; Zhang, Haifeng; Song, Bing; Chung, Sookja K; Ju, Gong; Wang, Jian

    2015-06-01

    Spinal cord injury (SCI) frequently provokes serious detrimental outcomes because neuronal regeneration is limited in the central nervous system (CNS). Thus, the creation of a permissive environment for transplantation therapy with neural stem/progenitor cells (NS/PCs) is a promising strategy to replace lost neuronal cells, promote repair, and stimulate functional plasticity after SCI. Macrophages are important SCI-associated inflammatory cells and a major source of secreted factors that modify the lesion milieu. Here, we used conditional medium (CM) from bone marrow-derived M1 or M2 polarized macrophages to culture murine NS/PCs. The NS/PCs showed enhanced astrocytic versus neuronal/oligodendrocytic differentiation in the presence of M1- versus M2-CM. Similarly, cotransplantation of NS/PCs with M1 and M2 macrophages into intact or injured murine spinal cord increased the number of engrafted NS/PC-derived astrocytes and neurons/oligodendrocytes, respectively. Furthermore, when cotransplantated with M2 macrophages, the NS/PC-derived neurons integrated into the local circuitry and enhanced locomotor recovery following SCI. Interesting, engrafted M1 macrophages promoted long-distance rostral migration of NS/PC-derived cells in a chemokine (C-X-C motif) receptor 4 (CXCR4)-dependent manner, while engrafted M2 macrophages resulted in limited cell migration of NS/PC-derived cells. Altogether, these findings suggest that the cotransplantation of NS/PCs together with polarized macrophages could constitute a promising therapeutic approach for SCI repair.

  2. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin

    LENUS (Irish Health Repository)

    Boehm, Manja

    2012-04-25

    AbstractBackgroundCampylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.ResultsIn the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria.ConclusionThese results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  3. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

    Directory of Open Access Journals (Sweden)

    Joel A Mathews

    Full Text Available We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT mice and mice deficient in γδ T cells (TCRδ-/- mice were exposed to air or to ozone (0.3 ppm for up to 72h and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.

  4. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin

    Directory of Open Access Journals (Sweden)

    Boehm Manja

    2012-04-01

    Full Text Available Abstract Background Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. Results In the present study, we characterized the serine protease HtrA (high-temperature requirement A of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER as seen with Salmonella, Shigella, Listeria or Neisseria. Conclusion These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  5. Reproducibility of surface roughness in reaming

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    An investigation on the reproducibility of surface roughness in reaming was performed to document the applicability of this approach for testing cutting fluids. Austenitic stainless steel was used as a workpiece material and HSS reamers as cutting tools. Reproducibility of the results was evaluated...... with respect to different operators, workpieces and measured position in the reamed hole for different combinations of lubrication condition and cutting speed. The measurands were the conventional surface roughness parameter, Ra and the ability of a cutting fluid to ensure a surface which is a replication...... of tool geometry and path. 2D and 3D reference measurements were done to ensure traceability of the measurement. Moreover, surface profiles were examined under the 3D optical microscope. Measuring uncertainty evaluation using statistical methods was applied. Surfaces produced with a low cutting speed were...

  6. Reproducibility of scoring emphysema by HRCT

    International Nuclear Information System (INIS)

    Purpose: We evaluated the reproducibility of three visual scoring methods of emphysema and compared these methods with pulmonary function tests (VC, DLCO, FEV1 and FEV%) among farmer's lung patients and farmers. Material and Methods: Three radiologists examined high-resolution CT images of farmer's lung patients and their matched controls (n=70) for chronic interstitial lung diseases. Intraobserver reproducibility and interobserver variability were assessed for three methods: severity, Sanders' (extent) and Sakai. Pulmonary function tests as spirometry and diffusing capacity were measured. Results: Intraobserver -values for all three methods were good (0.51-0.74). Interobserver varied from 0.35 to 0.72. The Sanders' and the severity methods correlated strongly with pulmonary function tests, especially DLCO and FEV1. Conclusion: The Sanders' method proved to be reliable in evaluating emphysema, in terms of good consistency of interpretation and good correlation with pulmonary function tests

  7. Reproducibility of electroretinograms recorded with DTL electrodes.

    Science.gov (United States)

    Hébert, M; Lachapelle, P; Dumont, M

    The purpose of this study was to examine whether the use of the DTL fiber electrode yields stable and reproducible electroretinographic recordings. To do so, luminance response function, derived from dark-adapted electroretinograms, was obtained from both eyes of 10 normal subjects at two recording sessions spaced by 7-14 days. The data thus generated was used to calculate Naka-Rushton Vmax and k parameters and values obtained at the two recording sessions were compared. Our results showed that there was no significant difference in the values of Vmax and k calculated from the data generated at the two recording sessions. The above clearly demonstrate that the use of the DTL fiber electrode does not jeopardize, in any way, the stability and reproducibility of ERG responses.

  8. Reproducibility of scoring emphysema by HRCT

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, A.; Partanen, K.; Rytkoenen, H.; Vanninen, R. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Radiology; Erkinjuntti-Pekkanen, R. [Kuopio Univ. Hospital (Finland). Dept. of Pulmonary Diseases

    2002-04-01

    Purpose: We evaluated the reproducibility of three visual scoring methods of emphysema and compared these methods with pulmonary function tests (VC, DLCO, FEV1 and FEV%) among farmer's lung patients and farmers. Material and Methods: Three radiologists examined high-resolution CT images of farmer's lung patients and their matched controls (n=70) for chronic interstitial lung diseases. Intraobserver reproducibility and interobserver variability were assessed for three methods: severity, Sanders' (extent) and Sakai. Pulmonary function tests as spirometry and diffusing capacity were measured. Results: Intraobserver -values for all three methods were good (0.51-0.74). Interobserver varied from 0.35 to 0.72. The Sanders' and the severity methods correlated strongly with pulmonary function tests, especially DLCO and FEV1. Conclusion: The Sanders' method proved to be reliable in evaluating emphysema, in terms of good consistency of interpretation and good correlation with pulmonary function tests.

  9. Does systematic variation improve the reproducibility of animal experiments?

    NARCIS (Netherlands)

    Jonker, R.M.; Guenther, A.; Engqvist, L.; Schmoll, T.

    2013-01-01

    Reproducibility of results is a fundamental tenet of science. In this journal, Richter et al.1 tested whether systematic variation in experimental conditions (heterogenization) affects the reproducibility of results. Comparing this approach with the current standard of ensuring reproducibility throu

  10. A Reproducible Research Framework for Audio Inpainting

    OpenAIRE

    Adler, Amir; Emiya, Valentin; Jafari, Maria,; Elad, Michael; Gribonval, Rémi; Plumbley, Mark D.

    2011-01-01

    International audience We introduce a unified framework for the restoration of distorted audio data, leveraging the Image Inpainting concept and covering existing audio applications. In this framework, termed Audio Inpainting, the distorted data is considered missing and its location is assumed to be known. We further introduce baseline approaches based on sparse representations. For this new audio inpainting concept, we provide reproducible-research tools including: the handling of audio ...

  11. MPI Benchmarking Revisited: Experimental Design and Reproducibility

    OpenAIRE

    Hunold, Sascha; Carpen-Amarie, Alexandra

    2015-01-01

    The Message Passing Interface (MPI) is the prevalent programming model used on today's supercomputers. Therefore, MPI library developers are looking for the best possible performance (shortest run-time) of individual MPI functions across many different supercomputer architectures. Several MPI benchmark suites have been developed to assess the performance of MPI implementations. Unfortunately, the outcome of these benchmarks is often neither reproducible nor statistically sound. To overcome th...

  12. Is My Network Module Preserved and Reproducible?

    OpenAIRE

    Peter Langfelder; Rui Luo; Oldham, Michael C.; Steve Horvath

    2011-01-01

    In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservati...

  13. Data Identifiers and Citations Enable Reproducible Science

    Science.gov (United States)

    Tilmes, C.

    2011-12-01

    Modern science often involves data processing with tremendous volumes of data. Keeping track of that data has been a growing challenge for data center. Researchers who access and use that data don't always reference and cite their data sources adequately for consumers of their research to follow their methodology or reproduce their analyses or experiments. Recent research has led to recommendations for good identifiers and citations that can help address this problem. This paper will describe some of the best practices in data identifiers, reference and citation. Using a simplified example scenario based on a long term remote sensing satellite mission, it will explore issues in identifying dynamic data sets and the importance of good data citations for reproducibility. It will describe the difference between granule and collection level identifiers, using UUIDs and DOIs to illustrate some recommendations for developing identifiers and assigning them during data processing. As data processors create data products, the provenance of the input products and precise steps that led to their creation are recorded and published for users of the data to see. As researchers access the data from an archive, they can use the provenance to help understand the genesis of the data, which could have effects on their usage of the data. By citing the data on publishing their research, others can retrieve the precise data used in their research and reproduce the analyses and experiments to confirm the results. Describing the experiment to a sufficient extent to reproduce the research enforces a formal approach that lends credibility to the results, and ultimately, to the policies of decision makers depending on that research.

  14. A Framework for Reproducible Latent Fingerprint Enhancements.

    Science.gov (United States)

    Carasso, Alfred S

    2014-01-01

    Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology. PMID:26601028

  15. Tools and techniques for computational reproducibility.

    Science.gov (United States)

    Piccolo, Stephen R; Frampton, Michael B

    2016-07-11

    When reporting research findings, scientists document the steps they followed so that others can verify and build upon the research. When those steps have been described in sufficient detail that others can retrace the steps and obtain similar results, the research is said to be reproducible. Computers play a vital role in many research disciplines and present both opportunities and challenges for reproducibility. Computers can be programmed to execute analysis tasks, and those programs can be repeated and shared with others. The deterministic nature of most computer programs means that the same analysis tasks, applied to the same data, will often produce the same outputs. However, in practice, computational findings often cannot be reproduced because of complexities in how software is packaged, installed, and executed-and because of limitations associated with how scientists document analysis steps. Many tools and techniques are available to help overcome these challenges; here we describe seven such strategies. With a broad scientific audience in mind, we describe the strengths and limitations of each approach, as well as the circumstances under which each might be applied. No single strategy is sufficient for every scenario; thus we emphasize that it is often useful to combine approaches.

  16. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-01

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  17. Reproducibility of magnetic resonance perfusion imaging.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available Dynamic MR biomarkers (T2*-weighted or susceptibility-based and T1-weighted or relaxivity-enhanced have been applied to assess tumor perfusion and its response to therapies. A significant challenge in the development of reliable biomarkers is a rigorous assessment and optimization of reproducibility. The purpose of this study was to determine the measurement reproducibility of T1-weighted dynamic contrast-enhanced (DCE-MRI and T2*-weighted dynamic susceptibility contrast (DSC-MRI with two contrast agents (CA of different molecular weight (MW: gadopentetate (Gd-DTPA, 0.5 kDa and Gadomelitol (P792, 6.5 kDa. Each contrast agent was tested with eight mice that had subcutaneous MDA-MB-231 breast xenograft tumors. Each mouse was imaged with a combined DSC-DCE protocol three times within one week to achieve measures of reproducibility. DSC-MRI results were evaluated with a contrast to noise ratio (CNR efficiency threshold. There was a clear signal drop (>95% probability threshold in the DSC of normal tissue, while signal changes were minimal or non-existent (<95% probability threshold in tumors. Mean within-subject coefficient of variation (wCV of relative blood volume (rBV in normal tissue was 11.78% for Gd-DTPA and 6.64% for P792. The intra-class correlation coefficient (ICC of rBV in normal tissue was 0.940 for Gd-DTPA and 0.978 for P792. The inter-subject correlation coefficient was 0.092. Calculated K(trans from DCE-MRI showed comparable reproducibility (mean wCV, 5.13% for Gd-DTPA, 8.06% for P792. ICC of K(trans showed high intra-subject reproducibility (ICC = 0.999/0.995 and inter-subject heterogeneity (ICC = 0.774. Histograms of K(trans distributions for three measurements had high degrees of overlap (sum of difference of the normalized histograms <0.01. These results represent homogeneous intra-subject measurement and heterogeneous inter-subject character of biological population, suggesting that perfusion MRI could be an imaging biomarker to

  18. Dynamic electrical behavior of halide perovskite based solar cells

    OpenAIRE

    Nemnes, George Alexandru; Besleaga, Cristina; Tomulescu, Andrei Gabriel; Pintilie, Ioana; Pintilie, Lucian; Torfason, Kristinn; Manolescu, Andrei

    2016-01-01

    A dynamic electrical model is introduced to investigate the hysteretic effects in the I-V characteristics of perovskite based solar cells. By making a simple ansatz for the polarization relaxation, our model is able to reproduce qualitatively and quantitatively detailed features of measured I-V characteristics. Pre-poling effects are discussed, pointing out the differences between initially over- and under-polarized samples. In particular, the presence of the current over-shoot observed in th...

  19. Estimating the optimal number of membrane electrode assembly catalyst layers for proton exchange membrane fuel cell by considering open circuit voltage and polarization

    International Nuclear Information System (INIS)

    This paper reports on a thin polymer membrane with a self-humidifying membrane electrode assembly (MEA) using water generated from the cathode. However, the open circuit voltage was low because the activation and diffusion polarizations were high. Therefore, a multilayered MEA was prepared for a proton exchange membrane fuel cell by the screen-printing method to reduce the two polarizations and improve the open circuit voltage and power density. The MEA consists of a Nafion 115 membrane and a Vulcan XC-72 commercial catalyst (20 wt.% Pt/C) on the anode and cathode. The performances of the multilayered MEA were evaluated for the current-voltage (I-V) characteristics of single cells. In addition, the activation and diffusion polarizations and the open circuit voltage were analyzed for a prepared sample. Excellent characteristics were obtained for the MEA multilayered structure (anode: two layers; cathode: three layers). The activity of both electrodes was increased and a high power density was obtained compared to single-layered MEA.

  20. Representativity and reproducibility of DNA malignancy grading in different carcinomas.

    Science.gov (United States)

    Böcking, A; Chatelain, R; Homge, M; Daniel, R; Gillissen, A; Wohltmann, D

    1989-04-01

    The reproducibility of the determination of the "DNA malignancy grade" (DNA-MG) was tested in 56 carcinomas of the colon, breast and lung while its representativity was tested on 195 slides from 65 tumors of the colon, breast and lung. DNA measurements were performed on Feulgen-stained smears with the TAS Plus TV-based image analysis system combined with an automated microscope. The variance of the DNA values of tumor cells around the 2c peak, the "2c deviation index" (2cDI), was taken as a basis for the computation of the DNA-MG, which ranges on a continuous scale from 0.01 to 3.00. The representativity, analyzed by comparison of the DNA-MGs measured in three different areas of the same tumor greater than or equal to 1.5 cm apart from each other, yielded an 81% agreement. No significant differences between DNA-MGs of these areas were found. The intraobserver and interobserver reproducibilities of the DNA grading system, investigated by repeated DNA measurements, were 83.9% and 82.2%, respectively. In comparison, histopathologic grading of the 27 breast cancers studied yielded 65% intraobserver and 57% interobserver reproducibilities and 66% representativity.

  1. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells.

    Science.gov (United States)

    Shenoy, Vivek B; Wang, Hailong; Wang, Xiao

    2016-02-01

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the

  2. In situ extraction of polar product of whole cell microbial transformation with polyethylene glycol-induced cloud point system.

    Science.gov (United States)

    Wang, Zhilong; Xu, Jian-He; Zhang, Wenzhi; Zhuang, Baohua; Qi, Hanshi

    2008-01-01

    A novel polyethylene glycol-induced cloud point system (PEG-CPS) was developed for in situ extraction of moderate polar product by setting a microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) with Saccharomyces cerevisiae (baker's yeast) as a model reaction. The biocompatibility of the microorganism in PEG-CPS was comparatively studied with a series of water-organic solvent two-phase partitioning systems. The tolerance of microorganism to the toxic substrate benzaldehyde was increased and the moderate polar product L-PAC was extracted into the surfactant-rich phase in the PEG-CPS. The novel PEG-CPS fills the gap of in situ extraction of polar product in microbial transformation left by water-organic solvent two-phase partitioning system. At the same time, the application of PEG-CPS in a microbial transformation also avoids expensive solvent when compared with that of aqueous two-phase system or CPS.

  3. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity.

    Directory of Open Access Journals (Sweden)

    Ambrose R Kidd

    Full Text Available Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system.

  4. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity.

    Science.gov (United States)

    Kidd, Ambrose R; Muñiz-Medina, Vanessa; Der, Channing J; Cox, Adrienne D; Reiner, David J

    2015-01-01

    Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system. PMID:26208319

  5. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control.

    Science.gov (United States)

    Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig; Manfredi, Pablo; Ebbensgaard, Anna; Schirmer, Tilman; Jenal, Urs

    2014-11-01

    When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co-option as c-di-GMP effector protein. While the C-terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N-terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N-terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c-di-GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S-phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.

  6. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    Directory of Open Access Journals (Sweden)

    Boris V. Stanzel

    2014-01-01

    Full Text Available Transplantation of the retinal pigment epithelium (RPE is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC and induced pluripotent stem cell (iPSC-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies.

  7. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans.

    Directory of Open Access Journals (Sweden)

    Xiao Na Wang

    Full Text Available Azoospermia is one of the major reproductive disorders which cause male infertility in humans; however, the etiology of this disease is largely unknown. In the present study, six missense mutations of WT1 gene were detected in 529 human patients with non-obstructive azoospermia (NOA, indicating a strong association between WT1 mutation and NOA. The Wilms tumor gene, Wt1, is specifically expressed in Sertoli cells (SCs which support spermatogenesis. To examine the functions of this gene in spermatogenesis, Wt1 was deleted in adult testis using Wt1(flox and Cre-ER(TM mice strains. We found that inactivation of Wt1 resulted in massive germ cell death and only SCs were present in most of the seminiferous tubules which was very similar to NOA in humans. In investigating the potential mechanism for this, histological studies revealed that the blood-testis barrier (BTB was disrupted in Wt1 deficient testes. In vitro studies demonstrated that Wt1 was essential for cell polarity maintenance in SCs. Further studies found that the expression of cell polarity associated genes (Par6b and E-cadherin and Wnt signaling genes (Wnt4, Wnt11 were downregulated in Wt1 deficient SCs, and that the expression of Par6b and E-cadherin was regulated by Wnt4. Our findings suggest that Wt1 is important in spermatogenesis by regulating the polarity of SCs via Wnt signaling pathway and that WT1 mutation is one of the genetic causes of NOA in humans.

  8. Towards reproducible, scalable lateral molecular electronic devices

    Science.gov (United States)

    Durkan, Colm; Zhang, Qian

    2014-08-01

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  9. Towards reproducible, scalable lateral molecular electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Durkan, Colm, E-mail: cd229@eng.cam.ac.uk; Zhang, Qian [Nanoscience Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  10. Nonlinear sequential laminates reproducing hollow sphere assemblages

    Science.gov (United States)

    Idiart, Martín I.

    2007-07-01

    A special class of nonlinear porous materials with isotropic 'sequentially laminated' microstructures is found to reproduce exactly the hydrostatic behavior of 'hollow sphere assemblages'. It is then argued that this result supports the conjecture that Gurson's approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity. To cite this article: M.I. Idiart, C. R. Mecanique 335 (2007).

  11. CANU workshop on polarization physics at COSY

    International Nuclear Information System (INIS)

    These proceedings contain the projection foils of the talks held at the named workshop. These concern general polarization physics, the polarization program at Saturne, the polarized beam at COSY, internal polarized targets, storage cell targets, a polarized 3He target, polarized proton and deuteron targets at ELSA, a polarimeter in the intermediate energy range, symmetry breaking in the NN interaction, the study of parity violation in the COSY energy range, the structure of simple and complex hadrons, intermediate-energy nuclear spectroscopy, polarization in proton reactions in the range from 130 to 500 MeV, polarized NN bremsstrahlung, polarization studies of dibaryonic resonances by means of pp↔πd, and spin-isospin excitations by means of polarized deuterons and 6Li. (HSI)

  12. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  13. The RHIC polarized H⁻ ion source.

    Science.gov (United States)

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  14. Massive quark polarization in Quantum Chromodynamics subprocesses

    International Nuclear Information System (INIS)

    It is well known that the single polarization asymmetries are large in hyperon production in contrast with naive Quantum Chromodynamics predictions. We have explored the possibility of polarization of quarks in QCD subprocesses, assuming that the quark mass can be significant at energies of interest. The fourth order contribution to the single spin asymmetry in each important subprocess for strange quark production is calculated. Mass dependence and the kinematical properties of the polarization of the strange quark in the partons' center-of-mass frame are discussed. The s-quark polarization in the hadrons' center-of-mass frame is obtained by performing the convolution integrations with the initial state parton distribution functions. A fit to the hyperon polarization is presented that reproduces the unique and striking kinematic dependence of the data. This is evidence that the ''seed'' of the polarization is in the basic scattering process and it is dominated by the gluon fusion subprocess. 31 figs

  15. Polar Lipid Extraction

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Biotechniques Polar lipids are generally extracted from dry cell material using chloroform:methanol:0.3% NaCl (1:2:0.8 v/v/v). This may be carried out by adding 9.5 ml of this mixture to 100 mg of freeze dried cells, or by adding a suitable amount of chloroform, methanol and 0.3% NaCl to the cell material, or to the aqueous methanolic phase remaining from the lipoquinone extraction. 1. The aqueous methanolic phase (4 ml total volume), together with the cell material from the ...

  16. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    Directory of Open Access Journals (Sweden)

    Grusche Felix A

    2011-09-01

    Full Text Available Abstract Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib, a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue

  17. Response to Comment on "Estimating the reproducibility of psychological science".

    Science.gov (United States)

    Anderson, Christopher J; Bahník, Štěpán; Barnett-Cowan, Michael; Bosco, Frank A; Chandler, Jesse; Chartier, Christopher R; Cheung, Felix; Christopherson, Cody D; Cordes, Andreas; Cremata, Edward J; Della Penna, Nicolas; Estel, Vivien; Fedor, Anna; Fitneva, Stanka A; Frank, Michael C; Grange, James A; Hartshorne, Joshua K; Hasselman, Fred; Henninger, Felix; van der Hulst, Marije; Jonas, Kai J; Lai, Calvin K; Levitan, Carmel A; Miller, Jeremy K; Moore, Katherine S; Meixner, Johannes M; Munafò, Marcus R; Neijenhuijs, Koen I; Nilsonne, Gustav; Nosek, Brian A; Plessow, Franziska; Prenoveau, Jason M; Ricker, Ashley A; Schmidt, Kathleen; Spies, Jeffrey R; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B; van Aert, Robbie C M; van Assen, Marcel A L M; Vanpaemel, Wolf; Vianello, Michelangelo; Voracek, Martin; Zuni, Kellylynn

    2016-03-01

    Gilbert et al. conclude that evidence from the Open Science Collaboration's Reproducibility Project: Psychology indicates high reproducibility, given the study methodology. Their very optimistic assessment is limited by statistical misconceptions and by causal inferences from selectively interpreted, correlational data. Using the Reproducibility Project: Psychology data, both optimistic and pessimistic conclusions about reproducibility are possible, and neither are yet warranted.

  18. Heart rate variability reproducibility during exercise

    International Nuclear Information System (INIS)

    The use of heart rate variability (HRV) parameters during exercise is not supported by appropriate reliability studies. In 80 healthy adults, ECG was recorded during three 6 min bouts of exercise, separated by 6 min of unloaded cycling. Two bouts were at a moderate intensity while the final bout was at a heavy exercise intensity. This protocol was repeated under the same conditions on three occasions, with a controlled start time (pre-determined at the first visit). Standard time and frequency domain indices of HRV were derived. Reliability was assessed by Bland–Altman plots, 95% limits of agreement and intraclass correlation coefficients (ICC). The sample size required to detect a mean difference ≥30% of the between-subject standard deviation was also estimated. There was no systematic change between days. All HRV parameters demonstrated a high degree of reproducibility during baseline (ICC range: 0.58–0.75), moderate (ICC: 0.58–0.85) and heavy intensity exercise (ICC range: 0.40–0.76). The reproducibility was slightly diminished during heavy intensity exercise relative to both unloaded baseline cycling and moderate exercise. This study indicates that HRV parameters can be reliably determined during exercise, and it underlines the importance of standardizing exercise intensity with regard to fitness levels if HRV is to be reliably determined. (paper)

  19. AGN polarization modeling with STOKES

    CERN Document Server

    Goosmann, R W; Shoji, M; Goosmann, Rene W.

    2007-01-01

    We introduce a new, publicly available Monte Carlo radiative transfer code, STOKES, which has been developed to model polarization induced by scattering off free electrons and dust grains. It can be used in a wide range of astrophysical applications. Here, we apply it to model the polarization produced by the equatorial obscuring and scattering tori assumed to exist in active galactic nuclei (AGNs). We present optical/UV modeling of dusty tori with a curved inner shape and for two different dust types: one composition reproduces extinction properties of our Galaxy, and the other is derived from composite quasar spectra. The polarization spectra enable us to clearly distinguish between the two dust compositions. The STOKES code and its documentation can be freely downloaded from http://www.stokes-program.info/.

  20. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish.

    Science.gov (United States)

    May-Simera, Helen L; Kai, Masatake; Hernandez, Victor; Osborn, Daniel P S; Tada, Masazumi; Beales, Philip L

    2010-09-15

    Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry. PMID:20643117

  1. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  2. Reproducibility of UAV-based photogrammetric surface models

    Science.gov (United States)

    Anders, Niels; Smith, Mike; Cammeraat, Erik; Keesstra, Saskia

    2016-04-01

    Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural environment in many regions. Unmanned Aerial Vehicles (UAVs) and Structure-from-Motion (SfM) photogrammetry are invaluable tools for the collection of highly detailed aerial imagery and subsequent low cost production of 3D landscapes for an assessment of landscape change. Despite the widespread use of UAVs for image acquisition in monitoring applications, the reproducibility of UAV data products has not been explored in detail. This paper investigates this reproducibility by comparing the surface models and orthophotos derived from different UAV flights that vary in flight direction and altitude. The study area is located near Lorca, Murcia, SE Spain, which is a semi-arid medium-relief locale. The area is comprised of terraced agricultural fields that have been abandoned for about 40 years and have suffered subsequent damage through piping and gully erosion. In this work we focused upon variation in cell size, vertical and horizontal accuracy, and horizontal positioning of recognizable landscape features. The results suggest that flight altitude has a significant impact on reconstructed point density and related cell size, whilst flight direction affects the spatial distribution of vertical accuracy. The horizontal positioning of landscape features is relatively consistent between the different flights. We conclude that UAV data products are suitable for monitoring campaigns for land cover purposes or geomorphological mapping, but special care is required when used for monitoring changes in elevation.

  3. Apical Scaffolding Protein NHERF2 Modulates the Localization of Alternatively Spliced Plasma Membrane Ca2+ Pump 2B Variants in Polarized Epithelial Cells*

    OpenAIRE

    Padányi, Rita; Xiong, Yuning; Antalffy, Géza; Lór, Krisztina; Pászty, Katalin; STREHLER, EMANUEL E.; Enyedi, Ágnes

    2010-01-01

    The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expressio...

  4. Modulation of Rat Chorda Tympani NaCl Responses and Intracellular Na+ Activity in Polarized Taste Receptor Cells by pH

    OpenAIRE

    Lyall, Vijay; Alam, Rammy I.; Phan, Tam-Hao T.; Russell, Oneal F.; Malik, Shahbaz A.; Heck, Gerard L.; DeSimone, John A.

    2002-01-01

    Mixture interactions between sour and salt taste modalities were investigated in rats by direct measurement of intracellular pH (pHi) and Na+ activity ([Na+]i) in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) nerve recordings. Stimulating the lingual surface with NaCl solutions adjusted to pHs ranging between 2.0 and 10.3 increased the magnitude of NaCl CT responses linearly with increasing external pH (pHo). At pH 7.0, the epithelial sodium channel (ENaC) blocker...

  5. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  6. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    International Nuclear Information System (INIS)

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316–25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM. (paper)

  7. PSYCHOLOGY. Estimating the reproducibility of psychological science.

    Science.gov (United States)

    2015-08-28

    Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.

  8. Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CH(R)) in the diagnosis of iron deficiency.

    Science.gov (United States)

    Prins, M; van Leeuwen, M W; Teske, E

    2009-04-01

    Modern laser-based haematology analysers such as the ADVIA 120 have species-specific software and offer the possibility of assessing new haematological parameters. These parameters have yet to be evaluated, and as these analysers are often used in referral laboratories, it is important to know whether the values of haematological parameters change during sample transport. Therefore, samples of EDTA-anticoagulated blood from nine healthy dogs and EDTA- and citrate-anticoagulated blood from six healthy horses were collected and stored at room temperature for 72 and 48 hours, respectively. In canine samples, WBC and the red blood cell parameters Hb, Hb(cell), Ht, MCV, and MCHC changed significantly after only 24 hours of storage. Thus if canine blood samples need to be stored for 24 hours or longer, Hb, RBC, and MCH would appear to be more reliable parameters than Ht, Hb(cell), MCV, and MCHC. The cytoplasmic haemoglobin content (CH(R)) remained stable up to 48 hours. Both dog and horse platelet numbers were stable over time when blood was anticoagulated with EDTA. Of the platelet-derived parameters, MPC was already significantly lower 2 hours after collection of equine blood samples and was also significantly lower 24 hours after collection of canine blood samples. In contrast, MPV levels were significantly higher 48 hours after sample collection. Initial platelet numbers and platelet parameters were significantly different in citrate-anticoagulated blood and EDTA-anticoagulated blood, and platelet numbers and MPM decreased significantly in citrate-anticoagulated blood samples after only 4 hours of storage. After reference intervals for CH(R) had been established using samples from 53 non-anaemic dogs and 150 non-anaemic cats, the use of CH(R) to detect iron deficiency anaemia was tested in 63 dogs and 55 cats with different diseases. With the help of ROC curves, the optimal cut-off point was determined to be 1.22 fmol in dogs and 0.88 fmol in cats, resulting in a

  9. Datathons and Software to Promote Reproducible Research

    Science.gov (United States)

    2016-01-01

    Background Datathons facilitate collaboration between clinicians, statisticians, and data scientists in order to answer important clinical questions. Previous datathons have resulted in numerous publications of interest to the critical care community and serve as a viable model for interdisciplinary collaboration. Objective We report on an open-source software called Chatto that was created by members of our group, in the context of the second international Critical Care Datathon, held in September 2015. Methods Datathon participants formed teams to discuss potential research questions and the methods required to address them. They were provided with the Chatto suite of tools to facilitate their teamwork. Each multidisciplinary team spent the next 2 days with clinicians working alongside data scientists to write code, extract and analyze data, and reformulate their queries in real time as needed. All projects were then presented on the last day of the datathon to a panel of judges that consisted of clinicians and scientists. Results Use of Chatto was particularly effective in the datathon setting, enabling teams to reduce the time spent configuring their research environments to just a few minutes—a process that would normally take hours to days. Chatto continued to serve as a useful research tool after the conclusion of the datathon. Conclusions This suite of tools fulfills two purposes: (1) facilitation of interdisciplinary teamwork through archiving and version control of datasets, analytical code, and team discussions, and (2) advancement of research reproducibility by functioning postpublication as an online environment in which independent investigators can rerun or modify analyses with relative ease. With the introduction of Chatto, we hope to solve a variety of challenges presented by collaborative data mining projects while improving research reproducibility. PMID:27558834

  10. Is Grannum grading of the placenta reproducible?

    Science.gov (United States)

    Moran, Mary; Ryan, John; Brennan, Patrick C.; Higgins, Mary; McAuliffe, Fionnuala M.

    2009-02-01

    Current ultrasound assessment of placental calcification relies on Grannum grading. The aim of this study was to assess if this method is reproducible by measuring inter- and intra-observer variation in grading placental images, under strictly controlled viewing conditions. Thirty placental images were acquired and digitally saved. Five experienced sonographers independently graded the images on two separate occasions. In order to eliminate any technological factors which could affect data reliability and consistency all observers reviewed images at the same time. To optimise viewing conditions ambient lighting was maintained between 25-40 lux, with monitors calibrated to the GSDF standard to ensure consistent brightness and contrast. Kappa (κ) analysis of the grades assigned was used to measure inter- and intra-observer reliability. Intra-observer agreement had a moderate mean κ-value of 0.55, with individual comparisons ranging from 0.30 to 0.86. Two images saved from the same patient, during the same scan, were each graded as I, II and III by the same observer. A mean κ-value of 0.30 (range from 0.13 to 0.55) indicated fair inter-observer agreement over the two occasions and only one image was graded consistently the same by all five observers. The study findings confirmed the lack of reproducibility associated with Grannum grading of the placenta despite optimal viewing conditions and highlight the need for new methods of assessing placental health in order to improve neonatal outcomes. Alternative methods for quantifying placental calcification such as a software based technique and 3D ultrasound assessment need to be explored.

  11. Efficient polarization converter for projection displays.

    Science.gov (United States)

    Yip, W C; Huang, H C; Kwok, H S

    1997-09-01

    In the waveguiding limit, a twisted nematic liquid crystal cell behaves as an achromatic polarization rotator. We propose and demonstrate the application of such a polarization rotator to convert unpolarized light into linearly polarized light with almost 100% efficiency. This polarization converter has a 2:1 aspect ratio, which is close to the 16:9 ratio for modern televisions. It can be used therefore in a projection display with polarization-dependent light valves such as a liquid crystal light valve. Both transmittive and reflective light valves can be used. The temperature dependence of the achromatic polarization rotator is also studied. PMID:18259503

  12. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia.

    Science.gov (United States)

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S Joseph

    2016-05-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  13. Gold Photoluminescence Wavelength and Polarization Engineering

    CERN Document Server

    Andersen, Sebastian K H; Bozhevolnyi, Sergey I

    2016-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we develop a simple model that faithfully reproduces all features observed in our experiments showing also good quantitative agreement for the PL enhancement

  14. Empirical Bayes for group (DCM studies: a reproducibility study

    Directory of Open Access Journals (Sweden)

    Vladimir eLitvak

    2015-12-01

    Full Text Available This technical note addresses some key reproducibility issues in the dynamic causal modelling of group studies of event related potentials. Specifically, we address the reproducibility of Bayesian model comparison (and inferences about model parameters from three important perspectives: namely, (i reproducibility with independent data (obtained by averaging over odd and even trials. (ii Reproducibility over formally distinct models (namely, classic ERP and canonical microcircuit or CMC models and (iii reproducibility over inversion schemes (inversion of the grand average and estimation of group effects using empirical Bayes. Our hope was to illustrate the degree of reproducibility one can expect from DCM when analysing different data, under different models with different analyses.

  15. Empirical Bayes for Group (DCM) Studies: A Reproducibility Study.

    Science.gov (United States)

    Litvak, Vladimir; Garrido, Marta; Zeidman, Peter; Friston, Karl

    2015-01-01

    This technical note addresses some key reproducibility issues in the dynamic causal modelling of group studies of event related potentials. Specifically, we address the reproducibility of Bayesian model comparison (and inferences about model parameters) from three important perspectives namely: (i) reproducibility with independent data (obtained by averaging over odd and even trials); (ii) reproducibility over formally distinct models (namely, classic ERP and canonical microcircuit or CMC models); and (iii) reproducibility over inversion schemes (inversion of the grand average and estimation of group effects using empirical Bayes). Our hope was to illustrate the degree of reproducibility one can expect from DCM when analysing different data, under different models with different analyses. PMID:26733846

  16. Increased basolateral sorting of carcinoembryonic antigen in a polarized colon carcinoma cell line after cholesterol depletion-Implications for treatment of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Robert Ehehalt; Markus Krautter; Martin Zorn; Richard Sparla; Joachim Fūllekrug; Hasan Kulaksiz; Wolfgang Stremmel

    2008-01-01

    AIM:To investigate a possible increase of basolateral expression of carcinoembryonic antigen(CEA)by interfering with the apical transport machinery,we studied the effect of cholesterol depletion on CEA sorting and secretion.METHODS:Cholesterol depletion was performed in polarized Caco-2 cells using Iovastatin and methyl-βcyclodextrin.RESULTS:We show that CEA is predominantly expressed and secreted at the apical surface.Reduction of the cholesterol level of the cell by 40%-50% with Iovastatin and methyl-β-cyclodextrin led to a significant change of the apical-to-basolateral transport ratio towards the basolateral membrane.CONCLUSION:As basolateral expression of CEA has been suggested to have anti-inflamatory properties,Cholesterol depletion of enterocytes might be a potential approach to influence the course of inflammatory bowel disease.

  17. Invasive ductal carcinomas of the breast showing partial reversed cell polarity are associated with lymphatic tumor spread and may represent part of a spectrum of invasive micropapillary carcinoma.

    Science.gov (United States)

    Acs, Geza; Esposito, Nicole N; Rakosy, Zsuzsa; Laronga, Christine; Zhang, Paul J

    2010-11-01

    Invasive micropapillary carcinomas (IMPC) of the breast are aggressive tumors frequently associated with lymphatic invasion and nodal metastasis even when micropapillary (MP) differ