WorldWideScience

Sample records for cell physiological phenomena

  1. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    Science.gov (United States)

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.

  2. Biomedical Signals and Sensors I Linking Physiological Phenomena and Biosignals

    CERN Document Server

    Kaniusas, Eugenijus

    2012-01-01

    This two-volume set focuses on the interface between physiologic mechanisms and diagnostic human engineering. Today numerous biomedical sensors are commonplace in clinical practice. The registered biosignals reflect mostly vital physiologic phenomena. In order to adequately apply biomedical sensors and reasonably interpret the corresponding biosignals, a proper understanding of the involved physiologic phenomena, their influence on the registered biosignals, and the technology behind the sensors is necessary. The first volume is devoted to the interface between physiologic mechanisms and arising biosignals, whereas the second volume is focussed on the interface between biosignals and biomedical sensors. The physiologic mechanisms behind the biosignals are described from the basic cellular level up to their advanced mutual coordination level during sleep. The arising biosignals are discussed within the scope of vital physiologic phenomena to foster their understanding and comprehensive analysis.

  3. Epigenetics: new concepts of old phenomena in vascular physiology.

    Science.gov (United States)

    Krause, Bernardo; Sobrevia, Luis; Casanello, Paola

    2009-10-01

    The hypothesis of 'Developmental Origins of Health and Disease' (DOHaD) relies on the presence of mechanisms sensing and signalling a diversity of stimuli during fetal development. The mechanisms that have been broadly suggested to be involved in these processes are the epigenetic modifications that could 'record' perinatal stimuli. Since the definition of epigenetic and the associated mechanisms are conflictive, in this review epigenetic was defined as 'chromosome-based mechanisms that can change the phenotypic plasticity in a cell or organism'. The most understood epigenetic mechanisms (i.e. DNA methylation, histone post-translational modifications (PTM), ATP-dependent chromatin modifications and non-coding RNAs) and reported evidence for their role in fetal programming were briefly reviewed. The development of the vascular system is strongly influenced by epigenetic mechanisms. For that reason vascular cells are good candidates to be explored regarding epigenetic programming since its proved susceptibility to be imprinted. This has been described in pregnancy diseases such as intra-uterine growth restriction, gestational diabetes and pre-eclampsia, where changes in vascular function are preserved in vitro. PMID:19485890

  4. From physiological psychology to psychological physiology: Postnonclassical approach to ethnocultural phenomena.

    Directory of Open Access Journals (Sweden)

    Asmolov, A.G.

    2015-07-01

    Full Text Available In modern science, along with the “classic” and “non-classical” approach to solving fundamental and applied problems, there is an actively developing “postnonclassical” research paradigm. This renovation of general scientific methodology has been accompanied by the emergence of new experimental technologies and new scientific research directions based on them. “Social psychophysiology” is one such direction. It is formed within the frame of postnonclassical methodology at the intersection of neuroscience and psychology. This work is devoted to the analytical review of the methods, achievements and prospects of contemporary social neuroscience and social psychophysiology studying brain structures that are specifically related to the implementation of social forms of behavior and intercultural communication. Physiological studies of brain activity during social interaction processes, which are simulated using virtual reality environments, are analyzed, and the physiological approach to the study of the brain mechanisms associated with social perception, social cognition and social behavior is used. Along with the analysis of psychophysiological studies of the mechanisms of social perception and social cognition, we discuss the theories of “Brain Reading” and “Theory of Mind” and the underlying data concerning “Gnostic neurons recognition of persons and recognition of emotional facial expressions”, “mirror neurons”, “emotional resonance” and “cognitive resonance”. Particular emphasis is placed on the discussion of a fundamentally new trend in the study of the relationship between the brain and culture (i.e., “cultural neuroscience”. Related to this connection, the following topics are raised: physiological mechanisms protecting the “individual distance” in communication between members of a personified community, psychophysiological approaches to the study of cross-cultural differences, physiological

  5. Isolated muscle cells as a physiological model.

    Science.gov (United States)

    Lieberman, M; Hauschka, S D; Hall, Z W; Eisenberg, B R; Horn, R; Walsh, J V; Tsien, R W; Jones, A W; Walker, J L; Poenie, M

    1987-09-01

    Summary of a symposium presented by the American Physiological Society (Cell and General Physiology Section and Muscle Group) at the 70th Annual Meeting of the Federation of American Societies for Experimental Biology, St. Louis, Missouri, April 15, 1986, chaired by M. Lieberman and F. Fay. This symposium reflects a growing interest in seeking new technologies to study the basic physiological and biophysical properties of cardiac, smooth, and skeletal muscle cells. Recognizing that technical and analytical problems associated with multicellular preparations limit the physiological significance of many experiments, investigators have increasingly focused on efforts to isolate single, functional embryonic, and adult muscle cells. Progress in obtaining physiologically relevant preparations has been both rapid and significant even though problems regarding cell purification and viability are not fully resolved. The symposium draws attention to a broad, though incomplete, range of studies using isolated or cultured muscle cells. Based on the following reports, investigators should be convinced that a variety of experiments can be designed with preparations of isolated cells and those in tissue culture to resolve questions about fundamental physiological properties of muscle cells. PMID:2443014

  6. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  7. Cell volume regulation: physiology and pathophysiology

    DEFF Research Database (Denmark)

    Lambert, I H; Hoffmann, E K; Pedersen, Stine Helene Falsig

    2008-01-01

    Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged....../hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations...

  8. The origin of graphic recording of psycho-physiological phenomena in Germany.

    Science.gov (United States)

    De Leo, Angela

    2006-01-01

    Despite some negative comments expressed by E. du Bois-Reymond on W. Wundt's experimental skills, the latter provided accurate descriptions of the laboratory instruments just in his first works. But he paid particular attention to graphic recording, whose history was most likely reconstructed by him probably for the first time. Its significance lay in the fact that it was applied in every psychology laboratory: without it, mental phenomena could not be measured. Starting from such a history, the aim of this essay is to trace the paths that have led to the introduction of graphic recording into the sciences. Commonly connected with the invention of C. Ludwig's kymograph in 1846, graphic recording has nevertheless a much more extensive background.

  9. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...

  10. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age. PMID:26616110

  11. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  12. Physiological alterations in UV-irradiated cells: liquid holding recovery

    International Nuclear Information System (INIS)

    The biochemical and physiological alterations that occur in ultraviolet irradiated cells, during liquid holding have been studied. Incubation in buffer acts not to interfer directly with the mechanic repairs but by promoting metabolic alterations that would block some irreversible and lethal physiological responses. (L.M.J.)

  13. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    Science.gov (United States)

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  14. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  15. Physiology of cell volume regulation in vertebrates

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Lambert, Ian H; Pedersen, Stine F

    2009-01-01

    cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage...... and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate...

  16. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  17. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  18. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    The results in this thesis are part of the work carried out during the author’s doctoral studies. Funding for the project has been provided by the Programme Commission on Strategic Growth Technologies, the Danish Agency for Science, Technology and Innovation (grant no. 2106-08-0018 ‘Pro....... Presented in this thesis is selected parts of the results obtained, which in some cases have also been published in peer-reviewed journals or presented at conferences and meetings, as listed in Sec. 1.2. The studies of the distributions of solutes are motivated by microbiological phenomena in which cells...... subproject, we study the influence of neighboring cells in shaping the iii Abstract migration of the individual cell by a combined experimental and theoretical approach. Using highly controlled microfluidic cell to obtain culture high-resolution image data with subcellular resolution of migrating cells...

  19. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  20. Molecular anatomy and physiology of exocytosis in sensory hair cells.

    Science.gov (United States)

    Rutherford, Mark A; Pangršič, Tina

    2012-01-01

    Hair cells mediate our senses of hearing and balance by synaptic release of glutamate from somatic active zones (AZs). They share conserved mechanisms of exocytosis with neurons and other secretory cells of diverse form and function. Concurrently, AZs of these neuro-epithelial hair cells employ several processes that differ remarkably from those of neuronal synaptic terminals of the brain. Their unique molecular anatomy enables them to better respond to small, graded changes in membrane potential and to produce unsurpassed rates of exocytosis. Here, we focus on the AZs of cochlear inner hair cells (IHCs). As in other hair cells, these AZs are occupied by a cytoplasmic extension of the presynaptic density, called the synaptic ribbon: a specialized protein complex required for normal physiological function. Some proteins found at IHC synapses are uniquely expressed or enriched there, where their disruption can beget deafness in humans and in animal models. Other proteins, essential for regulation of conventional neuronal Ca(2+)-triggered fusion, are apparently absent from IHCs. Certain common synaptic proteins appear to have extra significance at ribbon-type AZs because of their interactions with unique molecules, their unusual concentrations, or their atypical localization and regulation. We summarize the molecular-anatomical specializations that underlie the unique synaptic physiology of hair cells. PMID:22682011

  1. Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells

    Science.gov (United States)

    Kryukov, A. K.; Petrov, V. S.; Averyanova, L. S.; Osipov, G. V.; Chen, W.; Drugova, O.; Chan, C. K.

    2008-09-01

    We study collective phenomena in highly heterogeneous cardiac cell culture and its models. A cardiac culture is a mixture of passive (fibroblasts), oscillatory (pacemakers), and excitable (myocytes) cells. There is also heterogeneity within each type of cell as well. Results of in vitro experiments are modelled by Luo-Rudy and FitzHugh-Nagumo systems. For oscillatory and excitable media, we focus on the transitions from fully incoherent behavior to partially coherent behavior and then to global synchronization as the coupling strength is increased. These regimes are characterized qualitatively by spatiotemporal diagrams and quantitatively by profiles of dependence of individual frequencies on coupling. We find that synchronization clusters are determined by concentric and spiral waves. These waves arising due to the heterogeneity of medium push covered cells to oscillate in synchrony. We are also interested in the influence of passive and excitable elements on the oscillatory characteristics of low- and high-dimensional ensembles of cardiac cells. The mixture of initially silent excitable and passive cells shows the transitions to oscillatory behavior. In the media of oscillatory and passive or excitable cells, the effect of oscillation death is observed.

  2. On macroscopic quantum phenomena in biomolecules and cells: from Levinthal to Hopfield.

    Science.gov (United States)

    Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Setrajčić, Jovan

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662

  3. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  4. Modelling of degradation/recovery phenomena in CdS/CdTe ultrathin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorji, Nima E. [University of Bologna, Department of Electrical, Electronic, and Information Engineering, Bologna (Italy)

    2015-04-01

    The degradation/recovery phenomena in ultrathin film solar cells based on CdS/CdTe are theoretically analysed using Sah-Noyce-Shockley theory for generation and recombination in the depletion region. This theory can explain the overlap of the depletion regions at both front and back contacts where the carrier generation and collection are as important as recombination mechanism. The value of physical parameters such as uncompensated defect density, carrier recombination lifetime and band bending at interface are critically important when reducing the thickness of CdTe layer down to sub-micron. The rollover, materials inter-/out-diffusion, complex defect formation and the role of mobile ions are taken into consideration to obtain an insight into the physics of degradation/recovery phenomena in ultrathin CdTe film solar cells. Both mechanisms are precisely analysed drawing the schematics of the energy band diagrams and mobile ions transport paths which in this case is the grain interior. This means that we neglect the metal diffusion through the grain boundaries which are assumed to be completely passivated. This assumption enabled us to study the role of the defects on the carrier transport in the interiors rather than through the boundaries. (orig.)

  5. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    Science.gov (United States)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  6. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...

  7. PIXE microanalysis in human cells: physiology and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, P.; Llabador, Y.; Ortega, R.; Simonoff, M.; Razafindrabe, L. (Centre d' Etudes Nucleaires Bordeaux/Gradignan, 33 - Gradignan (France))

    1993-04-01

    The micro-PIXE technique has been regularly carried out for more than two years to provide elemental distributions in human cells. Using this technique in the framework of cellular biology, two research axes have been developed: The cellular pharmacology of chemotherapeutic agents and the physiology of ionic cellular exchanges. These studies are based upon in vitro experimental models of human cells, either under the form of isolated cultured cells or as part of well-structured tissues. The aim of this paper is to present the experimental procedures and methodological aspects of cellular and subcellular quantitative mapping. Cell processing, identification of intracellular structures, quantitatives results and beam damage will be discussed and illustrated by examples issuing from the above-mentioned studies. (orig.).

  8. Nitric oxide and thermogenesis--challenge in molecular cell physiology.

    Science.gov (United States)

    Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Stancic, Ana; Jankovic, Aleksandra; Korac, Bato

    2011-01-01

    Only recently we can link thermogenesis, mitochondria, nitric oxide, and redox regulation in biochemical terms. Currently, we are discussing these processes from the aspect of fundamental principles of molecular physiology. Thus, the present article highlights both cell physiology and the principles of the maintenance of energy homeostasis in organisms. Energy homeostasis means much more than simple combustion; adipose tissues at this point of evolution development are related to a broad spectrum of metabolic disturbances and all aspects of cellular remodeling (i.e. structural, metabolic and endocrine changes). Therefore, this paper addresses not only thermogenesis but also energy homeostasis, oxidative phosphorylation and ATP production, proliferation and differentiation of brown adipocytes, their life and death, mitochondriogenesis and angiogenesis. These processes will be united by molecular players of oxidation/reduction reactions, thus creating the principles based on the redox regulation. PMID:21622264

  9. Investigation of transport phenomena in a 7-serpentine channel PEM fuel cell

    International Nuclear Information System (INIS)

    Full text: In the past decade, numerical modeling and investigation of PEM fuel cells has received great attention. Many two- and three-dimensional models have been developed in which the computational fluid dynamics -CFD method - has been rigorously coupled with electrochemical phenomena in order to identify, understand, predict, control and optimize various transport and electro-chemical processes that occur at different length scales in the fuel cells. Tremendous progress, both engineering and scientific, made until now has helped to improve the electrochemical performance of PEM fuel cells. Nevertheless, there is an increasing consensus on the need to further improve the performance of PEM fuel cell through design optimization of fuel cell components. Mathematical modeling of PEM fuel cells, based on an accurate description of the mechanisms of various processes occurring within a fuel cell, is an indispensable tool for exploring various architectures for fuel cells and their components. Channel geometry (path length, size, shape) has a tremendous impact on PEMFC performance. Distributions of the reactant species concentration in a PEM fuel cell due to fuel consumption and local transport of water through the membrane can cause changes in current density, temperature and water concentration. Water distribution can lead to flooding or drying of the membrane that may shorten the PEMFC components life. Finding a flow field pattern that distribute the gas more evenly is one method in minimizing these problems and optimising the PEM fuel cell performance. The paper describes our approach in modeling the transport of relevant quantities (mass, chemical species, and charged species) in all components of a fuel cell. The PEM fuel cell simulated in this work consists of two flow-field patterns separated by gas diffusion layers (GDL) and a membrane electrode assembly (MEA). Serpentine flow fields are common, yet the underlying reason for their success has yet to be

  10. Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2005-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitaive analysis of model...

  11. Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects.

    Directory of Open Access Journals (Sweden)

    Veedamali S Subramanian

    Full Text Available Mammalian cells obtain vitamin B1 (thiamin from their surrounding environment and convert it to thiamin pyrophosphate (TPP in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT. Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made (3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed (3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM, and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (hMTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A showed proper mitochondrial targeting but displayed significant inhibition in (3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.

  12. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  13. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund;

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  14. Molecular cell biology and physiology of solute transport

    Science.gov (United States)

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  15. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology

    Indian Academy of Sciences (India)

    Swarna Gowri Thota; Rashna Bhandari

    2015-09-01

    Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.

  16. The stem cell niche: tissue physiology at a single cell level

    OpenAIRE

    Hoggatt, Jonathan; Scadden, David T.

    2012-01-01

    Stem cells are the critical unit affecting tissue maintenance, regeneration, and repair, with particular relevance to the tissues with high cell turnover. Stem cell regulation accommodates the conflicting needs of prompt responsiveness to injury and long-term preservation through quiescence. They are, in essence, the fundamental unit by which a tissue handles changing physiologic needs throughout the lifetime of the organism. As such, they are the focal point of dynamic tissue function, and t...

  17. Physiology of Saccharomyces cerevisiae during cell cycle oscillations.

    Science.gov (United States)

    Duboc, P; Marison, I; von Stockar, U

    1996-10-18

    Synchronized populations of Saccharomyces cerevisiae CBS 426 are characterized by autonomous oscillations of process variables. CO2 evolution rate, O2 uptake rate and heat production rate varied by a factor of 2 for a continuous culture grown at a dilution rate of 0.10 h-1. Elemental analysis showed that the carbon mass fraction of biomass did not change. Since the reactor is not at steady state, the elemental and energy balances were calculated on cumulated quantities, i.e. the integral of the reaction rates. It was possible to show that carbon, degree of reduction and energy balances matched. Application of simple mass balance principles for non-steady state systems indicated that oscillations were basically characterized by changes in biomass production rate. In addition, the amount of intermediates, e.g. ethanol or acetate, produced or consumed was negligible. Growth rate was low during the S-phase (0.075 h-1) and high during the G2, M and G1 phases (0.125 h-1) for a constant dilution rate of 0.10 h-1. However, nitrogen, ash, sulfur and potassium content showed systematic increases during the S-phase (bud initiation). Cell component analyses showed that changes in cellular fractions during oscillations (storage carbohydrate content decreased during the S-phase) were due to changes in production rates, particularly for protein and carbohydrates. Nevertheless, using the data evaluation techniques for dynamic systems presented here, it was shown that storage carbohydrates are not consumed during the S-phase. Only the synthesis rate of the different cell components changed depending on position in cell cycle. The growth process may be divided into two phenomena: the formation of new cells during mitosis with a low yield, and size increase of new born cells with high yield. Both kinetic and stoichiometric coefficients varied with the position in the oscillation: the results showed that biomass structure changed and that specific growth rate, as well as biomass yield

  18. The Cell Nucleus in Physiological and Experimentally Induced Hypometabolism

    Science.gov (United States)

    Malatesta, M.

    The main problem for manned space mission is, at present, represented by the mass penalty associated to the human presence. An efficient approach could be the induction of a hypometabolic stasis in the astronauts, thus drastically reducing the physical and psychological requirements of the crew. On the other hand, in the wild, a reduction in resource consumptions physiologi- cally occurs in certain animals which periodically enter hibernation, a hypometabolic state in which both the energy need and energy offer are kept at a minimum. During the last twelve years, we have been studying different tissues of hibernating dormice, with the aim of analyzing their features during the euthermia -hibernation-arousal cycle as well as getting insight into the mechanisms allowing adaptation to hypometabolism. We paid particular attention to the cell nucleus, as it is the site of chief metabolic functions, such as DNA replication and RNA transcription. Our observations revealed no significant modification in the basic features of cell nuclei during hibernation; however, the cell nuclei of hibernating dormice showed unusual nuclear bodies containing molecules involved in RNA pathways. Therefore, we supposed that they could represent storage/assembly sites of several factors for processing some RNA which could be slowly synthesised during hibernation and rapidly and abundantly released in early arousal in order to meet the increased metabolic needs of the cell. The nucleolus also underwent structural and molecular modifications during hibernation, maybe to continue important nucleolar functions, or, alternatively, permit a most efficient reactivation upon arousal. On the basis of the observations made in vivo , we recently tried to experimentally induce a reversible hypometabolic state in in vitro models, using cell lines derived from hibernating and non-hibernating species. By administering the synthetic opioid DADLE, we could significantly reduce both RNA transcrip- tion and

  19. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    OpenAIRE

    Dejan Raković; Miroljub Dugić; Jasmina Jeknić-Dugić; Milenko Plavšić; Stevo Jaćimovski; Jovan Šetrajčić

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment consider...

  20. Physiological properties of vertebrate nerve cells in tissue culture.

    Science.gov (United States)

    Dichter, M A

    1975-01-01

    Vertebrate neurons in tissue culture are providing us with a new model system for studying the complex events which occur during neuronal differentiation, synaptogenesis, and neural network formation. It is already apparent that dissociated embryo neurons are capable of differentiating both morphologically and physiologically along predetermined lines in the absence of external influences. These neurons can form new connections with one another but retain some specificity in their selections. Both simple and complex neural networks can be seen. At the present time, the development of the invitro model system is just being explored. The potential value of a system of this kind at a variety of investigative levels should be appreciated. Questions of a fundamental nature in neurobiology, such as how synapses form, what rules govern such interaction, how cells recognize one another, and the nature of the basic two-, three-, or four-cell circuits that comprise the more complex neurons tissue can be approached with this system. Studies of the neurons and synapses themselves can lead to a more basic understanding of vertebrate nervous system functioning. The development of certain pathophysiological processes and the effects of neuroactive drugs on vertebrate neurons may be studied at the cellular level. Finally, the basic mechanism of some genetic abnormalities which produce abnormal nervous structure and function may be more easily determined in a simplified in vitro model than in the intact central nervous system. The value of any model is not inherent in the elegance of the model itseld, but only in its ability to suggest answers to fundamental questions about the system being modeled. Many fundamental questions about brain mechanisms in mental retardation remain unanswered. Perhaps some day the model of nerve cells in tissue culture will bring us closer to the answers to these questions. PMID:173059

  1. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  2. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  3. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    Science.gov (United States)

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  4. Investigation of the current break-down phenomena in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Srinivasamurthy, N.; Agrawal, B.L. [Power Systems Group, ISRO Satellite Centre, Bangalore (India)

    1996-08-15

    Observed reverse current-voltage characteristics of the single crystal silicon and gallium arsenide solar cells have been analyzed. Physical mechanisms behind the junction break-down in silicon cells and current break-down in gallium arsenide cells have been identified. Preliminary estimates of the diffusion capacitance in GaAs cells have been presented

  5. How a (subcellular coincidence detection mechanism featuring layer-5 pyramidal cells may help produce various visual phenomena

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2015-12-01

    Full Text Available Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of sub-second temporal scale.

  6. Stem cell research: from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    Chengyu Jiang

    2009-01-01

    @@ Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson's disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide range of different human cells that can be used to restore malfunctioning or damaged cells and tissues in patients. Recent studies have shown that pluripotent stem cells derived from adult bone marrow, the umbilical cord and the placenta could also be induced to differentiate into a variety of different tissues. In this issue, we have invited several scientists in China to summarize their pioneering works in the stem cell research field.

  7. Stem cell research:from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson’s disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide

  8. Cancer and malignant resistance of cells as phenomena of adaptation to damaging factors.

    Science.gov (United States)

    Monceviciute-Eringiene, E

    1996-05-01

    I propose the hypothesis that mechanisms of general biological persistent resistance to damaging factors are closely related to the development of tumour cells. This phenomenon is characteristic of bacterial variants whose resistance to antibiotics and other chemotherapeutic drugs appears through L-transformation. As somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through multistage malignant transformation. Many cancerous cells, which have acquired persistent resistance to chemotherapy drugs or irradiation, often reappear locally or in metastases after courses of treatment. Thus, these cells undergo a kind of repeated development of malignancy. After a certain remission period, they begin to multiply more intensively locally, and are more likely to spread by metastasis. All resistant cells have the following characteristics: simplified metabolism, genetic, biochemical and morphological properties; lower requirements from their nutrient medium; rapid growth; parasitic qualities; invasiveness. It is as if they regress into a more primitive mode of existence (atavism) to survive under unfavourable circumstances. Somatic cells, resistant to carcinogens and the cells which undergo progression to more malignant types under the influence of drugs become similar to unicellular organisms or to forms of the latter which are resistant to damaging factors. The more primitive the cells become, the better they survive. Thus, cancer is a special case of the general resistance of cells to damaging factors. PMID:8735884

  9. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pmass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome

  10. Cell mechanics and mechanotransduction: pathways, probes, and physiology.

    Science.gov (United States)

    Huang, Hayden; Kamm, Roger D; Lee, Richard T

    2004-07-01

    Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces.

  11. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  12. A New Rotation Phenomena of Cells Induced by Homegeneous Electric Field

    Science.gov (United States)

    Hatakeyama, Toyomasa; Yagi, Hiroshi

    1990-05-01

    When at least two plant protoplasts are located close to each other under homogeneous electric field, almost all of the cells rotate in the vicinity of its frequency of 10 kHz and specific cells in the vicinity of 10 MHz. The first rotation occurs in the plane constituted by the connecting line between two cells and the applied electric field line. This angular velocity increases with the square of the field strength. On the other hand, the second rotation or new rotation occurs in any plane and its angular velocity complicatedly depends on the field strength. Furthermore, when two cells are arranged in such a way that their connecting line is parallel to the applied field, the second rotation occurs but the first does not. The distinctive feature of the second rotation can be explained by the anisotropic dielectric in the cell due to the shape of its vacuole.

  13. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, Hector Daniel [Cornell University

    2013-08-01

    Our work is focused on membraneless laminar flow fuel cells, an unconventional fuel cell technology, intended to create a system that not only avoids most typical fuel cell drawbacks, but also achieves the highest power density yet recorded for a non-H{sub 2} fuel cell. We have employed rigorous electrochemistry to characterize the high-energy- density fuel BH4-, providing important mechanistic insight for anode catalyst choice and avoiding deleterious side reactions. Numerous fuel cell oxidants, used in place of O{sub 2}, are compared in a detailed, uniform manner, and a powerful new oxidant, cerium ammonium nitrate (CAN), is described. The high-voltage BH{sub 4}{sup -}/CAN fuel/oxidant combination is employed in a membraneless, room temperature, laminar-flow fuel cell, with herringbone micromixers which provide chaotic-convective flow which, in turn, enhances both the power output and efficiency of the device. We have also been involved in the design of a scaled-up version of the membraneless laminar flow fuel cell intended to provide a 10W output.

  14. Immunity phenomena following olfactory ensheathing cell transplantation into experimental allergic encephalomyelitis rat brain

    Institute of Scientific and Technical Information of China (English)

    Ainong Mei; Jue Wang; Qiong Cheng; Xinqing Yang; Jin Yang; Pengli Zhu; Shougang Guo

    2010-01-01

    Olfactory ensheathing cells(OECs)can promote axonal regeneration and remyelination for the treatment of spinal cord injury.OECs can also treat experimental allergic encephalomyelitis(EAE),but it remains unclear whether OECs might be rejected by the immune system in the brain,including the destruction of the blood-brain barrier under inflammation,the release of inflammatory factors,the activation of local antigen-presenting cells(e.g.,microglia cells)and antigen drainage.We found that OECs expressed major histocompatibility complex(MHC)-Ⅰmolecules on the cell surface,barely expressed MHC-Ⅱ,but MHC-Ⅱ could be induced by interferon-y,suggesting that OECs have certain immunogenicity.When OECs were transplanted into normal animal brains,no OECs were phagocytosed by dendritic cells in the cervical lymph node,and OECs did not induce lymphocyte proliferation,which indicates that OECs share some immune privilege under normal conditions.However,OECs in the rat EAE brain were phagocytosed by dendritic cells in the cervical lymph node and enhanced lymphocyte proliferation.These findings suggest that OECs are rejected because of increased immunogenicity in EAE brain,and that brain inflammation,in particular activated dendritic cells,may be a prerequisite for rejecting OECs.

  15. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  16. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pexosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy

  17. The Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based Cell Stiffness Assessment

    OpenAIRE

    Yu-Wei Chiou; Hsiu-Kuan Lin; Ming-Jer Tang; Hsi-Hui Lin; Ming-Long Yeh

    2013-01-01

    Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All...

  18. Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow.

    Science.gov (United States)

    Kroon, Jeffrey; Daniel, Anna E; Hoogenboezem, Mark; van Buul, Jaap D

    2014-01-01

    During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium. PMID:25146919

  19. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  20. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  1. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  2. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    Science.gov (United States)

    Navasa, M.; Andersson, M.; Yuan, J.; Sundén, B.

    2012-11-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  3. Transport phenomena in the cathode of a molten carbonate fuel cell

    International Nuclear Information System (INIS)

    'Full text': A Molten Carbonate Fuel Cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for noble catalysts. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. A model for the reaction-diffusion processes within the cathode of a MCFC is developed using Fick's Law for diffusion and incorporating Darcy's Law for convection. A model for Binary Diffusion is also discussed and compared to those for Fickian diffusion. It can be shown that there exists a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results are also discussed for varying diffusivities and permeabilities. Ultimately, this research focuses on the optimization of the electrode porosity to increase the power output of the fuel cell. The porosity is considered as a function of position, and is optimized using the software package MATLAB. (author)

  4. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    Science.gov (United States)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  5. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).

    Science.gov (United States)

    Xu, Yunpeng; Zhao, Gang; Zhou, Xiaoming; Ding, Weiping; Shu, Zhiquan; Gao, Dayong

    2014-04-01

    The objective of this study is to determine the cryobiological characteristics of human embryonic kidney (HEK293T) cells. The cell membrane hydraulic conductivity (L(pg)) and the activation energy of water transport (E(Lp)) were determined in the absence/presence of cryoprotectant agent (CPA), while the nucleation rate kinetic and thermodynamic parameters (Ωo(SCN) and κo(SCN)) were determined in the absence of CPA. Since dehydration and intracellular ice formation (IIF) are two factors that may cause damage to cells during the freezing process, systematical freezing experiments were carried out at different cooling rates (5, 10, 15, 20, 30, and 60°C/min) under the commercial available cryomicroscopy (FDCS 196, Linkham, Waterfield, UK) to further explore the cryoinjury mechanism for HEK293T cells. By simultaneously fitting the water transport equation to the experimentally measured volumetric shrinkage data at 5, 10, and 15°C/min, the "combined best fit" membrane permeability parameters for HEK293T cells in both phosphate buffer saline (PBS) and CPA media (0.75M Me2SO in PBS) are determined. They are L(pg)=2.85×10(-14)m/s/Pa (0.17μm/min/atm), E(Lp)=142.91kJ/mol (34.13kcal/mol) (R(2)=0.990), and L(pg)[cpa]=2.73±0.44×10(-14)m/s/Pa (0.16±0.03μm/min/atm), E(Lp)[cpa]=152.52±27.69kJ/mol (36.42±6.61kcal/mol) (R(2)=0.993), respectively. An optimal cooling rate B(opt) (the highest cooling rate without IIF) was determined to be 14.24°C/min in the absence of CPA. Additionally, the ice nucleation parameters (Ωo(SCN) and κo(SCN)) were averaged to be 1.31±0.11×10(8)m(-2)s(-1) and 7.67±2.55×10(9)K(5) for the cooling rates 20, 30, and 60°C/min. PMID:24582893

  6. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Directory of Open Access Journals (Sweden)

    Julija Svirskaitė

    2016-02-01

    Full Text Available The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1 icosahedral internal membrane-containing SH1; (2 icosahedral tailed HHTV-1; (3 spindle-shaped His1; and (4 pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.

  7. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Science.gov (United States)

    Svirskaitė, Julija; Oksanen, Hanna M.; Daugelavičius, Rimantas; Bamford, Dennis H.

    2016-01-01

    The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels. PMID:26927156

  8. [Cooperative phenomena in the membrane potential of parathyroid cells induced by divalent cations].

    Science.gov (United States)

    Hirose, T

    1985-01-01

    Membrane potentials of mouse parathyroid cells were measured by means of the intracellular microelectrode method. The membrane potential in external Krebs solution containing 2.5 mM of Ca++ was -23.6 +/- 0.4 mV (mean +/- standard error of mean). The low concentration of Ca++ (1.0 mM) caused hyperpolarization of the membrane potential to -61.7 +/- 0.8 mV. The membrane potential was proportional to the logarithm of the concentration of K ion in the solution of low Ca ion. The concentration of external Na+, C1- and HPO4-- had no effect on the membrane potential. The sigmoidal transition of membrane potentials was induced by the change of Ca ion concentration in the range from 2.5 to 1.0 mM. The change of the membrane potentials in low Ca ion is originated from increase in potassium permeability of the cell membrane. The similar sigmoidal changes of the membrane potentials were observed in the solution containing 4 to 3 mM of Sr ion. The Mg and Ba ion showed smaller effect on the membrane potential. The Goldman equation was extended to divalent ions. Appling the extended membrane potential equation, ratios of the permeability coefficients were obtained as follows: PK/PCa = 0.067 for 2.5 mM Ca++, 0.33 for 1.0 mM Ca++; PK/PSr = 0.08 for 4 mM Sr++ and 0.4 for 3 mM Sr++; PK/PMg = 0.5; PK/PBa = 0.67 for all range of concentration. The Hill constants of Sr ion and Ca ion were 20; the relationship between Sr ion and Ca ion was competitive. The Hill constants of Mg and Ba ion were 1 each. The Hill constant of Ca ion was depend of the temperature; nmax = 20 at 36 degrees C, n = 9 at 27 degrees C, n = 2 at 22 degrees C. The enthalpy of Ca-binding reaction was obtained from the Van't Hoff plot as 0.58 kcal. The activation energies of the K+ permeability increase were obtained from the Arrhenius plots as 3.3 kcal and 4 kcal. The difference, 0.7 kcal, corresponds to the enthalpy change of this reaction, of which value is close to that of the Ca-binding reaction. PMID:4093891

  9. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  10. Corrosion phenomena of alloys and electrode materials in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Biedenkopf, P. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Werkstoffe und Verfahren der Energietechnik; Bischoff, M.M. [MTU-Friedrichshafen GmbH, - Neue Technologien - ZEB -, Muenchen (Germany); Wochner, T. [MTU-Friedrichshafen GmbH, Abt. TQZ, Friedrichshafen (Germany)

    2000-05-01

    The corrosion behavior of different alloys and the electrical conductivity of the growing corrosion scales was investigated under simulated and real molten carbonate fuel cell conditions. The corrosion of the usually used NiO cathode material was also investigated. In several exposure tests in oxidizing atmospheres, the FeCrMnNi steel 1.3965 showed a higher corrosion resistance to the aggressive carbonate media than the FeCrNi alloy 1.4404 (SS316L). This superior corrosion resistance is explained by the formation of a mixed (Fe,Ni,Mn){sub x}Cr{sub 3-x}O{sub 4} spinel layer, which reduces the outward diffusion of iron ions more than the mixed (Fe,Ni)Cr{sub 2}O{sub 4} spinel formed on austenitic FeCrNi steels. Oxide debris, which spalls off the current collectors, was investigated by XRD. The corrosion scales spalled off mainly at the curved area of the current collector and not at the cathode/current collector interface. The debris was strongly magnetic and consisted of several, in some cases lithiated iron oxides, whereby {alpha}-Fe{sub 2}O{sub 3} (hematite), {gamma}-Fe{sub 2}O{sub 3} (maghemite) and Fe{sub 3}O{sub 4} (magnetite) formed most of the debris. The investigations of the electrical conductivity of the corrosion scales have shown that the electrical conductivity is limited by the inner, Cr-containing oxide of the multi-layered corrosion scale. Cr-rich alloys which contain more than 20 wt.% Cr showed extremely high ohmic resistance of the corrosion scale, much higher than that of alloys containing less than 20 wt.% Cr due to the formation of highly conductive mixed spinel layers. Small additions of Al in the alloy increased the ohmic resistance of the corrosion scale by many orders of magnitude. Corrosion tests in the fuel environment showed, that common uncoated stainless steels are not suitable for the use as anodic current collectors.

  11. Effects of physiological levels of the green tea extract Epigallocatechin gallate (EGCG on breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li eZeng

    2014-05-01

    Full Text Available Physiological concentrations of the green tea extract EGCG caused growth inhibition in oestrogen receptor α (ERα-positive MCF7 cells, that was associated with down-regulation of the ERα and reduced insulin-like growth factor (IGF binding protein-2 (IGFBP-2 abundance and increased protein abundance of the tumour suppressor genes p53/p21. In contrast to MCF7 cells that have wt p53, EGCG alone did not change cell proliferation or death significantly in another ERα-positive cell line T47D that possesses mutant p53. EGCG increased ERα protein levels and as a consequence, the cells responded significantly better to an ERα antagonist Tamoxifen (TAM in the presence of EGCG. EGCG significantly increased cell death in an ERα-negative cell line, MDA-MB-231 that also possesses mutant p53. EGCG significantly increased the ERα and IGF-I receptor (IGF-IR levels and thereby enhanced the sensitivities of the cells to Tamoxifen and a blocking antibody targeting the IGF-1R (αIR3. In contrast to MCF7, T47D and MDA-MB-231 breast cancer cells that exhibited significant changes in key molecules involved in breast growth and survival upon treatment with physiological levels of EGCG, the growth, survival and levels of these proteins in non-malignant breast epithelial cells, MCF10A cells, were not affected.

  12. Transcriptional and functional adaptations of human endothelial cells to physiological chronic low oxygen.

    Science.gov (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-05-01

    Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.

  13. Physiological and pathological role of local and immigrating colonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Ferenc Sipos; Gábor Valcz; Béla Molnár

    2012-01-01

    The latest avenue of research is revealing the existence of and role for the colonic stem cells in the physiological renewal of the mucosa and in pathological circumstances where they have both positive and negative effects. In the case of human colon, different levels of stem cell compartments exist. First, the crypt epithelial stem cells, which have a role in the normal crypt epithelial cell dynamics and in colorectal carcinogenesis. Close to the crypts, the second layer of stem cells can be found; the local subepithelial stem cell niche, including the pericryptic subepithelial myofibroblasts that regulate the epithelial cell differentiation and have a crucial role in cancer progression and chronic inflammation-related fibrosis. The third level of stem cell compartment is the immigrating bone-marrow-derived stem cells, which have an important role in wound healing after severe mucosal inflammation, but are also involved in cancer invasion. This paper focuses on stem cell biology in the context of physiological and pathological processes in the human colon.

  14. Development of a screening approach for exploring cell factory potential through metabolic flux analysis and physiology

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen; Nielsen, Kristian Fog; Thykær, Jette

    2012-01-01

    of the recombinant strains in order to evaluate their potential as fungal cell factories and for guiding further metabolic engineering strategies. To meet the demand for a fast and reliable method for physiological characterisation of fungal strains, a screening approach using a micro titer format was developed......The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis...... in the strains of interest during exponential growth. The novelty of this screening approach, is that potential cell factories are selected based on their metabolic capacity for producing various products on interest and these cell factories may in turn be characterised based on their flux distributions. As part...

  15. Design, Fabrication and Characterization of an In Silico Cell Physiology lab for Bio Sensing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A ul; Rokkam, M; De Carlo, A R; Wereley, S T; Wells, H W; McLamb, W T; Roux, S J; Irazoqui, P P; Porterfield, D M

    2006-04-01

    In this paper, we report the design, fabrication and characterization of an In Silico cell physiology biochip for measuring Ca{sup 2+} ion concentrations and currents around single cells. This device has been designed around specific science objectives of measuring real time multidimensional calcium flux patterns around sixteen Ceratopteris richardii fern spores in microgravity flight experiments and ground studies. The sixteen microfluidic cell holding pores are 150 by 150 {mu}m each and have 4 Ag/AgCl electrodes leading into them. An SU-8 structural layer is used for insulation and packaging purposes. The In Silico cell physiology lab is wire bonded on to a custom PCB for easy interface with a state of the art data acquisition system. The electrodes are coated with a Ca{sup 2+} ion selective membrane based on ETH-5234 ionophore and operated against an Ag/AgCl reference electrode. Initial characterization results have shown Nernst slopes of 30mv/decade that were stable over a number of measurement cycles. While this work is focused on technology to enable basic research on the Ceratopteris richardii spores, we anticipate that this type of cell physiology lab-on-a-chip will be broadly applied in biomedical and pharmacological research by making minor modifications to the electrode material and the measurement technique. Future applications include detection of glucose, hormones such as plant auxin, as well as multiple analyte detection on the same chip.

  16. Design, Fabrication and Characterization of an In Silico Cell Physiology lab for Bio Sensing Applications

    Science.gov (United States)

    Haque, A. ul; Rokkam, M.; DeCarlo, A. R.; Wereley, S. T.; Wells, H. W.; McLamb, W. T.; Roux, S. J.; Irazoqui, P. P.; Porterfield, D. M.

    2006-04-01

    In this paper, we report the design, fabrication and characterization of an In Silico cell physiology biochip for measuring Ca2+ ion concentrations and currents around single cells. This device has been designed around specific science objectives of measuring real time multidimensional calcium flux patterns around sixteen Ceratopteris richardii fern spores in microgravity flight experiments and ground studies. The sixteen microfluidic cell holding pores are 150 by 150 µm each and have 4 Ag/AgCl electrodes leading into them. An SU-8 structural layer is used for insulation and packaging purposes. The In Silico cell physiology lab is wire bonded on to a custom PCB for easy interface with a state of the art data acquisition system. The electrodes are coated with a Ca2+ ion selective membrane based on ETH-5234 ionophore and operated against an Ag/AgCl reference electrode. Initial characterization results have shown Nernst slopes of 30mv/decade that were stable over a number of measurement cycles. While this work is focused on technology to enable basic research on the Ceratopteris richardii spores, we anticipate that this type of cell physiology lab-on-a-chip will be broadly applied in biomedical and pharmacological research by making minor modifications to the electrode material and the measurement technique. Future applications include detection of glucose, hormones such as plant auxin, as well as multiple analyte detection on the same chip.

  17. Small-cell lung cancer (SCLC) cell adhesion on E- and P-selectin under physiological flow conditions.

    Science.gov (United States)

    Richter, Ulrich

    2014-01-01

    Hematogenous metastasis is still a poorly understood phenomenon. The rate-limiting step within the metastatic cascade is not yet clear although it may be estimated that the extravasation of circulating tumor cells is a step of crucial importance, as most tumor cells that are shed into circulation undergo apoptosis. The process of extravasation includes a cascade of consecutive steps, starting with adhesion of tumor cells circulating in the bloodstream to endothelial cells, mimicking leukocyte adhesion and transmigration. Endothelial cell selectin-leukocyte glycan interaction occurs when leukocytes adhere to endothelial cells under conditions of shear stress. As there are parallels between cancer cell endothelial interactions with leukocyte endothelial cell systems an experimental setup has been developed in which adhesion of small cell lung carcinoma adhesive properties can be analyzed under physiological shear stress conditions during their attachment to E- and P-selection.

  18. Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis.

    Science.gov (United States)

    Olicón-Hernández, Dario Rafael; Hernández-Lauzardo, Ana N; Pardo, Juan Pablo; Peña, Antonio; Velázquez-del Valle, Miguel G; Guerra-Sánchez, Guadalupe

    2015-08-01

    Ustilago maydis, a dimorphic fungus causing corn smut disease, serves as an excellent model to study different aspects of cell development. This study shows the influence of chitosan, oligochitosan and glycol chitosan on cell growth and physiology of U. maydis. These biological macromolecules affected the cell growth of U. maydis. In particular, it was found that chitosan completely inhibited U. maydis growth at 1mg/mL concentration. Microscopic studies revealed swellings on the surface of the cells treated with the polymers, and chitosan caused complete destruction of the membrane and formation of vesicles on the periphery of the cell. Oligochitosan and chitosan caused changes in oxygen consumption, K(+) efflux and H(+)-ATPase activity. Oligochitosan induced a faster consumption of oxygen in the cells, while glycol chitosan provoked slower oxygen consumption. It is noteworthy that chitosan completely inhibited the fungal respiratory activity. The strongest effects were exhibited by chitosan in all evaluated aspects. These findings showed high sensitivity of U. maydis to chitosan and provided evidence for antifungal effects of chitosan derivatives. To our knowledge, this is a first report showing that chitosan and its derivatives affect the cell morphology and physiological processes in U. maydis.

  19. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability

    OpenAIRE

    Margarida S. Afonso; Susana Ferreira; Domingues, Fernanda C.; Filomena Silva

    2015-01-01

    Resveratrol is a plant secondary metabolite commonly found in peanuts and grapevines with significant health benefits. Recombinant organisms can produce large amounts of resveratrol and, in this work, Escherichia coli BW27784 was used to produce resveratrol in bioreactors while monitoring cell physiology and plasmid stability through flow cytometry and real-time qPCR, respectively. Initially, the influence of culture conditions and precursor addition was evaluated in screening assays and the ...

  20. Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.

    Science.gov (United States)

    Byrd, Shere K

    2016-06-01

    Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research. PMID:27231261

  1. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions.

    Science.gov (United States)

    Müller, Werner E G; Schröder, Heinz C; Tolba, Emad; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2016-01-01

    Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow.

  2. Undergraduates' understanding of cardiovascular phenomena.

    Science.gov (United States)

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed.

  3. Using CellML with OpenCMISS to simulate multi-scale physiology

    Directory of Open Access Journals (Sweden)

    David Phillip Nickerson

    2015-01-01

    Full Text Available OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron and a field manipulation and visualisation library (OpenCMISS-Zinc. OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment.CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aide reproducibility and interoperability of modeling studies.In OpenCMISS we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customised computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; fluid constitutive relationships and lumped parameter models. In this paper we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users will also be described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modelling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (GPU and FPGA generated from CellML models is also discussed.

  4. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  5. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability

    Directory of Open Access Journals (Sweden)

    Margarida S. Afonso

    2015-03-01

    Full Text Available Resveratrol is a plant secondary metabolite commonly found in peanuts and grapevines with significant health benefits. Recombinant organisms can produce large amounts of resveratrol and, in this work, Escherichia coli BW27784 was used to produce resveratrol in bioreactors while monitoring cell physiology and plasmid stability through flow cytometry and real-time qPCR, respectively. Initially, the influence of culture conditions and precursor addition was evaluated in screening assays and the data gathered was used to perform the bioreactor assays, allowing the production of 160 μg/mL of resveratrol. Cellular physiology and plasmid instability affected the final resveratrol production, with lower viability and plasmid copy numbers associated with lower yields. In sum, this study describes new tools to monitor the bioprocess, evaluating the effect of culture conditions, and its correlation with cell physiology and plasmid segregational stability, in order to define a viable and scalable bioprocess to fulfill the need for larger quantities of resveratrol.

  6. Physiological and morphological characterization of ganglion cells in the salamander retina.

    Science.gov (United States)

    Wang, Jing; Jacoby, Roy; Wu, Samuel M

    2016-02-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON-OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON-OFF RGCs. Dendritic field diameters of RGCs ranged 102-490 μm: narrow field (300 μm, 24%). Dendritic ramification patterns of RGCs agree with the sublamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON-OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645

  7. Adaptation of endothelial cells to physiologically-modeled, variable shear stress.

    Directory of Open Access Journals (Sweden)

    Joseph S Uzarski

    Full Text Available Endothelial cell (EC function is mediated by variable hemodynamic shear stress patterns at the vascular wall, where complex shear stress profiles directly correlate with blood flow conditions that vary temporally based on metabolic demand. The interactions of these more complex and variable shear fields with EC have not been represented in hemodynamic flow models. We hypothesized that EC exposed to pulsatile shear stress that changes in magnitude and duration, modeled directly from real-time physiological variations in heart rate, would elicit phenotypic changes as relevant to their critical roles in thrombosis, hemostasis, and inflammation. Here we designed a physiological flow (PF model based on short-term temporal changes in blood flow observed in vivo and compared it to static culture and steady flow (SF at a fixed pulse frequency of 1.3 Hz. Results show significant changes in gene regulation as a function of temporally variable flow, indicating a reduced wound phenotype more representative of quiescence. EC cultured under PF exhibited significantly higher endothelial nitric oxide synthase (eNOS activity (PF: 176.0±11.9 nmol/10(5 EC; SF: 115.0±12.5 nmol/10(5 EC, p = 0.002 and lower TNF-a-induced HL-60 leukocyte adhesion (PF: 37±6 HL-60 cells/mm(2; SF: 111±18 HL-60/mm(2, p = 0.003 than cells cultured under SF which is consistent with a more quiescent anti-inflammatory and anti-thrombotic phenotype. In vitro models have become increasingly adept at mimicking natural physiology and in doing so have clarified the importance of both chemical and physical cues that drive cell function. These data illustrate that the variability in metabolic demand and subsequent changes in perfusion resulting in constantly variable shear stress plays a key role in EC function that has not previously been described.

  8. Dynamics of the mammalian cell cycle in physiological and pathological conditions.

    Science.gov (United States)

    Gérard, Claude; Goldbeter, Albert

    2016-01-01

    A network of cyclin-dependent kinases (Cdks) controls progression along the successive phases G1, S, G2, and M of the mammalian cell cycle. Deregulations in the expression of molecular components in this network often lead to abusive cell proliferation and cancer. Given the complex nature of the Cdk network, it is fruitful to resort to computational models to grasp its dynamical properties. Investigated by means of bifurcation diagrams, a detailed computational model for the Cdk network shows how the balance between quiescence and proliferation is affected by activators (oncogenes) and inhibitors (tumor suppressors) of cell cycle progression, as well as by growth factors and other external factors such as the extracellular matrix (ECM) and cell contact inhibition. Suprathreshold changes in all these factors can trigger a switch in the dynamical behavior of the network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. The model for the Cdk network accounts for the dependence or independence of cell proliferation on serum and/or cell anchorage to the ECM. Such computational approach provides an integrated view of the control of cell proliferation in physiological or pathological conditions. Whether the balance is tilted toward cell cycle arrest or cell proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple signals, internal or external to the Cdk network, that promote or impede progression in the cell cycle. PMID:26613368

  9. Intrinsic optical signal imaging of glucose-stimulated physiological responses in the insulin secreting INS-1 β-cell line

    Science.gov (United States)

    Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng

    2011-03-01

    Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.

  10. Physiological, pathological, and engineered cell identity reprogramming in the central nervous system.

    Science.gov (United States)

    Smith, Derek K; Wang, Lei-Lei; Zhang, Chun-Li

    2016-07-01

    Multipotent neural stem cells persist in restricted regions of the adult mammalian central nervous system. These proliferative cells differentiate into diverse neuron subtypes to maintain neural homeostasis. This endogenous process can be reprogrammed as a compensatory response to physiological cues, traumatic injury, and neurodegeneration. In addition to innate neurogenesis, recent research has demonstrated that new neurons can be engineered via cell identity reprogramming in non-neurogenic regions of the adult central nervous system. A comprehensive understanding of these reprogramming mechanisms will be essential to the development of therapeutic neural regeneration strategies that aim to improve functional recovery after injury and neurodegeneration. WIREs Dev Biol 2016, 5:499-517. doi: 10.1002/wdev.234 For further resources related to this article, please visit the WIREs website. PMID:27258392

  11. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weizbauer, Andreas, E-mail: weizbauer.andreas@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Werle, Peter [ABB AG, Trafoweg 4, 06112 Halle (Germany); Hegermann, Jan [Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover (Germany); Willbold, Elmar [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Eifler, Rainer [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Windhagen, Henning [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); Reifenrath, Janin [Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover (Germany); Waizy, Hazibullah [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany)

    2014-08-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly.

  12. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    International Nuclear Information System (INIS)

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly

  13. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    Science.gov (United States)

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox.

  14. Differentiation induced by physiological and pharmacological stimuli leads to increased antigenicity of human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Lena-Maria Carlson; Sven P(a)hlman; Anna De Geer; Per Kogner; Jelena Levitskaya

    2008-01-01

    Sympathetic neuronal differentiation is associated with favorable prognosis of neuroblastoma (NB), the most common extra-cranial solid tumor of early childhood. Differentiation agents have proved useful in clinical protocols of NB treatment, but using them as a sole treatment is not sufficient to induce tumor elimination in patients. Therefore, complementary approaches, such as immunotherapy, are warranted. Here we demonstrate that differentiation of NB cell lines and ex vivo isolated tumor cells in response to physiological or pharmacological stimuli is associated with acquisition of increased antigenicity. This manifests as increased expression of surface major histocompatibility class I complexes and ICAM-1 molecules and translates into increased sensitivity of NB cells to lysis by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The latter is paralleled by enhanced ability of differentiated cells to form immune conjugates and bind increased amounts of granzyme B to the cell surface. We demonstrate, for the first time, that, regardless of the stimulus applied, the differentiation state in NBs is associated with increased tumor antigenicity that enables more efficient elimination of tumor cells by cytotoxic lymphocytes and paves the way for combined application of differentiation-inducing agents and immunotherapy as an auxiliary approach in NB patients.

  15. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology.

    Science.gov (United States)

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T; Taylor, Michael D; Purevjav, Enkhsaikhan; Aronow, Bruce J; Towbin, Jeffrey A; Malik, Punam

    2016-08-30

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  16. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  17. Cancer stem cell hypotheses: Impact on modern molecular physiology and pharmacology research

    Indian Academy of Sciences (India)

    Igor Pantic

    2011-12-01

    Although questioned on several occasions, the existence of cancer stem cells (CSCs) has been confirmed by a number of studies on experimental animal models. Nevertheless, it was shown that CSC hypotheses have several limitations and inconsistencies regarding the explanation of CSC origin, CSC identification and isolation, possible heterogeneity within CSC population, as well as methodology issues in some studies that were carried out in order to prove CSC existence. The aim of this article is to give a short and comprehensive review of recent advances concerning CSC hypothesis and to describe its impact on modern molecular physiology and pharmacology research.

  18. Cancer stem cell hypotheses: impact on modern molecular physiology and pharmacology research.

    Science.gov (United States)

    Pantic, Igor

    2011-12-01

    Although questioned on several occasions, the existence of cancer stem cells (CSCs) has been confirmed by a number of studies on experimental animal models. Nevertheless, it was shown that CSC hypotheses have several limitations and inconsistencies regarding the explanation of CSC origin, CSC identification and isolation, possible heterogeneity within CSC population, as well as methodology issues in some studies that were carried out in order to prove CSC existence. The aim of this article is to give a short and comprehensive review of recent advances concerning CSC hypothesis and to describe its impact on modern molecular physiology and pharmacology research. PMID:22116294

  19. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    OpenAIRE

    Speier, Stephan; Marciniak, Anja; Selck, Claudia; Friedrich, Betty

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  20. Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions.

    Science.gov (United States)

    Mozzetti, V; Grattepanche, F; Moine, D; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C

    2012-12-01

    A central issue in the use of probiotics in food and food supplements is their sensitivity to many environmental stress factors. The resistance of probiotic cells to lethal stress can be improved by application of homologous or heterologous sub-lethal stress during culture. This screening procedure is generally performed using batch cultures. Continuous cultures could be a suitable and more efficient method to test different stress factors on one culture instead of repeating several batch cultures. However, before testing stresses using continuous cultures, the physiological stability of continuously produced cells over a considered time period must be first evaluated. A continuous culture of Bifidobacterium longum NCC2705 was maintained for 211 h at a dilution rate of 0.1 per h, mimicking a deceleration growth phase culture. Stable viable cell counts were measured over the culture period, decreasing only moderately from 8.8 to 8.6 log10 cfu/ml. A slight shift in metabolite production, characterized by increased lactate and decreased acetate, formate and ethanol concentrations was observed. Susceptibilities to antibiotics and stress conditions were stable (cefotaxim, ampicillin, ceftazidime) or moderately affected (simulated gastric juices, heat, bile salts, tetracycline, chloramphenicol, penicillin, vancomycin and neomycin) over culturing time. Comparison of gene transcription profiles between samples collected after 31 h of continuous culture and samples collected after 134 and 211 h revealed only limited changes in expression of 1.0 and 3.8% of total genes, respectively. Based on these results, we propose that continuous culture can be used to produce bacterial cells with stable physiological properties suitable for fast and efficient screening of sub-lethal stress conditions. PMID:23234728

  1. Autoregressive description of biological phenomena

    CERN Document Server

    Morariu, Vasile V; Pop, Alexadru; Soltuz, Stefan M; Buimaga-Iarinca, Luiza; Zainea, Oana

    2008-01-01

    Many natural phenomena can be described by power-laws. A closer look at various experimental data reveals more or less significant deviations from a 1/f spectrum. We exemplify such cases with phenomena offered by molecular biology, cell biophysics, and cognitive psychology. Some of these cases can be described by first order autoregressive (AR) models or by higher order AR models which are short range correlation models. The calculations are checked against astrophysical data which were fitted to a an AR model by a different method. We found that our fitting method of the data give similar results for the astrhophysical data and therefore applied the method for examples mentioned above. Our results show that such phenomena can be described by first or higher order of AR models. Therefore such examples are described by short range correlation properties while they can be easily confounded with long range correlation phenomena.

  2. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  3. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  4. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  5. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology.

    Science.gov (United States)

    Sagaert, Xavier; Tousseyn, Thomas; Yantiss, Rhonda K

    2012-12-15

    The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 decades have spawned an avalanche of new data that encompasses both the function of the reactive B-cell as well as the pathogenic pathways that lead to its neoplastic counterpart, the B-cell lymphoma. Therefore, this review aims to offer clinicians an overview of B-cell lymphomas in the gut, and their pertinent molecular features that have led to new insights regarding lymphomagenesis. It addresses the question as how to incorporate all presently available information on normal and neoplastic B-cell differentiation, and how this knowledge can be applied in daily clinical practice (e.g., diagnostic tools, prognostic biomarkers or therapeutic targets) to optimalise the managment of this heterogeneous group of neoplasms. PMID:23443141

  6. Influence of cell physiological state on gene delivery to T lymphocytes by chimeric adenovirus Ad5F35.

    Science.gov (United States)

    Zhang, Wen-feng; Shao, Hong-wei; Wu, Feng-lin; Xie, Xin; Li, Zhu-ming; Bo, Hua-ben; Shen, Han; Wang, Teng; Huang, Shu-lin

    2016-01-01

    Adoptive transfer of genetically-modified T cells is a promising approach for treatment of both human malignancies and viral infections. Due to its ability to efficiently infect lymphocytes, the chimeric adenovirus Ad5F35 is potentially useful as an immunotherapeutic for the genetic modification of T cells. In previous studies, it was found that the infection efficiency of Ad5F35 was significantly increased without enhanced expression of the viral receptor after T cell stimulation; however, little is known about the underlying mechanism. Nonetheless, cell physiology has long been thought to affect viral infection. Therefore, we aimed to uncover the physiologic changes responsible for the increased infection efficiency of Ad5F35 following T cell stimulation. Given the complexity of intracellular transport we analyzed viral binding, entry, and escape using a Jurkat T cell model and found that both cell membrane fluidity and endosomal escape of Ad5F35 were altered under different physiological states. This, in turn, resulted in differences in the amount of virus entering cells and reaching the cytoplasm. These results provide additional insight into the molecular mechanisms underlying Ad5F35 infection of T cells and consequently, will help further the clinical application of genetically-modified T cells for immunotherapy. PMID:26972139

  7. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies.

    Science.gov (United States)

    Wu, Dong; Wang, Ting; Huang, Xinghua; Dolfing, Jan; Xie, Bing

    2015-10-01

    Organic carbon, nitrogen, and sulfur are highly concentrated in municipal solid waste (MSW) landfill leachate, which usually frustrates conventional leachate treatment technologies from the perspective of energy costs. Therefore, the possibility of converting leachate to a new energy source via microbial fuel cell (MFC) technology has been examined recently. This paper summarizes the power output and energy recovery efficiency of the leachate-fed MFCs according to different feeding patterns, cell structures, and loading rates. Also, we assess potential energy-generating chemicals in leachate like nitrogen and sulfur compounds and propose alternative pathways, which may lift strict ratios between organic carbon and nitrogen content in conventional denitrification of leachate and are expected to achieve a higher voltage than traditional organic-oxygen based cells. Although currently power output of leachate-fed MFCs is limited, it seems well possible that dynamic characteristics of MSW leachates and microbial physiologies underlying some bio-electrochemically efficient activities (e.g., direct interspecies electron transfer) could be stimulated in MFC systems to improve the present status. PMID:26239072

  8. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  9. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism.

    Science.gov (United States)

    Wu, Yabin; van der Schaft, Daisy W J; Baaijens, Frank P; Oomens, Cees W J

    2016-05-01

    Deep tissue injury (DTI), a type of pressure ulcer, arises in the muscle layers adjacent to bony prominences due to sustained mechanical loading. DTI presents a serious problem in the clinic, as it is often not visible until reaching an advanced stage. One of the causes can be direct mechanical deformation of the muscle tissue and cell. The mechanism of cell death induced by mechanical compression was studied using bio-artificial skeletal muscle tissues. Compression was applied by placing weights on top of the constructs. The morphological changes of the cytoskeleton and the phosphorylation of mitogen-activated protein kinases (MAPK) under compression were investigated. Moreover, inhibitors for each of the three major MAPK groups, p38, ERK, and JNK, were applied separately to look at their roles in the compression caused apoptosis and necrosis. The present study for the first time showed that direct mechanical compression activates MAPK phosphorylation. Compression also leads to a gradual destruction of the cytoskeleton. The percentage apoptosis is strongly reduced by p38 and JNK inhibitors down to the level of the unloaded group. This phenomenon could be observed up to 24h after initiation of compression. Therefore, cell death in bio-artificial muscle tissue caused by mechanical compression is primarily caused by a physiological mechanism, rather than through a physical mechanism which kills the cell directly. These findings reveal insight of muscle cell death under mechanical compression. Moreover, the result indicates a potential clinical solution to prevent DTI by pre-treating with p38 or/and JNK inhibitors. PMID:26961799

  10. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  11. CALCIUM SIGNALING, ION CHANNELS AND MORE: THE DT40 SYSTEM AS A MODEL OF VERTEBRATE ION HOMEOSTASIS AND CELL PHYSIOLOGY

    OpenAIRE

    Perraud, Anne-Laure; Schmitz, Carsten; Scharenberg, Andrew M.

    2006-01-01

    The DT40 B-lymphocyte cell line is a chicken bursal lymphocyte tumor cell line which grows rapidly, expresses a variety of types of constitutive and signal dependent ion transport systems., and supports the efficient use of stable and conditional genetic manipulations. Below, we review the use of DT40 cells in dissecting molecular mechanisms involved in Ca2+, Mg2+, and Zn2+ transport physiology. These studies highlight the flexibility and advantages the DT40 environment offers to investigator...

  12. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  13. Gastrointestinal B-cell lymphomas: From understanding B-cell physiology to classification and molecular pathology

    OpenAIRE

    2012-01-01

    The gut is the most common extranodal site where lymphomas arise. Although all histological lymphoma types may develop in the gut, small and large B-cell lymphomas predominate. The sometimes unexpected finding of a lymphoid lesion in an endoscopic biopsy of the gut may challenge both the clinician (who is not always familiar with lymphoma pathogenesis) and the pathologist (who will often be hampered in his/her diagnostic skill by the limited amount of available tissue). Moreover, the past 2 d...

  14. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    Science.gov (United States)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  15. Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment.

    Directory of Open Access Journals (Sweden)

    Chia-Yang Li

    Full Text Available Cordyceps sinensis (CS has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs, in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS, or LPS plus CS (LPS/CS for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs, were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE genes of the three different treatments (CS, LPS, and LPS/CS, which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects

  16. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer

    International Nuclear Information System (INIS)

    Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts' electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4'-diamino-2,2'bipyridine)2(poly{N-vinylimidazole})-(poly{ N-vinylimidazole})9Cl]Cl (E ' = -0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline)2(poly{N-vinylimidazole})2-(poly{N-vinylimidazole})8]Cl2 (E ' = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 deg. C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm2 at 0.4 V (pH 5.5) and 10 μW/cm2 at 0.3 V (pH 4.4)

  17. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    Science.gov (United States)

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  18. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart

    Directory of Open Access Journals (Sweden)

    Camila Ferreira Leite

    2015-07-01

    Full Text Available Physical activity evokes well-known adaptations in the cardiovascular system. Although exercise training induces cardiac remodeling, whether multipotent stem cells play a functional role in the hypertrophic process remains unknown. To evaluate this possibility, C57BL/6 mice were subjected to swimming training aimed at achieving cardiac hypertrophy, which was morphologically and electrocardiographically characterized. Subsequently, c-Kit+Lin− and Sca-1+Lin− cardiac stem cells (CSCs were quantified using flow cytometry while cardiac muscle-derived stromal cells (CMSCs, also known as cardiac-derived mesenchymal stem cells were assessed using in vitro colony-forming unit fibroblast assay (CFU-F. Only the number of c-Kit+Lin− cells increased in the hypertrophied heart. To investigate a possible extracardiac origin of these cells, a parabiotic eGFP transgenic/wild-type mouse model was used. The parabiotic pairs were subjected to swimming, and the wild-type heart in particular was tested for eGFP+ stem cells. The results revealed a negligible number of extracardiac stem cells in the heart, allowing us to infer a cardiac origin for the increased amount of detected c-Kit+ cells. In conclusion, the number of resident Sca-1+Lin− cells and CMSCs was not changed, whereas the number of c-Kit+Lin− cells was increased during physiological cardiac hypertrophy. These c-Kit+Lin− CSCs may contribute to the physiological cardiac remodeling that result from exercise training.

  19. Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Dieren, van B.; Rombouts, F.M.; Abee, T.

    1999-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor operating in downflow. This ensures a highly controllable system with optimal reactor design. In the present study, we report on changes in the physiology of immobilized yeast cells in the reactor.

  20. Genomic, genetic and physiological effects of bio-electrospraying on live cells of the model yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Duncan [Department of Biology, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Jayasinghe, Suwan N [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)], E-mail: s.jayasinghe@ucl.ac.uk

    2008-09-01

    The ability to directly engineer living cells is rapidly becoming a hot field of research for a wide range of applications within the life sciences. 'Bio-electrospraying' cells, a recently developed technique, has great potential in this area. In this paper, we quantify genetic, genomic and physiological effects of bio-electrospraying cells of a model eukaryote, the yeast Saccharomyces cerevisiae. Our results demonstrate that yeast cells bio-electrosprayed at 30 kV have not incurred any detectable damage at a genomic or genetic level, and that the detectable physiological stress of the procedure is negligible. These results support our proposal to use yeast as a model system to develop bio-electrospray devices and protocols.

  1. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  2. Plant physiology

    CERN Document Server

    Duca, Maria

    2015-01-01

    This book covers all aspects of plant physiology: plant cell physiology, water regime of plants, photosynthesis, mineral nutrition, plant respiration, plant growth and development, movements in plants, signal perception and transduction etc. It focuses on the fundamental principles of plant physiology and biochemistry from the molecular level to whole plants, on the mechanisms of plant-environment interactions. The book is intended for students (biologists, physiologists, biochemists, biophysicists, ecologists, geneticists), teachers and researchers. Particular emphasis is given to recent research advances made on national and international levels, as well as to personal experimental results of the author that are relevant for a deeper understanding of processes and for practical implementation of gained knowledge. An essential amount of illustrative material (graphics, images, schemes, illustrations) completes the text and supplies additional information in an accessible manner. At the end of each chapter...

  3. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2007-05-01

    At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.

  4. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2007-05-01

    At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation. PMID:17609161

  5. Biomechanics of red blood cells in human spleen and consequences for physiology and disease.

    Science.gov (United States)

    Pivkin, Igor V; Peng, Zhangli; Karniadakis, George E; Buffet, Pierre A; Dao, Ming; Suresh, Subra

    2016-07-12

    Red blood cells (RBCs) can be cleared from circulation when alterations in their size, shape, and deformability are detected. This function is modulated by the spleen-specific structure of the interendothelial slit (IES). Here, we present a unique physiological framework for development of prognostic markers in RBC diseases by quantifying biophysical limits for RBCs to pass through the IES, using computational simulations based on dissipative particle dynamics. The results show that the spleen selects RBCs for continued circulation based on their geometry, consistent with prior in vivo observations. A companion analysis provides critical bounds relating surface area and volume for healthy RBCs beyond which the RBCs fail the "physical fitness test" to pass through the IES, supporting independent experiments. Our results suggest that the spleen plays an important role in determining distributions of size and shape of healthy RBCs. Because mechanical retention of infected RBC impacts malaria pathogenesis, we studied key biophysical parameters for RBCs infected with Plasmodium falciparum as they cross the IES. In agreement with experimental results, surface area loss of an infected RBC is found to be a more important determinant of splenic retention than its membrane stiffness. The simulations provide insights into the effects of pressure gradient across the IES on RBC retention. By providing quantitative biophysical limits for RBCs to pass through the IES, the narrowest circulatory bottleneck in the spleen, our results offer a broad approach for developing quantitative markers for diseases such as hereditary spherocytosis, thalassemia, and malaria. PMID:27354532

  6. Biomechanics of red blood cells in human spleen and consequences for physiology and disease.

    Science.gov (United States)

    Pivkin, Igor V; Peng, Zhangli; Karniadakis, George E; Buffet, Pierre A; Dao, Ming; Suresh, Subra

    2016-07-12

    Red blood cells (RBCs) can be cleared from circulation when alterations in their size, shape, and deformability are detected. This function is modulated by the spleen-specific structure of the interendothelial slit (IES). Here, we present a unique physiological framework for development of prognostic markers in RBC diseases by quantifying biophysical limits for RBCs to pass through the IES, using computational simulations based on dissipative particle dynamics. The results show that the spleen selects RBCs for continued circulation based on their geometry, consistent with prior in vivo observations. A companion analysis provides critical bounds relating surface area and volume for healthy RBCs beyond which the RBCs fail the "physical fitness test" to pass through the IES, supporting independent experiments. Our results suggest that the spleen plays an important role in determining distributions of size and shape of healthy RBCs. Because mechanical retention of infected RBC impacts malaria pathogenesis, we studied key biophysical parameters for RBCs infected with Plasmodium falciparum as they cross the IES. In agreement with experimental results, surface area loss of an infected RBC is found to be a more important determinant of splenic retention than its membrane stiffness. The simulations provide insights into the effects of pressure gradient across the IES on RBC retention. By providing quantitative biophysical limits for RBCs to pass through the IES, the narrowest circulatory bottleneck in the spleen, our results offer a broad approach for developing quantitative markers for diseases such as hereditary spherocytosis, thalassemia, and malaria.

  7. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory

    Directory of Open Access Journals (Sweden)

    Zeidan Ahmad A

    2010-11-01

    Full Text Available Abstract Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich substrates at yields close to the theoretical maximum of the dark fermentation process (i.e., 4 mol H2/mol hexose. The organism is able to ferment an array of mono-, di- and polysaccharides, and is relatively tolerant to high partial hydrogen pressures, making it a promising candidate for exploitation in a biohydrogen process. The behaviour of this Gram-positive bacterium bears all hallmarks of being adapted to an environment sparse in free sugars, which is further reflected in its low volumetric hydrogen productivity and low osmotolerance. These two properties need to be improved by at least a factor of 10 and 5, respectively, for a cost-effective industrial process. In this review, the physiological characteristics of C. saccharolyticus are analyzed in view of the requirements for an efficient hydrogen cell factory. A special emphasis is put on the tight regulation of hydrogen production in C. saccharolyticus by both redox and energy metabolism. Suggestions for strategies to overcome the current challenges facing the potential use of the organism in hydrogen production are also discussed.

  8. Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion

    Institute of Scientific and Technical Information of China (English)

    Guanglin Cui; Helge L Waldum

    2007-01-01

    Gastric acid plays an important role in digesting food (especially protein), iron absorption, and destroying swallowed micro-organisms. H+ is secreted by the oxyntic parietal cells and its secretion is regulated by endocrine, neurocrine and paracrine mechanisms.Gastrin released from the antral G cell is the principal physiological stimulus of gastric acid secretion. Activation of the enterochromaffin-like (ECL) cell is accepted as the main source of histamine participating in the regulation of acid secretion and is functionally and trophically controlled by gastrin, which is mediated by gastrin/CCK-2 receptors expressed on the ECL cell. However, longterm hypergastrinemia will induce ECL cell hyperplasia and probably carcinoids. Clinically, potent inhibitors of acid secretion have been prescribed widely to patients with acid-related disorders. Long-term potent acid inhibition evokes a marked increase in plasma gastrin levels,leading to enlargement of oxyntic mucosa with ECL cell hyperplasia. Accordingly, the induction of ECL cell hyperplasia and carcinoids remains a topic of considerable concern, especially in long-term use. In addition, the activation of ECL cells also induces another clinical concern, i.e., rebound acid hypersecretion after acid inhibition. Recent experimental and clinical findings indicate that the activation of ECL cells plays a critical role both physiologically and clinically in the regulation of gastric acid secretion.

  9. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  10. Preface: cardiac control pathways: signaling and transport phenomena.

    Science.gov (United States)

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  11. Environmental physiology

    International Nuclear Information System (INIS)

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include: the effects of environmental pollutants on homeostasis of the hematopoietic system; pollutant effects on steroid metabolism; pollutant effects on pulmonary macrophages; effects of toxic gases on lung cells; the development of immunological methods for assessing lung damage at the cellular level; the response of erythropoietin concentration to various physiological changes; and the study of actinide metabolism in monkey skeletons

  12. Physiological Functions and Regulation of the Na+/H+ Exchanger [NHE1] in Renal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Patricia G Vallés

    2015-08-01

    Full Text Available The sodium-hydrogen exchanger isoform-1 [NHE1] is a ubiquitously expressed plasma membrane protein that plays a central role in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Outside of this important physiological function, the NHE1 cytosolic tail domain acts as a molecular scaffold regulating cell survival and actin cytoskeleton organization through NHE1-dependent signaling proteins. NHE1 plays main roles in response to physiological stress conditions which in addition to cell shrinkage and acidification, include hypoxia and mechanical stimuli, such as cell stretch. NHE1-mediated modulation of programmed cell death results from the exchanger-mediated changes in pHi, cell volume, and/or [Na+]I; and, it has recently become known that regulation of cellular signaling pathways are involved as well. This review focuses on NHE1 functions and regulations. We describe evidence showing how these structural actions integrate with ion translocation in regulating renal tubule epithelial cell survival.

  13. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling.

    Directory of Open Access Journals (Sweden)

    Panpan Hou

    Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.

  14. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  15. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune;

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... evidence found in the research field comprised by the three review questions to be addressed. The aims of this systematic review can, thus, be summarized like this: Which answers can be offered from research in relation to the following questions: What is dropout from university studies? Why do such...... dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  16. Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge.

    Science.gov (United States)

    Olszewska, Magdalena A; Kocot, Aleksandra M; Nynca, Anna; Łaniewska-Trokenheim, Łucja

    2016-11-01

    pH stress is recognized as an important feature for Lactobacillus in relation to lifestyle and commercial utility. Hence, this study aims to investigate the cell function of Lactobacilli cells subjected to pHs between 7.0 and 2.0. For this purpose, the Lactobacilli isolates of vegetable origin were first hybridized with fluorescent oligonucleotide rRNA probes for detecting Lactobacillus species. Then, cells were exposed to pH stress and labelled with fluorescent probes, carboxyfluorescein diacetate (CFDA) and propidium iodine (PI), which provided the insight into esterase activity and membrane integrity of cells. Among isolates, fluorescence in situ hybridization (FISH) enabled us to specifically detect L. plantarum and L. brevis. Interestingly, FCM analysis revealed that at pHs between 7.0 and 4.0 the cell membrane was intact, while after the exposure at pH 3.0, and 2.0 became perturbed or impaired. Finally, L. brevis and L. plantarum differed from each other in fluorescence labeling behaviour and culturability. However, the results showed that the same standard protocol for labeling enables discrimination of subpopulations of tested species. Depending on the species, the substantial culturability loss was observed at pH 3.0 and 2.0. These results suggest that the taxonomic and physiological fluorescent probes could be suitable for in situ detection of specific bacteria and rapid assessment of the physiological status of cells. PMID:27664742

  17. Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge.

    Science.gov (United States)

    Olszewska, Magdalena A; Kocot, Aleksandra M; Nynca, Anna; Łaniewska-Trokenheim, Łucja

    2016-11-01

    pH stress is recognized as an important feature for Lactobacillus in relation to lifestyle and commercial utility. Hence, this study aims to investigate the cell function of Lactobacilli cells subjected to pHs between 7.0 and 2.0. For this purpose, the Lactobacilli isolates of vegetable origin were first hybridized with fluorescent oligonucleotide rRNA probes for detecting Lactobacillus species. Then, cells were exposed to pH stress and labelled with fluorescent probes, carboxyfluorescein diacetate (CFDA) and propidium iodine (PI), which provided the insight into esterase activity and membrane integrity of cells. Among isolates, fluorescence in situ hybridization (FISH) enabled us to specifically detect L. plantarum and L. brevis. Interestingly, FCM analysis revealed that at pHs between 7.0 and 4.0 the cell membrane was intact, while after the exposure at pH 3.0, and 2.0 became perturbed or impaired. Finally, L. brevis and L. plantarum differed from each other in fluorescence labeling behaviour and culturability. However, the results showed that the same standard protocol for labeling enables discrimination of subpopulations of tested species. Depending on the species, the substantial culturability loss was observed at pH 3.0 and 2.0. These results suggest that the taxonomic and physiological fluorescent probes could be suitable for in situ detection of specific bacteria and rapid assessment of the physiological status of cells.

  18. Simultaneous measurement of the silicon content and physiological parameters by FTIR spectroscopy in diatoms with siliceous cell walls.

    Science.gov (United States)

    Jungandreas, Anne; Wagner, Heiko; Wilhelm, Christian

    2012-12-01

    Diatoms are the most successful biomass producers worldwide. Therefore, physiological and chemical methods to measure the cell response to a variety of abiotic factors are the focus of recent research. We used the two model diatoms Cyclotella meneghiniana and Skeletonema costatum for the development of Fourier transform infrared (FTIR) spectroscopy-based methods to measure simultaneously the elemental composition of the cells and their cell-specific physiological properties. The cells were grown in chemostat cultures to study the response of Si limitation. The model organisms showed different reactions in terms of their cell properties. Si limitation was accompanied by a drop in the growth rate, a reduced content in Si per cell and a decreased Si : C ratio. Furthermore, the C allocation pattern was changed in both diatoms under Si limitation, as shown by FTIR spectroscopy. Moreover, we used FTIR spectra to develop PLS (partial least square) regression methods to predict the Si content and the Si : C ratio for single as well as multiple species. All PLS regression models were validated by standard chemical methods and showed good prediction accuracy, with the coefficient of determination R(2) being ≥0.93. We could show that it is possible to monitor phytoplankton properties such as C allocation, the Si content and the Si : C ratio at the same time via FTIR spectroscopy. PMID:23104763

  19. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution.

    Science.gov (United States)

    Yao, Rui; Du, Yanan; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-08-01

    An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell-cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development.

  20. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Jennifer E., E-mail: Jennifer2.May@uwe.ac.uk; Morse, H. Ruth, E-mail: Ruth.Morse@uwe.ac.uk; Xu, Jinsheng, E-mail: Jinsheng.Xu@uwe.ac.uk; Donaldson, Craig, E-mail: Craig.Donaldson@uwe.ac.uk

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  1. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    International Nuclear Information System (INIS)

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  2. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  3. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  4. In vitro investigations of Cynara scolymus L. extract on cell physiology of HepG2 liver cells

    Directory of Open Access Journals (Sweden)

    Gesine Löhr

    2009-06-01

    Full Text Available The objective of this study was the investigation of a potential influence of artichoke leaf extract (ALE on the cell physiology and gene expression of phase I/II enzymes of human liver cells HepG2 and investigation on potential cell protective effects against ethanol-induced cell toxicity against HepG2 cells. Cell biological assays under in vitro conditions using HepG2 liver cells and investigation of mitochondrial activity (MTT test, proliferation assay (BrdU incorporation ELISA, LDH as toxicity marker, gene expression analysis by RT-PCR and enzyme activity of glutationtransferase. Artichocke extract, containing 27% caffeoylquinic acids and 7% flavonoids induced mitochondrial activity, proliferation and total protein content under in vitro conditions in human liver cells HepG2. These effects could not be correlated to the well-known artichoke secondary compounds cynarin, caffeic acid, chlorogenic acid, luteolin and luteolin-7-O-glucoside. The flavones luteolin and luteolin-7-O-glucoside had inhibitory effects at 100 µg/mL level on HepG2 cells, with luteolin being a significant stronger inhibitor compared to the respective glucoside. Artichoke leaf extract had minor stimulating effect on gene expression of CYP1A2, while CYP3A4, GGT, GPX2, GSR and GST were slightly inhibited. GST inhibition under in vitro conditions was also shown by quantification of GST enzyme activity. Induction of gene expression of CYP1A2 was shown to be supraadditive after simultaneous application of ethanol plus artichoke extract. Artichoke leaf extract exhibited cell protective effects against ethanol-induced toxicity within cotreatment under in vitro conditions. Also H2O2 damage was significantly inhibited by simultaneous artichoke incubation. Pre- and posttreatments did not exert protective effects. DMSO-induced toxicity was significantly reduced by pre-, post- and cotreatment with artichoke extract and especially with luteolin-7-O-glucoside, indicating a direct

  5. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  6. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow%采用不同流场的质子交换膜燃料电池内部传递现象模拟

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  7. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells.

    Science.gov (United States)

    Maysinger, Dusica; Ji, Jeff; Hutter, Eliza; Cooper, Elis

    2015-01-01

    Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei). PMID:26733793

  8. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells.

    Science.gov (United States)

    Maysinger, Dusica; Ji, Jeff; Hutter, Eliza; Cooper, Elis

    2015-01-01

    Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).

  9. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  10. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  11. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  12. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  13. Marius Tscherning (1854-1939): his life and work in optical physiology

    DEFF Research Database (Denmark)

    Norn, Mogens; Jensen, O.A.

    2004-01-01

    Ophthalmology, Marius Tscherning, accommodation, colour vision, dark vision, entopic phenomena, medical history, ophthalmophacometer, optic physiology, photometric glasses, spectacle lenses......Ophthalmology, Marius Tscherning, accommodation, colour vision, dark vision, entopic phenomena, medical history, ophthalmophacometer, optic physiology, photometric glasses, spectacle lenses...

  14. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Heras-Bautista, Carlos O; Katsen-Globa, Alisa; Schloerer, Nils E; Dieluweit, Sabine; Abd El Aziz, Osama M; Peinkofer, Gabriel; Attia, Wael A; Khalil, Markus; Brockmeier, Konrad; Hescheler, Jürgen; Pfannkuche, Kurt

    2014-08-01

    Cardiomyocytes (CMs) from induced pluripotent stem (iPS) cells mark an important achievement in the development of in vitro pharmacological, toxicological and developmental assays and in the establishment of protocols for cardiac cell replacement therapy. Using CMs generated from murine embryonic stem cells and iPS cells we found increased cell-matrix interaction and more matured embryoid body (EB) structures in iPS cell-derived EBs. However, neither suspension-culture in form of purified cardiac clusters nor adherence-culture on traditional cell culture plastic allowed for extended culture of CMs. CMs grown for five weeks on polystyrene exhibit signs of massive mechanical stress as indicated by α-smooth muscle actin expression and loss of sarcomere integrity. Hydrogels from polyacrylamide allow adapting of the matrix stiffness to that of cardiac tissue. We were able to eliminate the bottleneck of low cell adhesion using 2,5-Dioxopyrrolidin-1-yl-6-acrylamidohexanoate as a crosslinker to immobilize matrix proteins on the gels surface. Finally we present an easy method to generate polyacrylamide gels with a physiological Young's modulus of 55 kPa and defined surface ligand, facilitating the culture of murine and human iPS-CMs, removing excess mechanical stresses and reducing the risk of tissue culture artifacts exerted by stiff substrates.

  15. CD4+CD25+ regulatory T cells: I. Phenotype and physiology

    DEFF Research Database (Denmark)

    Holm, Thomas Lindebo; Nielsen, Janne; Claesson, Mogens H

    2004-01-01

    it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine...

  16. Retinal Physiology: Non-Bipolar-Cell Excitatory Drive in the Inner Retina.

    Science.gov (United States)

    Baden, Tom; Euler, Thomas

    2016-08-01

    The long-held view that bipolar cells provide the exclusive excitatory drive to the mammalian inner retina has been challenged: new studies indicate that, instead, at least two cells that lack the dendrites characteristic for bipolar cells, and therefore resemble amacrine cells, excite inner retinal circuits using glutamate.

  17. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    OpenAIRE

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  18. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    OpenAIRE

    Hemant Kumar; Dong-Kug Choi

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g...

  19. The dynamics of p53 in single cells: physiologically based ODE and reaction-diffusion PDE models

    Science.gov (United States)

    Eliaš, Ján; Dimitrio, Luna; Clairambault, Jean; Natalini, Roberto

    2014-08-01

    The intracellular signalling network of the p53 protein plays important roles in genome protection and the control of cell cycle phase transitions. Recently observed oscillatory behaviour in single cells under stress conditions has inspired several research groups to simulate and study the dynamics of the protein with the aim of gaining a proper understanding of the physiological meanings of the oscillations. We propose compartmental ODE and PDE models of p53 activation and regulation in single cells following DNA damage and we show that the p53 oscillations can be retrieved by plainly involving p53-Mdm2 and ATM-p53-Wip1 negative feedbacks, which are sufficient for oscillations experimentally, with no further need to introduce any delays into the protein responses and without considering additional positive feedback.

  20. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  1. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  2. Molecular Crowding Defines a Common Origin for the Warburg Effect in Proliferating Cells and the Lactate Threshold in Muscle Physiology

    Science.gov (United States)

    Vazquez, Alexei; Oltvai, Zoltán N.

    2011-01-01

    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions. PMID:21559344

  3. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology.

    Directory of Open Access Journals (Sweden)

    Alexei Vazquez

    Full Text Available Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.

  4. Sodium Glucose Cotransporter 2 (SGLT2 Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells.

    Directory of Open Access Journals (Sweden)

    Masanori Wakisaka

    Full Text Available Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR. Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor.Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction.These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.

  5. Genes expressed in the Drosophila head reveal a role for fat cells in sex-specific physiology

    OpenAIRE

    Fujii, Shinsuke; Amrein, Hubert

    2002-01-01

    The downstream effectors of the Drosophila sex determination cascade are mostly unknown and thought to mediate all aspects of sexual differentiation, physiology and behavior. Here, we employed serial analysis of gene expression (SAGE) to identify male and female effectors expressed in the head, and report 46 sex-biased genes (>4-fold/P < 0.01). We characterized four novel, male- or female-specific genes and found that all are expressed mainly in the fat cells in the head. Tsx (turn on sex-spe...

  6. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans

    NARCIS (Netherlands)

    Woude, van der H.; Gliszczynska-Swiglo, A.; Struijs, K.; Smeets, A.; Alink, G.M.; Rietjens, I.M.C.M.

    2003-01-01

    Optimal in vitro conditions regarding quercetin solubility and stability were defined. Using these conditions, the effect of quercetin on proliferation of the colon carcinoma cell lines HCT-116 and HT29 and the mammary adenocarcinoma cell line MCF-7 was investigated. For the colon carcinoma cell lin

  7. The replication of beta cells in normal physiology, in disease and for therapy.

    Science.gov (United States)

    Butler, Peter C; Meier, Juris J; Butler, Alexandra E; Bhushan, Anil

    2007-11-01

    Replication of beta cells is an important source of beta-cell expansion in early childhood. The recent linkage of type 2 diabetes with several transcription factors involved in cell cycle regulation implies that growth of the beta-cell mass in early childhood might be an important determinant of risk for type 2 diabetes. Under some circumstances, including obesity and pregnancy, the beta-cell mass is adaptively increased in adult humans. The mechanisms by which this adaptive growth occurs and the relative contributions of beta-cell replication or of mechanisms independent of beta-cell replication are unknown. Also, although there is interest in the potential for beta-cell regeneration as a therapeutic approach in both type 1 and 2 diabetes, little is yet known about the potential sources of new beta cells in adult humans. In common with other cell types, replicating beta cells have an increased vulnerability to apoptosis, which is likely to limit the therapeutic value of inducing beta-cell replication in the proapoptotic environment of type 1 and 2 diabetes unless applied in conjunction with a strategy to suppress increased apoptosis.

  8. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength.

  9. Fixed endothelial cells exhibit physiologically relevant nanomechanics of the cortical actin web

    International Nuclear Information System (INIS)

    It has been unknown whether cells retain their mechanical properties after fixation. Therefore, this study was designed to compare the stiffness properties of the cell cortex (the 50–100 nm thick zone below the plasma membrane) before and after fixation. Atomic force microscopy was used to acquire force indentation curves from which the nanomechanical cell properties were derived. Cells were pretreated with different concentrations of actin destabilizing agent cytochalasin D, which results in a gradual softening of the cell cortex. Then cells were studied ‘alive’ or ‘fixed’. We show that the cortical stiffness of fixed endothelial cells still reports functional properties of the actin web qualitatively comparable to those of living cells. Myosin motor protein activity, tested by blebbistatin inhibition, can only be detected, in terms of cortical mechanics, in living but not in fixed cells. We conclude that fixation interferes with motor proteins while maintaining a functional cortical actin web. Thus, fixation of cells opens up the prospect of differentially studying the actions of cellular myosin and actin. (papers)

  10. The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4 (Canada); Niyogi, Som; Chivers, Douglas P. [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-04-01

    Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms are simultaneously exposed to multiple stressors. Understanding how organisms respond to these stressors is a key focus for scientists from many disciplines. Here we investigated the interactive effects of two stressors, UV radiation (UVR) and cadmium (Cd) exposure on a common freshwater fish, fathead minnow (Pimephales promelas). UVR is known to influence the density of epidermal club cells (ECCs), which are not only a key component of the innate immune system of fishes, but are also the source of chemical alarm cues that serve to warn other fishes of nearby predators. In contrast, Cd impairs the physiological stress response and ability of fish to respond to alarm cues. We used an integrative approach to examine physiological stress response as well as investment in ECCs. Fish exposed to UVR had higher levels of cortisol than non-exposed controls, but Cd reduced cortisol levels substantially for fish exposed to UVR. Fish exposed to UVR, either in the presence or absence of Cd, showed consistent decreases in ECC investment compared to non-exposed controls. Despite differences in ECC number, there was no difference in the potency of alarm cues prepared from the skin of UVR and Cd exposed or non-exposed fish indicating that UVR and Cd exposure combined may have little influence on chemically-mediated predator–prey interactions. - Highlights: • UV radiation caused a physiological stress response (cortisol release) in fish. • Cd reduced cortisol levels substantially for fish exposed to UV. • Fish exposed to UV, with or without Cd, showed decreases in club cell investment. • There was no difference in alarm cues potency from UV and Cd exposed fish. • Our work highlights the difficulty of untangling effects of multiple stressors.

  11. Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles.

    Science.gov (United States)

    Pei; Ward; Schroeder

    1999-11-01

    Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca(2+), calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg(2+) levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg(2+) inhibited fast vacuolar (FV) currents with a K(i) of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg(2+) at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg(2+), cytosolic Ca(2+) at less than 10 µM did not activate slow vacuolar (SV) currents. However, when cytosolic Mg(2+) was present, submicromolar concentrations of cytosolic Ca(2+) activated SV currents with a K(d) of approximately 227 nM, suggesting a synergistic Mg(2+)-Ca(2+) effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg(2+) concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca(2+) with an affinity in the submicromolar range and a cytosolic low-affinity Mg(2+)-Ca(2+) binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca(2+) and is inhibitory. In conclusion, cytosolic Mg(2+) sensitizes SV channels to physiological cytosolic Ca(2+) elevations. Furthermore, we propose that cytosolic and vacuolar Mg(2+) concentrations ensure that FV channels do not function as a continuous vacuolar K(+) leak, which would prohibit stomatal opening. PMID:10557247

  12. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    Understanding fire dynamics and combustion is essential in fire safety engineering and in fire science curricula. Engineers and students involved in fire protection, safety and investigation need to know and predict how fire behaves to be able to implement adequate safety measures and hazard...... analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...... discipline. It covers thermo chemistry including mixtures and chemical reactions; Introduces combustion to the fire protection student; Discusses premixed flames and spontaneous ignition; Presents conservation laws for control volumes, including the effects of fire; Describes the theoretical bases...

  13. The Effects of Orbital Spaceflight on Human Osteoblastic Cell Physiology and Gene Expression

    Science.gov (United States)

    Turner, R. T.

    1999-01-01

    The purpose of the proposed study is to establish whether changes in gravitational loading have a direct effect on osteoblasts to regulate TGF-6 expression. The effects of spaceflight and reloading on TGF-B MRNA and peptide levels will be studied in a newly developed line of immortalized human fetal osteoblasts (HFOB) transfected with an SV-40 temperature dependent mutant to generate proliferating, undifferentiated hFOB cells at 33-34 C and a non-proliferating, differentiated HFOB cells at 37-39'C. Unlike previous cell culture models, HFOB cells have unlimited proliferative capacity yet can be precisely regulated to differentiate into mature cells which express mature osteoblast function. If isolated osteoblasts respond to changes in mechanical loading in a manner similar to their response in animals, the cell system could provide a powerful model to investigate the signal transduction pathway for gravitational loading.

  14. Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process

    OpenAIRE

    Wu, Danielle; Schaffler, Mitchell B.; Weinbaum, Sheldon; SPRAY, DAVID C.

    2013-01-01

    Osteocytes are bone cells that form cellular networks that sense mechanical loads distributed throughout the bone tissue. Interstitial fluid flow in the lacunar canalicular system produces focal strains at localized attachment sites around the osteocyte cell process. These regions of periodic attachment between the osteocyte cell membrane and its canalicular wall are sites where pN-level fluid-flow induced forces are generated in vivo. In this study, we show that focally applied forces of thi...

  15. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  16. Blood Flow Multiscale Phenomena

    OpenAIRE

    Agić, Ante; Mijović, Budimir; Nikolić, Tatjana

    2007-01-01

    The cardiovascular disease is one of most frequent cause deaths in modern society. The objective of this work is analyse the effect of dynamic vascular geometry (curvature, torsion,bifurcation) and pulsatile blood nature on secondary flow, wall shear stress and platelet deposition. The problem was examined as multi-scale physical phenomena using perturbation analysis and numerical modelling. The secondary flow determined as influence pulsatile pressure, vascular tube time-dependen...

  17. Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process.

    Science.gov (United States)

    Wu, Danielle; Schaffler, Mitchell B; Weinbaum, Sheldon; Spray, David C

    2013-07-16

    Osteocytes are bone cells that form cellular networks that sense mechanical loads distributed throughout the bone tissue. Interstitial fluid flow in the lacunar canalicular system produces focal strains at localized attachment sites around the osteocyte cell process. These regions of periodic attachment between the osteocyte cell membrane and its canalicular wall are sites where pN-level fluid-flow induced forces are generated in vivo. In this study, we show that focally applied forces of this magnitude using a newly developed Stokesian fluid stimulus probe initiate rapid and transient intercellular electrical signals in vitro. Our experiments demonstrate both direct gap junction coupling and extracellular purinergic P2 receptor signaling between MLO-Y4 cells in a connected bone cell network. Intercellular signaling was initiated by pN-level forces applied at integrin attachment sites along both appositional and distal unapposed cell processes, but not initiated at their cell bodies with equivalent forces. Electrical coupling was evident in 58% of all cell pairs tested with appositional connections; coupling strength increased with the increasing number of junctional connections. Apyrase, a nucleotide-degrading enzyme, suppressed and abolished force-induced effector responses, indicating a contribution from ATP released by the stimulated cell. This work extends the understanding of how osteocytes modulate their microenvironment in response to mechanical signals and highlights mechanisms of intercellular relay of mechanoresponsive signals in the bone network. PMID:23818616

  18. Microfluidic device to study cell transmigration under physiological shear stress conditions

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Kiilerich-Pedersen, Katrine; Moresco, Jacob Lange;

    2011-01-01

    The development of new drug therapies relies on studies of cell transmigration in in vitro systems. Migration has traditionally been studied using two methods, the Boyden chamber and a shear flow chamber assay. Though, commonly applied in cell transmigration studies, they are far from imitating a...

  19. Keeping the intracellular vitamin C at a physiologically relevant level in endothelial cell culture

    DEFF Research Database (Denmark)

    Frikke-Schmidt, Henriette Rønne; Lykkesfeldt, Jens

    2010-01-01

    It is generally accepted that the addition of vitamin C to cell culture medium improves cell growth. However, once added, the vitamin C concentration declines rapidly. This situation differs from the in vivo environment where the endothelium is constantly supplied with ascorbate from the blood...

  20. Impacts of X-ray irradiation on Saccharomyces cerevisiae cells growth and physiological-biochemical characteristic

    Institute of Scientific and Technical Information of China (English)

    曹国珍; 张苗苗; 李文建; 缪建顺; 陆栋; 张文德

    2015-01-01

    In this paper, the growth curves of yeast cells exposed to X-rays were detected, and then fitted by Gompertz equation. The yeast cells treated with 50–125 Gy showed an increased exponential growth rate, and lower total biomass at plateau. At doses ≥ 150 Gy, cells showed a decreased exponential growth rate and higher total biomass at plateau. DNA lesions were detected by comet assay. Meanwhile, intracellular accumulation of reactive oxygen species (ROS), reduction of mitochondrial membrane potential (∆Ψm) and cell membrane integrity were evaluated. We conclude that X-ray irradiation results in DNA lesions, ROS accumulation and∆Ψm decline in a dose-dependent manner, and that these changes may be one of causes of X-rays-induced apoptosis in yeast. Furthermore, yeast cell membrane integrity appeared compromised following irradiation, suggesting that membrane damage may also have a role in the biological effects of radiation.

  1. Detection and Antibiotic Treatment of Mycoplasma arginini Contamination in a Mouse Epithelial Cell Line Restore Normal Cell Physiology

    Directory of Open Access Journals (Sweden)

    Brianna Boslett

    2014-01-01

    Full Text Available Mycoplasma contamination of cultured cell lines is difficult to detect by routine observation. Infected cells can display normal morphology and the slow growth rate of mycoplasma can delay detection for extended periods of time, compromising experimental results. Positive identification of mycoplasma typically requires cells to be either fixed and stained for DNA or processed with PCR. We present a method to detect mycoplasma using live-cell optical microscopy typically used for routine observation of cell cultures. Images of untreated mycoplasma-infected epithelial cells alongside images of infected cells treated with Plasmocin, a commercially available antibiotic targeted to mycoplasma, are shown. We found that optical imaging is an effective screening tool for detection of mycoplasma contamination. Importantly, we found that cells regained normal function after the contamination was cleared. In conclusion, we present a technique to diagnose probable mycoplasma infections in live cultures without fixation, resulting in faster response times and decreased loss of cell material.

  2. Tissue engineering approaches for studying the effect of biochemical and physiological stimuli on cell behavior

    Science.gov (United States)

    Jimenez Vergara, Andrea Carolina

    Tissue engineering (TE) approaches have emerged as an alternative to traditional tissue and organ replacements. The aim of this work was to contribute to the understanding of the effects of cell-material and endothelial cell (EC) paracrine signaling on cell responses using poly(ethylene glycol) diacrylate (PEGDA) hydrogels as a material platform. Three TE applications were explored. First, the effect of glycosaminoglycan (GAG) identity was evaluated for vocal fold restoration. Second, the influence of GAG identity was explored and a novel approach for stable endothelialization was developed for vascular graft applications. Finally, EC paracrine signaling in the presence of cyclic stretch, and hydrophobicity and inorganic content were studied for osteogenic applications. In terms of vocal fold restoration, it was found that vocal fold fibroblast (VFF) phenotype and extracellular matrix (ECM) production were impacted by GAG identity. VFF phenotype was preserved in long-term cultured hydrogels containing high molecular weight hyaluronan (HAHMW). Furthermore, collagen I deposition, fibronectin production and smooth muscle α-actin (SM-α-actin) expression in PEG-HA, PEG-chondroitin sulfate C and PEG-heparan sulfate (HS) gels suggest that CSC and HS may be undesirable for vocal fold implants. Regarding vascular graft applications, the impact of GAG identity on smooth muscle cell (SMC) foam cell formation was explored. Results support the increasing body of literature that suggests a critical role for dermatan sulfate (DS)-bearing proteoglycans in early atherosclerosis. In addition, an approach for fabricating bi-layered tissue engineering vascular grafts (TEVGs) with stable endothelialization was validated using PEGDA as an intercellular “cementing” agent between adjacent endothelial cells (ECs). Finally, mesenchymal stem cell (MSC) differentiation toward osteogenic like cells was evaluated. ECM and cell phenotypic data showed that elevated scaffold inorganic

  3. Molecular Physiology of Glucagon-Like Peptide-1 Insulin Secretagogue Action in Pancreatic β Cells

    OpenAIRE

    Leech, Colin A.; Dzhura, Igor; Chepurny, Oleg G.; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G.; Holz, George G.

    2011-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additio...

  4. Method for physiologic phenotype characterization at the single-cell level in non-interacting and interacting cells

    Science.gov (United States)

    Kelbauskas, Laimonas; Ashili, Shashanka P.; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B.; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H.; Paulson, Thomas G.; Youngbull, Cody A.; Tian, Yanqing; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-03-01

    Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.

  5. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  6. Algal wastewater treatment and biomass producing potential: nutrient removal efficiency and cell physiological responses

    OpenAIRE

    Samorì, Giulia

    2012-01-01

    Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomas...

  7. Mitochondrial Gene Therapy Augments Mitochondrial Physiology in a Parkinson's Disease Cell Model

    OpenAIRE

    Keeney, Paula M; Quigley, Caitlin K.; Dunham, Lisa D.; Papageorge, Christina M.; Iyer, Shilpa; Thomas, Ravindar R.; Schwarz, Kathleen M.; Trimmer, Patricia A; Khan, Shaharyar M.; Portell, Francisco R.; Bergquist, Kristen E.; Bennett, James P.

    2009-01-01

    Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology (“ProtoFection”) that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-ter...

  8. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    OpenAIRE

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; LÜTZ-MEINDL, URSULA

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essent...

  9. Physiological and Molecular Genetic Effects of Time-Varying Electromagnetic Fields on Human Neuronal Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2003-01-01

    The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.

  10. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis.

    Science.gov (United States)

    Di Pietro, Natalia; Formoso, Gloria; Pandolfi, Assunta

    2016-09-01

    Atherosclerosis is a progressive disease in which endothelial cell dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation, lead to the loss of vascular homeostasis. Oxidized low-density lipoprotein (oxLDL) may play a pre-eminent function in atherosclerotic lesion formation, even if their role is still debated. Several types of scavenger receptors (SRs) such as SR-AI/II, SRBI, CD36, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), toll-like receptors (TLRs) and others can promote the internalization of oxLDL. They are expressed on the surface of vascular wall cells (endothelial cells, macrophages and smooth muscle cells) and they mediate the cellular effects of oxLDL. The key influence of both oxLDL and SRs on the atherogenic process has been established in atherosclerosis-prone animals, in which antioxidant treatment and/or silencing of SRs has been shown to reduce atherogenesis. Despite some discrepancies, the indication from cohort studies that there is an association between oxLDL and cardiovascular (CV) events seems to point toward a role for oxLDL in atherosclerotic plaque progress and disruption. Finally, randomized clinical trials using antioxidants have demonstrated benefits only in high-risk patients, suggesting that additional proofs are still needed to better define the involvement of each type of modified LDL in the development of atherosclerosis. PMID:27256928

  11. Differential mechanism of Escherichia coli Inactivation by (+-limonene as a function of cell physiological state and drug's concentration.

    Directory of Open Access Journals (Sweden)

    Beatriz Chueca

    Full Text Available (+-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme, or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation, thiourea, or cysteamine (hydroxyl radical scavengers was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage was more sensitive to (+-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+-limonene as an antimicrobial compound, and in clarifying the

  12. Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators.

    Science.gov (United States)

    Henderson, Brian

    2010-01-01

    The response of cells to stress was first documented in the 1960s and 1970s and the molecular nature of the families of proteins that subserve this vital response, the molecular chaperones, were identified and subjected to critical study in the period from the late 1980s. This resulted in the rapidly advancing new field of protein folding and its role in cellular function. Emerging at the same time, but initially largely ignored, were reports that molecular chaperones could be released by cells and exist on the outer plasma membrane or in the body fluids. These secreted molecular chaperones were found to have intercellular signalling functions. There is now a growing body of evidence to support the hypothesis that molecular chaperones have properties ascribed to the Roman god Janus, the god of gates, doors, beginnings and endings, whose two faces point in different directions. Molecular chaperones appear to have one set of key functions within the cell and, potentially, a separate set of functions when they exist on the cell surface or in the various fluid phases of the body. Thus, it is a likely hypothesis that secreted molecular chaperones act as an additional level of homeostatic control possibly linking cellular stress to physiological systems such as the immune system. This review concentrates on three key molecular chaperones: Hsp10, Hsp60 and the Hsp70 family for which most information is available. An important consideration is the role that these proteins may play in human disease and in the treatment of human disease.

  13. Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites.

    Science.gov (United States)

    Ribaut, Clotilde; Reybier, Karine; Reynes, Olivier; Launay, Jérôme; Valentin, Alexis; Fabre, Paul Louis; Nepveu, Françoise

    2009-04-15

    The malaria parasite, Plasmodium falciparum, invades human erythrocytes and induces dramatic changes in the host cell. The idea of this work was to use RBC modified electrode to perform electrochemical impedance spectroscopy (EIS) with the aim of monitoring physiological changes affecting the erythrocyte after invasion by the malaria parasite. Impedance cell-based devices are potentially useful to give insight into cellular behavior and to detect morphological changes. The modelling of impedance plots (Nyquist diagram) in equivalent circuit taking into account the presence of the cellular layer, allowed us pointing out specific events associated with the development of the parasite such as (i) strong changes in the host cell cytoplasm illustrated by changes in the film capacity, (ii) perturbation of the ionic composition of the host cell illustrated by changes in the film resistance, (iii) releasing of reducer (lactic acid or heme) and an enhanced oxygen consumption characterized by changes in the charge transfer resistance and in the Warburg coefficient characteristic of the redox species diffusion. These results show that the RBC-based device may help to analyze strategic events in the malaria parasite development constituting a new tool in antimalarial research.

  14. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  15. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  16. Thermal Wave Phenomena

    Science.gov (United States)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  17. Birefringence phenomena revisited

    CERN Document Server

    Pereira, Dante D; Gonçalves, Bruno

    2016-01-01

    The propagation of electromagnetic waves is investigated in the context of the isotropic and nonlinear dielectric media at rest in the eikonal limit of the geometrical optics. Taking into account the functional dependence $\\varepsilon=\\varepsilon(E,B)$ and $\\mu=\\mu(E,B)$ for the dielectric coefficients, a set of phenomena related to the birefringence of the electromagnetic waves induced by external fields are derived and discussed. Our results contemplate the known cases already reported in the literature: Kerr, Cotton-Mouton, Jones and magnetoelectric effects. Moreover, new effects are presented here as well as the perspectives of its experimental confirmations.

  18. Ovarian Germline Stem Cells (OGSCs and the Hippo Signaling Pathway Association with Physiological and Pathological Ovarian Aging in Mice

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-07-01

    Full Text Available Background: The Hippo signaling pathway plays fundamental roles in stem cell maintenance in a variety of tissues and has thus implications for stem cell biology. Key components of this recently discovered pathway have been shown to be associated with primordial follicle activation. However, whether the Hippo signaling pathway plays a role in the development of Ovarian Germline Stem Cells (OGSCs during physiological and pathological ovarian aging in mice is unknown. Methods: Mice at the age of 7 days (7D, or of 2, 10, or 20 months (2M, 10M, 20M and mice at 2M treated with TPT and CY/BUS drugs were selected as physiological and pathological ovarian aging models, respectively. Immunohistochemistry was used to assess the development of follicles, and the co-localization of genes characteristic of OGSCs with MST1, LATS2 and YAP1 was assessed by immunofluorescence, western blotting and real-time PCR methods. Results: The Hippo signal pathway and MVH/OCT4 genes were co-expressed in the mouse ovarian cortex. The level and co-localization of LATS2, MST1, MVH, and OCT4 were significantly decreased with increased age, but YAP1 was more prevalent in the mouse ovarian cortex of 2M mice than 7D mice and was not observed in 20M mice. Furthermore, YAP1, MVH, and OCT4 were gradually decreased after TPT and CY/BUS treatment, and LATS2 mRNA and protein up-regulation persisted in TPT- and CY/BUS-treated mice. However, the expression of MST1 was lower in the TPT and CY/BUS groups compared with the control group. In addition, pYAP1 protein showed the highest expression in the ovarian cortexes of 7D mice compared with 20M mice, and the value of pYAP1/YAP1 decreased from 7D to 20M. Moreover, pYAP1 decreased in the TPT- and CY/BUS-treated groups, but the value of pYAP1/YAP1 increased in these groups. Conclusion: Taken together, our results show that the Hippo signaling pathway is associated with the changes that take place in OGSCs during physiological and pathological

  19. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  20. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  1. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-03-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  2. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  3. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ.

    Science.gov (United States)

    Ackels, Tobias; von der Weid, Benoît; Rodriguez, Ivan; Spehr, Marc

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, the basic biophysical characteristics of the more recently identified FPR-expressing vomeronasal neurons have not been studied. Here, we employ a transgenic mouse strain that coexpresses an enhanced variant of yellow fluorescent protein together with FPR-rs3 allowing to identify and analyze FPR-rs3-expressing neurons in acute VNO tissue slices. Single neuron electrophysiological recordings allow comparative characterization of the biophysical properties inherent to a prototypical member of the FPR-expressing subpopulation of VNO neurons. In this study, we provide an in-depth analysis of both passive and active membrane properties, including detailed characterization of several types of voltage-activated conductances and action potential discharge patterns, in fluorescently labeled vs. unmarked vomeronasal neurons. Our results reveal striking similarities in the basic (electro) physiological architecture of both transgene-expressing and non-expressing neurons, confirming the suitability of this genetically engineered mouse model for future studies addressing more specialized issues in vomeronasal FPR neurobiology. PMID:25484858

  4. A novel chemosensor with visible light excitability for sensing Zn2+ in physiological medium and in HeLa cells.

    Science.gov (United States)

    Datta, Barun Kumar; Thiyagarajan, Durairaj; Samanta, Soham; Ramesh, Aiyagari; Das, Gopal

    2014-07-21

    In the present study a novel imine-hydrazone based fluorescent chemosensor () for efficient and selective sensing of Zn(2+) over other biologically important metal ions under physiological conditions is reported. An enhancement in fluorescence emission intensity of the developed probe with a red shift of ∼25 nm was observed for Zn(2+), whereas other metal ions failed to reveal any significant change in the emission spectra. Interestingly, the receptor functioned under completely physiological conditions (99.7% HEPES buffer) and has visible light excitability. Sensing of Zn(2+) was investigated in detail by absorption spectroscopy, emission spectroscopy, DFT calculation, (1)H-NMR titration experiment and ESI-MS experiment. The association constant between and Zn(2+) was found to be 5.58 × 10(5) M(-1). The receptor could detect as low as 69 ppb Zn(2+). Sensing of Zn(2+) is proposed through switch-on of intramolecular charge transfer (ICT) and chelation enhanced fluorescence (CHEF) processes after the introduction of Zn(2+) into the free ligand. The developed receptor was non-toxic and rendered intracellular sensing of Zn(2+) in HeLa cells through fluorescence imaging studies. PMID:24879606

  5. The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows.

    Science.gov (United States)

    Manek, Aditya K; Ferrari, Maud C O; Niyogi, Som; Chivers, Douglas P

    2014-04-01

    Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms are simultaneously exposed to multiple stressors. Understanding how organisms respond to these stressors is a key focus for scientists from many disciplines. Here we investigated the interactive effects of two stressors, UV radiation (UVR) and cadmium (Cd) exposure on a common freshwater fish, fathead minnow (Pimephales promelas). UVR is known to influence the density of epidermal club cells (ECCs), which are not only a key component of the innate immune system of fishes, but are also the source of chemical alarm cues that serve to warn other fishes of nearby predators. In contrast, Cd impairs the physiological stress response and ability of fish to respond to alarm cues. We used an integrative approach to examine physiological stress response as well as investment in ECCs. Fish exposed to UVR had higher levels of cortisol than non-exposed controls, but Cd reduced cortisol levels substantially for fish exposed to UVR. Fish exposed to UVR, either in the presence or absence of Cd, showed consistent decreases in ECC investment compared to non-exposed controls. Despite differences in ECC number, there was no difference in the potency of alarm cues prepared from the skin of UVR and Cd exposed or non-exposed fish indicating that UVR and Cd exposure combined may have little influence on chemically-mediated predator-prey interactions. PMID:24463029

  6. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences.

    Science.gov (United States)

    Rhoads, Robert E

    2016-01-01

    Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA. PMID:27236789

  7. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  8. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells.

    Science.gov (United States)

    Leech, Colin A; Dzhura, Igor; Chepurny, Oleg G; Kang, Guoxin; Schwede, Frank; Genieser, Hans-G; Holz, George G

    2011-11-01

    Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM. PMID:21782840

  9. Glutamine transporters in mammalian cells and their functions in physiology and cancer.

    Science.gov (United States)

    Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-10-01

    The SLC (solute carrier)-type transporters (~400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26724577

  10. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells.

    Science.gov (United States)

    Oda, Atsushi; Eto, Koji

    2013-04-01

    The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions. PMID:23499790

  11. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    Science.gov (United States)

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  12. MULTISCALE PHENOMENA IN MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  13. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  14. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins : activation mechanisms and physiological implications

    NARCIS (Netherlands)

    Rasmussen, M.; Alexander, R.T.; Darborg, B.V.; Mobjerg, N.; Hoffmann, E.K.; Kapus, A.; Pedersen, S.F.

    2008-01-01

    Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascite

  15. Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells.

    Science.gov (United States)

    Seta, Karen; Kim, Hie-Won; Ferguson, Tsuneo; Kim, Richard; Pathrose, Peterson; Yuan, Yong; Lu, Gang; Spicer, Zachary; Millhorn, David E

    2002-10-01

    The mechanisms by which cells adapt and respond to changes in oxygen tension remain largely unknown. Our laboratory has used the PC12 cell line to study both biophysical and molecular responses to hypoxia. This chapter summarizes our findings. We found that membrane depolarization that occurred when PC12 cells were exposed to reduced O(2) was mediated by a specific potassium channel, the Kv1.2 channel. The membrane depolarization leads to increased Ca(2+) conductance through a voltage-sensitive channel, which in turn mediates the release of the neurotransmitters dopamine, adenosine, glutamate, and GABA. In addition, increased intracellular Ca(2+) and other signaling systems regulate hypoxia-induced gene expression, which contributes to the adaptive response to reduced O(2+). We identified several critical signaling pathways that regulate a complex gene expression profile in PC12 cells during hypoxia. These include the cAMP-protein kinase A, Ca(2+)-calmodulin, p42/44 mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK; p38 kinase), and the phosphatidylinositol 3-kinase-AKT as regulators of gene expression. Several of these pathways regulate hypoxia-specific transcription factors that are members of the hypoxia-inducible factor (HIF) family. Recently, we have successfully used subtractive cDNA libraries and microarray analysis to identify the genomic profile that mediates the cellular response to hypoxia. PMID:12438156

  16. Ultrastructural and physiological changes in piglet oxyntic cells during histamine stimulation and metabolic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Forte, T.M.; Machen, T.E.; Forte, J.G.

    1975-01-01

    Neonatal pig gastric mucosa was studied in order to correlate electrophysiological and secretory parameters with ultrastructural changes in membrane components of oxyntic cells. The non-stimulated tissue had a transmucosal resistance of about 130..cap omega.. . cm/sup 2/ while the oxyntic cells were characterized by numerous cytoplasmic tubulovesicles and short microvilli extending into patent glandular and canalicular lumina. Upon histamine-stimulation, the average rate of H/sup +/ secretion was 8.1 ..mu..eq . cm/sup -2/ . hr/sup -1/ and the resistance decreased to 77..cap omega.. . cm/sup 2/. The changes were coupled with an immense elaboration of oxyntic cell apical and canalicular surfaces with a concomitant decrease of tubulovesicles. Thus, the observed decrease in resistance was correlated to large increases in secretory membrane area. Anoxia inhibited H/sup +/ secretion while resistance increased to 211..cap omega.. . cm/sup 2/. Anoxic oxyntic cells were characterized by swollen mitochondria and occlusion of the lateral intercellular space and basal infoldings. Little change in the configuration of the secretory surfaces was noted, thereby suggesting that restriction of lateral and basal membranes might be responsible for the observed resistance increase. An electrical analogue of gastric mucosa is proposed on the basis of these morphological observations.

  17. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan;

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo...

  18. Accessory cells in physiological lymphoid tissue from the intestine: an immunohistochemical study.

    Science.gov (United States)

    Sarsfield, P; Rinne, A; Jones, D B; Johnson, P; Wright, D H

    1996-03-01

    We report a study of the organization of accessory cell populations, in normal mucosal lymphoid tissue from small intestine (8 cases), large intestine (6) and appendix (9) using a panel of monoclonal antibodies and polyclonal antisera in paraffin-embedded tissue. Two populations were identified in dome areas, one positive for acid cysteine proteinase inhibitor and HLA class II (WR18) only and the second positive for S-100 protein, CD68, and WR18 and negative for acid cysteine proteinase inhibitor and factor XIIIa. Superficial colonic mucosal and small intestinal villous tip macrophages stained positively with CD68 and WR18 only, while deeper cryptal and submucosal populations exhibited additional positivity for factor XIIIa, but both populations were negative for acid cysteine proteinase inhibitor and S-100 protein. Germinal centre macrophages were positive for CD68, WR18 and acid cysteine proteinase inhibitor and negative for factor XIIIa, and S-100 protein. T zone dendritic cells included a population which stained positively for S-100 protien, WR18 and were negative for factor XIIIa, CD68 and acid cysteine proteinase inhibitor, an immunophenotype typical of interdigitating dendritic reticulum cells. This distribution of phenotypically identifiable accessory cell subpopulations was apparent at all three sites examined. We suggest that the specialized subpopulations of dendritic cells staining for S-100 protein and for acid cysteine proteinase inhibitor which are restricted to the dome areas, may have a potential role in the transfer of antigen across the epithelium to the germinal centres, while factor XIIIa appears to identify a tissue macrophage population with a potential role in stromal modulation distant from direct antigen challenge.

  19. Dr. Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy.

    Science.gov (United States)

    Strasser, A

    1999-05-17

    Cell death is a physiological process which is required for normal development and existence of multi-cellular organisms. Physiological cell death, or apoptosis, is controlled by an evolutionarily conserved mechanism. Abnormalities in this process are implicated as a cause or contributing factor in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, particularly in combination with dysregulated cell-cycle control, and can influence the response of tumour cells to anti-cancer therapy. Molecular biological and biochemical approaches are used to find missing cell-death regulators and to define signalling cascades, while experiments in genetically modified mice will identify the essential function of these molecules. Discoveries from cell death research should provide clues for designing therapies for a variety of diseases, including degenerative disorders, auto-immunity and cancer. PMID:10225436

  20. Dr. Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy.

    Science.gov (United States)

    Strasser, A

    1999-05-17

    Cell death is a physiological process which is required for normal development and existence of multi-cellular organisms. Physiological cell death, or apoptosis, is controlled by an evolutionarily conserved mechanism. Abnormalities in this process are implicated as a cause or contributing factor in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, particularly in combination with dysregulated cell-cycle control, and can influence the response of tumour cells to anti-cancer therapy. Molecular biological and biochemical approaches are used to find missing cell-death regulators and to define signalling cascades, while experiments in genetically modified mice will identify the essential function of these molecules. Discoveries from cell death research should provide clues for designing therapies for a variety of diseases, including degenerative disorders, auto-immunity and cancer.

  1. Link between Domoic Acid Production and Cell Physiology after Exchange of Bacterial Communities between Toxic Pseudo-nitzschia multiseries and Non-Toxic Pseudo-nitzschia delicatissima

    Directory of Open Access Journals (Sweden)

    Aurélie Lelong

    2014-06-01

    Full Text Available Bacteria are known to influence domoic acid (DA production by Pseudo-nitzschia spp., but the link between DA production and physiology of diatoms requires more investigation. We compared a toxic P. multiseries to a non-toxic P. delicatissima, investigating links between DA production, physiological parameters, and co-occurring bacteria. Bacterial communities in cultures of both species were reduced by antibiotic treatment, and each of the diatoms was inoculated with the bacterial community of the other species. The physiology of P. delicatissima was minimally affected by the absence of bacteria or the presence of alien bacteria, and no DA was detected. P. multiseries grew faster without bacteria, did not produce a significant amount of DA, and exhibited physiological characteristics of healthy cells. When grown with alien bacteria, P. multiseries did not grow and produced more DA; the physiology of these cells was affected, with decreases in chlorophyll content and photosynthetic efficiency, an increase in esterase activity, and almost 50% mortality of the cells. The alien bacterial community had morphological and cellular characteristics very different from the original bacteria, and the number of free-living bacteria per algal cell was much higher, suggesting the involvement of bacteria in DA production.

  2. Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues

    OpenAIRE

    Chen, A.; Yarmush, M L; Maguire, T.

    2012-01-01

    There is a large emphasis within the pharmaceutical industry to provide tools that will allow early research and development groups to better predict dose ranges for and metabolic responses of candidate molecules in a high throughput manner, prior to entering clinical trials. These tools incorporate approaches ranging from PBPK, QSAR, and molecular dynamics simulations in the in silico realm, to micro cell culture analogue (CCAs)s in the in vitro realm. This paper will serve to review these a...

  3. Epidermal stem cells in physiological tissue regeneration, wound healing and cancer

    OpenAIRE

    Füllgrabe, Anja

    2016-01-01

    The mammalian skin is a versatile organ that protects from external harm, regulates the body temperature, and provides the touch sensation. Its epithelium, the epidermis, forms several highly regenerative structures as the hair follicle (HF), the sebaceous gland (SG), and the interfollicular epidermis (IFE). Lineage tracing experiments in mice have demonstrated that several basal cell populations in the IFE and HF have the capacity to renew the epidermis during homeostasis, and also contribut...

  4. Immobilization of Electroporated Cells for Fabrication of Cellular Biosensors: Physiological Effects of the Shape of Calcium Alginate Matrices and Foetal Calf Serum

    OpenAIRE

    Nikos Katsanakis; Andreas Katsivelis; Spiridon Kintzios

    2009-01-01

    In order to investigate the physiological effect of transfected cell immobilization in calcium alginate gels, we immobilized electroporated Vero cells in gels shaped either as spherical beads or as thin membrane layers. In addition, we investigated whether serum addition had a positive effect on cell proliferation and viability in either gel configuration. The gels were stored for four weeks in a medium supplemented or not with 20% (v/v) foetal calf serum. Throughout a culture period of four ...

  5. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression

    Science.gov (United States)

    Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.

    2000-01-01

    During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors

  6. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  7. Combinatorial polymer electrospun matrices promote physiologically-relevant cardiomyogenic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Mukesh K Gupta

    Full Text Available Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG, hydrophobic poly(ε-caprolactone (PCL, and negatively-charged, carboxylated PCL (CPCL. Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS, α-myosin heavy chain expression (α-MHC, and intracellular Ca(2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest α-MHC expression as well as the most mature Ca(2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance α-MHC gene expression, and promote maturation of myocyte Ca(2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques.

  8. Olfactory receptors modulate physiological processes in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Benjamin Kalbe

    2016-08-01

    Full Text Available Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.

  9. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    Science.gov (United States)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-08-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.

  10. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOx). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H2SO4) and nitric acids (HNO3), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  11. Solar Magnetic Phenomena

    Science.gov (United States)

    Hanslmeier, Arnold; Veronig, Astrid; Messerotti, Mauro

    This book contains the proceedings of the Summerschool and Workshop "Solar Magnetic Phenomena" held from 25 August to 5 September 2003 at the Solar Observatory Kanzelhoehe, which belongs to the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. The book contains the contributions from six invited lecturers, They give an overview on the following topics: observations of the photosphere and chromosphere, solar flares observations and theory, coronal mass ejections and the relevance of magnetic helicity, high-energy radiation from the Sun, the physics of solar prominences and highlights from the SOHO mission. The lectures contain about 25 to 30 pages each and provide a valuable introduction to the topics mentioned above. The comprehensive lists of references at the end of each contribution enable the interested reader to go into more detail. The second part of the book contains contributed papers. These papers were presented and discussed in the workshop sessions during the afternoons. The sessions stimulated intensive discussions between the participants and the lecturers.

  12. Rowing Physiology.

    Science.gov (United States)

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  13. A small physiological electric field mediated responses of extravillous trophoblasts derived from HTR8/SVneo cells: involvement of activation of focal adhesion kinase signaling.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells.

  14. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases.

    Science.gov (United States)

    Kundu, Siddhartha

    2015-01-01

    Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal. This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and interpreted alongside existent kinetic data in a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that 2OG-dependent enzymes incorporate several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html).

  15. A glucose anode for enzymatic fuel cells optimized for current production under physiological conditions using a design of experiment approach.

    Science.gov (United States)

    Kumar, Rakesh; Leech, Dónal

    2015-12-01

    This study reports a design of experiment methodology to investigate and improve the performance of glucose oxidizing enzyme electrodes. Enzyme electrodes were constructed by co-immobilization of amine-containing osmium redox complexes, multiwalled carbon nanotubes and glucose oxidase in a carboxymethyldextran matrix at graphite electrode surfaces to provide a 3-dimensional matrix for electrocatalytic oxidation of glucose. Optimization of the amount of the enzyme electrode components to produce the highest current density under pseudo-physiological conditions of 5 mM glucose in saline buffer at 37 °C was performed using response surface methodology. A statistical analysis showed that the proposed model had a good fit with the experimental results. From the validated model, the addition of multiwalled carbon nanotubes and carboxymethyldextran components was identified as major contributing factors to the improved performance. Based on the optimized amount of components, enzyme electrodes display current densities of 1.2±0.1 mA cm(-2) and 5.2±0.2 mA cm(-2) at 0.2 V vs. Ag/AgCl in buffer containing 5 mM and 100 mM glucose, respectively, largely consistent with the predicted values. This demonstrates that use of a design of experiment approach can be applied effectively and efficiently to improve the performance of enzyme electrodes as anodes for biofuel cell device development. PMID:26116416

  16. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases

    Directory of Open Access Journals (Sweden)

    Siddhartha eKundu

    2015-03-01

    Full Text Available Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response ? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal.This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and combined with available kinetic data to form a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that the 2OG-dependent superfamily incorporates several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html.

  17. The Use of Human Adipose-Derived Stem Cells in the Treatment of Physiological and Pathological Vulvar Dystrophies

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause and pathological (lichen sclerosus, vulvar graft-versus-host disease conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect.

  18. Teaching Optical Phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  19. Relaxation phenomena in disordered systems

    Science.gov (United States)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  20. Interfacial phenomena in electrocatalysis

    CERN Document Server

    Vayenas, Constantinos G

    2011-01-01

    This volume analyzes and summarizes recent developments and breakthroughs in several key interfacial electrochemical systems in fuel cell electrocatatalysis. The chapters are written by internationally recognized experts or rising stars in electrocatatalysis addressing both the fundamental and practical aspects of several emerging key electrochemical technologies.

  1. Physiological parameters

    International Nuclear Information System (INIS)

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  2. Wave phenomena in sunspots

    Science.gov (United States)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  3. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  4. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors.

    Science.gov (United States)

    Tzounakas, Vassilis L; Kriebardis, Anastasios G; Georgatzakou, Hara T; Foudoulaki-Paparizos, Leontini E; Dzieciatkowska, Monika; Wither, Matthew J; Nemkov, Travis; Hansen, Kirk C; Papassideri, Issidora S; D'Alessandro, Angelo; Antonelou, Marianna H

    2016-09-01

    This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD(+)) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in "Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells" [1]. PMID:27437434

  5. The XIIIth International Physiological Congress in Boston in 1929: American Physiology Comes of Age

    Science.gov (United States)

    Rall, Jack A.

    2016-01-01

    In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological…

  6. Immobilization of Electroporated Cells for Fabrication of Cellular Biosensors: Physiological Effects of the Shape of Calcium Alginate Matrices and Foetal Calf Serum

    Directory of Open Access Journals (Sweden)

    Nikos Katsanakis

    2009-01-01

    Full Text Available In order to investigate the physiological effect of transfected cell immobilization in calcium alginate gels, we immobilized electroporated Vero cells in gels shaped either as spherical beads or as thin membrane layers. In addition, we investigated whether serum addition had a positive effect on cell proliferation and viability in either gel configuration. The gels were stored for four weeks in a medium supplemented or not with 20% (v/v foetal calf serum. Throughout a culture period of four weeks, cell proliferation and cell viability were assayed by optical microscopy after provision of Trypan Blue. Non-elaborate culture conditions (room temperature, non-CO2 enriched culture atmosphere were applied throughout the experimental period in order to evaluate cell viability under less than optimal storage conditions. Immobilization of electroporated cells was associated with an initially reduced cell viability, which was gradually increased. Immobilization was associated with maintenance of cell growth for the duration of the experimental period, whereas electroporated cells essentially died after a week in suspension culture. Considerable proliferation of immobilized cells was observed in spherical alginate beads. In both gel configurations, addition of serum was associated with increased cell proliferation. The results of the present study could contribute to an improvement of the storability of biosensors based on electroporated, genetically or membrane-engineered cells.

  7. Physiological properties of astroglial cell lines derived from mice with high (SAMP8 and low (SAMR1, ICR levels of endogenous retrovirus

    Directory of Open Access Journals (Sweden)

    Choi Eun-Kyoung

    2008-11-01

    Full Text Available Abstract Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1 levels of the capsid antigen CAgag in both cell lysates and culture media, 2 expression of genomic retroelements, 3 the number of virus particles, 4 titer of infectious virus, 5 morphology, 6 replication rate of cells in culture and final cell concentrations, 7 expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.

  8. Physiological breeding.

    Science.gov (United States)

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. PMID:27161822

  9. Resonant phenomena in colloidal crystals

    OpenAIRE

    Palberg, Thomas; Würth, Mathias; König, Peter; Simnacher, Erwin; Leiderer, Paul

    1992-01-01

    Colloidal crystals of completely deionized suspensions of latex speres are subjected to oscillatory and steady shear, as well as to homogeneous and inhomogeneous electric fields. Various resonant phenomena observed in such experiments are reported.

  10. Mathematical Model for Hit Phenomena

    CERN Document Server

    Ishii, Akira; Hayashi, Takefumi; Matsuda, Naoya; Nakagawa, Takeshi; Arakaki, Hisashi; Yoshida, Narihiko

    2010-01-01

    The mathematical model for hit phenomena in entertainments is presented as a nonlinear, dynamical and non-equilibrium phenomena. The purchase intention for each person is introduced and direct and indirect communications are expressed as two-body and three-body interaction in our model. The mathematical model is expressed as coupled nonlinear differential equations. The important factor in the model is the decay time of rumor for the hit. The calculated results agree very well with revenues of recent 25 movies.

  11. Physiological Concentration of Exogenous Lactate Reduces Antimycin A Triggered Oxidative Stress in Intestinal Epithelial Cell Line IPEC-1 and IPEC-J2 In Vitro

    Science.gov (United States)

    Kahlert, Stefan; Junnikkala, Sami; Renner, Lydia; Hynönen, Ulla; Hartig, Roland; Nossol, Constanze; Barta-Böszörményi, Anikó; Dänicke, Sven; Souffrant, Wolfgang-Bernhard; Palva, Airi; Rothkötter, Hermann-Josef; Kluess, Jeannette

    2016-01-01

    Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells. PMID:27054581

  12. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bente...

  13. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  14. Measurement and modelling of local phenomena in polymer electrolyte fuel cells; Messung und Modellierung lokaler Phaenomene in Polymer-Elektrolyt-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Eckl, R.

    2007-05-15

    Within the scope of this thesis, a new method for in situ current distribution measurement based on printed circuit board technology is developed and applied to polymer electrolyte fuel cells. Using the finite element method, the accuracy of this new approach is compared to conventional techniques and an estimate of the maximum uncertainty of measurement due to lateral currents is given. The effects of variable operating parameters on local electrochemical performance are studied by stationary and dynamic testing of laboratory cells with 100 cm{sup 2} active area. Based on experimental results, load conditions on the anode side are modelled and characteristic water management issues are analysed with the aid of computational fluid dynamics (CFD) simulations. (orig.)

  15. Cell Migration and Invasion Assays as Tools for Drug Discovery

    OpenAIRE

    Hulkower, Keren I.; Herber, Renee L.

    2011-01-01

    Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screeni...

  16. Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis.

    Science.gov (United States)

    Tsuboy, Marcela S; Marcarini, Juliana C; de Souza, Alecsandra O; de Paula, Natália A; Dorta, Daniel J; Mantovani, Mário S; Ribeiro, Lucia R

    2014-02-01

    Several studies have demonstrated that a balanced diet can contribute to better human health. For this reason, soy-based food and pure isoflavones (pills) are one of the most consumed. The association of this consumption and lower risks of chronic diseases and cancer is well established for the Asian population and has been attracting the attention of people worldwide, especially women at menopause who seek to alleviate the symptoms associated with the lack of estrogen. Despite positive epidemiological data, concerns still exist because of conflicting results found in scientific literature with relation to the role of isoflavones in breast and hormone-related cancers. The aim of our study was to investigate the cytotoxicity, induction of apoptosis, and changes in apoptosis-related genes of maximal physiological serum levels of the isoflavone genistein (Gen) in MCF-7 tumoral cells and in HB4a non-tumoral cells. In addition, induction of cell cycle arrest was also investigated. Only supraphysiological levels of Gen (50 and 100 μM) were cytotoxic to these cell lines. Concentrations of 10 and 25 μM did not induce apoptosis and significant changes in expression of the studied genes. Positive results were found only in cell cycle analysis: G0/G1 delay of MCF-7 cells in both concentrations of Gen and at 25 μM in HB4a cells. It is the first study investigating effects of Gen in the HB4a cell line. Thus, despite the lack of apoptosis induction (generally found with high concentrations), Gen at physiologically relevant serum levels still exerts chemopreventive effects through the modulation of cell cycle. PMID:24325455

  17. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  18. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  19. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  20. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  1. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max;

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  2. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  3. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  4. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  5. Nursing phenomena in inpatient psychiatry

    NARCIS (Netherlands)

    Frauenfelder, F.; Muller-Staub, M.; Needham, I.; Achterberg, T. van

    2011-01-01

    Little is known about the question if the nursing diagnosis classification of North American Nursing Association-International (NANDA-I) describes the adult inpatient psychiatric nursing care. The present study aimed to identify nursing phenomena mentioned in journal articles about the psychiatric i

  6. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells

    OpenAIRE

    Masanori Wakisaka; Tetsuhiko Nagao; Mototaka Yoshinari

    2016-01-01

    Purpose Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2. Methods The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell surface area at different gluc...

  7. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.

    Science.gov (United States)

    Jensen, F B

    2004-11-01

    The discovery of the S-shaped O2 equilibrium curve and the Bohr effect in 1904 stimulated a fertile and continued research into respiratory functions of blood and allosteric mechanisms in haemoglobin (Hb). The Bohr effect (influence of pH/CO2 on Hb O2 affinity) and the reciprocal Haldane effect (influence of HbO2 saturation on H+/CO2 binding) originate in the Hb oxy-deoxy conformational change and allosteric interactions between O2 and H+/CO2 binding sites. In steady state, H+ is passively distributed across the vertebrate red blood cell (RBC) membrane, and intracellular pH (pHi) changes are related to changes in extracellular pH, Hb-O2 saturation and RBC organic phosphate content. As the Hb molecule shifts between the oxy and deoxy conformation in arterial-venous gas transport, it delivers O2 and takes up CO2 and H+ in tissue capillaries (elegantly aided by the Bohr effect). Concomitantly, the RBC may sense local O2 demand via the degree of Hb deoxygenation and release vasodilatory agents to match local blood flow with requirements. Three recent hypotheses suggest (1) release of NO from S-nitroso-Hb upon deoxygenation, (2) reduction of nitrite to vasoactive NO by deoxy haems, and (3) release of ATP. Inside RBCs, carbonic anhydrase (CA) provides fast hydration of metabolic CO2 and ensures that the Bohr shift occurs during capillary transit. The formed H+ is bound to Hb (Haldane effect) while HCO3- is shifted to plasma via the anion exchanger (AE1). The magnitude of the oxylabile H+ binding shows characteristic differences among vertebrates. Alternative strategies for CO2 transport include direct HCO3- binding to deoxyHb in crocodilians, and high intracellular free [HCO3-] (due to high pHi) in lampreys. At the RBC membrane, CA, AE1 and other proteins may associate into what appears to be an integrated gas exchange metabolon. Oxygenation-linked binding of Hb to the membrane may regulate glycolysis in mammals and perhaps also oxygen-sensitive ion transport involved in

  8. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra.

    Science.gov (United States)

    Gabriel, C; Becher-Deichsel, A; Hlavaty, J; Mair, G; Walter, I

    2016-06-01

    Pyometra, the purulent inflammation of the uterus, is a common uterine disease of bitches that has potentially life-threatening consequences. The opportunistic bacterial infection of the uterus often progresses into the serious systemic inflammatory response syndrome. In a previous study, we characterized epithelial foam cells in the canine endometrial surface occurring in metestrus, and we regularly observed pronounced epithelial foam-cell formations in pyometra-affected uteri. Therefore, it was assumed that the mechanism behind lipid droplet accumulation in surface epithelial cells might even increase bacterial binding capacity and promote pyometra development. Lipid droplet accumulation in epithelial cells is accomplished via specialized lipid receptors called scavenger receptors (SR). Scavenger receptor class B type 1 (SR-B1) is an important receptor for lipid accumulation in diverse cell types, but it is also a strong binding partner for bacteria, and thereby enhances bacterial adhesion and clinical signs of systemic inflammatory response syndrome. In the present study, after the isolation of metestrous surface epithelial cells from canine uteri by laser capture microdissection, SR-B1 was identified at the messenger RNA (mRNA) level by quantitative real time polymerase chain reaction and also at the protein level by means of immunohistochemistry. In pyometra-affected uteri, SR-B1 mRNA expression was higher than that in the healthy control samples, and SR-B1 protein was expressed in the surface and crypt epithelial cells. Furthermore, to understand the physiological role of SR-B1 expression in the metestrus surface epithelial cells, we investigated its expression in the epithelial cells of the glandular chambers of canine placenta in different stages of gestation because these cells are also characterized by lipid droplet accumulation. SR-B1 was present in the placental epithelial cells of the glandular chambers from 25 to 30 and 45 to 50 days of gestation

  9. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  10. Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations.

    Science.gov (United States)

    Peiffer, Isabelle; Barbet, Romain; Zhou, Yi-Ping; Li, Ma-Lin; Monier, Marie-Noëlle; Hatzfeld, Antoinette; Hatzfeld, Jacques A

    2008-06-01

    To monitor human embryonic stem cell (hESC) self-renewal without differentiation, we used quantitative RT-PCR to study a selection of hESC genes, including markers for self-renewal, commitment/differentiation, and members of the TGF-beta superfamily and DAN gene family. Indeed, low commitment/differentiation gene expression, together with a significant self-renewal gene expres sion, provides a better pluripotency index than self-renewal genes alone. We demonstrate that matrices derived from human mesenchymal stem cells (hMSCs) can advantageously replace murine embryonic fibroblasts (MEF) or hMSC feeders. Moreover, a xenofree molecularly-defined SBX medium, containing a synthetic lipid carrier instead of albumin, can replace SR medium. The number of selected differentiation genes expressed by hESCs in these culture conditions was significantly lower than those expressed on MEF feeders in SR medium. In SBX, the positive effect of a non-physiological concentration of activin A (10-30 ng/mL) to reduce differentiation during self-renewal could also be obtained by physiological concentrations of TGF-beta(100-300 pg/mL). In contrast, these TGF-beta concentrations added to activin favored differentiation as previously observed with TGF-beta concentrations of 1 ng/mL or more. Compared to SR-containing medium, SBX medium promoted down-regulation of CER1 and LEFTIES and up-regulation of GREM1. Thus these genes better control self-renewal and pluripotency and prevent differentiation. A strategy is proposed to analyze, in more physiological, xenofree, molecularly-defined media and matrices, the numerous genes with still unknown functions controlling hESCs or human-induced pluripotent stem cells (iPS). PMID:18513159

  11. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  12. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  13. Emergent Phenomena via Molecular Dynamics

    Science.gov (United States)

    Rapaport, D. C.

    Emergent phenomena are unusual because they are not obvious consequences of the design of the systems in which they appear, a feature no less relevant when they are being simulated. Several systems that exhibit surprisingly rich emergent behavior, each studied by molecular dynamics (MD) simulation, are described: (i) Modeling self-assembly processes associated with virus growth reveals the ability to achieve error-free assembly, where paradoxically, near-maximum yields are due to reversible bond formation. (ii) In fluids studied at the atomistic level, complex hydrodynamic phenomena in rotating and convecting fluids - the Taylor- Couette and Rayleigh-Bénard instabilities - can be reproduced, despite the limited length and time scales accessible by MD. (iii) Segregation studies of granular mixtures in a rotating drum reproduce the expected, but counterintuitive, axial and radial segregation, while for the case of a vertically vibrated layer a novel form of horizontal segregation is revealed.

  14. Gravitational anomaly and transport phenomena

    OpenAIRE

    Landsteiner, Karl; Megías Fernández, Eugenio; Pena-Benítez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...

  15. New phenomena searches at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  16. Foot Anthropometry and Morphology Phenomena

    OpenAIRE

    Agić, Ante; NIKOLIĆ, VASILIJE; Mijović, Budimir

    2006-01-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in ...

  17. Critical phenomena in complex networks

    OpenAIRE

    Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2007-01-01

    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of t...

  18. Wetting phenomena in electrolyte solutions

    OpenAIRE

    Ibagon, Ingrid

    2014-01-01

    The present study analyzes wetting phenomena in electrolyte solutions. They are investigated by means of classical density functional theory. First, the wetting of a charged substrate by an electrolyte solution is studied with emphasis on the influence of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition. The corresponding models consist of solvent particles, anions, and cations. Two mean field approaches ar...

  19. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  20. Teaching Cardiovascular Physiology with Equivalent Electronic Circuits in a Practically Oriented Teaching Module

    Science.gov (United States)

    Ribaric, Samo; Kordas, Marjan

    2011-01-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time…

  1. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  2. A Cellular Potts Model simulating cell migration on and in matrix environments

    NARCIS (Netherlands)

    Scianna, M.; Preziosi, L.; Wolf, K.A.

    2013-01-01

    Cell migration on and through extracellular matrix is fundamental in a wide variety of physiological and pathological phenomena, and is exploited in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix f

  3. Development of a three-dimensional physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle cells.

    Science.gov (United States)

    Hecker, Louise; Baar, Keith; Dennis, Robert G; Bitar, Khalil N

    2005-08-01

    Fecal incontinence affects people of all ages and social backgrounds and can have devastating psychological and economic consequences. This disorder is largely attributed to decreased mechanical efficiency of the internal anal sphincter (IAS), yet little is known about the pathophysiological mechanisms responsible for the malfunction of sphincteric smooth muscle at the cellular level. The object of this study was to develop a three-dimensional (3-D) physiological model of the IAS bioengineered in vitro from isolated smooth muscle cells. Smooth muscle cells isolated from the IAS of rabbits were seeded in culture on top of a loose fibrin gel, where they migrated and self-assembled in circumferential alignment. As the cells proliferated, the fibrin gel contracted around a 5-mm-diameter SYLGARD mold, resulting in a 3-D cylindrical ring of sphincteric tissue. We found that 1) the bioengineered IAS rings generated a spontaneous basal tone, 2) stimulation with 8-bromo-cAMP (8-Br-cAMP) caused a sustained decrease in the basal tone (relaxation) that was calcium-independent, 3) upon stimulation with ACh, bioengineered IAS rings showed a calcium- and concentration-dependent peak contraction at 30 s that was sustained for 4 min, 4) addition of 8-Br-cAMP induced rapid relaxation of ACh-induced contraction and force generation of IAS rings, and 5) bioengineered sphincter rings show striking functional differences when compared with bioengineered rings made from isolated colonic smooth muscle cells. This is the first report of a 3-D in vitro model of a gastrointestinal smooth muscle IAS. Bioengineered IAS rings demonstrate physiological functionality and may be used in the elucidation of the mechanisms causing sphincter malfunction.

  4. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2016-09-01

    Full Text Available This article contains data on the variation in several physiological parameters of red blood cells (RBCs donated by eligible glucose-6-phosphate dehydrogenase (G6PD deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+ cells. Intracellular reactive oxygen species (ROS generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1].

  5. Role of Ink4a/Arf Locus in Beta Cell Mass Expansion under Physiological and Pathological Conditions

    Science.gov (United States)

    Salas, Elisabet; Rabhi, Nabil; Froguel, Philippe; Annicotte, Jean-Sébastien

    2014-01-01

    The ARF/INK4A (Cdkn2a) locus includes the linked tumour suppressor genes p16INK4a and p14ARF (p19ARF in mice) that trigger the antiproliferative activities of both RB and p53. With beta cell self-replication being the primary source for new beta cell generation in adult animals, the network by which beta cell replication could be increased to enhance beta cell mass and function is one of the approaches in diabetes research. In this review, we show a general view of the regulation points at transcriptional and posttranslational levels of Cdkn2a locus. We describe the molecular pathways and functions of Cdkn2a in beta cell cycle regulation. Given that aging reveals increased p16Ink4a levels in the pancreas that inhibit the proliferation of beta cells and decrease their ability to respond to injury, we show the state of the art about the role of this locus in beta cell senescence and diabetes development. Additionally, we focus on two approaches in beta cell regeneration strategies that rely on Cdkn2a locus negative regulation: long noncoding RNAs and betatrophin. PMID:24672805

  6. Role of Ink4a/Arf Locus in Beta Cell Mass Expansion under Physiological and Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Elisabet Salas

    2014-01-01

    Full Text Available The ARF/INK4A (Cdkn2a locus includes the linked tumour suppressor genes p16INK4a and p14ARF (p19ARF in mice that trigger the antiproliferative activities of both RB and p53. With beta cell self-replication being the primary source for new beta cell generation in adult animals, the network by which beta cell replication could be increased to enhance beta cell mass and function is one of the approaches in diabetes research. In this review, we show a general view of the regulation points at transcriptional and posttranslational levels of Cdkn2a locus. We describe the molecular pathways and functions of Cdkn2a in beta cell cycle regulation. Given that aging reveals increased p16Ink4a levels in the pancreas that inhibit the proliferation of beta cells and decrease their ability to respond to injury, we show the state of the art about the role of this locus in beta cell senescence and diabetes development. Additionally, we focus on two approaches in beta cell regeneration strategies that rely on Cdkn2a locus negative regulation: long noncoding RNAs and betatrophin.

  7. Isolation and Culture of Bovine Oviductal Epithelial Cells for Use in the Anatomy and Physiology Laboratory and Undergraduate Research

    Science.gov (United States)

    Way, Amy L.

    2006-01-01

    This article presents methods for the isolation and culture of epithelial cells from the bovine oviduct for use in both research and the teaching laboratory and provides examples of ways that an oviductal cell culture can be incorporated into an undergraduate research program. Cow reproductive tracts are readily available from area butchers, and…

  8. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin.

    Science.gov (United States)

    Thi, Mia M; Suadicani, Sylvia O; Schaffler, Mitchell B; Weinbaum, Sheldon; Spray, David C

    2013-12-24

    Osteocytes in the lacunar-canalicular system of the bone are thought to be the cells that sense mechanical loading and transduce mechanical strain into biomechanical responses. The goal of this study was to evaluate the extent to which focal mechanical stimulation of osteocyte cell body and process led to activation of the cells, and determine whether integrin attachments play a role in osteocyte activation. We use a novel Stokesian fluid stimulus probe to hydrodynamically load osteocyte processes vs. cell bodies in murine long bone osteocyte Y4 (MLO-Y4) cells with physiological-level forces <10 pN without probe contact, and measured intracellular Ca(2+) responses. Our results indicate that osteocyte processes are extremely responsive to piconewton-level mechanical loading, whereas the osteocyte cell body and processes with no local attachment sites are not. Ca(2+) signals generated at stimulated sites spread within the processes with average velocity of 5.6 μm/s. Using the near-infrared fluorescence probe IntegriSense 750, we demonstrated that inhibition of αVβ3 integrin attachment sites compromises the response to probe stimulation. Moreover, using apyrase, an extracellular ATP scavenger, we showed that Ca(2+) signaling from the osteocyte process to the cell body was greatly diminished, and thus dependent on ATP-mediated autocrine signaling. These findings are consistent with the hypothesis that osteocytes in situ are highly polarized cells, where mechanotransduction occurs at substrate attachment sites along the processes at force levels predicted to occur at integrin attachment sites in vivo. We also demonstrate the essential role of αVβ3 integrin in osteocyte-polarized mechanosensing and mechanotransduction. PMID:24324138

  9. Physiologically relevant organs on chips.

    Science.gov (United States)

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.

  10. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  11. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  12. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  13. Measurements design and phenomena discrimination

    International Nuclear Information System (INIS)

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies

  14. Measurements design and phenomena discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo-Neira, Laura [Department of Mathematics, Aston University, Birmingham, B4 7ET (United Kingdom)

    2009-04-24

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies.

  15. Measurements design and phenomena discrimination

    CERN Document Server

    Rebollo-Neira, Laura

    2009-01-01

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies.

  16. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  17. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  18. Precursor films in wetting phenomena

    OpenAIRE

    Popescu, M. N.; Oshanin, G.; Dietrich, S.; Cazabat, A. -M.

    2012-01-01

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in t...

  19. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions.

    Science.gov (United States)

    Volland, Stefanie; Bayer, Elisabeth; Baumgartner, Verena; Andosch, Ancuela; Lütz, Cornelius; Sima, Evelyn; Lütz-Meindl, Ursula

    2014-01-15

    Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell

  20. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions

    Science.gov (United States)

    Volland, Stefanie; Bayer, Elisabeth; Baumgartner, Verena; Andosch, Ancuela; Lütz, Cornelius; Sima, Evelyn; Lütz-Meindl, Ursula

    2014-01-01

    Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell

  1. Performance of a glucose/O{sub 2} enzymatic biofuel cell containing a mediated melanocarpus albomyces laccase cathode in a physiological buffer

    Energy Technology Data Exchange (ETDEWEB)

    Kavanagh, P.; Boland, S.; Jenkins, P.; Leech, D. [Department of Chemistry, National University of Ireland, Galway (Ireland)

    2009-02-15

    We report on the performance of a prototype glucose/O{sub 2} biofuel cell in a physiological buffer. The cell consists of cathode based on Melanocarpus albomyces laccase (with a reported T1 copper redox potential of +0.26 V vs. Ag/AgCl) co-immobilised with an osmium redox polymer mediating film on glassy carbon (GC) separated by a Nafion 117 membrane from a GC anode in anolyte of glucose oxidase, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) as a mediator, all immersed in pH 7.4 phosphate buffer solution containing 0.15 M NaCl and dissolved oxygen, thermostated at 37 C, mimicking physiological conditions. Two osmium redox polymers are employed for cathodic mediation: [Os(2,2'-bipyridine){sub 2}(polyvinylimidazole){sub 10}Cl]{sup +/2+} (E ' 0.22 V vs. Ag/AgCl) and [Os(4,4'-dichloro-2,2'-bipyridine){sub 2}(polyvinylimidazole){sub 10}Cl]{sup +/2+} (E ' 0.35 V vs. Ag/AgCl). Power outputs of 52 {mu}W cm{sup -2} at 0.21 V and 17 {mu}W cm{sup -2} at 0.34 V were obtained for assembled fuel cells containing the respective redox polymer-mediated laccase cathodes, illustrating the increased power obtained as a result of higher biocatalytic efficiency using a redox polymer with redox potential tailored for the enzyme. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  3. The role of physiological elements in future therapies of rheumatoid arthritis. III. The role of the electromagnetic field in regulation of redox potential and life cycle of inflammatory cells.

    Science.gov (United States)

    Gajewski, Michał; Rzodkiewicz, Przemysław; Maśliński, Sławomir; Wojtecka-Łukasik, Elżbieta

    2015-01-01

    Each material consisting of charged particles can be influenced by a magnetic field. Polarized particles play an essential role in almost all physiological processes. Locally generated electromagnetic fields several physiological processes within the human body, for example: stimulation of nerves, muscles, and cardiac electrical activity. This phenomenon is used today in many medical applications. In this article, we discuss ways in which electromagnetic field affects the physiological and pathological processes in cells and tissues. This knowledge will help to better understand the electrophysiological phenomenon in connective tissue diseases and can bring new therapeutic strategies (in the form of "invisible drugs") for the treatment of rheumatic diseases?

  4. Ultrasound-induced encapsulated microbubble phenomena

    NARCIS (Netherlands)

    Postema, Michiel; Wamel, van Annemieke; Lancée, Charles T.; Jong, de Nico

    2004-01-01

    When encapsulated microbubbles are subjected to high-amplitude ultrasound, the following phenomena have been reported: oscillation, translation, coalescence, fragmentation, sonic cracking and jetting. In this paper, we explain these phenomena, based on theories that were validated for relatively big

  5. Neuronal responses to physiological stress

    OpenAIRE

    Konstantinos eKagias; Camilla eNehammer; Roger ePocock

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce...

  6. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  7. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  8. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies

    Science.gov (United States)

    Cogoli, A.

    1996-01-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  9. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    Directory of Open Access Journals (Sweden)

    Giovanni eSandrini

    2015-05-01

    Full Text Available Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7 fold increase of the cyanobacterial biomass and ~2.5 fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4,691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.

  10. Exercise Effects on Sleep Physiology

    Directory of Open Access Journals (Sweden)

    Sunao eUchida

    2012-04-01

    Full Text Available This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep changes. Those early studies found only small effects of exercise on sleep. More recent sleep research has explored not only CNS functioning, but somatic physiology as well. As physical exercise mostly affects somatic functions, endocrine and autonomic nervous system (ANS changes that occur during sleep should be affected by daytime exercise. Since endocrinological, metabolic and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, building from standard polysomnographic (PSG techniques. Incorporating measures of somatic physiology in the quantitative assessment of sleep could further our understanding of sleep's function as an auto-regulatory, global phenomenon.

  11. Chaos and non-linear phenomena in renal vascular control

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H

    1996-01-01

    a variety of non-linear phenomena. In halothane-anesthetized, normotensive rats the TGF system oscillates regularly at 2-3 cycles/min because of the non-linearities and the time delays within the feedback system. Oscillations are present in single nephron blood flow, tubular pressure and flow...... the well-known phenomenon of vasomotion. Using newly developed non-linear analytical methods non-linear interactions between vasomotion and the TGF mediated oscillation were detected both in single nephron and in whole kidney blood flow. The physiological significance of these non-linear phenomena in renal......Renal autoregulation of blood flow depends on the functions of the tubuloglomerular feedback (TGF) system and the myogenic response of the afferent arteriole. Studies of the dynamic aspects of these control mechanisms at the level of both the single nephron and the whole kidney have revealed...

  12. Effect of eggshell temperature and a hole in the air cell on the perinatal development and physiology of layer hatchlings

    NARCIS (Netherlands)

    Molenaar, R.; Vries, de S.; Anker, van den I.; Meijerhof, R.; Kemp, B.; Brand, van den H.

    2010-01-01

    To investigate the effect of incubation conditions on layer hatchlings, an experiment was performed in which layer eggs were incubated at a normal (37.8°C) or high (38.9°C) eggshell temperature (EST) and a hole was punctured in the air cell of half of the eggs in both EST treatments from d 14 of inc

  13. Cell Migration and Invasion Assays as Tools for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Keren I. Hulkower

    2011-03-01

    Full Text Available Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screening process. This article will review the effective use of several principle formats for studying cell motility: scratch assays, transmembrane assays, microfluidic devices and cell exclusion zone assays.

  14. Emergent Phenomena at Oxide Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the

  15. Induced-charge Electrokinetic Phenomena

    CERN Document Server

    Bazant, M Z; Bazant, Martin Z.; Squires, Todd M.

    2003-01-01

    Motivated by the recent discovery of AC electro-osmosis near micro-electrodes, we predict a broad class of nonlinear electrokinetic phenomena involving induced interfacial charge. By considering various polarizable objects (metals or dielectrics) in DC and AC applied fields, we develop a simple physical picture of `induced-charge electro-osmosis' (ICEO), the fluid slip at a surface due to an electric field acting on the diffuse charge it induces. We also discuss `induced-charge electrophoresis' (ICEP), the analogous motion of a freely-suspended polarizable particle. Both differ significantly from their classical linear counterparts. We present a mathematical theory of ICEO flows in the weakly nonlinear limit of thin double layers. As an example, we calculate the time-dependent ICEO slip around a metallic sphere with a thin dielectric coating in a suddenly-applied DC field. We briefly discuss possible applications of ICEO to microfluidics and of ICEP to colloidal manipulation.

  16. Underwater explosions and cavitation phenomena

    International Nuclear Information System (INIS)

    Some aspects of underwater explosions and cavitation phenomena have been studied by using a thermodynamic equation of state for water and a one-dimensional Lagrangian hydrocode. The study showed that surface cavitation is caused by the main blast wave and a bubble pulse from rebound of a release wave moving toward the center of the exploding bubble. Gravity has little effect on the surface cavitation. In nuclear explosions the bubble is bounded by a two-phase region rather than a gas-water interface. The two-phase region cavitates as the bubble expands, changing the optical absorption coefficient by many orders of magnitude and significantly affecting the optical signature. In assessing cavitation damage, it is concluded that a water jet of unstable bubble collapse erodes solid walls. The study leads to suggestions for future research

  17. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  18. Earthquake prediction with electromagnetic phenomena

    International Nuclear Information System (INIS)

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary

  19. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells.

    Science.gov (United States)

    Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael

    2012-04-01

    Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO(4)) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO(4) and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4-16 μM is essential for DNA damage prevention in cultured human oral keratinocytes. PMID:21935692

  20. Autistic phenomena in neurotic patients.

    Science.gov (United States)

    Klien, S

    1980-01-01

    I have described a group of patients who are seemingly successful in their professional and social lives, and who seek analysis ostensibly for professional reasons or for minor difficulties in their relationship. However, sooner or later they reveal phenomena which are strikingly similar to those observed in so-called autistic children. These autistic phenomena are characterized by an almost impenetrable encapsulation of part of the personality, mute and implacable resistance to change, and a lack of real emotional contact either with themselves or the analyst. Progress of the analysis reveals an underlying intense fear of pain, and of death, disintegration or breakdown. These anxieties occur as a reaction to real or feared separation, especially when commitment to analysis deepens. In the case I have described in detail the patient used various projective processes to deflect painful emotions either into other people, including the analyst, or into their own bodies. As a consequence the various objects or organs of the body swell up and became suffused with rage as a result of having to contain the unwanted feelings. This process leads in turn to intense persecutory fears and a heightened sensitivity to the analyst's tone of voice and facial expression. It would seem that the initial hypersensitivity of part of the personality is such as to lead it to anticipate danger to such an extent that it expels feelings even before they reach awareness. The sooner the analyst realizes the existence of this hidden part of the patient the less the danger of the analysis becoming an endless and meaningless intellectual dialogue and the greater the possibilities of the patient achieving a relatively stable equilibrium. Although the analyst has to live through a great deal of anxiety with the patient I feel that ultimately the results make it worth while.

  1. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.

    Science.gov (United States)

    Tsui, Cynthia C; Gabreski, Nicole A; Hein, Sarah J; Pierchala, Brian A

    2015-09-23

    Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex

  2. Physiology and physiopathology at CT

    International Nuclear Information System (INIS)

    Although CT is essentially a morphological technique, it should theoretically enable investigation of certain physiological and physiopathological phenomena to be made, for example by the study of (i) CT numbers and (ii) the nature and evolution of enhancements. Intravenous injection of iodine contrast agent increases the attenuation coefficients of cerebral parenchyma, which is theoretically due only to the enhancement of the vascular compartment and in direct correlation with the cerebral blood volume (CBV). The authors have measured the attenuation coefficients of the blood and the parenchyma at varying times after contrast injection. Two contrast agents with differing osmolarities were studied. Two scanners were used - an ACTA scanner and an ND 8000. Twenty CTs were performed on five patients after a bolus injection of a solution of 38% iodine: sodium ioxithalamate 25.69 g; methylglucamine oxithalamate 51.3 osmolarity 1800 mosmol/12 ml/kg were injected. Leakage of the iodine contrast agent, however, considerably increases the density coefficient of cerebral parenchyma and rules out any accurate measurement of the CBV. CT study of cerebral physiopathology is also discussed. This is dependent on two techniques - measurement of attenuation coefficients and observation of enhancements - neither of which are shown to give results characteristic of any one physiopathology. The application of CT in physiological and physiopathological cerebral phenomena is currently extremely limited. (Auth.)

  3. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  4. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  5. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics

    Science.gov (United States)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G.; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  6. Synchronization Phenomena in an Array of Population Dynamic Systems

    DEFF Research Database (Denmark)

    Postnov, D.E.; Balanov, A.G.; Mosekilde, Erik

    1998-01-01

    The paper applies continuation methods to examine synchronization phenomena that can arise in a cascaded system of population dynamic models. The individual model describes a bacterial population interacting with a population of viruses that attack the cells. Coupling between the subsystems...

  7. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    Science.gov (United States)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  8. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    Science.gov (United States)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  9. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid.

    Science.gov (United States)

    Severin, A; Severina, E; Tomasz, A

    1997-01-01

    Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity. PMID:9055983

  10. Molecular Crowding Defines a Common Origin for the Warburg Effect in Proliferating Cells and the Lactate Threshold in Muscle Physiology

    OpenAIRE

    Vazquez, Alexei; Oltvai, Zoltán N

    2011-01-01

    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose an...

  11. Palmitoylation of xanthan polysaccharide for self-assembly microcapsule formation and encapsulation of cells in physiological conditions

    OpenAIRE

    Mendes, Ana Carina; Baran, Erkan Türker; Nunes, Cláudia; Coimbra, Manuel A.; Azevedo, Helena S.; Reis, R. L.

    2011-01-01

    Hydrophobized polysaccharides have emerged as a promising strategy in the biomedical field due to the versatility to design functional structures through the spontaneous self-assembly in cell-friendly conditions. Based on this concept, xanthan, a bacterial extracellular polysaccharide with potential as encapsulating matrix, was conjugated with hydrophobic palmitoyl groups to obtain an amphiphilic system able to form capsules by self-assembly processes. The conjugation of xanthan was performed...

  12. Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii.

    Science.gov (United States)

    Larras, Floriane; Regier, Nicole; Planchon, Sébastien; Poté, John; Renaut, Jenny; Cosio, Claudia

    2013-12-15

    Macrophytes bioaccumulate metals, the suggestion being made that they be considered for phytoremediation. However, a thorough understanding of the mechanisms of metal tolerance in these plants is necessary to allow full optimization of this approach. The present study was undertaken to gain insight into Hg and Cd accumulation and their effects in a representative macrophyte, Elodea nuttallii. Exposure to methyl-Hg (23 ng dm(-3)) had no significant effect while inorganic Hg (70 ng dm(-3)) and Cd (281 μg dm(-3)) affected root growth but did not affect shoots growth, photosynthesis, or antioxidant enzymes. Phytochelatins were confirmed as having a role in Cd tolerance in this plant while Hg tolerance seems to rely on different mechanisms. Histology and subcellular distribution revealed a localized increase in lignification, and an increased proportion of metal accumulation in cell wall over time. Proteomics further suggested that E. nuttallii was able to efficiently adapt its energy sources and the structure of its cells during Hg and Cd exposure. Storage in cell walls to protect cellular machinery is certainly predominant at environmental concentrations of metals in this plant resulting in a high tolerance highlighted by the absence of toxicity symptoms in shoots despite the significant accumulation of metals.

  13. CD30 antigen: not a physiological marker for TH2 cells but an important costimulator molecule in the regulation of the balance between TH1/TH2 response.

    Science.gov (United States)

    Pellegrini, Patrizia; Berghella, Anna Maria; Contasta, Ida; Adorno, Domenico

    2003-01-01

    Understanding the physiological role of CD30 would be an important step forward in transplants because CD30+ T cells can be induced by alloantigens even in the presence of immunosuppressives such as cyclosporine (Csa) and hence can act as regulatory cells in allograft. The results of functional studies on purified T CD30+ cell populations led us to hypothesize that the CD30 costimulator molecule is not a specific marker for TH2 cells in normal conditions, as has been suggested, but rather a marker for an important immunoregulatory subpopulation that regulates the balance between TH1 and TH2 (TH1/TH2) type response. To substantiate this hypothesis we studied the TH1/TH2 cytokine network in peripheral whole blood cultures stimulate with M44 CD30 ligand (CD30L), an agonistic monoclonal antibody (mAb). Four types of whole blood culture were used: the first had been stimulated with anti-CD3 mAb which generates a CD30 cytokine profile similar to alloreactive stimulation; the second with anti-CD3 mAb+M81 (an anti-CD30L mAb) to inhibit CD30/CD30L interaction; the third with anti-CD3+anti-interleukin (IL)4 mAbs to counteract IL4 activity and the fourth with anti-CD3+anti-interferon (IFN)gamma mAbs to counteract IFNgamma activity. Network interactions between soluble CD30 (sCD30, a maker of CD30 expression), sBcl2 (a marker of cell survival) and TH1/TH2 cytokines (IFNgamma, IL2, IL12p70, IL12p40, IL4, IL5 and IL10) were then studied in the supernatants obtained. Our results confirm the hypothesis above by showing that CD30 signals trigger functional mechanisms responsible for changes in levels of production of several important TH1 and TH2 cytokines involved in the regulation of the physiological balance between TH1/TH2 functions. The CD30-stimulated network, in fact, induces IFNgamma production linked to TH1 activity (-->TH1) which is subsequently integrated by IL4 production linked to TH2 activity (-->TH2). This production appears to be regulated, respectively, by IL12p40

  14. Physiology of ionophore transport of potassium and sodium ions across cell membranes: valinomycin and 18-crown-6 ether

    OpenAIRE

    Fong, Clifford,

    2015-01-01

    The processes involved in transport of K + and Na + by the carrier ionophores valinomycin and 18-crown-6 ether across cell membranes have been elucidated using quantum mechanical modelling: 1. Formation of the {ionophore-M + } complex: desolvation (∆G desolv) of the central cavity of the ionophore, change in configurational energy T∆S, desolvation of the M(H 2 O) 6-7 +. 2. Desolvation of the {ionophore-M + } complex prior to entering the membrane environment. 3. Permeation through the lipophi...

  15. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells

    OpenAIRE

    Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael

    2011-01-01

    Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and...

  16. The disastrous effects of salt dust deposition on cotton leaf photosynthesis and the cell physiological properties in the Ebinur Basin in Northwest China.

    Directory of Open Access Journals (Sweden)

    Jilili Abuduwaili

    Full Text Available Salt dust in rump lake areas in arid regions has long been considered an extreme stressor for both native plants and crops. In recent years, research on the harmful effects of salt dust on native plants has been published by many scholars, but the effect on crops has been little studied. In this work, in order to determine the impact of salt dust storms on cotton, we simulated salt dust exposure of cotton leaves in Ebinur Basin in Northwest China, and measured the particle sizes and salt ions in the dust, and the photosynthesis, the structure and the cell physiological properties of the cotton leaves. (1 Analysis found that the salt ions and particle sizes in the salt dust used in the experiments were consistent with the natural salt dust and modeled the salt dust deposition on cotton leaves in this region. (2 The main salt cations on the surface and inside the cotton leaves were Na+, Ca2+, Cl- and SO42-, while the amounts of CO3- and HCO3- were low. From the analysis, we can order the quantity of the salt cations and anions ions present on the surface and inside the cotton leaves as Na+>Ca2+>Mg2+>K+ and Cl->SO42->HCO3->CO3-, respectively. Furthermore, the five salt dust treatment groups in terms of the total salt ions on both the surface and inside the cotton leaves were A(500g.m-2>B(400g.m-2>C(300g.m-2>D(200g.m-2>E(100g.m-2>F(0g.m-2. (3The salt dust that landed on the surface of the cotton leaves can significantly influence the photosynthetic traits of Pn, PE, Ci, Ti, Gs, Tr, WUE, Ls, φ, Amax, k and Rady of the cotton leaves. (4Salt dust can significantly damage the physiological functions of the cotton leaves, resulting in a decrease in leaf chlorophyll and carotenoid content, and increasing cytoplasmic membrane permeability and malondialdehyde (MDA content by increasing the soluble sugar and proline to adjust for the loss of the cell cytosol. This increases the activity of antioxidant enzymes to eliminate harmful materials, such as the

  17. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study.

    Science.gov (United States)

    Awasthi, Bhanu Priya; Kathuria, Manoj; Pant, Garima; Kumari, Neema; Mitra, Kalyan

    2016-08-01

    Naphthoquinones are known to exhibit a broad range of biological activities against microbes, cancer and parasitic diseases and have been widely used in Indian traditional medicine. Plumbagin is a plant-derived naphthoquinone metabolite (5-hydroxy-2-methyl-1,4-naphthoquinone) reported to inhibit trypanothione reductase, the principal enzyme and a validated drug target involved in detoxification of oxidative stress in Leishmania. Here, we report the mechanistic aspects of cell death induced by plumbagin including physiological effects in the promastigote form and ultrastructural alterations in both promastigote and amastigote forms of Leishmania donovani which till now remained largely unknown. Our observations show that oxidative stress induced by plumbagin resulted in depolarization of the mitochondrial membrane, depletion in ATP levels, elevation of cytosolic calcium, increase in caspase 3/7-like protease activity and lipid peroxidation in promastigotes. Apoptosis-like cell death induction post plumbagin treatment was confirmed by biochemical assays like Annexin V/FITC staining, TUNEL as well as morphological and ultrastructural studies. These findings collectively highlight the mode of action and importance of oxidative stress inducing agents in effectively killing both forms of the Leishmania parasite and opens up the possibility of exploring plumbagin and its derivatives as promising candidates in the chemotherapy of Leishmaniasis. PMID:27315817

  18. High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: optimization, modeling, and physiological aspects.

    Science.gov (United States)

    Landi, Carmine; Paciello, Lucia; de Alteriis, Elisabetta; Brambilla, Luca; Parascandola, Palma

    2015-02-01

    Saccharomyces cerevisiae CEN.PK113-5D, a strain auxotrophic for uracil belonging to the CEN.PK family of the yeast S. cerevisiae, was cultured in aerated fed-batch reactor as such and once transformed to express human interleukin-1β (IL-1β), aiming at obtaining high cell densities and optimizing IL-1β production. Three different exponentially increasing glucose feeding profiles were tested, all of them "in theory" promoting respiratory metabolism to obtain high biomass/product yield. A non-structured non-segregated model was developed to describe the performance of S. cerevisiae CEN.PK113-5D during the fed-batch process and, in particular, its capability to metabolize simultaneously glucose and ethanol which derived from the precedent batch growth. Our study showed that the proliferative capacity of the yeast population declined along the fed-batch run, as shown by the exponentially decreasing specific growth rates on glucose. Further, a shift towards fermentative metabolism occurred. This shift took place earlier the higher was the feed rate and was more pronounced in the case of the recombinant strain. Determination of some physiological markers (acetate production, intracellular ROS accumulation, catalase activity and cell viability) showed that neither poor oxygenation nor oxidative stress was responsible for the decreased specific growth rate, nor for the shift to fermentative metabolism. PMID:25106469

  19. High Field Phenomena of Qubits

    CERN Document Server

    van Tol, J; Takahashi, S; McCamey, D R; Boehme, C; Zvanut, M E

    2009-01-01

    Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings, and can be coherently manipulated e.g. through pulsed EPR and NMR. For solid state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multi-frequency pulsed EPR/ENDOR spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of the both the electron spin as well as hyperfine-coupled nuclear spins in a well defined state by combining millimeter and RF radiation; it can increase the T2 relaxation times by eliminating decoherence due to ...

  20. Precursor films in wetting phenomena

    International Nuclear Information System (INIS)

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. (topical review)

  1. Precursor films in wetting phenomena.

    Science.gov (United States)

    Popescu, M N; Oshanin, G; Dietrich, S; Cazabat, A-M

    2012-06-20

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. PMID:22627067

  2. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  3. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  4. Physiological effects in aromatherapy

    OpenAIRE

    Tapanee Hongratanaworakit

    2004-01-01

    The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow pot...

  5. Programmed death phenomena: from organelle to organism.

    Science.gov (United States)

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span. PMID:11976198

  6. PHYSIOLOGY OF BLOOD COAGULATION (II)

    OpenAIRE

    B. Ţuţuianu

    2007-01-01

    Coagulation cascade was untill recently the only model used to explain the physiological and pathological reactions during clot formation. Dr. Maureane Hoffman and her team suggested a cell-based model for coagulation, which takes place (according to this model) in three phases: initiation, amplification and propagation. This theory does not deny the coagulation cascade. It only says that the leading role in the whole process is held by the cells and that the „intrinsic” and the „extinsic” pa...

  7. Ketamine: effect of literacy on emergence phenomena.

    OpenAIRE

    Currie, M. A.; Currie, A. L.

    1984-01-01

    A prospective study of the relationship between literacy rate and emergence phenomena with ketamine anaesthesia was carried out among Pathans on Pakistan's Afghan frontier. Findings support both a strong link between the literacy of the patient and the occurrence of emergence phenomena, and the acceptability and value of ketamine in this type of population.

  8. Fluctuation theory of critical phenomena in fluids

    Science.gov (United States)

    Martynov, G. A.

    2016-07-01

    It is assumed that critical phenomena are generated by density wave fluctuations carrying a certain kinetic energy. It is noted that all coupling equations for critical indices are obtained within the context of this hypothesis. Critical indices are evaluated for 15 liquids more accurately than when using the current theory of critical phenomena.

  9. Collective Phenomena in Kidney Autoregulation

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2004-01-01

    By controling the excretion of water and salts, the kidneys play all important role ill regulating the blood pressure and maintaining a proper environment for the cells of the body. This control depends to a large extent oil mechanisms that are associated with the individual functional unit...

  10. High efficiency cell-recycle continuous sodium gluconate production by Aspergillus niger using on-line physiological parameters association analysis to regulate feed rate rationally.

    Science.gov (United States)

    Lu, Fei; Li, Chao; Wang, Zejian; Zhao, Wei; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-11-01

    In this paper, a system of cell-recycle continuous fermentation for sodium gluconate (SG) production by Aspergillus niger (A. niger) was established. Based on initial continuous fermentation result (100.0h) with constant feed rate, an automatic feedback strategy to regulate feed rate using on-line physiological parameters (OUR and DO) was proposed and applied successfully for the first time in the improved continuous fermentation (240.5h). Due to less auxiliary time, highest SG production rate (31.05±0.29gL(-1)h(-1)) and highest yield (0.984±0.067molmol(-1)), overall SG production capacity (975.8±5.8gh(-1)) in 50-L fermentor of improved continuous fermentation increased more than 300.0% compared to that of batch fermentation. Improvement of mass transfer and dispersed mycelia morphology were the two major reasons responsible for the high SG production rate. This system had been successfully applied to industrial fermentation and SG production was greatly improved. PMID:27611026

  11. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  12. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    Directory of Open Access Journals (Sweden)

    George R Littlejohn

    2014-04-01

    Full Text Available Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximise the information gained from advances in fluorescent protein labelling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC, perfluorodecalin (PFD enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the perfluorocarbons PFD, and perfluoroperhydrophenanthrene (PP11 for in vivo plant leaf imaging using 4 advanced modes of microscopy: laser scanning confocal microscopy (LSCM, Two-photon fluorescence (TPF microscopy, second harmonic generation (SHG microscopy and stimulated Raman scattering (SRS microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image perfluorocarbons directly in the mesophyll and thereby easily delimit the negative space within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  13. Physiology of bile secretion

    Institute of Scientific and Technical Information of China (English)

    Alejandro Esteller

    2008-01-01

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment,in different situations,results in the syndrome of cholestasis.The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed.Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane.This review summarizes recent data on the molecular determinants of this primary bile formation.The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts.The mechanisms of fluid and solute transport in cholangiocytes will also be discussed.In contrast to hepatocytes where secretion is constant and poorly controlled,cholangiocyte secretion is regulated by hormones and nerves.A short section dedicated to these regulatory mechanisms of bile secretion has been included.The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  14. Fingering phenomena during grain-grain displacement

    Science.gov (United States)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  15. [Physiology of the neuropeptides].

    Science.gov (United States)

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  16. Lichen physiology and cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.H.

    1985-01-01

    This book presents information on topics relating to mineral element accumulation in bog lichens, nitrogen losses from diazotrophic lichens, influence of automobile exhaust and lead on the oxygen exchange of lichens, temporal variation in lichen element levels, and lead and uranium uptake by lichens. Other topics include the architecture of the concentric bodies in the mycobiont of Peltigera praetextata; multiple enzyme forms in lichens, photosynthesis, water relations multiple enzyme forms in lichens, photosynthesis, water relations and thallus structure of strictaceae lichens; and aspects of carbohydrate metabolism in lichens. The distribution of uranium and companion elements in lichen heath associated with undisturbed uranium deposits in the Canadian Arctic is also discussed.

  17. Some Nonlinear Phenomena in a Preformed Underdense Plasma

    Institute of Scientific and Technical Information of China (English)

    曹莉华; 刘智勇; 常文蔚; 岳宗五

    2001-01-01

    The propagation of a laser pulse with a peak intensity 1019 W/cm2 through the preformed underdense plasmawith the density 0.014nc are studied by using two-dimensional particle-in-cell simulations. The longitudinal electron heating is identified and verified, and its major property agrees with the theoretical prediction. The electron distributions in phase space, patterns of the electric fields, profiles of the ion or electron density and other plasma nonlinear phenomena are presented and discussed.

  18. Emergence of dynamical order synchronization phenomena in complex systems

    CERN Document Server

    Manrubia, Susanna C; Zanette, Damián H

    2004-01-01

    Synchronization processes bring about dynamical order and lead tospontaneous development of structural organization in complex systemsof various origins, from chemical oscillators and biological cells tohuman societies and the brain. This book provides a review and adetailed theoretical analysis of synchronization phenomena in complexsystems with different architectures, composed of elements withperiodic or chaotic individual dynamics. Special attention is paid tostatistical concepts, such as nonequilibrium phase transitions, orderparameters and dynamical glasses.

  19. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  20. Ca2+ influx and tyrosine kinases trigger Bordetella adenylate cyclase toxin (ACT endocytosis. Cell physiology and expression of the CD11b/CD18 integrin major determinants of the entry route.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3, its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca(2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.

  1. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  2. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  3. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  4. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  5. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  6. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  7. CISM Course on Rolling Contact Phenomena

    CERN Document Server

    Kalker, Joost

    2000-01-01

    Preface.- Rolling Contact Phenomena - Linear Elasticity.- Finite Element Methods for Rolling Contact.- Plastic Deformation in Rolling Contact.- Non-Steady State Rolling Contact and Corrugations.- Modelling of Tyre Force and Moment Generation.- Rolling Noise.- Lubrication

  8. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  9. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  10. Sorption phenomena of PCBs in environment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relationship between the properties of PCBs and the behavior of soil and sediment is reviewed. The sorption phenomena of PCBs in the environment are described with different models. The research progress on the sorption mechanisms is also discussed.

  11. Physiological effects in aromatherapy

    Directory of Open Access Journals (Sweden)

    Tapanee Hongratanaworakit

    2004-01-01

    Full Text Available The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow potential brain waves (contingent negativevariation, and eye blink rate or pupil functions, are used as indices for the measurement of the aroma effects

  12. Noise Induced Phenomena in Population Dynamics

    OpenAIRE

    Valenti, D.; Giuffrida, A; Denaro, G.; Pizzolato, N; Curcio, L; Spagnolo, B.; Mazzola, S.; Basilone, G.; Bonanno, A.

    2015-01-01

    Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review the noise induced effects in different ecosystems. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. We find noise induced phenomena such as quasi-deterministic oscillations, stochast...

  13. The resonance phenomena and state of health

    OpenAIRE

    Sikura A.Y.

    2010-01-01

    The question of dependence of the state of health is examined from the resonance phenomena in the liquid environments of organism, roles herein physical loadings. It is rotined that resonance waves can compensate structural violations on a tissue, system levels. The oppressive operating is the same compensated on the organism of man. The physical loading in a complex with other external resonance phenomena causes substantial resonance vibrations in all systems of organism. It is necessary to ...

  14. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  15. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  16. Experimental techniques for the investigation of coupled phenomena in geomaterials

    Directory of Open Access Journals (Sweden)

    Romero E.

    2010-06-01

    Full Text Available The paper describes different experimental setups and techniques used to investigate coupled stress, fluid (water and air and temperature effects on geomaterials. Two temperature controlled cells are described: a a constant volume cell in which thermal pulses can be performed under controlled hydraulic conditions to induce pore pressure build-up during quasi-undrained heating and later dissipation; and b an axisymmetric triaxial cell with controlled suction and temperature to perform drained heating and cooling paths under partially saturated states. The paper also presents an experimental setup to perform controlled flow-rate gas injection experiments on argillaceous rocks using a high-pressure triaxial cell. This cell is used to study gas migration phenomena and the conditions under which gas breakthrough processes occur. Selected test results are presented, which show the capabilities of the different experimental setups described to capture main behavioural features.

  17. Neuronal Responses to Physiological Stress

    OpenAIRE

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition t...

  18. Fruit ripening phenomena--an overview.

    Science.gov (United States)

    Prasanna, V; Prabha, T N; Tharanathan, R N

    2007-01-01

    Fruits constitute a commercially important and nutritionally indispensable food commodity. Being a part of a balanced diet, fruits play a vital role in human nutrition by supplying the necessary growth regulating factors essential for maintaining normal health. Fruits are widely distributed in nature. One of the limiting factors that influence their economic value is the relatively short ripening period and reduced post-harvest life. Fruit ripening is a highly coordinated, genetically programmed, and an irreversible phenomenon involving a series of physiological, biochemical, and organoleptic changes, that finally leads to the development of a soft edible ripe fruit with desirable quality attributes. Excessive textural softening during ripening leads to adverse effects/spoilage upon storage. Carbohydrates play a major role in the ripening process, by way of depolymerization leading to decreased molecular size with concomitant increase in the levels of ripening inducing specific enzymes, whose target differ from fruit to fruit. The major classes of cell wall polysaccharides that undergo modifications during ripening are starch, pectins, cellulose, and hemicelluloses. Pectins are the common and major components of primary cell wall and middle lamella, contributing to the texture and quality of fruits. Their degradation during ripening seems to be responsible for tissue softening of a number of fruits. Structurally pectins are a diverse group of heteropolysaccharides containing partially methylated D-galacturonic acid residues with side chain appendages of several neutral polysaccharides. The degree of polymerization/esterification and the proportion of neutral sugar residues/side chains are the principal factors contributing to their (micro-) heterogeneity. Pectin degrading enzymes such as polygalacturonase, pectin methyl esterase, lyase, and rhamnogalacturonase are the most implicated in fruit-tissue softening. Recent advances in molecular biology have provided a

  19. Chewing over physiology integration.

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; Miranda, Manoel de Arcisio; Brunaldi, Kellen

    2005-03-01

    An important challenge for both students and teachers of physiology is to integrate the different areas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it comes to cuts in expenses. With the aim of addressing this kind of problem, the graduate students of our department organized a physiology summer course offered to undergraduate students. The objective was to present the different physiological systems in an integrated fashion. The strategy pursued was to plan laboratory classes whose experimental results were the basis for the relevant theoretical discussions. The subject we developed to illustrate physiology integration was the study of factors influencing salivary secretion. PMID:15718383

  20. Stability and Restoration phenomena in Competitive Systems

    CERN Document Server

    Uechi, Lisa

    2012-01-01

    A conservation law and stability, recovering phenomena and characteristic patterns of a nonlinear dynamical system have been studied and applied to biological and ecological systems. In our previous study, we proposed a system of symmetric 2n-dimensional conserved nonlinear differential equations with external perturbations. In this paper, competitive systems described by 2-dimensional nonlinear dynamical (ND) model with external perturbations are applied to population cycles and recovering phenomena of systems from microbes to mammals. The famous 10-year cycle of population density of Canadian lynx and snowshoe hare is numerically analyzed. We find that a nonlinear dynamical system with a conservation law is stable and generates a characteristic rhythm (cycle) of population density, which we call the {\\it standard rhythm} of a nonlinear dynamical system. The stability and restoration phenomena are strongly related to a conservation law and balance of a system. The {\\it standard rhythm} of population density ...

  1. Quantum phenomena in magnetic nano clusters

    Indian Academy of Sciences (India)

    C Raghu; Indranil Rudra; Diptiman Sen; S Ramasesha

    2001-10-01

    One of the fascinating fields of study in magnetism in recent years has been the study of quantum phenomena in nanosystems. While semiconductor structures have provided paradigms of nanosystems from the stand point of electronic phenomena, the synthesis of high nuclearity transition metal complexes have provided examples of nano magnets. The range and diversity of the properties exhibited by these systems rivals its electronic counterparts. Qualitative understanding of these phenomena requires only a knowledge of basic physics, but quantitative study throws up many challenges that are similar to those encountered in the study of correlated electronic systems. In this article, a brief overview of the current trends in this area are highlighted and some of the efforts of our group in developing a quantitative understanding of this field are outlined.

  2. Active Cyber Defense Dynamics Exhibiting Rich Phenomena

    CERN Document Server

    Zheng, Ren; Xu, Shouhuai

    2016-01-01

    The Internet is a man-made complex system under constant attacks (e.g., Advanced Persistent Threats and malwares). It is therefore important to understand the phenomena that can be induced by the interaction between cyber attacks and cyber defenses. In this paper, we explore the rich phenomena that can be exhibited when the defender employs active defense to combat cyber attacks. To the best of our knowledge, this is the first study that shows that {\\em active cyber defense dynamics} (or more generally, {\\em cybersecurity dynamics}) can exhibit the bifurcation and chaos phenomena. This has profound implications for cyber security measurement and prediction: (i) it is infeasible (or even impossible) to accurately measure and predict cyber security under certain circumstances; (ii) the defender must manipulate the dynamics to avoid such {\\em unmanageable situations} in real-life defense operations.

  3. Modeling of fundamental phenomena in welds

    Energy Technology Data Exchange (ETDEWEB)

    Zacharia, T.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Goldak, J.A. [Carleton Univ., Ottawa, Ontario (Canada); DebRoy, T.A. [Pennsylvania State Univ., University Park, PA (United States); Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland); Bhadeshia, H.K.D.H. [Cambridge Univ. (United Kingdom)

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  4. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  5. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  6. Current-driven phenomena in nanoelectronics

    CERN Document Server

    Seideman, Tamar

    2010-01-01

    Consisting of ten chapters written by some of the world's leaders in the field, this book combines experimental, theoretical and numerical studies of current-driven phenomena in the nanoscale. The topics covered range from single-molecule, site-specific nanochemistry induced by a scanning tunneling microscope, through inelastic tunneling spectroscopy and current-induced heating, to current-triggered molecular machines. The various chapters focus on experimental and numerical method development, the description of specific systems, and new ideas and novel phenomena.

  7. The resonance phenomena and state of health

    Directory of Open Access Journals (Sweden)

    Sikura A.Y.

    2010-06-01

    Full Text Available The question of dependence of the state of health is examined from the resonance phenomena in the liquid environments of organism, roles herein physical loadings. It is rotined that resonance waves can compensate structural violations on a tissue, system levels. The oppressive operating is the same compensated on the organism of man. The physical loading in a complex with other external resonance phenomena causes substantial resonance vibrations in all systems of organism. It is necessary to take into account it on employments on physical education and to use all necessary rehabilitation facilities.

  8. 19th International Conference on Ultrafast Phenomena

    CERN Document Server

    Cundiff, Steven; Vivie-Riedle, Regina; Kuwata-Gonokami, Makoto; DiMauro, Louis

    2015-01-01

    This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  9. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  10. Exploratory research on bioactive natural products with a focus on biological phenomena

    OpenAIRE

    Uemura, Daisuke

    2010-01-01

    The discovery of new basic compounds holds the key for advancing material sciences. We have focused on the identification and characterization of natural key compounds that control biologically and physiologically intriguing phenomena. The discovery of new bioactive molecules, facilitated by a deeper understanding of nature, should advance our knowledge of biological processes and lead to new strategies to treat disease. The structure and function of natural compounds are sometimes unexpected...

  11. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  12. Reproduction, Physiology and Biochemistry

    Science.gov (United States)

    This chapter focuses on the reproduction, physiology, and biochemistry of the root-knot nematodes. The extensive amount of information on the reproduction and cytogenetics of species of Meloidogyne contrasts with the limited information on physiology, biochemistry, and biochemical pathways. In commo...

  13. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  14. Transport phenomena in strongly correlated Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kontani, Hiroshi [Nagoya Univ., Aichi (Japan). Dept. of Physics

    2013-03-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  15. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

  16. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to prese...

  17. CP violating phenomena and theoretical results

    International Nuclear Information System (INIS)

    An introduction to CP violating phenomena is given and the standard model and its most popular low energy extensions in this context are reviewed. The discussion comprises the minimal supersymmetric extension of the standard model, left-right symmetry, the standard model with more than one Higgs doublet and gauged horizontal symmetries. (Author)

  18. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  19. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  20. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  1. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  2. Possible new wave phenomena in the brain

    CERN Document Server

    Szwed, Jerzy

    2009-01-01

    We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than presently accessible. It is argued that such experiments may test the hypothesis of wave nature of information coding.

  3. Possible New Wave Phenomena in the Brain

    International Nuclear Information System (INIS)

    We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding. (author)

  4. Comparing potato tuberization and sprouting: opposite phenomena

    NARCIS (Netherlands)

    Vreugdenhil, D.

    2004-01-01

    The regulation of tuber formation and tuber sprouting are compared. As a starting point it is hypothesized that these two phenomena are opposite to each other. This idea is tested from three points of view: hormonal regulation, gene expression, and carbohydrate metabolism. It is concluded that there

  5. Transport Phenomena in Textile Finishing Equipment

    NARCIS (Netherlands)

    Groot Wassink, J.

    1985-01-01

    The application of transport phenomena to textile finishing processes is emphasised. By combination of the predominant transfer processes (momentum, mass and heat/mass transfer) and the engineering objective (operation, design and innovation), three cases are selected dealing with (a) momentum trans

  6. Possible new wave phenomena in the brain

    OpenAIRE

    Szwed, Jerzy

    2009-01-01

    We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding.

  7. Wave Phenomena in an Acoustic Resonant Chamber

    Science.gov (United States)

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  8. Nitrous oxide sedation and sexual phenomena.

    Science.gov (United States)

    Jastak, J T; Malamed, S F

    1980-07-01

    Nine cases of sexual phenomena that occurred with use of nitrous oxide and oxygen sedation are described. Dentists involved routinely used concentrations of nitrous oxide greater than 50% and did not have assistants in the room during dental procedures. Recommendations on the concentrations of nitrous oxide and the presence of an assistant are made.

  9. Chapter IX: Stress phenomena in landscape

    International Nuclear Information System (INIS)

    This chapter consist of next sub-chapters: (1) Sources of stress phenomena and their reflection in landscape; (2) Impact of stress phenomena on natural resources and human hea; (3) Impact of stress phenomena on landscape. The different types of human activities and natural phenomena affect the environment. They are referred to by the general term of stress phenomena. There are the stress phenomena of natural character (the radon risk, landslides, avalanches, etc.) and anthropogenic phenomena determined or directly provoked by man (air and water pollution, emissions, etc.). They cause different environmental problems: they threaten the ecological and cultural priorities, but above all they threaten human health. National legislation and international conventions concerning the air protection lay down the regular inventory of emission of pollutants to atmosphere. Slovak Hydrometeorological Institute (SHMU) is responsible for such inventory. It is carried out in co-operation with several specialised institutions under the methodological guidance of the SHMU. The Register of Emissions and Pollution Sources (REZZO) was in operation at SHMU since 1985. It contains the data on emissions of the basic pollutants from stationary sources. This system was replaced by the National Emission Inventory System (NEIS) harmonised with the internationally accepted methodology (CORINAIR, EMEP, IPCC/FCCC). Sources of pollutants emitted to atmosphere are above all energetic and industrial productions, transport, fuel mining and transport, waste disposal and agriculture. Emissions in Slovakia reached their highest level by the end of the 1980's. Their consistent decrease is recorded since the 1990's. The cause of such developments is the overall recession connected with the decline of industrial production and consequently lower demand of the amount of produced energy. Simultaneously, the effects of legal instruments (Act No. 309/1991 of Coll. on protection of air against pollutants (The

  10. MORPHOLOGICAL AND ELECTROPHYSIOLOGICAL STUDIES OF HORIZONTAL CELLS IN THE BLACK BASS RETINA(Issue Commemorating the Directorship of Prof. Yoko HASHIMOTO, at the Department of Physiology)

    OpenAIRE

    UMINO, Osamu; MAEHARA, Michiyo; HASHIMOTO, Yoko; 海野, 修; 前原, 通代; 橋本, 葉子

    1997-01-01

    The purpose of this study is to examine the correlation between the morphological characteristics and spectral responses of horizontal cells in black bass retina. Three layers of horizontal cell bodies and one layer of fine processes of horizontal cell axons were recognized in the horizontal cell layer. The most distally layered H1 cells were smaller than the H2 cells which form the second layer. Both H1 and H2 cells showed a monophasic spectral response with a maximum peak for red light. In ...

  11. Fetal cardiovascular physiology.

    Science.gov (United States)

    Rychik, J

    2004-01-01

    The cardiovascular system of the fetus is physiologically different than the adult, mature system. Unique characteristics of the myocardium and specific channels of blood flow differentitate the physiology of the fetus from the newborn. Conditions of increased preload and afterload in the fetus, such as sacrococcygeal teratoma and twin-twin transfusion syndrome, result in unique and complex pathophysiological states. Echocardiography has improved our understanding of human fetal cadiovasvular physiology in the normal and diseased states, and has expanded our capability to more effectively treat these disease processes.

  12. Cell assemblies at multiple time scales with arbitrary lag distributions

    OpenAIRE

    Russo, Eleonora; Durstewitz, Daniel

    2016-01-01

    Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at mul...

  13. PHYSIOLOGY OF BLOOD COAGULATION (II

    Directory of Open Access Journals (Sweden)

    B. Ţuţuianu

    2007-07-01

    Full Text Available Coagulation cascade was untill recently the only model used to explain the physiological and pathological reactions during clot formation. Dr. Maureane Hoffman and her team suggested a cell-based model for coagulation, which takes place (according to this model in three phases: initiation, amplification and propagation. This theory does not deny the coagulation cascade. It only says that the leading role in the whole process is held by the cells and that the „intrinsic” and the „extinsic” pathways operate in parallel on different cell surfaces. Using this model, a better understanding of the reactions in vivo during coagulation is achieved, together with answers related to clinical-based questions like „why haemophiliacs bleed?”.

  14. Undergraduate students' misconceptions about respiratory physiology.

    Science.gov (United States)

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  15. Parity-time symmetric quantum critical phenomena

    CERN Document Server

    Ashida, Yuto; Ueda, Masahito

    2016-01-01

    Symmetry plays a central role in the theory of phase transitions. Parity-time (PT) symmetry is an emergent notion in synthetic nonconservative systems, where the gain-loss balance creates a threshold for spontaneous symmetry breaking across which spectral singularity emerges. Considerable studies on PT symmetry have been conducted in optics and weakly interacting open quantum systems. Here by extending the idea of PT symmetry to strongly correlated many-body systems, we discover unconventional quantum critical phenomena, where spectral singularity and quantum criticality conspire to yield an exotic universality class which has no counterpart in known critical phenomena. Moreover, we find that superfluid correlation is anomalously enhanced owing to winding renormalization group flows in a PT-symmetry-broken quantum critical phase. Our findings can experimentally be tested in ultracold atoms.

  16. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    Santanastasio, Francesco

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  17. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  18. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  19. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  20. Probabilistic Dynamic Logic of Phenomena and Cognition

    CERN Document Server

    Vityaev, Evgenii; Perlovsky, Leonid; Smerdov, Stanislav

    2011-01-01

    The purpose of this paper is to develop further the main concepts of Phenomena Dynamic Logic (P-DL) and Cognitive Dynamic Logic (C-DL), presented in the previous paper. The specific character of these logics is in matching vagueness or fuzziness of similarity measures to the uncertainty of models. These logics are based on the following fundamental notions: generality relation, uncertainty relation, simplicity relation, similarity maximization problem with empirical content and enhancement (learning) operator. We develop these notions in terms of logic and probability and developed a Probabilistic Dynamic Logic of Phenomena and Cognition (P-DL-PC) that relates to the scope of probabilistic models of brain. In our research the effectiveness of suggested formalization is demonstrated by approximation of the expert model of breast cancer diagnostic decisions. The P-DL-PC logic was previously successfully applied to solving many practical tasks and also for modelling of some cognitive processes.

  1. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.;

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...... crystalline lattice with close-packed spheres or with cubic (presumably BCC) equilibrium morphology. The appearance of the latter is never detected in the gels with a stretched conformation of the midblock....

  2. Tunable caustic phenomena in electron wavefields

    Energy Technology Data Exchange (ETDEWEB)

    Tavabi, Amir Hossein, E-mail: a.tavabi@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-10-15

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. - Highlights: • Electron-optical caustics are observed in defocused images of biased metallic tips. • The caustics depend on defocus, on the bias between the tips and on their separation. • The setup offers the flexibility to study a wide variety of caustic phenomena.

  3. Upper gastrointestinal physiology and diseases.

    Science.gov (United States)

    Waldum, Helge L; Kleveland, Per M; Fossmark, Reidar

    2015-06-01

    Nordic research on physiology and pathophysiology of the upper gastrointestinal tract has flourished during the last 50 years. Swedish surgeons and physiologists were in the frontline of research on the regulation of gastric acid secretion. This research finally led to the development of omeprazole, the first proton pump inhibitor. When Swedish physiologists developed methods allowing the assessment of acid secretion in isolated oxyntic glands and isolated parietal cells, the understanding of mechanisms by which gastric acid secretion is regulated took a great step forward. Similarly, in Trondheim, Norway, the acid producing isolated rat stomach model combined with a sensitive and specific method for determination of histamine made it possible to evaluate this regulation qualitatively as well as quantitatively. In Lund, Sweden, the identification of the enterochromaffin-like cell as the cell taking part in the regulation of acid secretion by producing and releasing histamine was of fundamental importance both physiologically and clinically. Jorpes and Mutt established a center at Karolinska Institutet in Stockholm for the purification of gastrointestinal hormones in the 1960s, and Danes followed up this work by excelling in the field of determination and assessment of biological role of gastrointestinal hormones. A Finnish group was for a long period in the forefront of research on gastritis, and the authors' own studies on the classification of gastric cancer and the role of gastrin in the development of gastric neoplasia are of importance. It can, accordingly, be concluded that Nordic researchers have been central in the research on area of the upper gastrointestinal physiology and diseases. PMID:25857514

  4. Corporate Strategy And The Social Networking Phenomena

    OpenAIRE

    Johnson, Robert L.

    2011-01-01

    The Social Networking (SN) phenomena has developed relatively overnight and is continuing to develop at an exponential pace. It allows for innovative new methods of disseminating and collecting information in ways never before dreamed possible by corporate executives. The rise of Social Networking is becoming a disruptive technology for traditional marketing and advertising medium such as radio, television, web page, and print media, creating new business opportunities for the entrepreneur w...

  5. Interface-Induced Phenomena in Magnetism

    OpenAIRE

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey; Fullerton, Eric; Leighton, Chris; MacDonald, Allan; Ralph, Dan; Arena, Dario; Durr, Hermann; Fischer, Peter; GROLLIER, Julie; Heremans, Joseph; Jungwirth, Tomas; Kimmel, Alexey

    2016-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties a...

  6. Numerical Modeling and Investigation of Boiling Phenomena

    OpenAIRE

    Kunkelmann, Christian

    2011-01-01

    The subject of the present thesis is the numerical modeling and investigation of boiling phenomena. The heat transfer during boiling is highly efficient and therefore used for many applications in power generation, process engineering and cooling of high performance electronics. The precise knowledge of particular boiling processes, their relevant parameters and limitations is of utmost importance for an optimized application. Therefore, the fundamentals of boiling heat transfer have been...

  7. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  8. Modelling of flow phenomena during DC casting

    OpenAIRE

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instantaneous transformation, but occurs in temperature interval. In the casting process the latent heat is moved away by convection and conduction. A number of problems may occur during solidification, beca...

  9. Nonequilibrium phenomena in adjacent electrically isolated nanostructures

    OpenAIRE

    Khrapai, V. S.; Ludwig, S.; Kotthaus, J. P.; Tranitz, H. P.; Wegscheider, W.

    2008-01-01

    We report on nonequilibrium interaction phenomena between adjacent but electrostatically separated nanostructures in GaAs. A current flowing in one externally biased nanostructure causes an excitation of electrons in a circuit of a second nanostructure. As a result we observe a dc current generated in the unbiased second nanostructure. The results can be qualitatively explained in terms of acoustic phonon based energy transfer between the two mutually isolated circuits.

  10. Saturation and Critical Phenomena in DIS

    OpenAIRE

    Jenkovszky, L. L.; Troshin, S. M.; Tyurin, N. E.

    2009-01-01

    It is argued that the expected turn-down in $x- Q^2$ of the cross sections (structure functions $F_2(x,Q^2)$), assumed to result from the saturation of parton densities in the nucleon, is related to a phase transition from the (almost) ideal partonic gas, obeying Bjorken scaling, to a partonic "liquid". This can be quantified in the framework of statistical models, percolation and other approaches to collective phenomena of the strongly interacting matter. Similarities and differences between...

  11. Multiscale Phenomena Related to Diabetic Foot

    OpenAIRE

    Agić, Ante; Nikolić, Tatjana; Mijović, Budimir

    2011-01-01

    Diabetes is a group of metabolic diseases causing a system disorder, i.e.; it cannot be explained or understood by phenomena on single material scale. The diabetic foot is studied as flexible multibody structure by nonlinear finite element method. The physical and geometrical multiscale heterogeneity is solved by multilevel finite element approach. The diabetic tissue is described by internal coordinate’s formalism, as complex multiscale process in tissue. The accompanying problem...

  12. Modeling electrical dispersion phenomena in Earth materials

    OpenAIRE

    D. Patella

    2008-01-01

    It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative...

  13. Computer Aided Series Expansions for Critical Phenomena

    CERN Document Server

    Meyer-Ortmanns, H; Meyer-Ortmanns, Hildegard; Reisz, Thomas

    1996-01-01

    Under quite general conditions critical phenomena can be described with high order linked cluster expansions. The coefficients of the series admit a graphical expansion that is generated with the aid of computers. Our generalization of linked cluster expansions from an infinite to a finite volume allows to perform a finite size scaling analysis. We also indicate a generalization to Dynamical Linked Cluster Expansions with possible applications to spin glasses and neural networks with coupled spin and interaction dynamics.

  14. Gender Disparity Phenomena in Riskesdas 2007

    OpenAIRE

    Siti Isfandari; Lamria Pangaribuan; Dina Bisara Lolong

    2014-01-01

    Background: The contradictory evidence of greater life expectancy among Indonesian female while our 2007 National Health Report, Riskesdas 2007 showed that female leads male almost in all morbidity needs explanation. Differences in health and illness patterns of men and women are attributable both to sex, or biology, and to gender, that is social factors such as powerlessness, access to resources, and constrained roles. Methods:The paper use gender perspective to analyse phenomena from the Ri...

  15. Neuronal responses to physiological stress

    Directory of Open Access Journals (Sweden)

    Konstantinos eKagias

    2012-10-01

    Full Text Available Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, which result from an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.

  16. Detection of black holes from optical phenomena

    International Nuclear Information System (INIS)

    The way by which the bending of light rays around black holes could give rise to optical phenomena, other than the lens effect, leading to the detection of them, is examined. One such phenomenon is the fact that we will see a ring of brightness around the black hole when we flash light on it. Another phenomenon is the appearance of a nebulosity around the black hole coming from the scattering of light from all discrete sources of the sky when it passes near the black hole. We examine the surface brightness of the phenomena seen and calculate the maximum distance of the black hole in order for the associated phenomena to appear on photographs. We find that primordial black holes of mass M ≅ 1016 Msolarmasses would be detectable by the first phenomenon if they existed within 5 Mpc distance from us, while they would be detectable by the second phenomenon if they existed within 200-300 Mpc distance from us. (author)

  17. MEASURING SYSTEM OF ADVERSE WEATHER PHENOMENA

    Directory of Open Access Journals (Sweden)

    M. Ćurić

    2012-03-01

    Full Text Available Measuring system of adverse weather phenomena. The adverse weather phenomena in nowadays are becoming an extraordinary problem in human life and human activity. Therefore, it seems very important to know the thresholds of adverse weather phenomena. These thresholds can be calculated in different ways, but some experience has shown that for weather elements which departures from normal follow the normal distribution suits to use the Gaussian curve of frequency distribution (temperature and pressure. For such weather elements the normal curve of frequency distribution may be used for classification of thresholds. For weather elements which departures do not depend on such a frequency distribution configuration (precipitation amounts may be used a decile method. For wind speed thresholds, the Beaufort scale units can be used for calculation. In this paper the threshold scales for four basic weather elemnts are presented. All these scales contain four steps each. They are defined: normal, above normal, much above normal and extraordinary above normal or normal, below normal, much below normal and extraordinary below normal. The examples by observations of Meteorological Observatory in Belgrade are presented.

  18. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  19. Prediction of sodium leakage and combustion phenomena

    International Nuclear Information System (INIS)

    Prediction of sodium leakage and combustion phenomena is important for the safety of liquid metal fast breeder reactors. In particular, small leakage is sensitive to obstacles and air flows. Falling liquid sodium is strongly deformed by separation and dispersion as well as various phenomena, such as combustion and accumulation, are combined. Since the existing finite difference methods need computational grids, it is so difficult to calculate separation and dispersion that small leakage of liquid sodium cannot be analyzed. MPS (Moving Particle Semi-implicit) method is a new numerical method, which is being developed in Univ of Tokyo. In the MPS method fluids are represented by macroscopic particles and governing equations are converted to equivalent particle interactions. Since computational grids are not necessary, separation and dispersion of fluids are easily calculated. Addition of combustion and accumulation will be easy as well because the fluid motion is just simulated by the particle motion. Thus, the objective of the present study is development of a numerical method to predict small size sodium leakage and combustion phenomena. In this paper, a model experiment using water and numerical calculations for this experiment are presented. (J.P.N.)

  20. The effect of physiological levels of South African puff adder (Bitis arietans) snake venom on blood cells: an in vitro model

    Science.gov (United States)

    Strydom, Morné A.; Bester, Janette; Mbotwe, Sthembile; Pretorius, Etheresia

    2016-01-01

    A significant burden of illness is caused globally by snakebites particularly by the puff adder, Bitis arietans. Presently there is no reliable and rapid method to confirm envenomation on blood chemistry; although coagulation parameters like prothrombin time, partial thromboplastin time, international normalized ratio and also serum electrolytes are tested. Here, we found that direct in vitro exposure of physiological relevant whole venom levels to human healthy blood (N = 32), caused significant physiological changes to platelet activity using a hematology analyzer, and measuring occlusion time, as well as lyses time, with the global thrombosis test (GTT). Disintegrated platelets were confirmed by scanning electron microscopy (SEM). We also confirmed the pathologic effects on erythrocytes (RBCs) (visible as eryptotic RBCs), by looking at both light microscopy and SEM. Thromboelastography showed that no clot formation in whole blood could be induced after addition of whole venom. We propose further clinical studies to investigate the use of light microscopy smears and hematology analyzer results immediately after envenomation, as a possible first-stage of clinical confirmation of envenomation. PMID:27775063

  1. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    Science.gov (United States)

    Tsai, Yu-Lin; Lai, Kun-Yu; Lee, Ming-Jui; Liao, Yu-Kuang; Ooi, Boon S.; Kuo, Hao-Chung; He-Hau, Jr.

    2016-09-01

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via nanoscaled phenomena have also been demonstrated as a promising way for further modifying/improving the device performance. The accomplishments achieved by photon management via nanoscaled phenomena include strain-induced polarization field management, crystal quality improvement, light extraction/harvesting enhancement, radiation pattern control, and spectrum management. In this review, we summarize recent development, challenges and underlying physics of photon management in GaN-based light emitting diodes and solar cells.

  2. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    Science.gov (United States)

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  3. Fractal physiology and the fractional calculus: a perspective.

    Science.gov (United States)

    West, Bruce J

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  4. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  5. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

  6. Rod Driven Frequency Entrainment and Resonance Phenomena

    Science.gov (United States)

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  7. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  8. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  9. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  10. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  11. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  12. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  13. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  14. Phenomena and Parameters Important to Burnup Credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given

  15. Observations of cometary plasma wave phenomena

    Science.gov (United States)

    Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.; Ip, W.-H.; Smith, E. J.

    1986-01-01

    The ICE plasma wave investigation utilized very long electric antennas (100 m tip-to-tip) and a very high sensitivity magnetic search coil to obtain significant local information on plasma physics phenomena occurring in the distant pickup regions of Comet Giacobini-Zinner and Comet Halley; and information on the processes that developed in the coma and tail of Giacobini-Zinner. The ICE plasma wave measurements associated with both comet encounters are summarized, and high sensitivity ICE observations are related to corresponding measurements from the other Halley spacecraft.

  16. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  17. Interfacial Phenomena and Natural Local Time

    CERN Document Server

    Appuhamillage, Thilanka; Thomann, Enrique; Waymire, Edward; Wood, Brian

    2012-01-01

    This article addresses a modification of local time for stochastic processes, to be referred to as `natural local time'. It is prompted by theoretical developments arising in mathematical treatments of recent experiments and observations of phenomena in the geophysical and biological sciences pertaining to dispersion in the presence of an interface of discontinuity in dispersion coefficients. The results illustrate new ways in which to use the theory of stochastic processes to infer macro scale parameters and behavior from micro scale observations in particular heterogeneous environments.

  18. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  19. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  20. A review of conduction phenomena in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myounggu; Zhang, Xiangchun; Chung, Myoungdo; Less, Gregory B. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Sastry, Ann Marie [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2010-12-15

    Conduction has been one of the main barriers to further improvements in Li-ion batteries and is expected to remain so for the foreseeable future. In an effort to gain a better understanding of the conduction phenomena in Li-ion batteries and enable breakthrough technologies, a comprehensive survey of conduction phenomena in all components of a Li-ion cell incorporating theoretical, experimental, and simulation studies, is presented here. Included are a survey of the fundamentals of electrical and ionic conduction theories; a survey of the critical results, issues and challenges with respect to ionic and electronic conduction in the cathode, anode and electrolyte; a review of the relationship between electrical and ionic conduction for three cathode materials: LiCoO{sub 2}, LiMn{sub 2}O{sub 4}, LiFePO{sub 4}; a discussion of phase change in graphitic anodes and how it relates to diffusivity and conductivity; and the key conduction issues with organic liquid, solid-state and ionic liquid electrolytes. (author)

  1. Auroral Phenomena in Brown Dwarf Atmospheres

    Science.gov (United States)

    Pineda, J. Sebastian; Hallinan, Gregg

    2016-01-01

    Since the unexpected discovery of radio emission from brown dwarfs some 15 years ago, investigations into the nature of this emission have revealed that, despite their cool and neutral atmospheres, brown dwarfs harbor strong kG magnetic fields, but unlike the warmer stellar objects, they generate highly circularly polarized auroral radio emission, like the giant planets of the Solar System. Our recent results from Keck LRIS monitoring of the brown dwarf LSR1835+32 definitively confirm this picture by connecting the auroral radio emission to spectroscopic variability at optical wavelengths as coherent manifestations of strong large-scale magnetospheric auroral current systems. I present some of the results of my dissertation work to understand the nature brown dwarf auroral phenomena. My efforts include a survey of Late L dwarfs and T dwarfs, looking for auroral Hα emission and a concurrent survey looking for the auroral emission of H3+ from brown dwarfs with radio pulse detections. I discuss the potential connection of this auroral activity to brown dwarf weather phenomena and how brown dwarf aurorae may differ from the analogous emission of the magnetized giant planets in the Solar System.

  2. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  3. Effects of electrostatic correlations on electrokinetic phenomena.

    Science.gov (United States)

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  4. Exceptional hydrological phenomena in the Gemenea catchment

    Directory of Open Access Journals (Sweden)

    Florentina LIVARCIUC

    2015-10-01

    Full Text Available Flash floods, accompanied by high waters and regular floods, represent the most dangerous natural hazards in the Gemenea catchment, inducing other risks such as geomorphologic, environmental, social and economical risks. Flash floods occurred during the 1969 to 2014 monitoring interval are characterized by extremely high discharge values, of 68.9 m3/s in 2006 and 95.3 m3/s in 2008 and a magnitude 2.5 times higher than the average discharge recorded until that timeframe. With an area of 77.7 km2, the Gemenea catchment falls into the category of small catchments, where the peak discharge during exceptional hydrological phenomena is caused by torrential rainfall. Flash floods of particularly high intensities caused serious damages through: total destruction or damage of the torrent correction works, clogging of culverts on catchment forest roads, failure of river banks and deterioration of the bridges that affected roads and homes in Gemenea, Slătioara and Stulpicani villages. These floods have also caused damage to the forest/agriculture fund through deep and lateral erosion, failure of river banks and landslides. Within this study we aim to emphasize the magnitude, frequency, duration and area of manifestation of such phenomena in the Gemenea catchment. Furthermore, we aim to advance our knowledge of the genesis and specific mechanisms of flash flood occurrence for reducing their negative impacts on the local environment and communities

  5. Animal network phenomena: insights from triadic games

    Science.gov (United States)

    Mesterton-Gibbons, Mike; Sherratt, Tom N.

    Games of animal conflict in networks rely heavily on computer simulation because analysis is difficult, the degree of difficulty increasing sharply with the size of the network. For this reason, virtually the entire analytical literature on evolutionary game theory has assumed either dyadic interaction or a high degree of symmetry, or both. Yet we cannot rely exclusively on computer simulation in the study of any complex system. So the study of triadic interactions has an important role to play, because triads are both the simplest groups in which asymmetric network phenomena can be studied and the groups beyond dyads in which analysis of population games is most likely to be tractable, especially when allowing for intrinsic variation. Here we demonstrate how such analyses can illuminate a variety of behavioral phenomena within networks, including coalition formation, eavesdropping (the strategic observation of contests between neighbors) and victory displays (which are performed by the winners of contests but not by the losers). In particular, we show that eavesdropping acts to lower aggression thresholds compared to games without it, and that victory displays to bystanders will be most intense when there is little difference in payoff between dominating an opponent and not subordinating.

  6. WHC natural phenomena hazards mitigation implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  7. Black Holes Admitting Strong Resonant Phenomena

    CERN Document Server

    Stuchlik, Zdenek; Torok, Gabriel

    2008-01-01

    High-frequency twin peak quasiperiodic oscillations (QPOs) are observed in four microquasars, i.e., Galactic black hole binary systems, with frequency ratio very close to 3:2. In the microquasar GRS 1915+105, the structure of QPOs exhibits additional frequencies, and more than two frequencies are observed in the Galaxy nuclei Sgr A*, or in some extragalactic sources (NGC 4051, MCG-6-30-15 and NGC 5408 X-1). The observed QPOs can be explained by a variety of the orbital resonance model versions assuming resonance of oscillations with the Keplerian frequency or the vertical epicyclic frequency, and the radial epicyclic frequency, or some combinations of these frequencies. Generally, different resonances could arise at different radii of an accretion disc. However, we have shown that for special values of dimensionless black hole spin strong resonant phenomena could occur when different resonances can be excited at the same radius, as cooperative phenomena between the resonances may work in such situations. The ...

  8. Simulated Exercise Physiology Laboratories.

    Science.gov (United States)

    Morrow, James R., Jr.; Pivarnik, James M.

    This book consists of a lab manual and computer disks for either Apple or IBM hardware. The lab manual serves as "tour guide" for the learner going through the various lab experiences. The manual contains definitions, proper terminology, and other basic information about physiological principles. It is organized so a step-by-step procedure may be…

  9. The Face of Physiology

    Directory of Open Access Journals (Sweden)

    Paul White

    2008-10-01

    Full Text Available This article explores the relationship between the physiology of the emotions and the display of character in Victorian Britain. Charles Bell and others had begun to link certain physiological functions, such as respiration, with the expression of feelings such as fear, regarding the heart and other internal organs as instruments by which the emotions were made visible. But a purely functional account of the emotions, which emerged through the development of reflex physiology during the second half of the century, would dramatically alter the nature of feelings and the means of observing them. At the same time, instinctual or acquired sympathy, which had long underpinned the accurate reading of expressions, became a problem to be surmounted by new 'objectively'. Graphic recording instruments measuring a variety of physiological functions and used with increasing frequency in clinical diagnostics became of fundamental importance for tracing the movement of feelings during the period prior to the development of cinematography. They remained, in the form of devices such as the polygraph, a crucial and controversial means of measuring affective states, beneath the potentially deceptive surface of the body.

  10. Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra J

    2015-11-01

    Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.

  11. Brain microischemic phenomena in a woman receiving bevacizumab treatment: a case report

    Directory of Open Access Journals (Sweden)

    Grasso Rosario F

    2011-02-01

    Full Text Available Abstract Introduction Several adverse events have been associated with the use of bevacizumab during the treatment of neoplasms such as colorectal cancer, breast cancer, non-small cell lung cancer, pancreatic cancer and renal cell carcinoma. The present case demonstrates how focal neurological symptoms lead to the magnetic resonance imaging-based differential diagnosis between focal parenchymal metastases and microischemic phenomena, with crucial implications for patient management. Case presentation We describe the case of a 37-year-old Italian Caucasian woman with metastatic colon cancer who developed focal neurological symptoms during a chemotherapy regimen involving the use of bevacizumab. Brain magnetic resonance imaging examination revealed millimetric lesions with restricted diffusion without perilesional edema or contrast enhancement after gadodiamide intravenous injection, suggestive of acute microischemic phenomena. This complication is very rare but clinically significant. Conclusion The differential diagnosis in patients with cancer undergoing bevacizumab treatment should include microischemic phenomena.

  12. Physiology and molecular biology of petal senescence

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2008-01-01

    Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence

  13. Studies on the effect of cell cycle arrest on central metabolism in the diatom Phaeodactylum tricornutum, using physiological and systems biology approaches

    Science.gov (United States)

    Kim, Joomi

    Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in the modern oceans over the past 30 million years. They are excellent candidates for biodiesel feedstocks. Global climate change has led to an interest in algal triacylglycerols (TAGs) as feedstocks for sustainable biodiesel, and diatoms are attractive candidates for TAG production as one of the most productive and environmentally flexible algae in the contemporary oceans. For Chapter 2, a genome-scale metabolic model was constructed to calculate intracellular fluxes of a diatom under different growth conditions. The model identified enzymes that may be relevant to increasing lipid synthesis, explored how transporters affect flux outputs, and explored unusual features of diatoms, including the Entner-Douderoff and phosphoketolase pathways, and glycolytic enzymes in their mitochondria. Chapter 3 discusses how cell cycle arrest via cyclin-dependent kinase (Cdk) inhibition, can increase accumulation of TAGs, and shift metabolism away from protein synthesis. For Chapter 4, transcriptome analysis of cells under cell cycle arrest was performed to show that the pattern of gene expression was fundamentally different from nitrogen stress. Most of the genes related to fatty acid and TAG synthesis were up-regulated. The gene expression pattern for light harvesting complexes was similar to cells stressed by high light, suggesting that arrested cells have smaller sinks for photosynthetically generated electrons.

  14. Traffic phenomena in biology: from molecular motors to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2007-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitative analysis of mode...

  15. 南方型紫花苜蓿耐盐细胞系的筛选及生理特性分析%Selection and Physiological Characterization of Salt-tolerant Cell Line of Southern Type Alfalfa

    Institute of Scientific and Technical Information of China (English)

    马进; 刘志高; 郑钢

    2011-01-01

    Calluses of Southern type alfalfa cultured for a long term were selected, a cell line tolerant to 1.2% NaCl was isolated by using NaCl as selection pressure. The physiological and biochemical properties of this salt tolerant cell line were analyzed. The results showed that the tolerance of the salt-tolerant cell line was much higher than that of control line. Free proline content and soluble protein content increased in salt-tolerant cell line was higher than that in control, a higher K+/Na+ ratio was kept in the salt-tolerant cell line. The activities of superoxide dismutase (SOD), peroxidase (POD) in salt-tolerant cell line were higher than that of the control under NaCl stress.%以NaCl为选择因子,对长期继代培养的紫花苜蓿愈伤组织进行选择,筛选出耐1.2% NaCl的耐盐细胞系并对其进行生理分析,结果表明:耐盐细胞系对逆境的忍受能力高于对照,积累的脯氨酸和可溶性蛋白含量也高于对照,维持着较高的K+/Na+比,在盐分胁迫下能维持较高的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性.

  16. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  17. Electron Acceleration by Transient Ion Foreshock Phenomena

    Science.gov (United States)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  18. Corporate Strategy And The Social Networking Phenomena

    Directory of Open Access Journals (Sweden)

    Robert L. Johnson

    2011-11-01

    Full Text Available The Social Networking (SN phenomena has developed relatively overnight and is continuing to develop at an exponential pace. It allows for innovative new methods of disseminating and collecting information in ways never before dreamed possible by corporate executives. The rise of Social Networking is becoming a disruptive technology for traditional marketing and advertising medium such as radio, television, web page, and print media, creating new business opportunities for the entrepreneur within organizations of any size, and allowing lucrative treasure troves of corporate intelligence about how the customers feel about one’s or a competitor’s products or services. It means new executive leadership skills are now needed to take advantage of these new tools and developing corporate strategies. Those that do this well will be the winners in the market five years from now.

  19. PHENOMENA AND BASIC MACROECONOMIC INDICATORS FOR MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    PAULINA CATANA

    2010-01-01

    Full Text Available Macroeconomics is a separate discipline of the Economy that studies and analyzes the behaviour of economic aggregates and significant average, such as price level, national income, national income potential, the gap GDP, employment and unemployment of labour, investment and export of the whole economy. We can accuse to Macroeconomics that it deals also with the average price of all goods and services, not the prices of certain products. These aggregates result from economic behaviour of certain groups (governments, companies, consumers in the course of their activities on different markets. But why does it need Macroeconomics? Experts say that we need this separate discipline because there are certain forces that affect the broader economy globally, which can not be understood only by analyzing individual economic phenomena, individual products or markets.

  20. Simulating Physical Phenomena by Quantum Networks

    CERN Document Server

    Somma, R D; Gubernatis, J E; Knill, E H; Laflamme, R

    2002-01-01

    Physical systems, characterized by an ensemble of interacting elementary constituents, can be represented and studied by different algebras of observables or operators. For example, a fully polarized electronic system can be investigated by means of the algebra generated by the usual fermionic creation and annihilation operators, or by using the algebra of Pauli (spin-1/2) operators. The correspondence between the two algebras is given by the Jordan-Wigner isomorphism. As we previously noted similar one-to-one mappings enable one to represent any physical system in a quantum computer. In this paper we evolve and exploit this fundamental concept in quantum information processing to simulate generic physical phenomena by quantum networks. We give quantum circuits useful for the efficient evaluation of the physical properties (e.g, spectrum of observables or relevant correlation functions) of an arbitrary system with Hamiltonian $H$.

  1. Teaching wave phenomena via biophysical applications

    Science.gov (United States)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  2. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  3. Novel nuclear phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  4. Social phenomena from data analysis to models

    CERN Document Server

    Perra, Nicola

    2015-01-01

    This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...

  5. Hadronic and nuclear phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  6. Laser Interaction and Related Plasma Phenomena

    Directory of Open Access Journals (Sweden)

    Frederick Osman

    2005-01-01

    Full Text Available Computations are to be performed using the laser driven inertial fusion energy option based on volume ignition with the natural adiabatic self-similarity compression and expansion hydrodynamics [1]. The numerical work includes the establishing of a multi-branch reaction code to be used for simultaneous fusion reactions of D-D, D-T D-He3 and mutual nuclear reaction products. This will permit the studies of neutron lean reactions as well as tritium-rich cases. The D-T reactions will stress the recent new results on one step laser fusion [2] as an alternative to the two-step fast ignitor scheme whose difficulties with new physics phenomena at petawatt laser interaction are more and more evident [3].

  7. Transient Phenomena: Opportunities for New Discoveries

    Science.gov (United States)

    Lazio, T. Joseph W.

    2010-01-01

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (gamma-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from gamma-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  8. Issues about the nocebo phenomena in clinics

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-yu; LI Kang

    2009-01-01

    @@ During clinical work, some side-effects may occur to patients, part of which are caused by the specific pharmacological effects of drugs and some of which are non-specific. Although these phenomena happen from time to time, burdening the anguish and expenditure of patients, their nature is still less understood. Recently, as the research of the placebo effect become deeper and deeper, clinicians and researchers have gradually realized that mind plays an important role in the occurrence of non-specific side-effects, which is called "nocebo effect" professionally, the evil side of placebo effect. This article would expatiate on nocebo effect in detail from several aspects, such as its mechanism, effect, influencing factors and discuss how to make it known and treated in clinical practice and clinical trials.

  9. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  10. Magneto-photonic phenomena at terahertz frequencies

    CERN Document Server

    Shalaby, Mostafa

    2014-01-01

    Magneto-terahertz phenomena are the main focus of the thesis. This work started as supporting research for the science of an X-ray laser (SwissFEL). X-ray lasers have recently drawn great attention as an unprecedented tool for scientific research on the ultrafast scale..... To answer this fundamental question, we performed original numerical simulations using a coupled Landau- Lifshitz-Gilbert Maxwell model. ... Those requirements were the motivations for the experiments performed in the second part of the thesis. To shape the terahertz pulses, .... Regarding the field intensities, we followed two approaches. The first deals with field enhancement in nanoslits arrays. We designed a subwavelength structure characterized by simultaneous high field enhancement and high transmission at terahertz frequencies to suit nonlinear sources. The second approach depended on up-scaling the generation from laser-induced plasma by increasing the pump wavelengths. Numerical calculations have also brought to our attention the ...

  11. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  12. Physiological variation and adaptability in human populations.

    Science.gov (United States)

    Collins, K J

    1999-01-01

    This review traces some of the developments in population physiology based on contributions to the Annals over the last 25 years. Two broad themes are evident, physiological systems variation and adaptation, and by way of introduction an historical perspective of their relationship within human ecology is explored. Studies of physical fitness and work capacity, and the efforts to create standardized field procedures make up a number of the early papers. Longitudinal studies have provided reliable reference standards for Westernized populations, but are virtually non-existent for primitive groups. The relative importance of phenotypic and genotypic variations in working capacity have yet to be clearly defined. The level of habitual activity during childhood contributes to the development of ventilatory capacity though constitutional influences are of major importance. Variability in strength and motor performance of skeletal muscles are shown to have a direct bearing on aspects of growth, development and biological maturation. Physical and psychological stress in communities have been investigated. These and other studies contribute valuable data on the issue of stress, hypertension and cardiovascular morbidity and mortality. On the theme of human adaptability, high altitude populations, variations in thermal tolerance and adaptations in ageing populations have all received recent investigation. Highland people of all ages have considerably larger lung volumes than coastal dwellers. Haematological, biochemical and pulmonary function show adaptive phenomena that vary in different highland groups. In the tropical biome, more recent work includes the functional consequences of malnutrition, ethnic and cultural differences in work capacity, and the effects of endemic disease on physical performance. Annals of Human Biology papers have more recently contributed to investigations on morphological and physiological changes with human ageing. Though there is a decline in

  13. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    OpenAIRE

    Daniel Zeve; Millay, Douglas P.; Jin Seo; Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicat...

  14. APRI-6. Accident Phenomena of Risk Importance

    Energy Technology Data Exchange (ETDEWEB)

    Garis, Ninos; Ljung, J (eds.) (Swedish Radiation Safety Authority, Stockholm (Sweden)); Agrenius, Lennart (ed.) (Agrenius Ingenjoersbyraa AB, Stockholm (Sweden))

    2009-06-15

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.

  15. Critical Phenomena in Liquid-Liquid Mixtures

    Science.gov (United States)

    Jacobs, D. T.

    2000-04-01

    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  16. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  17. Neuronal responses to physiological stress.

    Science.gov (United States)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  18. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu

    NARCIS (Netherlands)

    van de Bovenkamp, M; Groothuis, GMM; Draaisma, AL; Merema, M.T.; Bezuijen, JI; van Gils, MJ; Meijer, DKF; Friedman, SL; Olinga, P

    2005-01-01

    Hepatic stellate cell (HSC) activation is a key event in the natural process of wound healing as well as in fibrosis development in liver. Current in vitro models for HSC activation contribute significantly to the understanding of HSC biology and fibrogenesis but still fall far short of recapitulati

  19. Neonatal cardiovascular physiology.

    Science.gov (United States)

    Hines, Michael H

    2013-11-01

    The pediatric surgeon deals with a large number and variety of congenital defects in neonates that frequently involve early surgical intervention and care. Because the neonatal cardiac physiology is unique, starting with the transition from fetal circulation and including differences in calcium metabolism and myocardial microscopic structure and function, it serves the pediatric surgeon well to have a sound understanding of these principles and how they directly and indirectly affect their plans and treatments. In addition, many patients will have associated congenital heart disease that can also dramatically influence not only the surgical and anesthetic care but also the timing and planning of procedures. Finally, the pediatric surgeon is often called upon to treat conditions and complications associated with complex congenital heart disease such as feeding difficulties, bowel perforations, and malrotation in heterotaxy syndromes. In this article, we will review several unique aspects of neonatal cardiac physiology along with the basic physiology of the major groups of congenital heart disease to better prepare the training and practicing pediatric surgeon for care of these complex and often fragile patients.

  20. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.